
Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 1
of 221

Tencent Real-Time Communication

Advanced Features

Product Documentation

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 2
of 221

Copyright Notice

©2013-2025 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by the Tencent corporate group, including
its parent, subsidiaries and affiliated companies, as the case may be. Trademarks of third parties referred to in this
document are owned by their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 3
of 221

Contents

Advanced Features
Relay to CDN
Enabling Advanced Permission Control
Push Media Stream into TRTC
Speech-to-Text
Utilizing Beautification Effects

SDK Integration Guide (Flutter)
Testing Hardware Devices

Android&iOS&Windows&Mac
Web

Testing Network Quality
Android&iOS&Windows&Mac
Web

On-Cloud Recording
Custom Capturing and Rendering

Android, iOS, Windows, and macOS
Web
Flutter

Custom Audio Capturing and Playback
Android, iOS, Windows, and macOS
Web

Sending and Receiving Messages
Event Callbacks

Event Callbacks
Relay to CDN Callback
Cloud Recording Callback
Push Online Media Stream Callback
Conversational AI & Speech-to-Text Callbacks
Verify Signature Example

Access Management
Overview
Manageable Resources and Actions
Preset Policies
Custom Policies

Enable Watermark

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 4
of 221

Flutter
How to push stream to TRTC room with OBS WHIP
Video Screenshot Upload

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 5
of 221

Advanced Features
Relay to CDN
Last updated：2025-06-09 16:21:45

This document describes how to publish (relay) audio/video streams in TRTC to CDNs so that viewers can watch the
streams using standard live streaming players.

Applicable Scenario

Since TRTC uses User Datagram Protocol (UDP) to transmit audio and video data, while Live Video Broadcasting

(LVB) CDN uses Real-Time Messaging Protocol (RTMP), HTTP Live Streaming (HLS), Flash Video (FLV), and other
protocols for data transmission, it is necessary to relay TRTC's audio and video data to the live streaming CDN for
viewers to watch through the CDN.
Integrating TRTC with CDN for viewing is typically used to address the following issues:
Viewing with ultra-high concurrency

TRTC's low-latency viewing capability supports up to 100,000 participants in a single room. Although CDN viewing
has higher latency, it supports more than 100,000 concurrent viewers and offers more affordable prices.

Relay to CDN Control Solution

TRTC provides several control solutions for publishing audio and video streams to a live streaming CDN (that is, relay
to CDN), which include initiating relay using terminal SDK, initiating relay using RESTful APIs, and automatic relay.
The specific solutions are described as follows:

Solution 1: Initiating Relay Using Terminal SDK

Step 1: Publishing the Local User's Stream to CDNs

Feature Description

You can use the startPublishMediaStream (for example, IOS) API of TRTCCloud to publish the audio/video streams
of local users to live streaming CDNs (known in TRTC as "relay to CDN").

The TRTC server will send the audio/video data directly to the CDN server. Because the data is not transcoded, the

https://www.tencentcloud.com/document/product/647/50754#9cea9ae34a50a44c0a7023295313bf2e

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 6
of 221

cost is relatively low.

However, if there are multiple users publishing audio/video streams in a room, there will be a CDN stream for each
user. Multiple players are needed to play the streams, and they may not play in sync.

Directions

Follow the steps below to publish the local user's stream to CDNs.
1. Create a TRTCPublishTarget object and set mode in the object to TRTCPublishBigStreamToCdn or

 TRTCPublishSubStreamToCdn . The former is used to publish the user's primary stream (usually the camera),

and the latter is used to publish the user's substream (usually the screen).
2. Set cdnUrlList in the TRTCPublishTarget object to one or multiple CDN addresses (which usually

starts with rtmp://). If you publish to the Tencent Cloud CDN (can be generated in CSS console > Address

Generator), set isInternalLine to true ; otherwise, set it to false .

3. Because the data is not transcoded, leave TRTCStreamEncoderParam and TRTCStreamMixingConfig

empty.
4. Call startPublishMediaStream . If the taskId parameter returned by the

 onStartPublishMediaStream callback is not empty, the local API call is successful.

5. To stop publishing, call stopPublishMediaStream , passing in the taskId returned by

 onStartPublishMediaStream .

Sample Code

The code below publishes the local user's stream to a live streaming CDN.
java
Objective-C

C++
Web
Dart

// Publish the local user's stream to a live streaming CDN.

TRTCCloudDef.TRTCPublishTarget target = new TRTCCloudDef.TRTCPublishTarget();

target.mode = TRTC_PublishBigStream_ToCdn;

TRTCCloudDef.TRTCPublishCdnUrl cdnUrl= new TRTCCloudDef.TRTCPublishCdnUrl();

cdnUrl.rtmpUrl = "rtmp://tencent/live/bestnews";

cdnUrl.isInternalLine = true;

target.cdnUrlList.add(cdnUrl);

mTRTCCloud.startPublishMediaStream(target, null, null);

// Publish the local user's stream to a live streaming CDN.

TRTCPublishTarget* target = [[TRTCPublishTarget alloc] init];

target.mode = TRTCPublishBigStreamToCdn;

TRTCPublishCdnUrl* cdnUrl = [[TRTCPublishCdnUrl alloc] init];

cdnUrl.rtmpUrl = @"rtmp://tencent/live/bestnews";

https://console.tencentcloud.com/live/addrgenerator/addrgenerator

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 7
of 221

cdnUrl.isInternalLine = YES;

NSMutableArray* cdnUrlList = [NSMutableArray new];

[cdnUrlList addObject:cdnUrl];

target.cdnUrlList = cdnUrlList;

[_trtcCloud startPublishMediaStream:target encoderParam:nil mixingConfig:nil];

// Publish the local user's stream to a live streaming CDN.

TRTCPublishTarget target;

target.mode = TRTCPublishMode::TRTCPublishBigStreamToCdn;

TRTCPublishCdnUrl* cdn_url_list = new TRTCPublishCdnUrl[1];

cdn_url_list[0].rtmpUrl = "rtmp://tencent/live/bestnews";

cdn_url_list[0].isInternalLine = true;

target.cdnUrlList = cdn_url_list;

target.cdnUrlListSize = 1;

trtc->startPublishMediaStream(&target, nullptr, nullptr);

delete[] cdn_url_list;

const options = {

 target: {

 publishMode: PublishMode.PublishMainStreamToCDN

 }

}

try {

 await trtc.startPlugin('CDNStreaming', options);

} catch (error) {

 console.error('CDNStreaming start failed', error);

}

TRTCPublishTarget target = TRTCPublishTarget();

target.mode = TRTCPublishMode.TRTCPublishBigStreamToCdn;

TRTCPublishCdnUrl cdnUrlEntity = new TRTCPublishCdnUrl();

cdnUrlEntity.rtmpUrl = "rtmp://tencent/live/bestnews";

cdnUrlEntity.isInternalLine = true;

target.cdnUrlList.add(cdnUrlEntity);

trtcCloud.startPublishMediaStream(target: target);

 Note:
Web class names differ slightly, but the usage is consistent. For detailed information, refer to CDNStreaming Plugin.
For relay in the Web 4.x version, refer to Client.startMixTranscode().

Step 2: Publishing Mixed Streams to CDNs

https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/zh-cn/tutorial-26-advanced-publish-cdn-stream.html
https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/Client.html#startMixTranscode

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 8
of 221

Feature Description

You can call startPublishMediaStream to mix the streams of multiple users in a TRTC room into one stream and
publish the stream to a CDN. The TRTCStreamEncoderParam and TRTCStreamMixingConfig parameters

of the API allow you to determine the details of stream mixing and transcoding.
The streams will be decoded on the cloud first, mixed, and then re-encoded according to the stream mixing
parameters (TRTCStreamMixingConfig) and transcoding parameters (TRTCStreamEncoderParam) you

specify. Afterward, they will be published to CDNs. In this mode, additional transcoding fees are charged.

Directions

Follow the steps below to mix the streams of multiple users in a room and publish the mixed stream to CDNs.

1. Create a TRTCPublishTarget object and set mode in the object to TRTCPublishMixStreamToCdn .

2. Set cdnUrlList in the TRTCPublishTarget object to one or multiple CDN addresses (which usually start

with rtmp://). If you publish to the Tencent Cloud CDN, set isInternalLine to true ; otherwise, set it to

 false .

3. Set the encoding parameters (TRTCStreamEncoderParam):

Video encoding parameters: Specify the resolution, frame rate (15 fps is recommended), bitrate, and GOP (3

seconds is recommended). Bitrate and resolution work in correlation with each other. The table below lists some
recommended resolution and bitrate settings.

videoEncodedWidth videoEncodedHeight videoEncodedFPS videoEncodedGOP videoEncodedKbp

640 360 15 3 800 Kbps

960 540 15 3 1200 Kbps

1280 720 15 3 1500 Kbps

1920 1080 15 3 2500 Kbps

Audio encoding parameters: Specify the codec, bitrate, sample rate, and sound channels according to the
 AudioQuality value you pass in when calling startLocalAudio .

TRTCAudioQuality audioEncodedSampleRate audioEncodedChannelNum audioEncodedKbps

TRTCAudioQualitySpeech 48000 1 50

TRTCAudioQualityDefault 48000 1 50

TRTCAudioQualityMusic 48000 2 60

https://www.tencentcloud.com/document/product/647/47631#b05d768e-f2b9-4581-8d77-a0ee148198b8

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 9
of 221

4. Set the parameters for audio mixing and video layout (TRTCStreamMixingConfig):
Audio mixing parameters (audioMixUserList): You can leave this parameter empty to mix all audios in a room, or
you can set it to the IDs of users whose audios you want to mix.

Video layout parameters (videoLayoutList): Video layout is determined by an array. Each TRTCVideoLayout
element in the array determines the position, dimensions, and background color of a video window. If you specify
fixedVideoUser, the window defined by the TRTCVideoLayout element will display the video of a specific user. If you
set fixedVideoUser to null, the TRTC server will determine whose video to display in the window.
Example:

Example 1: Mix four users' streams and use an image as the background.
 layout1 specifies the position (upper half of the canvas) and dimensions (640 x 480) of the camera video of user

 jerry .

Because no user IDs are specified for layout2 , layout3 , and layout4 , TRTC will display the videos of

the other three users in the windows based on its own rule.

Example 2: Mix the camera video and screen of one user plus the camera videos of three other users.
 layout1 specifies the position (left) and dimensions (1280 x 720) of user jerry 's screen. The rendering mode

used is aspect fit (Fit), and the background color is black.

 layout2 specifies the position (top right) and dimensions (300 x 200) of user jerry 's camera video. The

rendering mode used is aspect fill (Fill).

Because no user IDs are specified for layout3 , layout4 , and layout5 , TRTC will display the videos of

the other three users in the windows based on its own rule.

5. Call startPublishMediaStream. If the taskId parameter returned by the onStartPublishMediaStream callback is not
empty, the local API call is successful.

6. To change the stream mixing parameters (for example, the video layout), call updatePublishMediaStream ,

passing in the taskId returned in step 6 as well as the new TRTCStreamMixingConfig parameters. We

recommend you do not change TRTCStreamEncoderParam during relay because doing so will affect the stability

of CDN playback.
7. To stop publishing, call stopPublishMediaStream , passing in the taskId returned by

 onStartPublishMediaStream .

Sample Code

The code below mixes the streams of multiple users in a room and publishes the result to a CDN.
java
Objective-C

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 10
of 221

C++
Dart

// Specify the publishing mode as TRTC_PublishMixedStream_ToCdn.

TRTCCloudDef.TRTCPublishTarget target = new TRTCCloudDef.TRTCPublishTarget();

target.mode = TRTC_PublishMixedStream_ToCdn;

// Specify the CDN address for publishing.

TRTCCloudDef.TRTCPublishCdnUrl cdnUrl= new TRTCCloudDef.TRTCPublishCdnUrl();

cdnUrl.rtmpUrl = "rtmp://tencent/live/bestnews";

cdnUrl.isInternalLine = true;

target.cdnUrlList.add(cdnUrl);

// Specify the publishing mode as TRTCPublishMixStreamToCdn.

TRTCPublishTarget* target = [[TRTCPublishTarget alloc] init];

target.mode = TRTCPublishMixStreamToCdn;

// Specify the CDN address for publishing.

TRTCPublishCdnUrl* cdnUrl = [[TRTCPublishCdnUrl alloc] init];

cdnUrl.rtmpUrl = @"rtmp://tencent/live/bestnews";

cdnUrl.isInternalLine = YES;

NSMutableArray* cdnUrlList = [NSMutableArray new];

[cdnUrlList addObject:cdnUrl];

target.cdnUrlList = cdnUrlList;

// Set the secondary encoding parameters for the mixed audio and video streams.

TRTCStreamEncoderParam* encoderParam = [[TRTCStreamEncoderParam alloc] init];

encoderParam.videoEncodedWidth = 1280;

encoderParam.videoEncodedHeight = 720;

encoderParam.videoEncodedFPS = 15;

encoderParam.videoEncodedGOP = 3;

encoderParam.videoEncodedKbps = 1000;

encoderParam.audioEncodedSampleRate = 48000;

encoderParam.audioEncodedChannelNum = 1;

encoderParam.audioEncodedKbps = 50;

encoderParam.audioEncodedCodecType = 0;

// Set the layout parameters for the screen.

TRTCStreamMixingConfig* config = [[TRTCStreamMixingConfig alloc] init];

NSMutableArray* videoLayoutList = [NSMutableArray new];

TRTCVideoLayout* layout1 = [[TRTCVideoLayout alloc] init];

layout1.zOrder = 0;

layout1.rect = CGRectMake(0, 0, 720, 1280);

layout1.fixedVideoStreamType = TRTCVideoStreamTypeSub;

layout1.fixedVideoUser.intRoomId = 1234;

layout1.fixedVideoUser.userId = @"mike";

TRTCVideoLayout* layout2 = [[TRTCVideoLayout alloc] init];

layout2.zOrder = 0;

layout2.rect = CGRectMake(1300, 0, 300, 200);

layout2.fixedVideoStreamType = TRTCVideoStreamTypeBig;

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 11
of 221

layout2.fixedVideoUser.intRoomId = 1234;

layout2.fixedVideoUser.userId = @"mike";

TRTCVideoLayout* layout3 = [[TRTCVideoLayout alloc] init];

layout3.zOrder = 0;

layout3.rect = CGRectMake(1300, 220, 300, 200);

layout3.fixedVideoStreamType = TRTCVideoStreamTypeSub;

layout3.fixedVideoUser = nil;

[videoLayoutList addObject:layout1];

[videoLayoutList addObject:layout2];

[videoLayoutList addObject:layout3];

config.videoLayoutList = videoLayoutList;

config.audioMixUserList = nil;

// Initiate stream mixing.

[_trtcCloud startPublishMediaStream:target encoderParam:encoderParam mixingConfig:c

// Specify the publishing mode as TRTCPublishMixStreamToCdn.

TRTCPublishTarget target;

target.mode = TRTCPublishMode::TRTCPublishMixStreamToCdn;

// Specify the CDN address for publishing.

TRTCPublishCdnUrl* cdn_url = new TRTCPublishCdnUrl[1];

cdn_url[0].rtmpUrl = "rtmp://tencent/live/bestnews";

cdn_url[0].isInternalLine = true;

target.cdnUrlList = cdn_url;

target.cdnUrlListSize = 1;

// Set the secondary encoding parameters for the mixed audio and video streams.

TRTCStreamEncoderParam encoder_param;

encoder_param.videoEncodedWidth = 1280;

encoder_param.videoEncodedHeight = 720;

encoder_param.videoEncodedFPS = 15;

encoder_param.videoEncodedGOP = 3;

encoder_param.videoEncodedKbps = 1000;

encoder_param.audioEncodedSampleRate = 48000;

encoder_param.audioEncodedChannelNum = 1;

encoder_param.audioEncodedKbps = 50;

encoder_param.audioEncodedCodecType = 0;

// Set the layout parameters for the screen.

TRTCStreamMixingConfig config;

TRTCVideoLayout* video_layout_list = new TRTCVideoLayout[3];

TRTCUser* fixedVideoUser0 = new TRTCUser();

fixedVideoUser0->intRoomId = 1234;

fixedVideoUser0->userId = "mike";

video_layout_list[0].zOrder = 0;

video_layout_list[0].rect.left = 0;

video_layout_list[0].rect.top = 0;

video_layout_list[0].rect.right = 720;

video_layout_list[0].rect.bottom = 1280;

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 12
of 221

video_layout_list[0].fixedVideoStreamType =

 TRTCVideoStreamType::TRTCVideoStreamTypeSub;

video_layout_list[0].fixedVideoUser = fixedVideoUser0;

TRTCUser* fixedVideoUser1 = new TRTCUser();

fixedVideoUser1->intRoomId = 1234;

fixedVideoUser1->userId = "mike";

video_layout_list[1].zOrder = 0;

video_layout_list[1].rect.left = 1300;

video_layout_list[1].rect.top = 0;

video_layout_list[1].rect.right = 300;

video_layout_list[1].rect.bottom = 200;

video_layout_list[1].fixedVideoStreamType =

 TRTCVideoStreamType::TRTCVideoStreamTypeBig;

video_layout_list[1].fixedVideoUser = fixedVideoUser1;

video_layout_list[2].zOrder = 0;

video_layout_list[2].rect.left = 1300;

video_layout_list[2].rect.top = 220;

video_layout_list[2].rect.right = 300;

video_layout_list[2].rect.bottom = 200;

video_layout_list[2].fixedVideoStreamType =

 TRTCVideoStreamType::TRTCVideoStreamTypeSub;

video_layout_list[2].fixedVideoUser = nullptr;

config.videoLayoutList = video_layout_list;

config.videoLayoutListSize = 3;

config.audioMixUserList = nullptr;

// Initiate stream mixing.

trtc->startPublishMediaStream(&target, &encoder_param, &config);

delete fixedVideoUser0;

delete fixedVideoUser1;

delete[] video_layout_list;

TRTCPublishTarget target = TRTCPublishTarget();

target.mode = TRTCPublishMode.TRTCPublishMixStreamToCdn;

TRTCPublishCdnUrl cdnUrlEntity = new TRTCPublishCdnUrl();

cdnUrlEntity.rtmpUrl = "rtmp://tencent/live/bestnews";

cdnUrlEntity.isInternalLine = true;

target.cdnUrlList.add(cdnUrlEntity);

TRTCStreamMixingConfig config = TRTCStreamMixingConfig();

TRTCUser selfUser = TRTCUser();

selfUser.userId = localUserId;

selfUser.intRoomId = localRoomId;

TRTCVideoLayout selfVideoLayout = TRTCVideoLayout();

selfVideoLayout.fixedVideoStreamType = TRTCVideoStreamType.TRTCVideoStreamTypeBig;

selfVideoLayout.rect = Rect(originX: 0, originY: 0, sizeWidth: 1080, sizeHeight: 19

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 13
of 221

selfVideoLayout.zOrder = 0;

selfVideoLayout.fixedVideoUser = selfUser;

selfVideoLayout.fillMode = TRTCVideoFillMode.TRTCVideoFillMode_Fit;

config.videoLayoutList.add(selfVideoLayout);TRTCUser remoteUser = TRTCUser();

remoteUser.userId = remoteUserId;

remoteUser.intRoomId = remoteRoomId;

TRTCVideoLayout remoteVideoLayout = TRTCVideoLayout();

remoteVideoLayout.fixedVideoStreamType = TRTCVideoStreamType.TRTCVideoStreamTypeBig

remoteVideoLayout.rect = Rect(originX: 100, originY: 50, sizeWidth: 216, sizeHeight

remoteVideoLayout.zOrder = 1;

remoteVideoLayout.fixedVideoUser = remoteUser;

remoteVideoLayout.fillMode = TRTCVideoFillMode.TRTCVideoFillMode_Fit;

config.videoLayoutList.add(remoteVideoLayout);

TRTCStreamEncoderParam param = TRTCStreamEncoderParam();

param.videoEncodedWidth = 1080;

param.videoEncodedHeight = 1920;

param.videoEncodedKbps = 5000;

param.videoEncodedFPS = 30;

param.videoEncodedGOP = 3;

param.audioEncodedSampleRate = 48000;

param.audioEncodedChannelNum = 2;

param.audioEncodedKbps = 128;

param.audioEncodedCodecType = 2;

trtcCloud.startPublishMediaStream(target: target, config: config, params: param);

Solution 2: Initiating Relay Using RESTful APIs

The following describes how to use RESTful APIs to publish (relay) audio and video streams from a TRTC room to a
live streaming CDN or push them back to the TRTC room, so that viewers can watch the streams using standard live
streaming players.

Supported Features

When a relay task is initiated using RESTful APIs, the following features can be achieved:
Relay a single audio and video stream to both the live streaming CDN and TRTC room.
Mix multiple audio and video streams into a new single stream and relay it to both the live streaming CDN and TRTC
room.
Support outputting audio only and both audio and video.

Support custom layouts and dynamic templates.
Support setting background images, placeholder images, and watermark images.
Support cropping and scaling input videos and images.
Support adding supplemental enhancement information (SEI) to mixed audio and video streams.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 14
of 221

How It Works

Cloud-based stream mixing involves six processes: entering a room, pulling streams, decoding, mixing, encoding, and
relay:
 Entering a room: Utilizing the specified bot information, the microcontroller unit (MCU) creates a companion bot

instance to enter the room.
 Pulling streams: Based on the specified mixing layout parameters, the MCU bot pulls the relevant users' audio and
video streams.
 Decoding: The MCU decodes multiple audio and video streams, including video decoding and audio decoding.
 Mixing: The MCU combines multiple screens based on the specified mixing layout parameters. Simultaneously, the

MCU also performs audio mixing on the decoded multi-channel audio signals.
 Encoding: The MCU re-encodes the mixed videos and audios according to your configured output encoding
parameters, packaging them into a single audio and video stream.
 Relay: The MCU distributes the encoded and packaged audio and video data to your configured live streaming
CDN.

Initiating a Relay Task

Your server can initiate a cloud-based relay task by calling the RESTful API StartPublishCdnStream. The method to
initiate it is as follows:
1. Set basic parameters (required).
You need to specify the basic information to initiate the relay task, such as your application ID (sdkappid), main room

ID (RoomId), main room type (RoomIdType), and whether to transcode (WithTranscoding). You can determine
whether to transcode by setting WithTranscoding. If WithTranscoding is set to true , it will be a mixed-stream

relay. If set to false , it will be a relay to CDN.

Field Name Description Required

SdkAppId TRTC's SdkAppId. Yes

RoomId Main room ID. Yes

RoomIdType Main room type. Yes

WithTranscoding Whether to transcode. Yes

2. Set the bot parameters (required).
You need to specify the AgentParams parameters for a bot to enter a room. The MCU will create an instance to enter

the room based on the parameters you specify.

https://trtc.io/document/48247?product=serverapis

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 15
of 221

Field Name Description Required

AgentParams.UserId
The UserId used by the relay service in a TRTC room. Do
not use the same UserId as those used by normal users in
the room.

Yes

AgentParams.UserSig The user signature for the relay service to enter a TRTC
room.

Yes

AgentParams.MaxIdleTime Idle wait time. No

3. Set audio parameters (required for mixed audio stream output, not required for single-stream relay).
To output mixed audio streams, you need to specify the AudioParams parameters. The MCU will output the audio
streams in the format you configure in AudioEncode. You can configure SubscribeAudioList to specify which users'
audio streams to be mixed.

Field Name Description Required

AudioParams.AudioEncode Audio output encoding parameter for stream mixing. No

AudioParams.SubscribeAudioList Audio user allowlist for stream mixing. No

For detailed meanings, refer to the parameter description in McuAudioParams.

4. Set video parameters (required for mixed video stream output, not required for single-stream relay).
To output mixed video streams, you need to specify the VideoParams parameters. The MCU will output the video
streams in the format you configure in VideoEncode.
Configure LayoutParams to specify the layout you need.
Configure BackGroundColor to specify the canvas background color you need.

Configure BackgroundImageUrl to specify the canvas background image you need.
Configure WaterMarkList to specify the watermark layout you need.

Field Name Description Required

VideoParams.VideoEncode Video output encoding parameter for stream mixing. No

VideoParams.LayoutParams Layout parameters for stream mixing. No

VideoParams.BackGroundColor Canvas background color for stream mixing. No

VideoParams.BackgroundImageUrl Canvas background image URL for stream mixing. No

VideoParams.WaterMarkList Watermark parameter for stream mixing. No

For detailed meanings, refer to the parameter description in McuVideoParams.

https://trtc.io/document/36760#McuAudioParams
https://trtc.io/document/36760#McuVideoParams

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 16
of 221

 Introduction to stream mixing layout types :
VideoParams.LayoutParams.MixLayoutMode has four layout modes. You can choose one according to your needs.
The layout modes include dynamic layout (1: floating layout, 2: screen sharing layout, 3: nine-grid layout) and static

layout (4: custom layout (default)).
 Floating layout 	 	
The video of the first user entering the room will fill the entire screen. The videos of other users will be arranged
horizontally from the bottom left corner, displayed as small screens. There can be up to 4 rows, with a maximum of 4
videos per row, and the small screens float above the large screen. Up to 1 large screen and 15 small screens are

supported. If a user sends only audio, they will still occupy a screen position.
 Screen sharing layout
This layout is suitable for video conferences and online education. The shared screen (or the presenter's camera)
always occupies the large screen position on the left side of the screen. The screens of other users are arranged
vertically on the right side. You need to specify the main screen content on the left side with the
VideoParams.LayoutParams.MaxVideoUser parameter. There can be up to 2 columns, with a maximum of 8 small

screens per column. Up to 1 large screen and 15 small screens are supported. If a user sends only audio, they will still
occupy a screen position.
 Nine-grid layout
All users' screens are of equal size, evenly dividing the entire screen. The more users, the smaller each screen
becomes. Up to 16 screens are supported. If a user sends only audio, they will still occupy a screen position.

 Custom layout (default)
This layout is suitable for scenarios where you need to customize the layout of each screen. You can use the
MixLayoutList parameter (an array) in VideoParams.LayoutParams to preset the position of each screen. You may
leave the UserId parameter in MixLayoutList unspecified, and the layout engine will assign users to the positions in the
MixLayoutList array according to their order of entering the room.

If any position in the MixLayoutList array is configured with a UserId, the layout engine will reserve the position for the
specified user. If a user sends only audio, they will still occupy a screen position.
When the preset positions in the MixLayoutList array are used up, the layout engine will no longer mix other users'
videos and audios.
For detailed meanings, refer to the parameter description in McuAudioParams.
5. Set single-stream relay user information (required for single-stream relay).

To configure single-stream relay, you need to set WithTranscoding to false and specify the SingleSubscribeParams
parameters. The MCU will distribute the audio and video streams of the specified user to the specified live streaming
CDN.

Field Name Description Required

SingleSubscribeParams.UserMediaStream.UserInfo TRTC user parameters. No

SingleSubscribeParams.UserMediaStream.StreamType Primary stream and substream
types.

No

https://trtc.io/document/36760#McuAudioParams

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 17
of 221

For detailed meanings, refer to the parameter description in McuAudioParams.
6. Set parameters for relay to CDN (required for relay to CDN).

You need to specify the PublishCdnParams parameters for distributing to CDN. The MCU will relay the encoded audio
and video streams to the CDN address you set.

Field Name Description Required

PublishCdnParams.N.PublishCdnUrl CDN relay URL. Yes

PublishCdnParams.N.IsTencentCdn

Whether it is a Tencent Cloud CDN. 0: non-Tencent Cloud
CDN; 1: Tencent Cloud CDN. If this parameter is not
specified, the default value is 1.
 Note:
 1. To avoid unintended relay fees, it is
recommended to explicitly specify this parameter.
Relaying to a non-Tencent Cloud CDN will incur
relay fees. For details, refer to the API
documentation.
 2. By default, the sites in the Chinese mainland only
support relaying to a Tencent Cloud CDN. If you
need to relay to a third-party CDN, contact Tencent
Cloud technical support.

No

7. Set the TRTC room push-back parameters (required for pushing back to a TRTC room).
You need to specify the FeedBackRoomParams parameters for TRTC room push-back. The MCU will relay the
encoded audio and video streams to the TRTC room you set.

Field Name Description Required

FeedBackRoomParams.N.RoomId RoomId of the room to which streams are pushed
back.

Yes

FeedBackRoomParams.N.RoomIdType Type of the room to which streams are pushed back. 0:
an integer room number; 1: a string room number.

No

FeedBackRoomParams.N.UserId

UserId used by the room to which streams are pushed
back.
 Note:
 This UserId cannot be the same as other
UserIds already used in TRTC or relay services.
It is recommended to include the room ID as part
of the UserId.

Yes

FeedBackRoomParams.N.UserSig The user signature corresponding to the UserId of the Yes

https://trtc.io/document/36760#McuAudioParams

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 18
of 221

room. For the specific calculation method, refer to the
TRTC UserSig calculation scheme.

8. Set SEI parameters (optional).
You need to specify either volume layout SEI or pass-through SEI parameters. The MCU will insert the corresponding
SEI information into the output video streams.

Field Name Description Required

McuSeiParams.LayoutVolume The SEI for volume layout contains a fixed JSON structure. See
the description below for details.

No

McuSeiParams.PassThrough Pass-through SEI. No

An example of inserted volume layout SEI is as follows, where app_data indicates the pass-through data, canvas
indicates the width and height of the output canvas, regions indicates layout information, volume indicates the mixed
stream users' volume (from 0 to 100), with larger values indicating higher volume, ts indicates the local server's

second-level timestamp, and ver can be ignored.

{

 "app_data": "test",

 "canvas": {

 "w": 1280,

 "h": 720

 },

 "regions": [

 {

 "uid": "test1",

 "zorder": 1,

 "volume": 60,

 "x": 0,

 "y": 0,

 "w": 640,

 "h": 360

 },

 {

 "uid": "test2",

 "zorder": 1,

 "volume": 80,

 "x": 640,

 "y": 0,

 "w": 640,

 "h": 360

 }

],

https://www.tencentcloud.com/document/product/647/38104#ec0825c8-7edb-4b2f-8cce-e0bc02fe244c

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 19
of 221

 "ver": "1.0",

 "ts": 1648544726

}

Updating a Relay Task

Your server can update a cloud-based relay task by calling the RESTful API UpdatePublishCdnStream. You need to
use the TaskId returned by StartPublishCdnStream to initiate the relay update. For details on using this API, refer to
Start a relay task.

Stopping a Relay Task

Your server can stop a cloud-based relay task by calling the RESTful API StopPublishCdnStream. You need to use

the TaskId returned by StartPublishCdnStream to stop relay.

Field Name Description

SdkAppId TRTC's SdkAppId.

TaskId The unique string ID of the relay task.

Solution 3: Automatic Relay

In addition to manually triggering relay via APIs, TRTC also offers an automatic relay solution. When the automatic
relay solution is used, once the host in a TRTC room starts uploading audios and videos, a relay task will
automatically be initiated to push the host's single stream to a CDN. Once the host leaves the room, the relay task will
automatically end.

Prerequisites

Tencent Cloud CSS service has been enabled. A playback domain name has been configured for CSS. For specific
operations, refer to Adding Your Own Domain.
1. Log in to the CSS console.
2. Select Domain Management in the left navigation bar, and you will see a new push domain name added to your
domain list, formatted as xxxxx.livepush.myqcloud.com , where xxxxx represents a number called bizid.

3. Click Add Domain, enter the playback domain name you have registered, select the domain name type as
Playback Domain, select the acceleration region, and click Confirm.
4. After the domain name is added successfully, the system will automatically assign you a CNAME domain name
(ending with .liveplay.myqcloud.com). The CNAME domain name cannot be accessed directly. You need to

complete the CNAME configuration with your domain name service provider. After the configuration takes effect, you
can enjoy the CSS service. For detailed instructions, please refer to CNAME Configuration.

https://trtc.io/document/48245?product=serverapis
https://www.tencentcloud.com/document/product/647/47858#44cc19d8-e2d0-4d63-8f64-d055249a6768
https://trtc.io/document/48246?product=serverapis
https://console.tencentcloud.com/live
https://www.tencentcloud.com/document/product/267/35970
https://console.tencentcloud.com/live
https://www.tencentcloud.com/document/product/267/31057

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 20
of 221

Note:
You do not need to add a push domain name. After enabling the relayed live streaming feature in Step 1, Tencent

Cloud will add a push domain name formatted as xxxxx.livepush.myqcloud.com to your CSS console by

default. This domain name serves as a default push domain name agreed upon between CSS service and TRTC
service.

Global Automatic Relay

Once global automatic relay is enabled, the host in a TRTC room will trigger automatic relay as soon as they start
uploading audios and videos.

After enabling global automatic relay, you can also specify a stream ID for pushing to the live streaming CDN using the
previously mentioned room entry parameters. If not specified, the system will generate a default stream ID based on
the following rules:
 Fields used to splice a stream ID

SDKAppID: You can find this in the Console > Application Management > Application Information section.
bizid: You can find this in the Console > Application Management > Application Information section.
roomId: Specified by you in TRTCParams of the enterRoom function.

userId: Specified by you in TRTCParams of the enterRoom function.

streamType: 'main' is for camera feed, and 'aux' is for screen sharing (WebRTC only supports one upstream at a time,

so the stream type for screen sharing on WebRTC is 'main').
 Calculation rules for splicing a stream ID

Splicing Applications created on or after January 9, 2020 Applications created and used before Januar
2020

Splicing
Rules

streamId =
urlencode(sdkAppId_roomId_userId_streamType)

streamId =
bizid_MD5(roomId_userId_streamType)

Calculation
Example

If sdkAppId = 12345678, roomId = 12345, userId
= userA, and the user is currently using a camera,
then streamId = 12345678_12345_userA_main.

If bizid = 1234, roomId = 12345, userId = use
and the user is currently using a camera, then
streamId = 1234_MD5(12345_userA_main) =
1234_8D0261436C375BB0DEA901D86D7D

Pulling Streams for Playback and Optimization

Configuring a License for the SDK

https://console.trtc.io/app
https://console.trtc.io/app

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 21
of 221

The TRTC SDK offers comprehensive and powerful live streaming playback capabilities, and can easily integrate with
CSS to enable CDN live streaming. If you are using TRTC SDK version 10.1 or later on mobile devices (iOS and
Android) to implement CDN live streaming, you need to configure a license; otherwise, you can skip this step.

1. Get the license:
If you have already obtained the license authorization, you need to obtain the license URL and license key in the CSS
console.

If you have not obtained the license authorization, you need to apply for it by referring to Adding and Renewing a
License.

2. Before your application calls the SDK feature, make the following settings (it is recommended to do so in
 Application / - [AppDelegate application:didFinishLaunchingWithOptions:]):

Android
iOS

public class MApplication extends Application {

@Override

public void onCreate() {

 super.onCreate();

 String licenceURL = ""; // Obtained license URL

 String licenceKey = ""; // Obtained license key

 V2TXLivePremier.setLicence(this, licenceURL, licenceKey);

 V2TXLivePremier.setObserver(new V2TXLivePremierObserver() {

 @Override

 public void onLicenceLoaded(int result, String reason) {

 Log.i(TAG, "onLicenceLoaded: result:" + result + ", reason:" + reas

 }

 });

}

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSD

 NSString * const licenceURL = @"<Obtained license URL>";

 NSString * const licenceKey = @"<Obtained license key>";

 // V2TXLivePremier is in the V2TXLivePremier.h header file.

 [V2TXLivePremier setLicence:licenceURL key:licenceKey];

 [V2TXLivePremier setObserver:self];

 NSLog(@"SDK Version = %@", [V2TXLivePremier getSDKVersionStr]);

 return YES;

}

#pragma mark - V2TXLivePremierObserver

https://console.tencentcloud.com/live/license
https://www.tencentcloud.com/document/product/1071/38546

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 22
of 221

- (void)onLicenceLoaded:(int)result Reason:(NSString *)reason {

 NSLog(@"onLicenceLoaded: result:%d reason:%@", result, reason);

}

@end

 Note:

The packageName/BundleId configured in the license must be consistent with the application itself,
otherwise playback will fail.

Obtaining the Playback Address and Connecting for Playback

Once you have completed the stream push operation, you will get the live streaming playback address. The standard
format of the playback address is:

http://PlaybackDomainName/AppName(default live)/StreamName(StreamID).flv

You can check your playback domain name, AppName, and StreamName under Stream Management in the CSS
console:

You can get three types of playback addresses:

 RTMP protocol playback address:

rtmp://example.myhost.com/AppName_example/StreamName_example

 FLV protocol playback address:

http://example.myhost.com/AppName_example/StreamName_example.flv

 HLS protocol playback address:

http://example.myhost.com/AppName_example/StreamName_example.m3u8

Optimizing Playback Latency

After enabling relayed live streaming, the HTTP-FLV address will have higher latency compared to direct conversation

in TRTC rooms due to the propagation and distribution by the live streaming CDN.

According to the current Tencent Cloud's live streaming CDN technology, if the V2TXLivePlayer is used, the latency
can meet the standards in the table below:

Relayed Stream
Type

V2TXLivePlayer Playback
Mode

Average
Latency

Actual Test Result

Independent
screen

Speed mode (recommended) 2s - 3s On the left in the figure below (orange)

Mixed screen Speed mode (recommended) 4s - 5s On the right in the figure below (blue)

https://console.tencentcloud.com/live/streammanage

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 23
of 221

If the latency in your actual test is higher than that in the table above, you can optimize the latency as follows:
 Use the TRTC SDK with the built-in V2TXLivePlayer

Ordinary ijkplayer or players based on the ffmpeg kernel lack latency regulation capabilities. If you use such players to

play using the live streaming address mentioned above, the latency is generally uncontrollable. V2TXLivePlayer has a
Tencent-developed playback engine with latency regulation capabilities.
 Set the playback mode of V2TXLivePlayer to speed mode.

You can set the parameters of V2TXLivePlayer to achieve speed mode. For example, on iOS:

// Auto mode

[_txLivePlayer setCacheParams:1 maxTime:5];

// Speed mode

[_txLivePlayer setCacheParams:1 maxTime:1];

// Smooth mode

[_txLivePlayer setCacheParams:5 maxTime:5];

// Start playback after setting is completed.

Related Fees

Using CDN live streaming requires CSS service resources and terminal SDK live streaming capabilities, which may
incur the following fees.

TRTC Fees

 Mixed stream transcoding fees: If you use the method of publishing mixed streams to CDNs, mixed stream
transcoding fees will be incurred. For details, see MixTranscoding. If you use the method of publishing the local user's
stream to CDNs, these fees will not be incurred.

 Relay fees: For details, see Relay Fees.
 Audio and video duration fees : Audio and video duration fees will be charged based on the actual audio and
video usage of users in a room. For details, see Billing of Audio and Video Duration.

Other Cloud Service Fees

CDN live streaming requires the use of CSS resources for live distribution. CSS fees mainly include basic service
fees and value-added service fees . Basic service fees are mainly incurred by consumption of live push/playback

services; value-added service fees are mainly incurred by consumption of value-added services during live streaming.
 Note:
The prices in this document are examples and for reference only. Final prices and billing policies are subject to the
billing explanation of CSS.

https://www.tencentcloud.com/document/product/647/47631#b05d768e-f2b9-4581-8d77-a0ee148198b8
https://www.tencentcloud.com/document/product/647/47858#plan1
https://www.tencentcloud.com/document/product/647/47631#8b2c7102-1b52-47fd-8217-e5cfbfd96ab0
https://www.tencentcloud.com/document/product/647/42734#
https://www.tencentcloud.com/document/product/267/2819

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 24
of 221

 Basic service fees:

When relaying TRTC content to a CSS CDN for viewing, CSS will charge for the downstream traffic/bandwidth
generated by the audience watching. You can choose the billing method that suits your needs. Traffic-based billing is

used by default. For details, see CSS > LVB > Traffic/Bandwidth Usage.
 Value-added service fees:

If you use CSS features such as transcoding, recording, or Live Video Caster (LVC), additional value-added service
fees will be incurred. Value-added services are charged on a pay-as-you-go basis.

Cost Savings

In a stream mixing solution based on the client-side SDK APIs, to stop an backend mixing task, one of the following

conditions must be met:
The host who initiated the mixing task (by calling startPublishMediaStream) has exited the room.

Actively stop mixing by calling stopPublishMediaStream .

In other situations, TRTC cloud will make every effort to maintain the stream mixing state. Therefore, to avoid
unexpected mixing fees, stop the cloud-based mixing using the above methods as soon as you do not need it.

FAQs

1. Can I listen for the status of CDN streams? What should I do if an error occurs?

You can listen for the onCdnStreamStateChanged callback event to get the latest status of a relay to CDN task.

2. How do I switch from publishing a single stream to publishing mixed streams? Do I need
to stop publishing first and create a new relay task?

To switch from publishing a single stream to publishing mixed streams, just call updatePublishMediaStream ,

passing in the taskid of the current task. Note that, in order to ensure the stability of the publishing process, you

cannot switch from publishing a single stream to mixing and publishing only audios or only videos. By default, both
audio and video data are published when you publish a single stream. If you switch to publishing mixed streams, you
must also publish both audios and videos.

3. How can I mix only videos (without audio)?

Do not set the audio parameters in TRTCStreamEncodeParam and leave audioMixUserList of

 TRTCStreamMixingConfig empty.

4. Can I add watermarks to mixed streams?

Yes, you can use watermarkList of TRTCStreamMixingConfig to set watermarks.

5. In online learning scenarios, can I mix the screen shared by the teacher?

https://www.tencentcloud.com/zh/document/product/267/2818#beb7e2c7-c843-456b-a208-4dcaf1f3b962

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 25
of 221

Yes, you can. We recommend you publish the screen as the substream and mix the teacher's camera video and
screen. When specifying the stream mixing parameters, set fixedVideoStreamType of TRTCVideoLayout

to TRTCVideoStreamTypeSub .

6. When a preset layout is used, how are audios mixed?

When a preset layout is used, TRTC will mix the audios of up to 16 users in the room.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 26
of 221

Enabling Advanced Permission Control
Last updated：2024-08-09 22:25:01

Overview

You may consider enabling Advanced Permission Control if you want to allow only specific users to enter a room
or use their mics, but are worried that giving permissions on the client side makes the service vulnerable to attacks
and cracking.

You do not need to enable advanced permission control in the following scenarios:
Scenario 1: You want an audience as large as possible and do not want to control access to rooms.
Scenario 2: Preventing client-side attacks is not your priority at the moment.
We recommend that you enable advanced permission control for enhanced security in the following scenarios:
Scenario 1: Your video or audio calls have high security requirements.

Scenario 2: You want to implement different access controls for different rooms.
Scenario 3: You want to control the use of mics by audience.

Supported Platforms

iOS Android macOS Windows Electron Web Flutter

✓ ✓ ✓ ✓ ✓ ✓ ✓

Understanding Advanced Permission Control

After you enable advanced permission control, TRTC will verify not only UserSig (the room entry ticket), but also

PrivateMapKey (the permission ticket). The latter contains an encrypted roomid and permission bit list.

A user providing only UserSig but not PrivateMapKey will be unable to enter the specified room.

The permission bit list in PrivateMapKey uses the eight bits of a byte to represent different permissions for users

holding PrivateMapKey .

Bit Sequence Binary Decimal Permission

First 0000 0001 1 Room creation

Second 0000 0010 2 Room entry

Third 0000 0100 4 Sending audio

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 27
of 221

Fourth 0000 1000 8 Receiving audio

Fifth 0001 0000 16 Sending video

Sixth 0010 0000 32 Receiving video

Seventh 0100 0000 64 Sending substream (screen sharing) video

Eighth 1000 0000 128 Receiving substream (screen sharing) video

Enabling Advanced Permission Control

Step 1. Log in to the TRTC console and enable advanced permission control

1. Log to Tencent RTC Console > Applications, click on Manage in the row of the target application whose feature
configuration needs to be modified, and select Advanced Features from the project column on the left.
2. In Advanced Features, click the button on the right side of Enable Advanced Permission Control, and in the
pop-up window, click Confirm to complete the activation.

https://console.trtc.io/app

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 28
of 221

Note：
After you enable advanced permission control for an application (SDKAppid), all users using the application must

pass privateMapKey in TRTCParams to enter a room (as described in Step 2 below). Therefore, you are not

advised to enable the feature if you have active users using the application.

Step 2. Calculate PrivateMapKey on your server

 PrivateMapKey protects the client from being reverse engineered and cracked and consequently prevents non-

members from entering high-level rooms. Therefore, instead of calculating PrivateMapKey directly on your

application, you should do so on your server and then return the result to your application.

We provide PrivateMapKey calculation codes for Java, GO, PHP, Node.js. Python, C#, and C++. You can

download and integrate them into your server.

Programming
Language

Key Functions Download Link

Java
 genPrivateMapKey and
 genPrivateMapKeyWithStringRoomID

GitHub

GO
 GenPrivateMapKey and
 GenPrivateMapKeyWithStringRoomID

GitHub

PHP
 genPrivateMapKey and
 genPrivateMapKeyWithStringRoomID

GitHub

Node.js
 genPrivateMapKey and
 genPrivateMapKeyWithStringRoomID

GitHub

Python
 genPrivateMapKey and
 genPrivateMapKeyWithStringRoomID

GitHub

https://github.com/tencentyun/tls-sig-api-v2-java/blob/master/src/main/java/com/tencentyun/TLSSigAPIv2.java
https://github.com/tencentyun/tls-sig-api-v2-golang/blob/master/tencentyun/TLSSigAPI.go
https://github.com/tencentyun/tls-sig-api-v2-php/blob/master/src/TLSSigAPIv2.php
https://github.com/tencentyun/tls-sig-api-v2-node/blob/master/TLSSigAPIv2.js
https://github.com/tencentyun/tls-sig-api-v2-python/blob/master/TLSSigAPIv2.py

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 29
of 221

C# genPrivateMapKey and
 genPrivateMapKeyWithStringRoomID

GitHub

C++
 genPrivateMapKey and
 genPrivateMapKeyWithStringRoomID

GitHub

Step 3. Distribute PrivateMapKey from your server to your application

As shown in the figure above, PrivateMapKey is calculated on your server and distributed to your application,

which can then pass the PrivateMapKey to the SDK via two methods.

Method 1: passing PrivateMapKey to the SDK when calling enterRoom

You can set privateMapKey in TRTCParams when calling the enterRoom API of TRTCCloud .

This method verifies PrivateMapKey when users enter a room. It is simple and is used to assign permissions to

users before room entry.

Method 2: updating PrivateMapKey to the SDK through an experimental API

https://github.com/tencentyun/tls-sig-api-v2-cs/blob/master/tls-sig-api-v2-cs/TLSSigAPIv2.cs
https://github.com/tencentyun/tls-sig-api-v2-cpp/blob/master/src/tls_sig_api_v2.cpp
https://liteav.sdk.qcloud.com/doc/api/en/group__TRTCCloudDef__ios.html#interfaceTRTCParams

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 30
of 221

During live streaming, when audience turn their mics on to co-anchor, TRTC will re-verify the PrivateMapKey

carried in TRTCParams at the time of room entry. That means if you set a short validity period for

 PrivateMapKey , such as 5 minutes, the re-verification may fail and cause the audience to be removed from the

room when they switch to the role of “anchor”.
To solve this issue, you can extend the validity period, for example, from 5 minutes to 6 hours or, before the audience
call switchRole to switch to the role of “anchor”, apply for a new PrivateMapKey from your server and

update it to the SDK by calling the experimental API updatePrivateMapKey . Below is the sample code:

Android
iOS
C++
C#

JSONObject jsonObject = new JSONObject();

try {

 jsonObject.put("api", "updatePrivateMapKey");

 JSONObject params = new JSONObject();

 params.put("privateMapKey", "xxxxx"); // Enter the new `privateMapKey`.

 jsonObject.put("params", params);

 mTRTCCloud.callExperimentalAPI(jsonObject.toString());

} catch (JSONException e) {

 e.printStackTrace();

}

NSMutableDictionary *params = [[NSMutableDictionary alloc] init];

[params setObject:@"xxxxx" forKey:@"privateMapKey"]; // Enter the new `privateMapKe

NSDictionary *dic = @{@"api": @"updatePrivateMapKey", @"params": params};

NSData *jsonData = [NSJSONSerialization dataWithJSONObject:dic options:0 error:NULL

NSString *jsonStr = [[NSString alloc] initWithData:jsonData encoding:NSUTF8StringEn

[WXTRTCCloud sharedInstance] callExperimentalAPI:jsonStr];

std::string api = "{\\"api\\":\\"updatePrivateMapKey\\",\\"params\\":{\\"privateMap

TRTCCloudCore::GetInstance()->getTRTCCloud()->callExperimentalAPI(api.c_str());

std::string api = "{\\"api\\":\\"updatePrivateMapKey\\",\\"params\\":{\\"privateMap

mTRTCCloud.callExperimentalAPI(api);

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 31
of 221

FAQs

1. Why can't I enter any online room?

After you enable room permission control for an application (SDKAppid), users must pass PrivateMapKey in

 TRTCParams to enter any room under the application. Therefore, if your online business is running, and you

haven’t integrated into it the privateMapKey logic, please do not enable room permission control.

2. What is the difference between PrivateMapKey and UserSig ?

 UserSig is a required parameter of TRTCParams , which is used to check whether the current user is

authorized to use TRTC services and prevent attackers from stealing the traffic in your application (SDKAppid).

 PrivateMapKey is an optional parameter of TRTCParams , which is used to check whether the current user is

authorized to enter the specified room (roomid) and confirm the user’s permissions in the room. Use

 PrivateMapKey only if you need to distinguish users from one another.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 32
of 221

Push Media Stream into TRTC
Last updated：2024-12-02 10:08:55

Overview

Watch together, listen together, play together, learn together… Various experiences that once required face-to-face
interaction are now moving online. Even if separated by thousands of miles, friends can still watch movies, listen to
music and chat together. This amazing real-time interactive experience is becoming popular among young people and

is now a major feature and mainstream direction of audio and video products.
TRTC offers two streaming solutions: push online media stream and RTMP streaming with TRTC, each with their own
application scenario, as detailed below:
Push online media stream is used to pull cloud-based online media streams (online streaming or cloud-
based on-demand files) and push them into a TRTC room.

RTMP streaming with TRTC is used to stream local media files and audio and video from capture devices
into a TRTC room via the RTMP standard protocol.
 Note:
Relevant fees are as follows:
Feature unlocking: Push online media stream and RTMP streaming with TRTC features need to be unlocked
by a subscription to the basic or professional version of RTC-Engine monthly package.

Usage fees:
Using the streaming feature involves transcoding operations, incurring transcoding costs. For more details, see the
Description of Billing of MixTranscoding and Bypass Relay.
The costs of audio duration incurred by the streaming robot in the room are charged (Note: The costs incurred by the
robot in the room for push online media stream features will not be charged by August 15, 2024, and they will begin to

be charged on August 16, 2024).
The audience in the room subscribing to audio and video streams will incur audio and video call costs. For details, see
the Description of Billing of Audio and Video Duration.

Push Online Media Stream

Application Scenario

Scenario type Description

AI interactive
classroom

Relying on TRTC's ability to push online media stream, the platform enables online live
interactive teaching by combining recorded real-life teaching videos with AI technology. This
significantly reduces operational costs while ensuring teaching effectiveness. Before class,

https://www.tencentcloud.com/document/product/647/62716#50940aad-d90f-4473-9f46-d5dd46917653
https://www.tencentcloud.com/document/product/647/62716#3b96cc52-90be-46ee-aec0-218dcf302119
https://www.tencentcloud.com/document/product/647/62716#50940aad-d90f-4473-9f46-d5dd46917653
https://www.tencentcloud.com/document/product/647/62716#3b96cc52-90be-46ee-aec0-218dcf302119
https://www.tencentcloud.com/document/product/647/56025#
https://www.tencentcloud.com/document/product/647/47631#
https://www.tencentcloud.com/document/product/647/42734

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 33
of 221

the platform records video segments for explanation of knowledge points, interactive
questioning, feedback on questions, and answers based on the teacher's course setup, and
uploads them to the video library. During the class, these videos are streamed to the TRTC
room for live broadcasting through the TRTC push online media capability. Students can
engage in interactive learning through voice and touchscreen. The server uses AI
technology to evaluate real-time voice and responses of students, seamlessly switches
teaching segments, and provides different real-time feedback, thus offering a personalized
teaching experience.

"Watch
together" room
service

Live streaming contents, such as game live streaming, fashion shows, and sports events,
can be pushed to a TRTC room through the TRTC's push online media stream capability for
ultra-low latency synchronized viewing within the room. With TRTC's real-time interaction
capability, the audience can communicate in real-time, cheer together, and enjoy an
immersive viewing experience. On-demand programs like movies and music can also be
inputted into the TRTC room through the capability, allowing users to share in real-time and
chat with friends while watching.

Feature Architecture

1. Users create push online media stream tasks using the REST API. These tasks are executed by the relay server.
2. The relay server pulls online streams or on-demand files.

3. The relay server pushes the fetched audio and video to the TRTC room and automatically generates a virtual
anchor user. The username and room number of this user are specified when the task is created.
4. Other TRTC clients can watch these streams and utilize TRTC capabilities such as recording and relay.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 34
of 221

Feature Description

The feature description of push online media stream is as follows:

Type Description

Task initiation
method

Users can initiate push online media stream tasks via the REST API. The audience can
watch these streams, and features such as recording and relay are supported.

Multiple source
protocols and
formats

Protocols: HTTP, HTTPS, RTMP, HLS
Formats: FLV, MP3, MP4, MPEG-TS, MOV, MKV, M4A
Video encoding: H.264, VP8
Audio encoding: AAC, OPUS

Server-side
callback

When a push online media stream task is created and completed, it can be called backed
to the server on the service side for service logic purposes. For detailed push online
media stream events, go to view.

Related Rest API

Start push online media stream: StartStreamIngest﻿
Stop push online media stream: StopStreamIngest﻿

Query push online media stream: DescribeStreamIngest﻿

https://www.tencentcloud.com/document/product/647/62717#
https://trtc.io/document/57835?product=serverapis
https://trtc.io/document/57834?product=serverapis
https://trtc.io/document/57836?product=serverapis

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 35
of 221

RTMP Streaming With TRTC

TRTC supports the streaming of local media files and audio and video from capture devices into a TRTC
room via the RTMP standard protocol. To facilitate your integration of TRTC, you can install OBS, FFmpeg, or other
RTMP libraries to realize streaming with TRTC. OBS is a third-party open-source tool for live streaming. It is easy to

use and free of charge, and it supports OS X, Windows, and Linux. OBS can be used in a wide range of scenarios
and is capable of meeting most live streaming needs without requiring additional plugins. You can download its latest
version from the OBS website.

Use Cases

Scenario Description

Online
education

Use the desktop edition of OBS or FFmpeg to publish learning materials (most media formats
are supported) over RTMP to a TRTC room. Students in the room can play the stream via the
TRTC SDK and see the same learning materials as the teacher controls the playback
progress/speed or switches between chapters. Excellent synchronization across multiple
devices ensures better teaching quality.

Sports
watching

Sports event organizers provide content in the form of RTMP streams. You can publish the
streams to TRTC rooms so that users in the rooms can watch the event with ultra-low latency.
With TRTC’s interaction capability, users can also audio/video chat with each other throughout
an event.

Others You can also use the RTMP publishing feature to implement other real-time interactive
applications based on streaming.

Architecture

An RTMP client is a module of TRTC and can communicate with other TRTC clients. The interconnection delay is less
than 600ms under normal circumstances. It can also use TRTC capabilities such as recording and relaying. The

network architecture is shown in the figure below. Not support pulling RTMP stream from TRTC; only support
pushing stream to TRTC.

Publishing and Playback URLs

https://obsproject.com/download
https://obsproject.com/download?spm=a2c4g.11186623.2.15.6aac1445JPlKR8

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 36
of 221

Publishing URLs

rtmp://intl-rtmp.rtc.qq.com/push/Room ID?sdkappid=Application ID&userid=User

ID&usersig=Signature

Primary domain is intl-rtmp.rtc.qq.com; backup domain is rtmp.rtc-web.com. If there are issues with the primary
domain DNS resolution, you can use the backup domain.
For RTMP publishing, appName is push .

Replace "Room ID", "Application ID", "User ID", and "Signature" with their actual values.
For the sake of simplicity, we support only string-type room IDs. A room ID can contain numbers, letters, and

underscores and cannot exceed 64 characters.
Warning:
To play an RTMP stream on other TRTC clients, when entering the room, make sure you use a string-type room ID.
For how to generate UserSig , see UserSig. Make sure your signature is within the validity period.

Example:

rtmp://intl-rtmp.rtc.qq.com/push/hello-string-room?

sdkappid=140*****66&userid=******rtmp2&usersig=eJw1jdE********RBZ8qKGRj8Yp-

wVbv*mGMVZqS7w-mMDQL

Usage Example

You can use software or a programming library that supports RTMP to publish RTMP streams. The section below

shows you how to do this.

Using OBS to publish streams

Prerequisites

You have installed OBS.

Step 1. Select a source

In the Sources panel at the bottom, click +, and select a source based on your needs. Common sources include the
following:

Source Note

Image Publishes a single image

Image Slide Show Publishes multiple images (you can determine the order of playback and whether to loop
the playback)

Scene Inserts an entire scene to enable various streaming effects

Media Source Uploads a local file and publishes it as a live stream

https://www.tencentcloud.com/document/product/647/35166
https://obsproject.com/download?spm=a2c4g.11186623.2.15.6aac1445JPlKR8

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 37
of 221

Text Adds real-time text to your stream

Window Capture Captures and publishes the window you select in real time

Video Capture
Device

Captures and publishes the images captured by a camera in real time

Audio Input
Capture

Audio live streaming (audio input device)

Audio Output
Capture

Audio live streaming (audio output device)

Step 2. Set publishing parameters

1. In the Controls panel at the bottom, click Settings.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 38
of 221

2. Click Stream and select Custom for Service.
3. Enter rtmp://intl-rtmp.rtc.qq.com/push/ for Server.

4. Enter a stream key in the following format:

Room ID?sdkappid=Application&userid=User ID&usersig=Signature

Replace "Room ID", "Application ID", "User ID", and "Signature" with the actual values, for example:

hello-string-room?

sdkappid=140*****66&userid=******rtmp2&usersig=eJw1jdE***************ZLgi5UAgOz

oMhrayt*cjbmiCJ699T09juc833IMT94Ld7I0iHZqVDzvVAqkZsG-

IKlzLiXOnEhswHu1iUyTc9pv*****D8MQwoA496Ke6U1ip4EAH4UMc5H9pSmv6MeTBWLamhwFnWRBZ8

qKGRj8Yp-wVbv*mGMVZqS7w-mMDQL

Step 3. Configure the output

Because RTMP does not support B-frames, set the video encoding parameters as follows to remove B-frames.
1. Go to Controls > Settings > Output.
2. Select Advanced for Output Mode. The recommended Keyframe Interval is 1 or 2. For CPU Usage Preset,
select ultrafast. For Profile, select baseline. For Tune, select zerolatency. And for x264 Options, enter
 threads=1 , and then click OK.

Warning:

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 39
of 221

You need to remove the B-frames in RTMP streams, otherwise the connection will be disconnected after pushing. To
achieve this, select baseline for Profile.

Step 4. Set video parameters

You can set video resolution and frame rate under the Video section of Settings. Resolution determines the clarity of

video shown to audience members. The higher the resolution, the clearer the video. Frame rate (frames per second)
determines playback smoothness. Typical frame rate falls in the range of 24 fps to 30 fps. Playback may stutter if
frame rate is lower than 16 fps. Video games require higher frame rate and tend to stutter at a frame rate lower than
30 fps.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 40
of 221

Step 5. Configure advanced settings

To reduce end-to-end delay, we recommend you do not enable Stream Delay.
Keep Automatically Reconnect enabled and make Retry Delay as short as possible so that the publisher can be
reconnected quickly after a disconnection occurs due to network jitter.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 41
of 221

Step 6. Publish the stream

1. In the Controls panel at the bottom, click Start Streaming.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 42
of 221

2. If streaming is successful, the bottom bar will show streaming statistics, and the entry of a user will be recorded by
the TRTC monitoring dashboard.

https://www.tencentcloud.com/document/product/647/39070

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 43
of 221

Step 7. Play the stream on other clients

As mentioned above in Set publishing parameters, to play the RTMP stream on other TRTC clients, you need to use a
string-type room ID when entering the room. The screenshot below is an example of playing the RTMP stream on

Web. （ps : You can go to the Demo page and enter the room on any client-side to view the stream .）

https://www.tencentcloud.com/document/product/647/62716#step2
https://www.tencentcloud.com/document/product/647/35076
https://www.tencentcloud.com/document/product/647/35076

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 44
of 221

Using FFmpeg to publish streams

To publish RMTP streams using FFmpeg commands or other RTMP libraries, you need to use the full URL, the H.264
video codec, and the AAC audio codec. For the container format, FLV is recommended. For GOP, one or two seconds

is recommended.

The configuration of FFmpeg parameters varies with different scenarios, so you need to have some knowledge of
FFmpeg in order to use it to publish streams. The table below lists some common FFmpeg commands. For more
options, see FFmpeg documentation.

FFmpeg commands

ffmpeg [global_options] {[input_file_options] -i input_url} ...

{[output_file_options] output_url}

Common FFmpeg options

Option Note

-re Reads input at the native frame rate. This is usually used to read local files.

Options for output_file_options include:

Option Note

https://ffmpeg.org/ffmpeg.html

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 45
of 221

-c:v The video encoding library. libx264 is recommended.

-b:v The video bitrate. For example, 1500k means 1,500 Kbps.

-r The video frame rate.

-profile:v
The video profile. If you set it to baseline , B-frames will not be encoded. The TRTC
backend does not support B-frames.

-g The GOP (keyframe interval).

-c:a The audio encoding library. libfdk_aac is recommended.

-ac The number of sound channels. Valid values: 1 , 2 .

-b:a The audio bitrate.

-f
The container format. Set it to flv . The FLV container format is required to publish to
TRTC.

Below is an example of reading a local file and publishing it to TRTC (note that quotation marks are required for the
URL):

ffmpeg -loglevel debug -re -i sample.flv -c:v libx264 -preset ultrafast -

profile:v baseline -g 30 -sc_threshold 0 -b:v 1500k -c:a libfdk_aac -ac 2 -b:a

128k -f flv 'rtmp://intl-rtmp.rtc.qq.com/push/hello-string-room?

userid=rtmpForFfmpeg&sdkappid=140xxxxxx&usersig=xxxxxxxxxx'

Playback on other clients

The screenshot below is an example of playback on the Web. You can also play the stream on other clients.

https://www.tencentcloud.com/document/product/647/35076#

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 46
of 221

FAQ

Streaming failed

Common causes
No package purchased or expired.

Incorrect or expired signature.
Streaming with B-frames (appears as "stream ends after one second" on the dashboard); should set to baseline
encoding.
Other causes
If the stream is pushed by an embedded hardware device, the URL may be truncated.

Streaming with H.265; should use H.264.
Setting chunk size too large on the client; recommend setting chunk size to 1360.

Lag and screen artifacts

Check the Tencent Cloud Real-Time Communication dashboard to monitor streaming frame rate stability. If stable, the
issue is likely on the player's side - please investigate the player. If the frame rate is unstable, consider the
following:
Check if the streaming client's local CPU and memory are under high load. If using OBS for streaming, observe the

status bar at the bottom for information on dropped frames, network, CPU, and frame rate.
Check if the local network bandwidth is sufficient. Ping the streaming domain to observe RTT; use the network
diagnostic tool to test the streaming domain and check bandwidth, ideally reaching 10M.

https://www.tencentcloud.com/document/product/647/39070
https://itango.tencent.com/app/data/huatuo

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 47
of 221

The streaming client may try reducing bitrate and frame rate to lessen client load, refer to the OBS settings in the main
text, recommend setting bitrate to 1500 Kbps for 720p.

High Latency

If the client pulling stream uses TRTC anchor role, latency is usually lower than that of TRTC audience role. If not

anchor role, change to that and compare to see if there is improvement.
Local encoding and network significantly affect the streaming end. Try different platforms for testing; if using OBS,
consider streaming on a Windows system; ping the streaming domain to observe RTT.

Stream not visible on other ends

The streaming end used a string room number, but the pulling end used a numerical room number; modify the pulling
end to use a string room number to enter the room.

Frequent disconnections and re-streaming

Username duplication, causing mutual kicking out; ensure that the userid is globally unique under a single sdkappid.
Streaming with B-frames; set to baseline encoding.

Server callback

An RTMP streaming user is also a user in the TRTC room, with no fundamental difference from other end users, see
event callback.

Using your own domain

Configure your own domain CNAME to official domain - recommended for future use.

https://www.tencentcloud.com/document/product/647/39558

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 48
of 221

Speech-to-Text
Last updated：2025-04-01 14:33:13

Use Cases

Tencent Real-Time Communication (TRTC) supports the speech-to-text feature, which converts the audio streams
of specified users or all users in a room into corresponding Chinese text for effects such as real-time captions.

Prerequisites

Log in to the TRTC console, activate the TRTC service, and create an RTC-Engine application.

Go to the purchase page to buy an RTC-Engine package of any version to unlock the speech-to-text feature.
Note:
The speech-to-text feature incurs fees based on usage. See Fee Details for more information.

Feature Overview

After a task is initiated, TRTC AI Service uses an Automatic Speech Recognition (ASR) bot to enter a TRTC room to
pull the streams of specified users or all users for speech-to-text recognition, and then relay the recognition results to

the client and server in real time.

Integration Guide

Step 1: Receiving Speech-to-Text Results

Method 1: Receiving Text Messages via Client SDK

Use the custom message receiving feature of the TRTC SDK to listen to callbacks on the client and receive real-time
speech-to-text result data.
The client callback message format is as follows, taking the web end as an example:

trtc.on(TRTC.EVENT.CUSTOM_MESSAGE, event => { // Receive custom messages.

 // event.userId: The userId of the ASR robot.

 // event.cmdId: The message ID, which is fixed at 1 for transcriptions and capti

 // event.seq: The sequence number of a message.

 // event.data: ArrayBuffer type. For content of transcriptions or captions, see

https://console.trtc.io/
https://www.tencentcloud.com/document/product/647/39077#
https://console.trtc.io/subscription/buy/rtc?packType=starter
https://trtc.io/document/64149?product=pricing
https://www.tencentcloud.com/document/product/647/47866#

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 49
of 221

 const data = new TextDecoder().decode(event.data)

 // Explanation of the data field is as follows.

 console.log(`received custom msg from ${event.userId}, message: ${ data }`)

})

Data field explanation

Real-Time Captions

Field Name Type Meaning

type Integer 10000: When there are real-time captions and a complete sentence, the
message type will be delivered.

sender String Speaker's userid.

receiver Array Recipient's userid list. This message is actually broadcast within a room.

payload.text String Recognized text, Unicode encoded.

payload.start_time String Message start time. It is the absolute time after a task starts.

payload.end_time String Message end time. It is the absolute time after a task starts.

payload.end Boolean If true, it indicates that this is a complete sentence.

{

 "type": 10000,

 "sender": "user_a",

 "payload": {

 "text":"",

 "start_time":"00:00:02",

 "end_time":"00:00:05",

 "end": true

 }

}

Note:

Callback example explanation:
Transcription: A complete sentence will be transcribed and pushed.
	 "How's the weather today?"
Captions: A sentence will be segmented for pushing, with each subsequent segment containing the previous one to
ensure real-time performance.
"Today"

"Today's weather"

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 50
of 221

"How's the weather today?"
Sequence explanation: Caption message > Caption message > > Caption message (end = true)

Method 2: Receiving via Server-side Callbacks

The speech-to-text service also provides server-side event callbacks, facilitating your service to receive real-time

conversation messages. See Detailed Callback Events.

Step 2: Initiating a Speech-to-Text Task

TRTC provides the following Tencent Cloud APIs for initiating and managing speech-to-text tasks:
Start a speech-to-text task: StartAITranscription
Query a speech-to-text task: DescribeAITranscription
Stop a speech-to-text task: StopAITranscription

Note:
The speech-to-text feature has a concurrency limit of 100 tasks per SDKAppId. Submit a ticket if you need to
increase this limit.

https://www.tencentcloud.com/document/product/647/66149#
https://trtc.io/document/64967
https://trtc.io/document/64968
https://trtc.io/document/64966

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 51
of 221

Utilizing Beautification Effects
SDK Integration Guide (Flutter)
Last updated：2025-04-10 11:38:07

Step 1: Seamless Integration of Tencent Special Effect Resources

1. ﻿Download Demo project.﻿
2. Migrate Tencent special effect resources
Android

iOS
1. Find the src/main/assets folder in the android/app module of your project. Copy the lut and MotionRes

folders from demo/android/app/src/main/assets in the demo project to

 android/app/src/main/assets in your project. If your project does not have an assets folder, you can

manually create one.

2. In the android/app/build.gradle file of your project, add the dependency of the Beauty SDK for the

Android side. The specific dependency depends on the package you selected. For example, if you selected the S1-04
package, add the following:

dependencies {

 implementation 'com.tencent.mediacloud:TencentEffect_S1-04:latest.release'

}

Note:
The maven urls corresponding to each package, please see Documentation. The latest version number of the SDK
can be viewed in Version History.

3. If you use an Android version of beauty SDK less than 3.9, you need to find the AndroidManifest.xml file under the
app module and add the following tags in the application table:

 <uses-native-library

 android:name="libOpenCL.so"

 android:required="false" />

 //true indicates that libOpenCL is necessary for the current app. If there

 //false indicates that libOpenCL is not necessary for the current app. The

 //For the description of uses-native-library, please refer to the Android o

As shown below after addition:

https://github.com/Tencent-RTC/TencentEffect_Flutter
https://trtc.io/document/60195?platform=android&product=beautyar
https://trtc.io/document/60203#

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 52
of 221

4. Obfuscation configuration.
When building a release package with code optimization and obfuscation features enabled (minifyEnabled = true), the
compilation tool may remove code that is not explicitly called at the Java/Kotlin layer. If this code is dynamically called

by the native layer, a NoSuchMethodError exception (such as no xxx method) will be triggered.
It is recommended to proactively retain the necessary code of the Xmagic module through ProGuard rules in
proguard-rules.pro:

-keep class com.tencent.xmagic.** { *;}

-keep class org.light.** { *;}

-keep class org.libpag.** { *;}

-keep class org.extra.** { *;}

-keep class com.gyailib.**{ *;}

-keep class com.tencent.cloud.iai.lib.** { *;}

-keep class com.tencent.beacon.** { *;}

-keep class com.tencent.qimei.** { *;}

-keep class androidx.exifinterface.** { *;}

-keep class com.tencent.effect.** { *;}

Copy the xmagic folder under the ios/Runner directory in the demo project to the ios/Runner directory in your project.
After addition, it is as shown in the figure below:

Note:

The above materials copied from the demo project are test materials. For official materials, you need to contact the
staff of Tencent Special Effect Beauty after purchasing a package to obtain and re-add them.

Step Two: Integration of tencent_effect_flutter

You can depend on tencent_effect_flutter in your Flutter project in the following ways.
1. Remote dependency
Add the following reference in your pubspec.yaml file:

 tencent_effect_flutter:

 git:

 url: https://github.com/Tencent-RTC/TencentEffect_Flutter

2. Local dependency

Download the latest version of tencent_effect_flutter from github, and then add the following reference in the
pubspec.yaml file:

tencent_effect_flutter:

 path: path to tencent_effect_flutter

https://trtc.io/document/51280#
https://github.com/Tencent-RTC/TencentEffect_Flutter

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 53
of 221

Step 3: Beauty Effect and TRTC Association

Android
iOS
Add the following code in the onCreate method of the application class (or the onCreate method of the FlutterActivity):

TRTCPlugin.setBeautyProcesserFactory(new XmagicProcesserFactory());

Add the following code in the didFinishLaunchingWithOptions method in the AppDelegate file under the ios/Runner
directory:
Swift
Object-C

let instance = XmagicProcesserFactory()

TencentRTCCloud.setBeautyProcesserFactory(factory: instance)

XmagicProcesserFactory *instance = [[XmagicProcesserFactory alloc] init];

[TencentRTCCloud setBeautyProcesserFactoryWithFactory:instance];

Step 4: Beauty Effect Resource Initialization and Authorization

1. Resource initialization
V0.3.5.0 and Later
V0.3.1.1 and Earlier Versions

TencentEffectApi.getApi()?.setResourcePath(resourceDir);

TencentEffectApi.getApi()?.initXmagic((result) {

 // TODO

});

TencentEffectApi.getApi()?.initXmagic(dir,(reslut) {

 //TODO

});

2. Beauty authorization

TencentEffectApi.getApi()?.setLicense(licenseKey, licenseUrl, (errorCode, msg) {

 if (errorCode == 0) {

 // Success

 }

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 54
of 221

});

Step 5: Enable/Disable Beauty Effects

After completing the above operations, you can enable/disable beauty effects through TRTC's hidden interface:

_enableCustomBeautyByNative(bool open) {

 trtcCloud.callExperimentalAPI("{\\"api\\": \\"enableVideoProcessByNative\\", \\"p

}

Note:

Enable beauty effects on the page. When closing the camera, you need to disable beauty effects first. Enable and
disable are used in pairs.

Document Reference

You have completed the association between TRTC and Special Effect Beauty Enhancement. You can learn more
about how to use Special Effect Beauty Enhancement through the following document:
Beauty Flutter SDK API Doc﻿

Effects Parameter﻿

https://trtc.io/document/60200?platform=flutter&product=beautyar
https://trtc.io/document/60207?platform=android&product=beautyar

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 55
of 221

Testing Hardware Devices
Android&iOS&Windows&Mac
Last updated：2023-09-28 11:53:14

Overview

Given that it is difficult for users to detect device problems during a call, we recommend that you test devices such as
cameras and mics before a video call.

Supported Platforms

iOS Android macOS Windows Electron Web

× × ✓ ✓ ✓ ✓ (Web)

Testing Camera

You can use the startCameraDeviceTestInView API of TRTCCloud to test a camera and can use the

 setCurrentCameraDevice API to switch cameras during testing.

macOS
Windows (C++)
Windows (C#)

// Open the camera testing page, on which you can preview camera images and switch

- (IBAction)startCameraTest:(id)sender {

 // Start camera testing. `cameraPreview` is `NSView` on macOS or `UIView` on iO

 [self.trtcCloud startCameraDeviceTestInView:self.cameraPreview];

}

// Close the camera testing page.

- (void)windowWillClose:(NSNotification *)notification{

 // Stop camera testing.

 [self.trtcCloud stopCameraDeviceTest];

}

https://web.sdk.qcloud.com/trtc/webrtc/doc/zh-cn/tutorial-23-advanced-support-detection.html

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 56
of 221

// Start camera testing. Pass in the control handle that renders video.

void TRTCMainViewController::startTestCameraDevice(HWND hwnd)

{

 trtcCloud->startCameraDeviceTest(hwnd);

}

// Stop camera testing.

void TRTCMainViewController::stopTestCameraDevice()

{

 trtcCloud->stopCameraDeviceTest();

}

// Start camera testing. Pass in the control handle that renders video.

private void startTestCameraDevice(Intptr hwnd)

{

 mTRTCCloud.startCameraDeviceTest(hwnd);

}

// Stop camera testing.

private void stopTestCameraDevice()

{

 mTRTCCloud.stopCameraDeviceTest();

}

Testing Mic

You can use the startMicDeviceTest API of TRTCCloud to measure mic volume in real time. The result is

returned via a callback.

macOS
Windows (C++)
Windows (C#)

 // Sample code for mic testing

 -(IBAction)micTest:(id)sender {

 NSButton *btn = (NSButton *)sender;

 if (btn.state == 1) {

 // Start mic testing.

 __weak __typeof(self) wself = self;

 [self.trtcCloud startMicDeviceTest:500 testEcho:^(NSInteger volume) {

 dispatch_async(dispatch_get_main_queue(), ^{

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 57
of 221

 // Refresh the mic volume bar.

 [wself _updateInputVolume:volume];

 });

 }];

 btn.title = @"Stop test";

 }

 else{

 // Stop mic testing.

 [self.trtcCloud stopMicDeviceTest];

 [self _updateInputVolume:0];

 btn.title = @"Start test";

 }

}

// Sample code for mic testing

void TRTCMainViewController::startTestMicDevice()

{

 // Set the interval for triggering the volume callback and listen for the `onTe

 uint32_t interval = 500;

 // Start mic testing.

 trtcCloud->startMicDeviceTest(interval);

}

// Stop mic testing.

void TRTCMainViewController::stopTestMicDevice()

{

 trtcCloud->stopMicDeviceTest();

}

// Sample code for mic testing

private void startTestMicDevice()

{

 // Set the interval for triggering the volume callback and listen for the `onTe

 uint interval = 500;

 // Start mic testing.

 mTRTCCloud.startMicDeviceTest(interval);

}

// Stop mic testing.

private void stopTestMicDevice()

{

 mTRTCCloud.stopMicDeviceTest();

}

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 58
of 221

Testing Speaker

You can use the startSpeakerDeviceTest API of TRTCCloud to test whether a speaker works properly by

playing a default MP3 file.
macOS

Windows (C++)
Windows (C#)

// Sample code for speaker testing

// Take an NSButton for example. In `xib`, set the title of the button in the on an

- (IBAction)speakerTest:(NSButton *)btn {

 NSString *path = [[NSBundle mainBundle] pathForResource:@"test-32000-mono" ofTy

 if (btn.state == NSControlStateValueOn) {

 // Click "Start Test".

 __weak __typeof(self) wself = self;

 [self.trtcEngine startSpeakerDeviceTest:path onVolumeChanged:^(NSInteger vo

 // The subsequent steps involve the UI and need to be executed in the m

 dispatch_async(dispatch_get_main_queue(), ^{

 // `_updateOutputVolume` means updating the speaker volume indicato

 [wself _updateOutputVolume:volume];

 if (playFinished) {

 // Set the button status to "Start Test" after playback is comp

 sender.state = NSControlStateValueOff;

 }

 });

 }];

 } else {

 // Click "Stop Test".

 [self.trtcEngine stopSpeakerDeviceTest];

 [self _updateOutputVolume:0];

 }

}

// Update the speaker volume indicator.

- (void)_updateOutputVolume:(NSInteger)volume {

 // `speakerVolumeMeter` is `NSLevelIndicator`.

 self.speakerVolumeMeter.doubleValue = volume / 255.0 * 10;

}

// Sample code for speaker testing

void TRTCMainViewController::startTestSpeakerDevice(std::string testAudioFilePath)

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 59
of 221

{

 // `testAudioFilePath` is the absolute path of the audio file (in WAV or MP3 fo

 // Listen for the `onTestSpeakerVolume` callback to get the speaker volume.

 trtcCloud->startSpeakerDeviceTest(testAudioFilePath.c_str());

}

// Stop speaker testing.

void TRTCMainViewController::stopTestSpeakerDevice() {

 trtcCloud->stopSpeakerDeviceTest();

}

// Sample code for speaker testing

private void startTestSpeakerDevice(string testAudioFilePath)

{

 // `testAudioFilePath` is the absolute path of the audio file (in WAV or MP3 fo

 // Listen for the `onTestSpeakerVolume` callback to get the speaker volume.

 mTRTCCloud.startSpeakerDeviceTest(testAudioFilePath);

}

// Stop speaker testing.

private void stopTestSpeakerDevice() {

 mTRTCCloud.stopSpeakerDeviceTest();

}

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 60
of 221

Web
Last updated：2023-11-16 15:09:42

Overview

Because it is difficult for users to detect device problems during a call, we recommend checking the browser and
testing devices such as cameras and mics before starting a video call.

Browser Environment Check

Before enterRoom, we recommend you use the TRTC.isSupported API to check whether the SDK supports the

current browser first, and if not, please recommend the user to use a supported browser, refer to Supported browsers.

TRTC.isSupported().then(checkResult => {

 // Not supported, guide the user to use a supported browser(Chrome 56+, Edge 80+,

 if (!checkResult.result) {}

 // Not support to publish video

 if (!checkResult.detail.isH264EncodeSupported) {}

 // Not support to subscribe video

 if (!checkResult.detail.isH264DecodeSupported) {}

})

If the check result returned by TRTC.isSupported is false, this may be because:

1. The web page uses the http protocol. Browsers do not allow http protocol sites to capture cameras and
microphones, you need to deploy your page using the https protocol.
2. The current browser does not support WebRTC, you need to guide the user to use the recommended browser, refer
to Supported browsers.
3. Firefox browser needs to load H264 codec dynamically after installation, so the detection result will be false for a

short period of time, please wait and try again or guide to use other browsers.

Audio/Video Device Test

To ensure that users can have a good user experience with the TRTC SDK, we recommend you check the user's
device and network conditions and provide troubleshooting suggestions before the user enters a TRTC room.
You can quickly integrate the device and network check features by referring to the following methods:

https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/TRTC.html#.isSupported
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/tutorial-05-info-browser.html
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/TRTC.html#.isSupported
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/tutorial-05-info-browser.html

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 61
of 221

 rtc-detect Library﻿

React Component for Device Check﻿
TRTC Capability Check Page﻿

 rtc-detect Library

You can use rtc-detect to check whether the current environment is supported by the TRTC SDK and view the details
of the current environment.

Installation

npm install rtc-detect

Usage

import RTCDetect from 'rtc-detect';

// Initialize the detection module

const detect = new RTCDetect();

// Get the detection result of the current environment

const result = await detect.getReportAsync();

// `result` contains the current environment system information, API support, codec

console.log('result is: ' + result);

API

(async) isTRTCSupported()

This API is used to check whether the current environment supports TRTC.

const detect = new RTCDetect();

const data = await detect.isTRTCSupported();

if (data.result) {

 console.log('current browser supports TRTC.')

} else {

 console.log(`current browser does not support TRTC, reason: ${data.reason}.`)

}

getSystem()

This API is used to get the current system environment parameters.

Item Type Description

https://web.sdk.qcloud.com/trtc/webrtc/doc/en/tutorial-23-advanced-support-detection.html#h2-4
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/tutorial-23-advanced-support-detection.html#h2-5
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/tutorial-23-advanced-support-detection.html#h2-6
https://www.npmjs.com/package/rtc-detect

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 62
of 221

UA string The browser user-agent.

OS string The OS of the current device.

browser object
The current browser information in the format of { name, version
} .

displayResolution object The current resolution in the format of { width, height } .

getHardwareConcurrency number The number of CPU cores of the current device.

const detect = new RTCDetect();

const result = detect.getSystem();

getAPISupported()

This API is used to get the API support of the current environment.

Item Type Description

isUserMediaSupported boolean Whether the user media data stream can be obtained

isWebRTCSupported boolean Whether WebRTC is supported

isWebSocketSupported boolean Whether WebSocket is supported

isWebAudioSupported boolean Whether WebAudio is supported

isScreenCaptureAPISupported boolean Whether the screen stream can be obtained

isCanvasCapturingSupported boolean Whether the data stream can be obtained from the
canvas

isVideoCapturingSupported boolean Whether the data stream can be obtained from the video

isRTPSenderReplaceTracksSupported boolean
Whether renegotiation with peerConnection can
be skipped when track is replaced

isApplyConstraintsSupported boolean
Whether the camera resolution can be changed without
calling getUserMedia again

const detect = new RTCDetect();

const result = detect.getAPISupported();

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 63
of 221

(async) getDevicesAsync()

This API is used to get the available devices in the current environment.

Item Type Description

hasWebCamPermissions boolean Whether the user camera data can be obtained

hasMicrophonePermission boolean Whether the user mic data can be obtained

cameras array
List of user cameras, including their resolutions, maximum width,
maximum height, and maximum frame rate (for certain browsers only)
supported for video streams

microphones array List of mics used by users

speakers array List of speakers used by users

CameraItem

Item Type Description

deviceId string The device ID, which is usually unique and can be used to identify devices.

groupId string The group ID. If two devices belong to the same physical device, they have the same
group ID.

kind string The camera device type: 'videoinput'.

label string A tag which describes the device.

resolution object The maximum resolution width, height, and frame rate supported by the camera
{maxWidth: 1280, maxHeight: 720, maxFrameRate: 30}.

DeviceItem

Item Type Description

deviceId string The device ID, which is usually unique and can be used to identify devices.

groupId string The group ID. If two devices belong to the same physical device, they have the same
group ID.

kind string The device type, such as 'audioinput' and 'audiooutput'.

label string A tag which describes the device.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 64
of 221

const detect = new RTCDetect();

const result = await detect.getDevicesAsync();

(async) getCodecAsync()

This API is used to get the codec support of the current environment.

Item Type Description

isH264EncodeSupported boolean Whether H.264 encoding is supported

isH264DecodeSupported boolean Whether H.264 decoding is supported

isVp8EncodeSupported boolean Whether VP8 encoding is supported

isVp8DecodeSupported boolean Whether VP8 decoding is supported

If encoding is supported, audio/video can be published. If decoding is supported, audio/video can be pulled for
playback.

const detect = new RTCDetect();

const result = await detect.getCodecAsync();

(async) getReportAsync()

This API is used to get the detection report of the current environment.

Item Type Description

system object Same as the returned value of getSystem()

APISupported object Same as the returned value of getAPISupported()

codecsSupported object Same as the returned value of getCodecAsync()

devices object Same as the returned value of getDevicesAsync()

const detect = new RTCDetect();

const result = await detect.getReportAsync();

(async) isHardWareAccelerationEnabled()

This API is used to check whether hardware acceleration is enabled on the Chrome browser.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 65
of 221

notice

The implementation of this API depends on the native WebRTC API. We recommend you call this API for check after

calling isTRTCSupported . The check can take up to 30 seconds as tested below:

1. If hardware acceleration is enabled, this API will take about 2 seconds on Windows and 10 seconds on macOS.
2. If hardware acceleration is disabled, this API will take about 30 seconds on both Windows and macOS.

const detect = new RTCDetect();

const data = await detect.isTRTCSupported();

if (data.result) {

 const result = await detect.isHardWareAccelerationEnabled();

 console.log(`is hardware acceleration enabled: ${result}`);

} else {

 console.log(`current browser does not support TRTC, reason: ${data.reason}.`)

}

React Component for Device Check

Device check UI component features

1. Device connection and check logic processing
2. Network check logic processing
3. Optional network check tab
4. Support for Chinese and English

Device check UI component links

For more information on how to use the component's npm package, see rtc-device-detector-react.
For more information on how to debug the component's source code, see github/rtc-device-detector.
For more information on how to import the component, see WebRTC API Example.

Device check UI component page

https://www.npmjs.com/package/rtc-device-detector-react
https://github.com/FTTC/rtc-device-detector
https://web.sdk.qcloud.com/trtc/webrtc/demo/api-sample/index.html

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 66
of 221

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 67
of 221

Device and Network Detection Logic

1) Device Connection

The purpose of device connection is to detect whether the user's machine has camera, microphone, and speaker
devices, and whether it is in a networked state. If there are camera and microphone devices, try to obtain audio and
video streams and guide the user to grant access to the camera and microphone.

Determine whether the device has camera, microphone, and speaker devices

import TRTC from 'trtc-sdk-v5';

const cameraList = await TRTC.getCameraList();

const micList = await TRTC.getMicrophoneList();

const speakerList = await TRTC.getSpeakerList();

const hasCameraDevice = cameraList.length > 0;

const hasMicrophoneDevice = micList.length > 0;

const hasSpeakerDevice = speakerList.length > 0;

Obtain access to the camera and microphone

await trtc.startLocalVideo({ publish: false });

await trtc.startLocalAudio({ publish: false });

Check whether the device is connected to the network

export function isOnline() {

 const url = 'https://web.sdk.qcloud.com/trtc/webrtc/assets/trtc-logo.png';

 return new Promise((resolve) => {

 try {

 const xhr = new XMLHttpRequest();

 xhr.onload = function () {

 resolve(true);

 };

 xhr.onerror = function () {

 resolve(false);

 };

 xhr.open('GET', url, true);

 xhr.send();

 } catch (err) {

 // console.log(err);

 }

 });

}

const isOnline = await isOnline();

2） Camera Detection

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 68
of 221

​Detection principle: Open the camera and render the camera image on the page.
Open the camera

trtc.startLocalVideo({ view: 'camera-video', publish: false });

Switch camera

trtc.updateLocalVideo({

 option: { cameraId }

});

Device plug and unplug detection﻿
Close the camera after the detection is complete

trtc.stopLocalVideo();

3) Microphone Detection

Detection principle: Open the microphone and obtain the microphone volume.

Open the microphone

trtc.startLocalAudio({ publish: false });

Switch microphone

trtc.updateLocalAudio({ option: { microphoneId }});

Device plug and unplug detection﻿
Release microphone usage after detection is complete

trtc.stopLocalAudio();

4) Speaker Detection

Detection principle: Play an mp3 media file through the audio tag.
Create an audio tag to remind the user to turn up the volume and play the mp3 to confirm whether the speaker device

is working properly.

<audio id="audio-player" src="xxxxx" controls></audio>

Stop playing after detection is complete

const audioPlayer = document.getElementById('audio-player');

if (!audioPlayer.paused) {

 audioPlayer.pause();

}

https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/tutorial-25-advanced-device-change.html
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/tutorial-25-advanced-device-change.html

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 69
of 221

audioPlayer.currentTime = 0;

5) Network Detection

Reference: Network Quality Detection Before Call﻿

TRTC Capability Detection Page

You can use the TRTC Detection Page where you are currently using the TRTC SDK to detect the current

environment. You can also click the "Generate Report" button to get a report of the current environment for
environment detection or troubleshooting.

https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/tutorial-24-advanced-network-quality.html
https://web.sdk.qcloud.com/trtc/webrtc/demo/detect/index.html

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 70
of 221

Testing Network Quality
Android&iOS&Windows&Mac
Last updated：2024-06-07 22:18:34

It is difficult for ordinary users to measure network quality. Before calls are made, we recommend that you test the
network speed to get more accurate results on network quality.

Notes

To ensure call quality, do not run the test during a video call.

Speed testing consumes traffic and consequently generates a small traffic fee (almost negligible).

Supported Platforms

iOS Android macOS Windows Electron Web

✓ ✓ ✓ ✓ ✓ ✓ (Reference: Detect Network Quality)

How Speed Testing Works

https://www.tencentcloud.com/document/product/647/59655

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 71
of 221

During speed testing, the SDK sends a batch of probe packets to the server node, measures the quality of return
packets, and returns the testing result via a callback API.

The testing result can be used to optimize the SDK's server selection policy, so you are advised to run the test before
the first call, which will help the SDK select the optimal server. If the result is unsatisfactory, you can show a UI
message asking users to change to a better network.
The test result (TRTCSpeedTestResult) includes the following parameters:

Parameter Type Description

success Success
result

Whether the test is successful.

errMsg Error
message

Error message of bandwidth test.

ip Server
address

Testing server IP

quality﻿ Network
quality score

Network quality measured by the SDK. Lower packet loss and
shorter RTT result in a higher network quality score.

upLostRate
Upstream
packet loss
rate

Value range: 0-1.0. `0.3` indicates that for every 10 data packets
sent to the server, 3 may be lost.

https://liteav.sdk.qcloud.com/doc/api/en/group__TRTCCloudDef__ios.html#interfaceTRTCSpeedTestResult
https://liteav.sdk.qcloud.com/doc/api/en/group__TRTCCloudDef__ios.html#ga25f9ccb045890cb18a5f647ef3c1f974

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 72
of 221

downLostRate Downstream
packet loss
rate

Value range: 0-1.0. `0.2` indicates that for every 10 data packets
received from the server, 2 may be lost.

rtt Latency
The time it takes for data to travel from the SDK to the server and
back again. The shorter the RTT, the better. The normal range of
RTT is 10-100 ms.

availableUpBandwidth Upstream
bandwidth

Estimated upstream bandwidth in Kbps. -1 indicates an invalid
value.

availableDownBandwidth Downstream
bandwidth

Estimated downstream bandwidth in Kbps. -1 indicates an invalid
value.

How to Test Speed

The speed test feature can be started through the startSpeedTest function of TRTCCloud . The speed test

result will be called back through the callback function.
Objective-C
Java
C++
C#

// Sample code for starting speed testing. `sdkAppId` and `UserSig` are required. F

// The example below starts after login.

- (void)onLogin:(NSString *)userId userSig:(NSString *)userSid

{

 TRTCSpeedTestParams *params;

 // `sdkAppID` is the actual application ID obtained from the console.

 params.sdkAppID = sdkAppId;

 params.userID = userId;

 params.userSig = userSig;

 // Expected upstream bandwidth in Kbps. Value range: 10–5000. 0 indicates not t

 params.expectedUpBandwidth = 5000;

 // Expected downstream bandwidth in Kbps. Value range: 10–5000. 0 indicates not

 params.expectedDownBandwidth = 5000;

 [trtcCloud startSpeedTest:params];

}

- (void)onSpeedTestResult:(TRTCSpeedTestResult *)result {

 // The speed test result will be called back after the test is completed

}

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 73
of 221

// Sample code for starting speed testing. `sdkAppId` and `UserSig` are required. F

// The example below starts after login.

public void onLogin(String userId, String userSig)

{

 TRTCCloudDef.TRTCSpeedTestParams params = new TRTCCloudDef.TRTCSpeedTestParams();

 params.sdkAppId = GenerateTestUserSig.SDKAPPID;

 params.userId = mEtUserId.getText().toString();

 params.userSig = GenerateTestUserSig.genTestUserSig(params.userId);

 params.expectedUpBandwidth = Integer.parseInt(expectUpBandwidthStr);

 params.expectedDownBandwidth = Integer.parseInt(expectDownBandwidthStr);

 // `sdkAppID` is the actual application ID obtained from the console.

 trtcCloud.startSpeedTest(params);

}

// Listen for the test result. Inherit `TRTCCloudListener` and implement the follow

void onSpeedTestResult(TRTCCloudDef.TRTCSpeedTestResult result)

{

 // The speed test result will be called back after the test is completed

}

// Sample code for starting speed testing. `sdkAppId` and `UserSig` are required. F

// The example below starts after login.

void onLogin(const char* userId, const char* userSig)

{

 TRTCSpeedTestParams params;

 // `sdkAppID` is the actual application ID obtained from the console.

 params.sdkAppID = sdkAppId;

 params.userId = userid;

 param.userSig = userSig;

 // Expected upstream bandwidth in Kbps. Value range: 10–5000. 0 indicates not t

 param.expectedUpBandwidth = 5000;

 // Expected downstream bandwidth in Kbps. Value range: 10–5000. 0 indicates not

 param.expectedDownBandwidth = 5000;

 trtcCloud->startSpeedTest(params);

}

// Listen for the testing result

void TRTCCloudCallbackImpl::onSpeedTestResult(

 const TRTCSpeedTestResult& result)

{

 // The speed test result will be called back after the test is completed

}

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 74
of 221

// Sample code for starting speed testing. `sdkAppId` and `UserSig` are required. F

// The example below starts after login.

private void onLogin(string userId, string userSig)

{

 TRTCSpeedTestParams params;

 // `sdkAppID` is the actual application ID obtained from the console.

 params.sdkAppID = sdkAppId;

 params.userId = userid;

 param.userSig = userSig;

 // Expected upstream bandwidth in Kbps. Value range: 10–5000. 0 indicates not t

 param.expectedUpBandwidth = 5000;

 // Expected downstream bandwidth in Kbps. Value range: 10–5000. 0 indicates not

 param.expectedDownBandwidth = 5000;

 mTRTCCloud.startSpeedTest(params);

}

// Listen for the testing result

public void onSpeedTestResult(TRTCSpeedTestResult result)

{

 // The speed test result will be called back after the test is completed

}

Speed Test Tool

If you don't want to call an API to test the network speed, you can use the network speed test tool for PC provided by
TRTC to quickly get the network quality details.

Download link

Mac ｜Windows

Test metrics

Metric Description

WiFi
Quality

Wi-Fi signal reception quality

DNS RTT Tencent Cloud testing domain DNS round-trip time (RTT)

MTR MTR is a network speed test tool, which can detect the packet loss rate and latency between client
and TRTC node and display the details of each hop in the route

https://liteav.sdk.qcloud.com/customer/%E6%B5%8B%E8%AF%95/%E6%B5%8B%E8%AF%95%E5%B7%A5%E5%85%B7/trtc-network-tools-latest.dmg
https://liteav.sdk.qcloud.com/customer/%E6%B5%8B%E8%AF%95/%E6%B5%8B%E8%AF%95%E5%B7%A5%E5%85%B7/trtc-network-tools_Setup_latest.exe

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 75
of 221

UDP
Loss

UDP packet loss rate between client and TRTC node

UDP RTT UDP latency between client and TRTC node

Local
RTT

Latency between client and local gateway

Upload Estimated upstream bandwidth

Download Estimated downstream bandwidth

Tool screenshots

Quick test:

Continuous test:

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 76
of 221

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 77
of 221

Web
Last updated：2023-09-28 11:54:53

Before entering the room or during the call, you can check the user's network quality to determine the current network
quality. If the user's network quality is too poor, it is recommended that the user change the network environment to
ensure normal call quality.

This article mainly introduces how to implement network quality detection before the call based on the
 NETWORK_QUALITY event.

Network quality check during the call process

const trtc = TRTC.create();

trtc.on(TRTC.EVENT.NETWORK_QUALITY, event => {

 console.log(`network-quality, uplinkNetworkQuality:${event.uplinkNetworkQuality}

 console.log(`uplink rtt:${event.uplinkRTT} loss:${event.uplinkLoss}`)

 console.log(`downlink rtt:${event.downlinkRTT} loss:${event.downlinkLoss}`)

})

Network quality check before making a call

Implementation process

1. Call TRTC.create() to create two TRTCs, referred to as uplinkTRTC and downlinkTRTC.

2. Both TRTCs enter the same room.
3. Use uplinkTRTC to push the stream, and listen to the NETWORK_QUALITY event to detect the uplink network

quality.
4. Use downlinkTRTC to pull the stream, and listen to the NETWORK_QUALITY event to detect the downlink

network quality.
5. The entire process lasts for about 15 seconds, and finally takes the average network quality to roughly determine
the uplink and downlink network conditions.
notice
 The process of checking network quality incurs a small basic service fee. If a resolution is not specified, the stream

will be published at a resolution of 640 x 480.

API Call Sequence

https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/module-EVENT.html#.NETWORK_QUALITY
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/TRTC.html#.create
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/module-EVENT.html#.NETWORK_QUALITY
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/module-EVENT.html#.NETWORK_QUALITY
https://www.tencentcloud.com/document/product/647/34610

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 78
of 221

Sample Code

let uplinkTRTC = null; // Used to detect uplink network quality

let downlinkTRTC = null; // Used to detect downlink network quality

let localStream = null; // Stream used for testing

let testResult = {

 // Record uplink network quality data

 uplinkNetworkQualities: [],

 // Record downlink network quality data

 downlinkNetworkQualities: [],

 average: {

 uplinkNetworkQuality: 0,

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 79
of 221

 downlinkNetworkQuality: 0

 }

}

// 1. Test uplink network quality

async function testUplinkNetworkQuality() {

 uplinkTRTC = TRTC.create();

 uplinkTRTC.enterRoom({

 roomId: 8080,

 sdkAppId: 0, // Fill in sdkAppId

 userId: 'user_uplink_test',

 userSig: '', // userSig of uplink_test

 scene: 'rtc'

 })

 uplinkTRTC.on(TRTC.EVENT.NETWORK_QUALITY, event => {

 const { uplinkNetworkQuality } = event;

 testResult.uplinkNetworkQualities.push(uplinkNetworkQuality);

 });

}

// 2. Detect downlink network quality

async function testDownlinkNetworkQuality() {

 downlinkTRTC = TRTC.create();

 downlinkTRTC.enterRoom({

 roomId: 8080,

 sdkAppId: 0, // Fill in sdkAppId

 userId: 'user_downlink_test',

 userSig: '', // userSig

 scene: 'rtc'

 });

 downlinkTRTC.on(TRTC.EVENT.NETWORK_QUALITY, event => {

 const { downlinkNetworkQuality } = event;

 testResult.downlinkNetworkQualities.push(downlinkNetworkQuality);

 })

}

// 3. Start detection

testUplinkNetworkQuality();

testDownlinkNetworkQuality();

// 4. Stop detection after 15s and calculate the average network quality

setTimeout(() => {

 // Calculate the average uplink network quality

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 80
of 221

 if (testResult.uplinkNetworkQualities.length > 0) {

 testResult.average.uplinkNetworkQuality = Math.ceil(

 testResult.uplinkNetworkQualities.reduce((value, current) => value + current,

);

 }

 if (testResult.downlinkNetworkQualities.length > 0) {

 // Calculate the average downlink network quality

 testResult.average.downlinkNetworkQuality = Math.ceil(

 testResult.downlinkNetworkQualities.reduce((value, current) => value + curren

);

 }

 // Detection is over, clean up related states.

 uplinkTRTC.exitRoom();

 downlinkTRTC.exitRoom();

}, 15 * 1000);

Result Analysis

After the above steps, you can get the average uplink network quality and the average downlink network quality. The
enumeration values of network quality are as follows:

Value Meaning

0 The network condition is unknown, indicating that the current TRTC instance has not established an
uplink/downlink connection

1 The network condition is excellent

2 The network condition is good

3 The network condition is average

4 The network condition is poor

5 The network condition is extremely poor

6 The network connection has been disconnected. Note: If the downlink network quality is this value, it
means that all downlink connections have been disconnected.

Suggestion:

When the network quality is greater than 3, it is recommended to guide the user to check the network and try to
change the network environment, otherwise it is difficult to ensure normal audio and video communication.
 You

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 81
of 221

can also reduce bandwidth consumption through the following strategies:
If the uplink network quality is greater than 3, you can reduce the bitrate through the
 TRTC.updateLocalVideo() interface or close the video through the TRTC.stopLocalVideo() method to

reduce uplink bandwidth consumption.
If the downlink network quality is greater than 3, you can reduce the downlink bandwidth consumption by subscribing
to a small stream (refer to: Enable Small Stream Transmission) or only subscribing to audio.

https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/TRTC.html#updateLocalVideo
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/TRTC.html#stopLocalVideo
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/tutorial-27-advanced-small-stream.html

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 82
of 221

On-Cloud Recording
Last updated：2024-04-26 17:43:17

For scenarios such as online education, live showroom, video conferencing, online medical consultation, and remote
banking, it is often necessary to record entire video calls or live streaming sessions for purposes including content
moderation, archiving, and playback. The on-cloud recording feature of TRTC can help meet these demands.

Overview

The on-cloud recording feature of TRTC allows you to record an audio/video stream in real time using a RESTful API.
It is flexible, light, and easy-to-use, saving you the trouble of deploying servers and recording modules.
Recording mode: Single-stream recording records the audio and video of each user in a room separately, while mixed-
stream recording records all audios and videos in a room into one result.
Stream subscription: You can determine whose streams you receive or do not receive using an allowlist/blocklist.

Transcoding parameters: In the mixed-stream recording mode, you can determine the output video quality by
specifying transcoding parameters.
Stream-mixing parameters: For mixed-stream recording, we offer multiple auto-arranged layout templates. You can
also customize a layout template.
File storage: Currently, you can save recording files only in Tencent Cloud COS or VOD.

(We plan to add support for storage and video-on-demand services of third-party cloud vendors in the future. To save

files to third-party platforms, you will need to provide your cloud service account and the storage parameters.)
Callback notification: By configuring a callback domain in the console, you can receive notifications about on-cloud
recording events via your callback server.

Single-stream recording

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 83
of 221

The diagram above shows the workflow of single-stream recording. In room 1234, anchor 1 and anchor 2 are
publishing streams. If you subscribe to their streams and enable single-stream recording, the TRTC backend will

record the audio and video data of anchor 1 and anchor 2 separately. The recording results will include:
1. An M3U8 index file of anchor 1's video
2. Multiple TS segment files of anchor 1's video
3. An M3U8 index file of anchor 1's audio
4. Multiple TS segment files of anchor 1's audio

5. An M3U8 index file of anchor 2's video
6. Multiple TS segment files of anchor 2's video
7. An M3U8 index file of anchor 2's audio
8. Multiple TS segment files of anchor 2's audio
The backend will then upload the files to the cloud storage server you specify. You can download the files and
merge/transcode them. We offer a script for merging audio and video streams.

Mixed-stream recording

https://www.tencentcloud.com/zh/document/product/647/45169#.E5.8D.95.E6.B5.81.E6.96.87.E4.BB.B6.E5.90.88.E5.B9.B6.E8.84.9A.E6.9C.AC

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 84
of 221

The above shows the workflow of mixed-stream recording. In room 1234, anchor 1 and anchor 2 are publishing
streams. If you subscribe to their streams and enable mixed-stream recording, the TRTC backend will mix the streams

of anchor 1 and anchor 2 according to the layout template you specify and then record them into one result, which will
include:
1. An M3U8 index file of the mixed video
2. Multiple TS segment files of the mixed video
The backend will then upload the files to the cloud storage server you specify. You can download the files and

merge/transcode them. We offer a script for merging audio and video streams.
Note:
The rate limit for the recording API is 20 calls per second.
The timeout period for a query is six seconds.
We allow up to 100 ongoing recording tasks at the same time. If you need to record more, please submit a ticket.
In the single-stream recording mode, you can record up to 25 streams in a room at the same time.

Auto-Recording

TencentRTC offers an auto-recording feature, eliminating the need for manual recording task management. To use
this recording solution, go to Console > Applications, select the desired application, and click

 on the right side to enter the application information page. Then click Advanced Features , enable on-cloud auto-
recording, complete the global auto-recording template configuration, and submit it.
After it becomes effective (wait for 5-10 minutes for it to take effect), the publishing of audio and video by the anchors

in the TRTC room will trigger the start of the recording task. The recording task will be triggered to stop after all the

https://www.tencentcloud.com/zh/document/product/647/45169#.E5.8D.95.E6.B5.81.E6.96.87.E4.BB.B6.E5.90.88.E5.B9.B6.E8.84.9A.E6.9C.AC
https://console.tencentcloud.com/workorder/category?step=0&source=14
https://console.trtc.io/app

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 85
of 221

anchors have left the room and the set timeout period for resumption has been exceeded.

Before enabling the global auto-recording feature, configure the global auto-recording template. Global auto-recording
supports single-stream recording (i.e., record a separate file for each anchor), and once enabled, it is only effective for
newly created rooms. It does not apply to rooms created before the auto-recording feature was enabled.
Global single-stream recording supports audio and video recording, audio-only recording, and video-only recording.
The recording file formats supported are MP4, HLS, and AAC (in audio-only recording format).

Configuration Item Description

Recording mode
Single-stream recording: The video data of each anchor in the room will be saved as a
separate file.
To record the mixed video of multiple anchors, use Manual Merge Recording.

Recording type
Audio and video: Both audio and video streams in the room are recorded, suitable for
video calls and interactive live streaming scenarios.
Audio-only: Only audio streams in the room are recorded.

File format Supports MP4, HLS, and AAC (in audio-only format).

Max file duration Specifies the segment duration of the recording file, with a range of 1-1,440 minutes. The
default is 1,440 minutes.

Timeout period for
resumption

Sets the timeout period for resuming recording in seconds. When the interruption interval
does not exceed the set timeout period, a single call (or live stream) will generate only
one file. However, the recording file will be received only after the timeout period for
resumption expires. The value range is 1 - 86,400 (default 30s) .

 Note: During the resumption waiting period, single-stream recording fees will
be charged based on the audio duration. Please set it appropriately.

https://www.tencentcloud.com/document/product/647/45169#.3Cu.3Emanual-recording-process.3C.2Fu.3E

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 86
of 221

Storage

Supports storage to Tencent Cloud Video on Demand (VOD), Tencent Cloud Object
Storage (COS), and AWS S3 Storage.

VOD: Requires support for specifying the VOD application and the storage period of
recording files in VOD, and binding VOD task flows.
COS & AWS: Requires completion of configuration for the corresponding bucket. Ensure
you have the write permission to the bucket.

Callback address
and callback key

The latest on-cloud recording service offers detailed recording event features. You can
configure a server-side URL to receive recording callback events, and can also configure
a callback key to verify the security of callback events. More information available here.

 Note:
In single-stream recording mode, each audio and video stream in the room will be recorded separately according to
the push stream parameters, without the need of setting transcoding.
If the timeout period for resumption has not expired, the recording robot will continue to wait in the room for the

anchor's publishing to complete the recording. The recording will not end immediately after the anchor leaves the
room, so set the timeout period appropriately.

https://console.tencentcloud.com/vod/media
https://console.tencentcloud.com/cos
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-regions
https://www.tencentcloud.com/zh/document/product/647/54914

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 87
of 221

Single-stream recording can record the audio and video of up to 25 anchors in one room. If there are more than 25
anchors in the room, they will be sorted by the time they entered the room, and only the audio and video of the first 25
anchors will be recorded. (For single-stream recording of more than 25 anchors, see API recording).

Manual Recording Process

1. Start recording

Call the RESTful API CreateCloudRecording from your server to start on-cloud recording. Pay attention to the

following parameters:

TaskId

This parameter uniquely identifies a recording task. Note it as you will need to provide it for other actions on the same
task later.

RecordMode

Single-stream recording separately records the audios and videos of the anchors you subscribe to and uploads the

recording files (including M3U8 and TS segment files) to the cloud.
Mixed-stream recording records all the audios and videos of the anchors you subscribe to into one result and uploads
the recording files (including M3U8 and TS segment files) to the cloud.

SubscribeStreamUserIds

By default, on-cloud recording records all the streams (max 25) you receive in a room. You can use this parameter to
specify whose streams you want to record and can change its value during recording.

StorageParams

You can use this parameter to specify the cloud storage/video-on-demand service you want to save recording files to.

Make sure you use a valid value and that the cloud storage/video-on-demand service you use is available. Below are
the naming conventions of recording files:

Naming of recording files

M3U8 file in the single-stream recording mode:

<Prefix>/<TaskId>/<SdkAppId>_<RoomId>__UserId_s_<UserId>__UserId_e_<MediaId>_<Type>.m3u8
TS segment file in the single-stream recording mode:

<Prefix>/<TaskId>/<SdkAppId>_<RoomId>__UserId_s_<UserId>__UserId_e_<MediaId>_<Type>_<UTC>.ts
MP4 file in the single-stream recording mode:

<Prefix>/<TaskId>/<SdkAppId>_<RoomId>__UserId_s_<UserId>__UserId_e_<MediaId>_<Index>.mp4
M3U8 file in the mixed-stream recording mode:

<Prefix>/<TaskId>/<SdkAppId>_<RoomId>.m3u8

https://www.tencentcloud.com/document/product/647/45169#.3Cu.3Emanual-recording-process.3C.2Fu.3E

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 88
of 221

TS segment file in the mixed-stream recording mode:

<Prefix>/<TaskId>/<SdkAppId>_<RoomId>_<UTC>.ts
MP4 file in the mixed-stream recording mode:

<Prefix>/<TaskId>/<SdkAppId>_<RoomId>_<Index>.mp4
Naming of recovered files

The on-cloud recording feature has a high availability scheme that can recover recording files if the server fails. To
prevent the recovered files from replacing the original files, we add a prefix ha<1/2/3> to the names of recovered

files. The numbers indicate the times (max 3) the high availability scheme is used.

M3U8 file in the single-stream recording mode:

<Prefix>/<TaskId>/ha<1/2/3>_<SdkAppId>_<RoomId>__UserId_s_<UserId>__UserId_e_<MediaId>_<Type>.m3u8
TS segment file in the single-stream recording mode:

<Prefix>/<TaskId>/ha<1/2/3>_<SdkAppId>_<RoomId>__UserId_s_<UserId>__UserId_e_<MediaId>_<Type>_<UT
C>.ts
M3U8 file in the mixed-stream recording mode:

<Prefix>/<TaskId>/ha<1/2/3>_<SdkAppId>_<RoomId>.m3u8
TS segment file in the mixed-stream recording mode:

<Prefix>/<TaskId>/ha<1/2/3>_<SdkAppId>_<RoomId>_<UTC>.ts

Field description

<Prefix>: The filename prefix. If this is not specified, the filename will not have a prefix.

<TaskId>: The task ID, which is unique and is returned by the start recording API.

<SdkAppId>: The application ID.

<RoomId>: The room ID.

<UserId>: The Base64-encoded ID of a user whose stream is recorded.

<MediaId>: Whether the primary stream (main) or substream (aux) is recorded.

<Type>: The type of stream that is recorded (audio or video).

<UTC>: The recording start time (UTC+0), which consists of the year, month, day, hours, minutes, seconds, and
milliseconds.

<Index>: The index of a segment, which starts from 1. This field is used only if an MP4 file exceeds 2 GB or 24 hours
and needs to be segmented.

ha<1/2/3>: The prefix for a file recovered by the high availability scheme. For example, if the scheme is used for the
first time, the recovered file is named <Prefix>/<TaskId>/ha1_<SdkAppId>_<RoomId>.m3u8 .

Note:
 If \\<RoomId> is a string, it will be encoded into Base64. In the result, "/" is replaced with "-" and "=" is replaced with "."

<UserId> is encoded into Base64. In the result, "/" is replaced with "-" and "=" is replaced with "."

Recording start time

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 89
of 221

Recording starts when you start receiving data from an anchor. Recording start time is the Unix time on the server
when recording starts.

You can query the start time of a recording task in three ways:

Via the DescribeCloudRecording API. The response parameter BeginTimeStamp indicates the recording

start time (ms).
Below is a response of the DescribeCloudRecording API, in which BeginTimeStamp is

 1622186279144 .

{

 "Response": {

 "Status": "xx",

 "StorageFileList": [

 {

 "TrackType": "xx",

 "BeginTimeStamp": 1622186279144,

 "UserId": "xx",

 "FileName": "xx"

 }

],

 "RequestId": "xx",

 "TaskId": "xx"

 }

}

Via the #EXT-X-TRTC-START-REC-TIME directive of the M3U8 file
According to the M3U8 file below, the Unix time (ms) when recording started was 1622425551884.

#EXTM3U

#EXT-X-VERSION:3

#EXT-X-ALLOW-CACHE:NO

#EXT-X-MEDIA-SEQUENCE:0

#EXT-X-TARGETDURATION:70

#EXT-X-TRTC-START-REC-TIME:1622425551884

#EXT-X-TRTC-VIDEO-METADATA:WIDTH:1920 HEIGHT:1080

#EXTINF:12.074

1400123456_12345__UserId_s_MTY4NjExOQ..__UserId_e_main_video_20330531094551825.ts

#EXTINF:11.901

1400123456_12345__UserId_s_MTY4NjExOQ..__UserId_e_main_video_20330531094603825.ts

#EXTINF:12.076

1400123456_12345__UserId_s_MTY4NjExOQ..__UserId_e_main_video_20330531094615764.ts

#EXT-X-ENDLIST

Via a recording callback
If you have registered recording callbacks, you will receive a callback for the generation of recording files (event type

307), in which BeginTimeStamp indicates the recording start time.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 90
of 221

According to the callback below, the Unix time (ms) when recording started was 1622186279144.

{

 "EventGroupId": 3,

 "EventType": 307,

 "CallbackTs": 1622186289148,

 "EventInfo": {

 "RoomId": "xx",

 "EventTs": "1622186289",

 "UserId": "xx",

 "TaskId": "xx",

 "Payload": {

 "FileName": "xx.m3u8",

 "UserId": "xx",

 "TrackType": "audio",

 "BeginTimeStamp": 1622186279144

 }

 }

}

MixWatermark

TRTC allows you to watermark videos during mixed-stream recording. You can add up to 25 watermarks to a video in
your desired positions.

Field Description

Top The vertical offset of the watermark to the top left corner of the video.

Left The horizontal offset of the watermark to the top left corner of the video.

Width The watermark width.

Height The watermark height.

url The URL of the watermark file.

MixLayoutMode

TRTC supports the grid layout (default), floating layout, screen sharing layout, and custom layout.

Grid layout

The videos of anchors are scaled and positioned automatically according to the total number of anchors in a room.
Each video has the same size. Up to 25 videos can be displayed.
When there is only one video:

The video is scaled to fill the canvas.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 91
of 221

When there are two videos:

The width of each video is half of the canvas width.

The height of each video is the same as the canvas height.

When there are three or four videos:

The canvas is split evenly into four windows and each video is displayed in one window.
When there are 5-9 videos:

The canvas is split evenly into nine windows and each video is displayed in one window.
When there are 10-16 videos:

The canvas is split evenly into 16 windows and each video is displayed in one window.
When there are more than 16 videos:

The canvas is split evenly into 25 windows and each video is displayed in one window.
 As shown below:

Floating layout

By default, the video of the first anchor in the room (you can also specify an anchor) is scaled to fill the screen. When
other anchors enter the room, their videos appear smaller and float over the large video from left to right starting from
the bottom of the canvas. If the total number of videos is 17 or less, there will be four windows in each row (4 x 4); if it
is greater than 17, there will be five windows in each row (5 x 5). Up to 25 videos can be displayed. A user who
publishes only audio will still be displayed in one window.

When there are 17 or fewer videos:

 The width and height of each small video are 23.5% of the canvas width and height.

 The horizontal space and vertical space between two neighboring videos are 1.2% of the canvas width and height.

 The right and left margins are 1.2% of the canvas width and the top and bottom margins are 1.2% of the canvas
height.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 92
of 221

When there are more than 17 videos:

 The width and height of each small video are 18.8% of the canvas width and height.

 The horizontal space and vertical space between two neighboring videos are 1% of the canvas width and height.

 The right and left margins are 1% of the canvas width and the top and bottom margins are 1% of the canvas height.

As shown below:

Screen sharing layout

The video of a specified anchor occupies a larger part of the canvas on the left side (if you do not specify an anchor,
the left window will display the canvas background). The videos of other anchors are smaller and are positioned on the
right side. If the total number of videos is 17 or less, the small videos are positioned from top to bottom in up to two
columns on the right side, with eight videos per column at most. If there are more than 17 videos, the additional videos
are positioned at the bottom of the canvas from left to right. Up to 24 videos can be displayed. A user who publishes
only audio will still be displayed in one window.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 93
of 221

When there are five or fewer videos:

The size of each small video on the right is 1/5 the canvas width and 1/4 the canvas height.

The width of the large video on the left is 4/5 the canvas width, and its height is the same as the canvas height.

When there are six or seven videos:

The size of each small video on the right are 1/7 the canvas width and 1/6 the canvas height.

The width of the large video on the left is 6/7 the canvas width, and its height is the same as the canvas height.
When there are eight or nine videos:

The size of each small video on the right is 1/9 the canvas width and 1/8 the canvas height.

The width of the large video on the left is 8/9 the canvas width, and its height is the same as the canvas height.
When there are 10-17 videos:

The size of each small video on the right side is 1/10 the canvas width and 1/8 the canvas height.

The width of the large video on the left side is 4/5 the canvas width, and its height is the same as the canvas height.
When there are more than 17 videos:

The size of each small video on the right and bottom is 1/10 the canvas width and 1/8 the canvas height.

The width of the large video on the left is 4/5 the canvas width, and its height is 7/8 the canvas height.
As shown below:

Custom layout

You can also use MixLayoutList to customize a layout for anchor videos.

2. Query the recording task

You can use the DescribeCloudRecording API to query the status of an ongoing recording task. If the queried

task has already ended, an error will be returned.

The file list (StorageFile) that is returned will include all the M3U8 files of the recording as well as the Unix time

when recording started. If the task queried is a recording to VOD task, the StorageFile returned will be empty.

3. Modify recording parameters

You can use the ModifyCloudRecording API to modify recording parameters, including

 SubscribeStreamUserIds and MixLayoutParams (valid only for mixed-stream recording). Note that you

need to specify all the parameters, including MixLayoutParams and SubscribeStreamUserIds , and not

just the ones you want to modify. We recommend you note all the parameter values before a modification, or you will
need to calculate them again.

4. Stop recording

You can call the DeleteCloudRecording API to stop recording. A recording task will also end automatically if

there are no anchors (whether they are publishing data or not) in a room for longer than the specified time period
(MaxIdleTime). We recommend you call the API to stop recording when you no longer need the service.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 94
of 221

Advanced Features

Recording in MP4 format

To record in MP4 format, set OutputFormat to hls+mp4 when calling the CreateCloudRecording API.

TRTC will still record in HLS format, but once recording ends, it will download the HLS file from the COS bucket where
it is saved, convert it into MP4 format, and upload the MP4 file to the COS bucket.

Please note that COS download access is required for the above to work.

An MP4 file will be segmented if one of the following conditions is met.
1. The recording duration is longer than 24 hours.
2. The MP4 file exceeds 2 GB.

The workflow is as follows:

Recording to VOD

To record to VOD, specify the CloudVod parameter in StorageParams when calling the

 CreateCloudRecording API. After recording ends, the backend will save the file in MP4 format to VOD using

the method you specify and send you a playback URL via a callback. In the single-stream recording mode, there will
be a playback URL for each anchor whose stream is recorded; in the mixed-stream recording mode, there will be only
one playback URL. When you record to VOD, pay attention to the following:

1. CloudVod and CloudStorage are mutually exclusive. If you specify both, the recording task will fail to start.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 95
of 221

2. If you use DescribeCloudRecording to query a recording to VOD task, the StorageFile returned will

be empty.

The figure below shows the workflow of recording to VOD. "Internal cloud storage" refers to the internal storage of the

recording backend.

Script for merging single-stream recording files

We offer a script for merging single-stream audio and video files into MP4 files.
Note:
 If two segment files are more than 15 seconds apart, during which no audio or video data is recorded (if the

substream is disabled, its data will be ignored), the two segments will be considered to belong to different sections,
one being the ending segment of the previous section, and the other the starting segment of the next section.
Section-based merge (-m 0)

In this mode, the recording files of each user (UserId) are merged by section. One MP4 file is generated for each

section.
User-based merge (-m 1)

In this mode, the recording files of each user (UserId) are merged into one MP4 file. You can use the -s option

to specify whether to fill in the blanks between sections.

Environment Requirements

Python 3
Centos: sudo yum install python3
Ubuntu: sudo apt-get install python3

https://trtc-partner-sg-1253488539.cos.ap-singapore.myqcloud.com/media-file-toolkit.zip

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 96
of 221

Python 3 dependency

sortedcontainers: pip3 install sortedcontainers

Directions

 1. Run the merge script python3 TRTC_Merge.py [option] .

 2. An MP4 file will be generated in the directory of the recording files.

Example: python3 TRTC_Merge.py -f /xxx/file -m 0
Below is a list of the options:

Parameter Description

-f
The directory of the recording files to be merged. If there are multiple users (UserId), their
recording files will be merged separately.

-m

 0 : Section-based merge (default). In this mode, the recording files of each user (UserId)
are merged by section. Multiple files may be generated for each user.
 1 : User-based merge. In this mode, the recording files of each user (UserId) are merged
into one file.

-s Whether to delete the blanks between sections in the user-based merge mode. If they are deleted,
the files generated will be shorter than the recording duration.

-a

 0 : Primary stream merge (default). The audio of a user (UserId) is merged with the user's
primary stream, not the substream.
 1 : Automatic merge. If a user (UserId) has a primary stream, the user's audio is merged
with the primary stream; if not, it is merged with the substream.
 2 : Substream merge. The audio of a user (UserId) is merged with the user's substream, not
the primary stream.

-p
The frame rate (fps) of the output video, which is 15 by default. Value range: 5-120. If you enter
a value smaller than 5 , 5 will be used; if you enter a value greater than 120 , 120 will be
used.

-r
The resolution of the output video. For example, -r 640 360 indicates that the resolution of
the output video is 640 x 360.

File Naming
Audio-video file: UserId_timestamp_av.mp4

Audio-only file: UserId_timestamp.m4a
Note:
 UserId is the Base64-encoded ID of a user whose stream is recorded. For details, see the naming of recording

files. timestamp is the starting time of the first TS segment of a section.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 97
of 221

Callback APIs

You can register callbacks by providing an HTTP/HTTPS gateway to receive callbacks. When an on-cloud recording
event occurs, the system will send a callback notification to your callback server.

Callback format

Callbacks are sent to your server in the form of HTTP/HTTPS POST requests.

Character encoding: UTF-8

Request: The request body is in JSON format.

Response: HTTP STATUS CODE = 200. The server ignores the content of the response packet. For protocol-
friendliness, we recommend adding JSON: {"code":0}`` to the response.

Parameter description

The header of a callback contains the following fields.

Field Description

Content-Type application/json

Sign The signature.

SdkAppId The application ID.

The body of a callback contains the following fields.

Field Type Description

EventGroupId Number The event group ID, which is 3 for on-cloud recording.

EventType Number The event type.

CallbackTs Number The Unix timestamp (ms) when the callback was sent to your server.

EventInfo JSON Object The event information.

Event types

Field Type Description

EVENT_TYPE_CLOUD_RECORDING_RECORDER_START 301
On-cloud recording - The
recording module was
started.

EVENT_TYPE_CLOUD_RECORDING_RECORDER_STOP 302 On-cloud recording - The

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 98
of 221

recording module was
stopped.

EVENT_TYPE_CLOUD_RECORDING_UPLOAD_START 303
On-cloud recording - The
upload module was
started.

EVENT_TYPE_CLOUD_RECORDING_FILE_INFO 304

On-cloud recording - The
first M3U8 file was
generated and uploaded
successfully.

EVENT_TYPE_CLOUD_RECORDING_UPLOAD_STOP 305 On-cloud recording - The
files are uploaded.

EVENT_TYPE_CLOUD_RECORDING_FAILOVER 306
On-cloud recording - The
recording task was
migrated.

EVENT_TYPE_CLOUD_RECORDING_FILE_SLICE 307

On-cloud recording - An
M3U8 file was generated
(the first TS segment was
generated).

EVENT_TYPE_CLOUD_RECORDING_UPLOAD_ERROR 308
On-cloud recording - The
upload module
encountered an error.

EVENT_TYPE_CLOUD_RECORDING_DOWNLOAD_IMAGE_ERROR 309

On-cloud recording - An
error occurred when
downloading the image
decoding file.

EVENT_TYPE_CLOUD_RECORDING_MP4_STOP 310

On-cloud recording - An
MP4 recording task is
finished. The callback
includes the name and
other details of the MP4
file generated.

EVENT_TYPE_CLOUD_RECORDING_VOD_COMMIT 311
On-cloud recording - The
recording files were
uploaded to VOD.

EVENT_TYPE_CLOUD_RECORDING_VOD_STOP 312
On-cloud recording - A
recording to VOD task is
finished.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 99
of 221

Event information

Field Type Description

RoomId String/Number The room ID, which must be the same data type as the room ID on the client.

EventTs Number The Unix timestamp (seconds) when the event occurred.

UserId String The user ID of the recording robot.

TaskId String The ID of a recording task.

Payload JsonObject This parameter is defined differently for different event types.

If the event type is 301 (EVENT_TYPE_CLOUD_RECORDING_RECORDER_START):

Field Type Description

Status Number
 0 : The recording module was started successfully. 1 : Failed to start the recording
module.

{

 "EventGroupId": 3,

 "EventType": 301,

 "CallbackTs": 1622186275913,

 "EventInfo": {

 "RoomId": "xx",

 "EventTs": "1622186275",

 "UserId": "xx",

 "TaskId": "xx",

 "Payload": {

 "Status": 0

 }

 }

}

If the event type is 302 (EVENT_TYPE_CLOUD_RECORDING_RECORDER_STOP):

Field Type Description

LeaveCode Number 0 : An API was called to stop the recording module.
 1 : The recording robot was removed from the room.
 2 : You closed the room.
 3 : The server removed the recording robot from the room.
 4 : The server closed the room.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 100
of 221

 99 : There were no anchors in the room, and the recording robot left after the
specified time period elapsed.
 100 : The room timed out.
 101 : The recording robot was removed due to repeat entry by the same user.

{

 "EventGroupId": 3,

 "EventType": 302,

 "CallbackTs": 1622186354806,

 "EventInfo": {

 "RoomId": "xx",

 "EventTs": "1622186354",

 "UserId": "xx",

 "TaskId": "xx",

 "Payload": {

 "LeaveCode": 0

 }

 }

}

If the event type is 303 (EVENT_TYPE_CLOUD_RECORDING_UPLOAD_START):

Field Type Description

Status Number
 0 : The upload module was started successfully.
 1 : Failed to start the upload module.

{

 "EventGroupId": 3,

 "EventType": 303,

 "CallbackTs": 1622191965320,

 "EventInfo": {

 "RoomId": "20015",

 "EventTs": 1622191965,

 "UserId": "xx",

 "TaskId": "xx",

 "Payload": {

 "Status": 0

 }

 }

}

If the event type is 304 (EVENT_TYPE_CLOUD_RECORDING_FILE_INFO):

Field Type Description

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 101
of 221

FileList String The name of the M3U8 file generated.

{

 "EventGroupId": 3,

 "EventType": 304,

 "CallbackTs": 1622191965350,

 "EventInfo": {

 "RoomId": "20015",

 "EventTs": 1622191965,

 "UserId": "xx",

 "TaskId": "xx",

 "Payload": {

 "FileList": "xx.m3u8"

 }

 }

}

If the event type is 305 (EVENT_TYPE_CLOUD_RECORDING_UPLOAD_STOP):

Field Type Description

Status Number

 0 : The recording task is finished and all the files were uploaded to the specified cloud
storage service.
 1 : The recording task is finished, but at least one file is still on the server or in backup
storage.
 2 : The files on the server or in backup storage were uploaded to the specified cloud
storage service.

{

 "EventGroupId": 3,

 "EventType": 305,

 "CallbackTs": 1622191989674,

 "EventInfo": {

 "RoomId": "20015",

 "EventTs": 1622191989,

 "UserId": "xx",

 "TaskId": "xx",

 "Payload": {

 "Status": 0

 }

 }

}

If the event type is 306 (EVENT_TYPE_CLOUD_RECORDING_FAILOVER):

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 102
of 221

Field Type Description

Status Number 0 : The migration was completed.

{

 "EventGroupId": 3,

 "EventType": 306,

 "CallbackTs": 1622191989674,

 "EventInfo": {

 "RoomId": "20015",

 "EventTs": 1622191989,

 "UserId": "xx",

 "TaskId": "xx",

 "Payload": {

 "Status": 0

 }

 }

}

If the event type is 307 (EVENT_TYPE_CLOUD_RECORDING_FILE_SLICE):

Field Type Description

FileName String The name of the M3U8 file.

UserId String The ID of the user whose streams were recorded.

TrackType String Valid values: audio , video , audio_video .

BeginTimeStamp Number The Unix timestamp (milliseconds) on the server when recording started.

{

 "EventGroupId": 3,

 "EventType": 307,

 "CallbackTs": 1622186289148,

 "EventInfo": {

 "RoomId": "xx",

 "EventTs": "1622186289",

 "UserId": "xx",

 "TaskId": "xx",

 "Payload": {

 "FileName": "xx.m3u8",

 "UserId": "xx",

 "TrackType": "audio",

 "BeginTimeStamp": 1622186279144

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 103
of 221

 }

 }

}

If the event type is 308 (EVENT_TYPE_CLOUD_RECORDING_UPLOAD_ERROR):

Field Type Description

Code String The error code returned by the cloud storage service.

Message String The error message returned by the cloud storage service.

{

 "Code": "InvalidParameter",

 "Message": "AccessKey invalid"

}

{

 "EventGroupId": 3,

 "EventType": 308,

 "CallbackTs": 1622191989674,

 "EventInfo": {

 "RoomId": "20015",

 "EventTs": 1622191989,

 "UserId": "xx",

 "TaskId": "xx",

 "Payload": {

 "Code": "xx",

 "Message": "xx"

 }

 }

}

If the event type is 309 (EVENT_TYPE_CLOUD_RECORDING_DOWNLOAD_IMAGE_ERROR):

Field Type Description

Url String The download URL.

{

 "EventGroupId": 3,

 "EventType": 309,

 "CallbackTs": 1622191989674,

 "EventInfo": {

 "RoomId": "20015",

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 104
of 221

 "EventTs": 1622191989,

 "UserId": "xx",

 "TaskId": "xx",

 "Payload": {

 "Url": "http://xx",

 }

 }

}

If the event type is 310 (EVENT_TYPE_CLOUD_RECORDING_MP4_STOP):

Field Type Description

Status Number

 0 : The MP4 recording task is finished and all the files were uploaded to
the specified cloud storage service.
 1 : The MP4 recording task is finished, but at least one file is still on the
server or in backup storage.
 2 : The MP4 recording task stopped due to an error (probably because
the system failed to download the HLS files from COS).

FileList Array The names of the MP4 files generated.

FileMessage Array The information of the MP4 files generated.

FileName String The filename.

UserId String The user ID. In the mixed-stream recording mode, this field is empty.

TrackType String Valid values: audio , video , audio_video .

MediaId String Valid values: main , aux .

StartTimeStamp Number The Unix timestamp (milliseconds) when the MP4 file started.

EndTimeStamp Number The Unix timestamp (milliseconds) when the MP4 file ended.

{

 "EventGroupId": 3,

 "EventType": 310,

 "CallbackTs": 1622191989674,

 "EventInfo": {

 "RoomId": "20015",

 "EventTs": 1622191989,

 "UserId": "xx",

 "TaskId": "xx",

 "Payload": {

 "Status": 0,

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 105
of 221

 "FileList": ["xxxx1.mp4", "xxxx2.mp4"],

 "FileMessage": [

 {

 "FileName": "xxxx1.mp4",

 "UserId": "xxxx",

 "TrackType": "audio_video",

 "MediaId": "main",

 "StartTimeStamp": 1622186279145,

 "EndTimeStamp": 1622186282145

 },

 {

 "FileName": "xxxx2.mp4",

 "UserId": "xxxx",

 "TrackType": "audio_video",

 "MediaId": "main",

 "StartTimeStamp": 1622186279153,

 "EndTimeStamp": 1622186282153

 }

]

 }

 }

}

If the event type is 311 (EVENT_TYPE_CLOUD_RECORDING_VOD_COMMIT):

Field Type Description

Status Number
 0 : The recording file was successfully uploaded to VOD.
 1 : The recording file is still on the server or in backup storage.
 2 : An error occurred when uploading the recording file to VOD.

UserId String The user ID. In the mixed-stream recording mode, this field is empty.

TrackType String Valid values: audio , video , audio_video .

MediaId String Valid values: main , aux .

FileId String The ID of the recording file in VOD.

VideoUrl String The playback URL of the recording file in VOD.

CacheFile String The name of the MP4 file before it was uploaded to VOD.

Errmsg String The error message. This field is not empty if status is not 0 .

A callback for successful upload:

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 106
of 221

{

 "EventGroupId": 3,

 "EventType": 311,

 "CallbackTs": 1622191965320,

 "EventInfo": {

 "RoomId": "20015",

 "EventTs": 1622191965,

 "UserId": "xx",

 "TaskId": "xx",

 "Payload": {

 "Status": 0,

 "TencentVod": {

 "UserId": "xx",

 "TrackType": "audio_video",

 "MediaId": "main",

 "FileId": "xxxx",

 "VideoUrl": "http://xxxx"

 }

 }

 }

}

A callback for failed upload:

{

 "EventGroupId": 3,

 "EventType": 311,

 "CallbackTs": 1622191965320,

 "EventInfo": {

 "RoomId": "20015",

 "EventTs": 1622191965,

 "UserId": "xx",

 "TaskId": "xx",

 "Payload": {

 "Status": 1,

 "Errmsg": "xxx",

 "TencentVod": {

 "UserId": "123",

 "TrackType": "audio_video",

 "CacheFile": "xxx.mp4"

 }

 }

 }

}

If the event type is 312 (EVENT_TYPE_CLOUD_RECORDING_VOD_STOP):

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 107
of 221

Field Type Description

Status Number
 0 : The recording to VOD task ended normally.
 1 : The recording to VOD task ended due to an error.

{

 "EventGroupId": 3,

 "EventType": 312,

 "CallbackTs": 1622191965320,

 "EventInfo": {

 "RoomId": "20015",

 "EventTs": 1622191965,

 "UserId": "xx",

 "TaskId": "xx",

 "Payload": {

 "Status": 0

 }

 }

}

Best Practices

To ensure the high availability of the recording service, we recommend the following practices when you use the
RESTful APIs:
1. Pay attention to the HTTP response after you call CreateCloudRecording . If your request fails, fix the

problem according to the status code and try again.
The status code consists of two parts, for example InvalidParameter.SdkAppId .

 InternalError.xxxxx indicates that a server error occurred. You can retry until the request succeeds and

 TaskId is returned. We recommend you use the exponential backup algorithm for retry. For example, you can wait

for three seconds for the first retry, six seconds for the second, 12 seconds for the third, and so on.
 InvalidParameter.xxxxx indicates that a parameter value entered was invalid. Please check the parameter.

 FailedOperation.RestrictedConcurrency indicates that you reached the maximum number (100 by

default) of ongoing recording tasks allowed. To raise the limit, please contact technical support.
2. The UserId and UserSig you pass in when calling CreateCloudRecording are for the recording

robot. Please make sure that they are different from those of other users in the room. In addition, the room joined by
users from the TRTC client must be of the same type as the room you specify when calling the API. For example, if the
room created in the TRTC SDK is a string, the room specified for on-cloud recording must also be a string.

3. You can obtain the information of a recording file in the following ways.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 108
of 221

Call DescribeCloudRecording 15 seconds after a CreateCloudRecording request succeeds. If the task

status is idle, it indicates that no audio or video data is available for recording. Please check whether there are
anchors publishing data in the room.

After a CreateCloudRecording request succeeds, if there are anchors publishing data in the room, you can

splice the names of the recording files according to the naming rules.
If you have registered on-cloud recording callbacks, the information of recording files will be sent to your server via
callbacks.
You can specify a COS bucket to save recording files when calling the CreateCloudRecording API. After a

recording task ends, you can find the recording files in the COS bucket you specify.
4. Make sure the validity period of the recording user's UserSig is longer than the duration of the recording task.

This is to avoid cases where the high availability scheme fails to resume a recording task after a disconnection
because the UserSig has expired.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 109
of 221

Custom Capturing and Rendering
Android, iOS, Windows, and macOS
Last updated：2023-10-08 15:41:41

This document describes how to use the TRTC SDK to implement custom video capturing and rendering.

Custom Video Capturing

The custom video capturing feature of the TRTC SDK can be used in two steps: enabling the feature and sending
video frames to the SDK. For detailed directions of specific APIs, see below. We also provide API examples for

different platforms:
Android
iOS
Windows

Enabling custom video capturing

To enable the custom video capturing feature of the TRTC SDK, you need to call the

 enableCustomVideoCapture API of TRTCCloud . Then, the TRTC SDK's camera capturing and image

processing logic will be skipped, and only its encoding and transfer capabilities will be retained. Below is the sample
code:
Android
iOS&Mac
Windows

TRTCCloud mTRTCCloud = TRTCCloud.shareInstance();

mTRTCCloud.enableCustomVideoCapture(TRTCCloudDef.TRTC_VIDEO_STREAM_TYPE_BIG, true);

self.trtcCloud = [TRTCCloud sharedInstance];

[self.trtcCloud enableCustomVideoCapture:TRTCVideoStreamTypeBig enable:YES];

liteav::ITRTCCloud* trtc_cloud = liteav::ITRTCCloud::getTRTCShareInstance();

trtc_cloud->enableCustomVideoCapture(TRTCVideoStreamType::TRTCVideoStreamTypeBig, t

Sending custom video frames

https://github.com/LiteAVSDK/TRTC_Android/blob/main/TRTC-API-Example/Advanced/LocalVideoShare/src/main/java/com/tencent/trtc/mediashare/LocalVideoShareActivity.java
https://github.com/LiteAVSDK/TRTC_iOS/blob/main/TRTC-API-Example-OC/Advanced/LocalVideoShare/LocalVideoShareViewController.m
https://github.com/LiteAVSDK/TRTC_Windows/blob/main/TRTC-API-Example-C++/TRTC-API-Example-Qt/src/TestCustomCapture/test_custom_capture.cpp

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 110
of 221

Then, you can use the sendCustomVideoData API of TRTCCloud to populate the TRTC SDK with your own

video data. Below is the sample code:
explain

 In order to avoid performance loss, there are different format requirements for the video data input to the TRTC SDK
on different platforms. For more information, see LiteAVSDK Overview.
Android
iOS&Mac
Windows

// Two schemes are available for Android: Texture (recommended) and Buffer. Texture

TRTCCloudDef.TRTCVideoFrame videoFrame = new TRTCCloudDef.TRTCVideoFrame();

videoFrame.texture = new TRTCCloudDef.TRTCTexture();

videoFrame.texture.textureId = textureId;

videoFrame.texture.eglContext14 = eglContext;

videoFrame.width = width;

videoFrame.height = height;

videoFrame.timestamp = timestamp;

videoFrame.pixelFormat = TRTCCloudDef.TRTC_VIDEO_PIXEL_FORMAT_Texture_2D;

videoFrame.bufferType = TRTCCloudDef.TRTC_VIDEO_BUFFER_TYPE_TEXTURE;

mTRTCCloud.sendCustomVideoData(TRTCCloudDef.TRTC_VIDEO_STREAM_TYPE_BIG, videoFrame)

// On iOS and macOS, the video captured by the camera is in NV12 format. The native

TRTCVideoFrame *videoFrame = [[TRTCVideoFrame alloc] init];

videoFrame.pixelFormat = TRTCVideoPixelFormat_NV12;

videoFrame.bufferType = TRTCVideoBufferType_PixelBuffer;

videoFrame.pixelBuffer = imageBuffer;

videoFrame.timestamp = timeStamp;

[[TRTCCloud sharedInstance] sendCustomVideoData:TRTCVideoStreamTypeBig frame:videoF

// Only the Buffer scheme is available for Windows currently and is recommended for

liteav::TRTCVideoFrame frame;

frame.timestamp = getTRTCShareInstance()->generateCustomPTS();

frame.videoFormat = liteav::TRTCVideoPixelFormat_I420;

frame.bufferType = liteav::TRTCVideoBufferType_Buffer;

frame.length = buffer_size;

frame.data = array.data();

frame.width = YUV_WIDTH;

frame.height = YUV_HEIGHT;

getTRTCShareInstance()->sendCustomVideoData(&frame);

https://liteav.sdk.qcloud.com/doc/api/en/md_introduction_trtc_en_TRTCSDK_Download.html

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 111
of 221

Custom Video Rendering

Custom rendering is mainly divided into rendering of the local video and rendering of the remote video. You can set
the callback for local/remote custom rendering, and the TRTC SDK will pass the corresponding video frames

(TRTCVideoFrame) through the callback function onRenderVideoFrame . Then, you can customize the

rendering of the received video frames. This process requires certain knowledge of OpenGL. We also provide API
examples for different platforms:
Android:
iOS

Windows

Setting the local video rendering callback

Android
iOS&Mac
Windows

mTRTCCloud.setLocalVideoRenderListener(TRTCCloudDef.TRTC_VIDEO_PIXEL_FORMAT_Texture

 @Override

 public void onRenderVideoFrame(String suserId int streamType, TRTCCloudDef.TRTC

 // For more information, see the custom rendering tool class `com.tencent.t

 }

});

self.trtcCloud = [TRTCCloud sharedInstance];

[self.trtcCloud setLocalVideoRenderDelegate:self pixelFormat:TRTCVideoPixelFormat_N

```

// For specific implementation, see `test_custom_render.cpp` in `TRTC-API-Example-Q

void TestCustomRender::onRenderVideoFrame(

    const char* userId,

    liteav::TRTCVideoStreamType streamType,

    liteav::TRTCVideoFrame* frame) {

  if (gl_yuv_widget_ == nullptr) {

    return;

  }

  if (streamType == liteav::TRTCVideoStreamType::TRTCVideoStreamTypeBig) {

    // Adjust the rendering window

https://github.com/LiteAVSDK/TRTC_Android/blob/main/TRTC-API-Example/Advanced/LocalVideoShare/src/main/java/com/tencent/trtc/mediashare/LocalVideoShareActivity.java
https://github.com/LiteAVSDK/TRTC_iOS/blob/aa3026c07baeda553aec491702382683d5486a32/TRTC-API-Example-Swift/CustomCapture/testCustomVideo/TestRenderVideoFrame.m
https://github.com/LiteAVSDK/TRTC_Windows/blob/main/TRTC-API-Example-C++/TRTC-API-Example-Qt/src/TestCustomCapture/test_custom_capture.cpp


Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 112
of 221

    emit renderViewSize(frame->width, frame->height);

    // Draw video frames

    gl_yuv_widget_->slotShowYuv(reinterpret_cast<uchar*>(frame->data),

                                frame->width, frame->height);

  }

}

```

Setting the rendering callback of remote video

Android

iOS&Mac
Windows

mTRTCCloud.setRemoteVideoRenderListener(userId, TRTCCloudDef.TRTC_VIDEO_PIXEL_FORMA

 @Override

 public void onRenderVideoFrame(String userId, int streamType, TRTCCloudDef.TRTC

 // For more information, see the custom rendering tool class `com.tencent.

 }

});

- (void)onRenderVideoFrame:(TRTCVideoFrame *)frame

 userId:(NSString *)userId

 streamType:(TRTCVideoStreamType)streamType

{

 // If `userId` is `nil`, the image rendered is the local image; otherwise it is

 CFRetain(frame.pixelBuffer);

 __weak __typeof(self) weakSelf = self;

 dispatch_async(dispatch_get_main_queue(), ^{

 TestRenderVideoFrame *strongSelf = weakSelf;

 UIImageView* videoView = nil;

 if (userId) {

 videoView = [strongSelf.userVideoViews objectForKey:userId];

 }

 else {

 videoView = strongSelf.localVideoView;

 }

 videoView.image = [UIImage imageWithCIImage:[CIImage imageWithCVImageBuffer

 videoView.contentMode = UIViewContentModeScaleAspectFit;

 CFRelease(frame.pixelBuffer);

 });

}

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 113
of 221

```

// For specific implementation, see `test_custom_render.cpp` in `TRTC-API-Example-Q

void TestCustomRender::onRenderVideoFrame(

    const char* userId,

    liteav::TRTCVideoStreamType streamType,

    liteav::TRTCVideoFrame* frame) {

  if (gl_yuv_widget_ == nullptr) {

    return;

  }

  if (streamType == liteav::TRTCVideoStreamType::TRTCVideoStreamTypeBig) {

    // Adjust the rendering window

    emit renderViewSize(frame->width, frame->height);

    // Draw video frames

    gl_yuv_widget_->slotShowYuv(reinterpret_cast<uchar*>(frame->data),

                                frame->width, frame->height);

  }

}

```


Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 114
of 221

Web
Last updated：2023-10-08 15:55:32

Function Description

This article mainly introduces the advanced usage of custom capture and custom rendering.

Custom Capture

By default, trtc.startLocalVideo() and trtc.startLocalAudio() enable camera and microphone

capture.

If you need to customize the capture, you can specify the option.videoTrack / option.audioTrack

parameter of the trtc.startLocalVideo() / trtc.startLocalAudio() method.

There are usually several ways to obtain audioTrack and videoTrack :

Use getUserMedia to capture the camera and microphone.
Use getDisplayMedia to capture screen sharing.

Use videoElement.captureStream to capture the audio and video being played in the video tag.

Use canvas.captureStream to capture the animation in the canvas.

Capture the video being played in the video tag

// Check if your current browser supports capturing streams from video elements

if (!HTMLVideoElement.prototype.captureStream) {

 console.log('your browser does not support capturing stream from video element');

 return

}

// Get the video tag that is playing video on your page

const video = document.getElementByID('your-video-element-ID');

// Capture the video stream from the playing video

const stream = video.captureStream();

const audioTrack = stream.getAudioTracks()[0];

const videoTrack = stream.getVideoTracks()[0];

trtc.startLocalVideo({ option:{ videoTrack } });

trtc.startLocalAudio({ option:{ audioTrack } });

Capture the animation in the canvas

https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/TRTC.html#startLocalVideo
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/TRTC.html#startLocalAudio
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/TRTC.html#startLocalVideo
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/TRTC.html#startLocalAudio
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getDisplayMedia

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 115
of 221

// Check if your current browser supports capturing streams from canvas elements

if (!HTMLCanvasElement.prototype.captureStream) {

 console.log('your browser does not support capturing stream from canvas element')

 return

}

// Get your canvas tag

const canvas = document.getElementByID('your-canvas-element-ID');

// Capture a 15 fps video stream from the canvas

const fps = 15;

const stream = canvas.captureStream(fps);

const videoTrack = stream.getVideoTracks()[0];

trtc.startLocalVideo({ option:{ videoTrack } });

Custom Rendering

By default, when calling trtc.startLocalVideo(view) or trtc.startRemoteVideo(view,

streamType, userId) , you need to pass in the view parameter. The SDK will create a video tag under

the specified element tag to play the video.
If you need to customize the rendering, and do not need the SDK to play the video, you can refer to the following
steps:
Do not fill in the view parameter or pass in null when calling the startLocalVideo or

 startRemoteVideo method.

Use the trtc.getVideoTrack(userId, streamType) method to obtain the corresponding videoTrack .

Use your own player for video rendering.
After using this custom rendering method, the EVENT.VIDEO_PLAY_STATE_CHANGED event will not be triggered.

You need to listen to the mute/unmute/ended events of the video track MediaStreamTrack to determine

the status of the current video data stream.
For remote video, you also need to listen to the EVENT.REMOTE_VIDEO_AVAILABLE and

 EVENT.REMOTE_VIDEO_UNAVAILABLE events to handle the lifecycle of remote video.

Custom rendering of local video

await trtc.startLocalVideo();

const videoTrack = trtc.getVideoTrack();

// Use your own player for video rendering

const videoElement = document.getElementById('video-element');

videoElement.srcObject = new MediaStream([videoTrack]);

https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/TRTC.html#startLocalVideo
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/TRTC.html#startRemoteVideo
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/TRTC.html#getVideoTrack
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/module-EVENT.html#.VIDEO_PLAY_STATE_CHANGED
https://developer.mozilla.org/en-US/docs/Web/API/MediaStreamTrack
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/module-EVENT.html#.REMOTE_VIDEO_AVAILABLE
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/module-EVENT.html#.REMOTE_VIDEO_UNAVAILABLE

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 116
of 221

videoElement.play();

Custom rendering of remote video

trtc.on(TRTC.EVENT.REMOTE_VIDEO_AVAILABLE, async ({ userId, streamType }) => {

 // Only pull the stream, do not play it

 await trtc.startRemoteVideo({ userId, streamType })

 const videoTrack = trtc.getVideoTrack({ userId, streamType });

 // Use your own player for video rendering

 const videoElement = document.getElementById('remote-video-element');

 videoElement.srcObject = new MediaStream([videoTrack]);

 videoElement.play();

});

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 117
of 221

Flutter
Last updated：2023-12-28 21:30:57

This document mainly introduces how to use TRTC Flutter SDK to implement custom audio raw data acquisition.

Acquiring audio raw data

Flutter TRTC SDK provides two ways to acquire audio raw data:
Native access.

Direct use of Flutter's Dart interface.
Since transferring high-frequency and large audio raw data from Native to Dart layer consumes more performance, we
recommend using Native access to acquire audio raw data.

1. Native access

The specific access process and access effect can be experienced using the demo.
1.1 Listen to audio raw data at the Native layer and acquire audio raw data.

java
swift

void enableTRTCAudioFrameDelegate() {

 TRTCCloud.sharedInstance(getApplicationContext()).setAudioFrameListener(new Aud

 result.success("");

}

void disableTRTCAudioFrameDelegate() {

 TRTCCloud.sharedInstance(getApplicationContext()).setAudioFrameListener(null);

 result.success("");

}

class AudioFrameListener implements TRTCCloudListener.TRTCAudioFrameListener {

 @Override

 public void onCapturedAudioFrame(TRTCCloudDef.TRTCAudioFrame trtcAudioFrame) {

 // TODO

 }

 @Override

 public void onLocalProcessedAudioFrame(TRTCCloudDef.TRTCAudioFrame trtcAudioFra

 // TODO

 }

 @Override

https://github.com/LiteAVSDK/TRTC_Flutter/blob/master/TRTC-API-Example/lib/Advanced/AudioFrameCustomProcess/AudioFrameCustomProcess.dart

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 118
of 221

 public void onRemoteUserAudioFrame(TRTCCloudDef.TRTCAudioFrame trtcAudioFrame,

 // TODO

 }

 @Override

 public void onMixedPlayAudioFrame(TRTCCloudDef.TRTCAudioFrame trtcAudioFrame) {

 // TODO

 }

 @Override

 public void onMixedAllAudioFrame(TRTCCloudDef.TRTCAudioFrame trtcAudioFrame) {

 // TODO

 }

 @Override

 public void onVoiceEarMonitorAudioFrame(TRTCCloudDef.TRTCAudioFrame trtcAudioFr

 // TODO

 }

}

let listener = AudioFrameProcessListener()

func enableTRTCAudioFrameDelegate() {

 TRTCCloud.sharedInstance().setAudioFrameDelegate(listener)

 result(nil)

}

func disableTRTCAudioFrameDelegate() {

 TRTCCloud.sharedInstance().setAudioFrameDelegate(nil)

 result(nil)

}

class AudioFrameProcessListener: NSObject, TRTCAudioFrameDelegate {

 func onCapturedAudioFrame(_ frame: TRTCAudioFrame) {

 //MARK: TODO

 }

 func onLocalProcessedAudioFrame(_ frame: TRTCAudioFrame) {

 // MARK: TODO

 }

 func onRemoteUserAudioFrame(_ frame: TRTCAudioFrame, userId: String) {

 // MARK: TODO

 }

 func onMixedAllAudioFrame(_ frame: TRTCAudioFrame) {

 // MARK: TODO

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 119
of 221

 }

 func onMixedPlay(_ frame: TRTCAudioFrame) {

 // MARK: TODO

 }

 func onVoiceEarMonitorAudioFrame(_ frame: TRTCAudioFrame) {

 // MARK: TODO

 }

}

1.2 Use Method Channel to implement start/stop acquisition of audio raw data.
Step 1: Implement the start/stop interface for acquiring audio raw data at the Dart layer.

 final channel = MethodChannel('TRCT_FLUTTER_EXAMPLE');

 void enableAudioFrame() async {

 await channel.invokeMethod('enableTRTCAudioFrameDelegate');

 }

 void disableAudioFrame() async {

 await channel.invokeMethod('disableTRTCAudioFrameDelegate');

 }

Step 2: Implement the start/stop interface for acquiring audio raw data at the Native layer.
java
swift

public class MainActivity extends FlutterActivity {

 private static final String channelName = "TRCT_FLUTTER_EXAMPLE";

 private MethodChannel channel;

 @Override

 public void configureFlutterEngine(@NonNull FlutterEngine flutterEngine) {

 super.configureFlutterEngine(flutterEngine);

 channel = new MethodChannel(flutterEngine.getDartExecutor().getBinaryMessen

 channel.setMethodCallHandler(((call, result) -> {

 switch (call.method) {

 case "enableTRTCAudioFrameDelegate":

 enableTRTCAudioFrameDelegate();

 break;

 case "disableTRTCAudioFrameDelegate":

 disableTRTCAudioFrameDelegate();

 break;

 default:

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 120
of 221

 break;

 }

 }));

 }

}

@UIApplicationMain

@objc class AppDelegate: FlutterAppDelegate {

 var channel: FlutterMethodChannel?

 override func application(_ application: UIApplication,

 didFinishLaunchingWithOptions launchOptions: [UIAppli

 GeneratedPluginRegistrant.register(with: self)

 guard let controller = window?.rootViewController as? FlutterViewController

 fatalError("Invalid root view controller")

 }

 channel = FlutterMethodChannel(name: "TRCT_FLUTTER_EXAMPLE", binaryMessenge

 channel?.setMethodCallHandler({ [weak self] call, result in

 guard let self = self else { return }

 switch (call.method) {

 case "enableTRTCAudioFrameDelegate":

 self.enableTRTCAudioFrameDelegate()

 break﻿

 case "disableTRTCAudioFrameDelegate":

 self.disableTRTCAudioFrameDelegate()

 break﻿

 default:

 break

 }

 })

 return super.application(application, didFinishLaunchingWithOptions: launch

 }

}

2. Access to Flutter layer interface

Currently, the Flutter Dart interface only supports the use of the onCapturedAudioFrame interface. The specific usage
is as follows:

TRTCCloud trtcCloud = (await TRTCCloud.sharedInstance())!;

// Start acquiring audio raw data

final audioFrameListener = TRTCAudioFrameListener(

 onCapturedAudioFrame: (audioFrame) {

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 121
of 221

 // TODO

 }

);

trtcCloud.setAudioFrameListener(audioFrameListener);

// Stop acquiring audio raw data

trtcCloud.setAudioFrameListener(null);

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 122
of 221

Custom Audio Capturing and Playback
Android, iOS, Windows, and macOS
Last updated：2023-10-08 15:56:25

This document describes how to use the TRTC SDK to implement custom audio capturing and rendering.

Custom Audio Capturing

The custom audio capturing feature of the TRTC SDK can be used in two steps: enabling the feature and sending
audio frames to the SDK. For detailed directions of specific APIs, see below. We also provide API examples for

different platforms:
Android
iOS
Windows

Enabling custom audio capturing

To enable the custom audio capturing feature of the TRTC SDK, you need to call the

 enableCustomAudioCapture API of TRTCCloud . Below is the sample code:

Android
iOS&Mac
Windows

TRTCCloud mTRTCCloud = TRTCCloud.shareInstance();

mTRTCCloud.enableCustomAudioCapture(true);

self.trtcCloud = [TRTCCloud sharedInstance];

[self.trtcCloud enableCustomAudioCapture:YES];

liteav::ITRTCCloud* trtc_cloud = liteav::ITRTCCloud::getTRTCShareInstance();

trtc_cloud->enableCustomAudioCapture(true);

Sending custom audio frames

https://github.com/LiteAVSDK/TRTC_Android/blob/main/TRTC-API-Example/Advanced/LocalVideoShare/src/main/java/com/tencent/trtc/mediashare/LocalVideoShareActivity.java
https://github.com/LiteAVSDK/TRTC_iOS/blob/main/TRTC-API-Example-OC/Advanced/LocalVideoShare/LocalVideoShareViewController.m
https://github.com/LiteAVSDK/TRTC_Windows/blob/main/TRTC-API-Example-C++/TRTC-API-Example-Qt/src/TestCustomCapture/test_custom_capture.cpp

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 123
of 221

You can use the sendCustomAudioData API of TRTCCloud to populate the TRTC SDK with your own audio

data. Below is the sample code:
Android

iOS&Mac
Windows

TRTCCloudDef.TRTCAudioFrame trtcAudioFrame = new TRTCCloudDef.TRTCAudioFrame();

trtcAudioFrame.data = data;

trtcAudioFrame.sampleRate = sampleRate;

trtcAudioFrame.channel = channel;

trtcAudioFrame.timestamp = timestamp;

mTRTCCloud.sendCustomAudioData(trtcAudioFrame);

TRTCAudioFrame *audioFrame = [[TRTCAudioFrame alloc] init];

audioFrame.channels = audioChannels;

audioFrame.sampleRate = audioSampleRate;

audioFrame.data = pcmData;

[self.trtcCloud sendCustomAudioData:audioFrame];

liteav::TRTCAudioFrame frame;

frame.audioFormat = liteav::TRTCAudioFrameFormatPCM;

frame.length = buffer_size;

frame.data = array.data();

frame.sampleRate = 48000;

frame.channel = 1;

getTRTCShareInstance()->sendCustomAudioData(&frame);

notice

Using sendCustomAudioData may cause AEC to fail.

Getting Raw Audio Data

The audio module is a highly complex module, and the TRTC SDK needs to strictly control the capturing and playback
logic of audio devices. In some cases, to get the audio data of a remote user or audio captured by the local mic, you
can use the APIs of TRTCCloud for different platforms. We also provide API examples for those platforms:

Android:

iOS

https://github.com/LiteAVSDK/TRTC_Android/blob/main/TRTC-API-Example/Advanced/LocalVideoShare/src/main/java/com/tencent/trtc/mediashare/LocalVideoShareActivity.java
https://github.com/LiteAVSDK/TRTC_iOS/blob/main/TRTC-API-Example-OC/Advanced/LocalVideoShare/LocalVideoShareViewController.m

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 124
of 221

Windows

Setting audio callback

Android
iOS&Mac

Windows

mTRTCCloud.setAudioFrameListener(new TRTCCloudListener.TRTCAudioFrameListener() {

 @Override

 public void onCapturedRawAudioFrame(TRTCCloudDef.TRTCAudioFrame trtcAudioFr

 }

 @Override

 public void onLocalProcessedAudioFrame(TRTCCloudDef.TRTCAudioFrame trtcAudi

 }

 @Override

 public void onRemoteUserAudioFrame(TRTCCloudDef.TRTCAudioFrame trtcAudioFra

 }

 @Override

 public void onMixedPlayAudioFrame(TRTCCloudDef.TRTCAudioFrame trtcAudioFram

 }

 @Override

 public void onMixedAllAudioFrame(TRTCCloudDef.TRTCAudioFrame trtcAudioFrame

 // For more information, see the custom rendering tool class `com.tence

 }

 });

 [self.trtcCloud setAudioFrameDelegate:self];

 // MARK: - TRTCAudioFrameDelegate

 - (void)onCapturedRawAudioFrame:(TRTCAudioFrame *)frame {

 NSLog(@"onCapturedRawAudioFrame");

}

- (void)onLocalProcessedAudioFrame:(TRTCAudioFrame *)frame {

 NSLog(@"onLocalProcessedAudioFrame");

}

https://github.com/LiteAVSDK/TRTC_Windows

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 125
of 221

- (void)onRemoteUserAudioFrame:(TRTCAudioFrame *)frame userId:(NSString *)userId {

 NSLog(@"onRemoteUserAudioFrame");

}

- (void)onMixedPlayAudioFrame:(TRTCAudioFrame *)frame {

 NSLog(@"onMixedPlayAudioFrame");

}

- (void)onMixedAllAudioFrame:(TRTCAudioFrame *)frame {

 NSLog(@"onMixedAllAudioFrame");

}

// Set custom audio data callback

liteav::ITRTCCloud* trtc_cloud = liteav::ITRTCCloud::getTRTCShareInstance();

trtc_cloud->setAudioFrameCallback(callback)

// Callback APIs for custom audio

virtual void onCapturedRawAudioFrame(TRTCAudioFrame* frame) {

}

virtual void onLocalProcessedAudioFrame(TRTCAudioFrame* frame) {

}

virtual void onPlayAudioFrame(TRTCAudioFrame* frame, const char* userId) {

}

virtual void onMixedPlayAudioFrame(TRTCAudioFrame* frame) {

}

notice
Do not perform time-consuming operations with any of the above callback functions. We recommend that you copy the
data to another thread for processing to avoid AEC failure and choppy audio.
The data called back by the above callback functions can only be read and copied. Modifying the data may lead to

unexpected results.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 126
of 221

Web
Last updated：2023-10-08 15:56:46

Function Description

This article mainly introduces the advanced usage of custom capture and custom rendering.

Custom Capture

By default, trtc.startLocalVideo() and trtc.startLocalAudio() enable camera and microphone

capture.

If you need to customize the capture, you can specify the option.videoTrack / option.audioTrack

parameter of the trtc.startLocalVideo() / trtc.startLocalAudio() method.

There are usually several ways to obtain audioTrack and videoTrack :

Use getUserMedia to capture the camera and microphone.
Use getDisplayMedia to capture screen sharing.

Use videoElement.captureStream to capture the audio and video being played in the video tag.

Use canvas.captureStream to capture the animation in the canvas.

Capture the video being played in the video tag

// Check if your current browser supports capturing streams from video elements

if (!HTMLVideoElement.prototype.captureStream) {

 console.log('your browser does not support capturing stream from video element');

 return

}

// Get the video tag that is playing video on your page

const video = document.getElementByID('your-video-element-ID');

// Capture the video stream from the playing video

const stream = video.captureStream();

const audioTrack = stream.getAudioTracks()[0];

const videoTrack = stream.getVideoTracks()[0];

trtc.startLocalVideo({ option:{ videoTrack } });

trtc.startLocalAudio({ option:{ audioTrack } });

Capture the animation in the canvas

https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/TRTC.html#startLocalVideo
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/TRTC.html#startLocalAudio
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/TRTC.html#startLocalVideo
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/TRTC.html#startLocalAudio
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getDisplayMedia

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 127
of 221

// Check if your current browser supports capturing streams from canvas elements

if (!HTMLCanvasElement.prototype.captureStream) {

 console.log('your browser does not support capturing stream from canvas element')

 return

}

// Get your canvas tag

const canvas = document.getElementByID('your-canvas-element-ID');

// Capture a 15 fps video stream from the canvas

const fps = 15;

const stream = canvas.captureStream(fps);

const videoTrack = stream.getVideoTracks()[0];

trtc.startLocalVideo({ option:{ videoTrack } });

Custom Rendering

By default, when calling trtc.startLocalVideo(view) or trtc.startRemoteVideo(view,

streamType, userId) , you need to pass in the view parameter. The SDK will create a video tag under

the specified element tag to play the video.
If you need to customize the rendering, and do not need the SDK to play the video, you can refer to the following
steps:
Do not fill in the view parameter or pass in null when calling the startLocalVideo or

 startRemoteVideo method.

Use the trtc.getVideoTrack(userId, streamType) method to obtain the corresponding videoTrack .

Use your own player for video rendering.
After using this custom rendering method, the EVENT.VIDEO_PLAY_STATE_CHANGED event will not be triggered.

You need to listen to the mute/unmute/ended events of the video track MediaStreamTrack to determine

the status of the current video data stream.
For remote video, you also need to listen to the EVENT.REMOTE_VIDEO_AVAILABLE and

 EVENT.REMOTE_VIDEO_UNAVAILABLE events to handle the lifecycle of remote video.

Custom rendering of local video

await trtc.startLocalVideo();

const videoTrack = trtc.getVideoTrack();

// Use your own player for video rendering

const videoElement = document.getElementById('video-element');

videoElement.srcObject = new MediaStream([videoTrack]);

https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/TRTC.html#startLocalVideo
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/TRTC.html#startRemoteVideo
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/TRTC.html#getVideoTrack
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/module-EVENT.html#.VIDEO_PLAY_STATE_CHANGED
https://developer.mozilla.org/en-US/docs/Web/API/MediaStreamTrack
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/module-EVENT.html#.REMOTE_VIDEO_AVAILABLE
https://web.sdk.qcloud.com/trtc/webrtc/v5/doc/en/module-EVENT.html#.REMOTE_VIDEO_UNAVAILABLE

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 128
of 221

videoElement.play();

Custom rendering of remote video

trtc.on(TRTC.EVENT.REMOTE_VIDEO_AVAILABLE, async ({ userId, streamType }) => {

 // Only pull the stream, do not play it

 await trtc.startRemoteVideo({ userId, streamType })

 const videoTrack = trtc.getVideoTrack({ userId, streamType });

 // Use your own player for video rendering

 const videoElement = document.getElementById('remote-video-element');

 videoElement.srcObject = new MediaStream([videoTrack]);

 videoElement.play();

});

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 129
of 221

Sending and Receiving Messages
Last updated：2024-09-02 17:22:55

Overview

The TRTC SDK provides the ability to send custom messages. With this feature, any user whose role is an anchor can
broadcast their own custom messages to other users in the same video room.

Supported Platforms

iOS Android macOS Windows Electron Flutter web

✓ ✓ ✓ ✓ ✓ ✓ ×

How It Works

A user's custom message will be combined into the audio/video data streams and transmitted to other users in the

same room alongside. As audio/video channels themselves are not completely reliable, in order to improve the
reliability, the TRTC SDK implements a reliability guarantee mechanism internally.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 130
of 221

Sending Messages

Messages are sent by calling the sendCustomCmdMsg API of TRTCCloud, and the following four parameters

need to be specified during sending:

Parameter
Name

Description

cmdID
Message ID. Value range: 1–10. Messages in different business types should use different
 cmdIDs .

data Message to be sent, which can contain up to 1 KB (1,000 bytes) of data.

reliable Whether reliable sending is enabled; if yes, the receiver needs to temporarily store the data
of a certain period to wait for re-sending, which will cause certain delay.

ordered
Whether orderly sending is enabled, i.e., whether the data should be received in the same
order in which it is sent; if yes, the receiver needs to temporarily store and sort messages,
which will cause certain delay.

Note:

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 131
of 221

 reliable and ordered must be set to the same value (YES or NO) and cannot be set to different values

currently.
Objective-C

Java
C++
C#
Dart

// Sample code for sending a custom message

- (void)sendHello {

 // Command word for the custom message. A set of rules needs to be

customized according to the business needs. 0x1 is used as an example to send a

text broadcast message

 NSInteger cmdID = 0x1;

 NSData *data = [@"Hello" dataUsingEncoding:NSUTF8StringEncoding];

 // `reliable` and `ordered` need to be consistent for now. Orderly sending

is used as an example here

 [trtcCloud sendCustomCmdMsg:cmdID data:data reliable:YES ordered:YES];

}

// Sample code for sending a custom message

public void sendHello() {

 try {

 // Command word for the custom message. A set of rules needs to be

customized according to the business needs. 0x1 is used as an example to send a

text broadcast message

 int cmdID = 0x1;

 String hello = "Hello";

 byte[] data = hello.getBytes("UTF-8");

 // `reliable` and `ordered` need to be consistent for now. Orderly

sending is used as an example here

 trtcCloud.sendCustomCmdMsg(cmdID, data, true, true);

 } catch (UnsupportedEncodingException e) {

 e.printStackTrace();

 }

}

// Sample code for sending a custom message

void sendHello()

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 132
of 221

{

 // Command word for the custom message. A set of rules needs to be

customized according to the business needs. 0x1 is used as an example to send a

text broadcast message

 uint32_t cmdID = 0x1;

 uint8_t* data = { '1', '2', '3' };

 uint32_t dataSize = 3; // Length of data

 // `reliable` and `ordered` need to be consistent for now. Orderly sending

is used as an example here

 trtcCloud->sendCustomCmdMsg(cmdID, data, dataSize, true, true);

}

// Sample code for sending a custom message

private void sendHello()

{

 // Command word for the custom message. A set of rules needs to be

customized according to the business needs. 0x1 is used as an example to send a

text broadcast message

 uint cmdID = 0x1;

 byte[] data = { '1', '2', '3' };

 uint dataSize = 3; // Length of data

 // `reliable` and `ordered` need to be consistent for now. Orderly sending

is used as an example here

 mTRTCCloud.sendCustomCmdMsg(cmdID, data, dataSize, true, true);

}

// Sample code for sending a custom message

sendHello() {

 try {

 // Command word for the custom message. A set of rules needs to be customized a

 int cmdID = 0x1;

 String hello = "Hello";

 // `reliable` and `ordered` need to be consistent for now. Orderly sending is u

 trtcCloud.sendCustomCmdMsg(cmdID, hello, true, true);

 } catch (e) {

 print(e);

 }

}

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 133
of 221

Receiving Messages

After a user in a room uses sendCustomCmdMsg to send a custom message, other users in the room can receive

the message through the onRecvCustomCmdMsg API in the SDK callback.

Objective-C

Java
C++
C#
Dart

// Receive and process messages sent by other users in the room

- (void)onRecvCustomCmdMsgUserId:(NSString *)userId cmdID:(NSInteger)cmdId seq:

(UInt32)seq message:(NSData *)message

{

 // Receive the message sent by `userId`

 switch (cmdId) // `cmdId` agreed upon between sender and receiver

 {

 case 0:

 // Process the message with `cmdId` = 0

 break;

 case 1:

 // Process the message with `cmdId` = 1

 break;

 case 2:

 // Process the message with `cmdId` = 2

 break;

 default:

 break;

 }

}

// Inherit `TRTCCloudListener` and implement the `onRecvCustomCmdMsg` method to

receive and process messages sent by others in the room

public void onRecvCustomCmdMsg(String userId, int cmdId, int seq, byte[]

message) {

 // Receive the message sent by `userId`

 switch (cmdId) // `cmdId` agreed upon between sender and receiver

 {

 case 0:

 // Process the message with `cmdId` = 0

 break;

 case 1:

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 134
of 221

 // Process the message with `cmdId` = 1

 break;

 case 2:

 // Process the message with `cmdId` = 2

 break;

 default:

 break;

}

// Receive and process messages sent by other users in the room

void TRTCCloudCallbackImpl::onRecvCustomCmdMsg(

 const char* userId, int32_t cmdId, uint32_t seq,

const uint8_t* msg, uint32_t msgSize)

{

 // Receive the message sent by `userId`

 switch (cmdId) // `cmdId` agreed upon between sender and receiver

 {

 case 0:

 // Process the message with `cmdId` = 0

 break;

 case 1:

 // Process the message with `cmdId` = 1

 break;

 case 2:

 // Process the message with `cmdId` = 2

 break;

 default:

 break;

 }

}

// Receive and process messages sent by other users in the room

public void onRecvCustomCmdMsg(string userId, int cmdId, uint seq, byte[] msg,

uint msgSize)

{

 // Receive the message sent by `userId`

 switch (cmdId) // `cmdId` agreed upon between sender and receiver

 {

 case 0:

 // Process the message with `cmdId` = 0

 break;

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 135
of 221

 case 1:

 // Process the message with `cmdId` = 1

 break;

 case 2:

 // Process the message with `cmdId` = 2

 break;

 default:

 break;

 }

}

// Register trtc callback

trtcCloud.registerListener(_onRtcListener);

// Implement the onRecvCustomCmdMsg method to receive and process messages sent by

_onRtcListener(type, param) async {

 if (type == TRTCCloudListener.onRecvCustomCmdMsg) {

 // Receive a message sent by userId

 String userId = param['userId'];

 // cmdId agreed upon by the sender and receiver

 switch (param['cmdID']) {

 case 0:

 // Process cmdID = 0 messages

 break;

 case 1:

 // Process cmdID = 1 messages

 break;

 case 2:

 // Process cmdID = 2 messages

 break;

 default:

 break;

 }

 }

}

Use Limits

Since custom messages have a higher transmission priority than audio/video data, if too many of them are sent,

audio/video data may be interfered with, resulting in video lagging or blurring. Therefore, the following frequency limits
apply to custom messages:
As custom messages are broadcast to all users in the same room, up to 30 messages can be sent per second.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 136
of 221

A data packet (i.e., data size) can be of up to 1 KB; if the threshold is exceeded, the packet is very likely to be
discarded by the intermediate router or server.
A client can send up to 8 KB of data in total per second, that is, if each data packet is of 1 KB, up to 8 packets can be

sent per second.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 137
of 221

Event Callbacks
Event Callbacks
Last updated：2025-04-02 14:22:51

The event callback service can send notifications about TRTC events in the form of HTTP/HTTPS requests to your
server. Currently, you can register callbacks for room events, media events, as well as some recording events (for
details about on-cloud recording callbacks, see On-Cloud Recording). To receive such callbacks, you need to

configure callback information in the TRTC console.

Callback Information

In order to receive event callback notifications, you need to configure callback information in Tencent RTC Console.

Note:

You need to provide the following information:
Required: An HTTP/HTTPS server address to receive callback notifications.
Optional: A custom key containing up to 32 uppercase and lowercase letters and digits, which is needed for the
calculation of signatures.

Timeout and Retry

A notification will be considered failed if the callback server does not receive a response from your server within five
seconds of message sending. It will try again immediately after the first failure and retry 10 seconds after every

subsequent failure. The retries will stop one minute after the first try.

Format of Callback Messages

Callbacks are sent to your server in the form of HTTP/HTTPS POST requests.
Character encoding: UTF-8
Request: JSON for the request body
Response: HTTP STATUS CODE = 200. The server ignores the content of the response packet. For protocol-

friendliness, we recommend adding JSON: {"code":0}` to the response.

https://www.tencentcloud.com/document/product/647/45169#
https://console.trtc.io/app
https://www.tencentcloud.com/document/product/647/39558#signature-calculation

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 138
of 221

Parameters

Callback parameters

The header of a callback message contains the following fields.

Field Value

Content-Type application/json

Sign The signature value.

SdkAppId The SDK application ID.

The body of a callback message contains the following fields.

Field Type Description

EventGroupId Number The event group ID.﻿

EventType Number The type of the callback event.﻿

CallbackTs Number The Unix timestamp (ms) of callback sending.

EventInfo JSON Object The event information.﻿

Event group ID

Field Value Description

EVENT_GROUP_ROOM 1 Room event group

EVENT_GROUP_MEDIA 2 Media event group

Note:

For on-cloud recording events, see On-Cloud Recording.

Event type

Field Value Description

EVENT_TYPE_CREATE_ROOM 101 Creating room

EVENT_TYPE_DISMISS_ROOM 102 Closing room

EVENT_TYPE_ENTER_ROOM 103 Entering room

https://www.tencentcloud.com/document/product/647/39558#event-group-id
https://www.tencentcloud.com/document/product/647/39558#event-type
https://www.tencentcloud.com/document/product/647/39558#event-information
https://www.tencentcloud.com/document/product/647/45169#

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 139
of 221

EVENT_TYPE_EXIT_ROOM 104 Leaving room

EVENT_TYPE_CHANGE_ROLE 105 Switching roles

EVENT_TYPE_START_VIDEO 201 Starting pushing video data

EVENT_TYPE_STOP_VIDEO 202 Stopping pushing video data

EVENT_TYPE_START_AUDIO 203 Starting pushing audio data

EVENT_TYPE_STOP_AUDIO 204 Stopping pushing audio data

EVENT_TYPE_START_ASSIT 205 Starting pushing substream data

EVENT_TYPE_STOP_ASSIT 206 Stopping pushing substream data

Note:
Room exit will trigger only the 104 callback and not the 202 or 204 callback. 202 and 204 are triggered

only if a user manually turns their video and audio off.

Event Callback Example

101

102
103
104
105
201
202

203
204
205
206

{	 "EventGroupId":	1,

	 "EventType":	 101,

 	 "CallbackTs":	 1687770730166,

 	 "EventInfo":	 {

 	 	 "RoomId":	 12345,

 	 "EventTs":	 1687770730,

 	 "EventMsTs":	 1687770730160,

 	"UserId":	 "test"	

 }

}

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 140
of 221

{

 "EventGroupId":	 1,

 "EventType":	 102,

 "CallbackTs":	 1687771618531,

 "EventInfo":	 {

 	 "RoomId":	 "12345",

 	 "EventTs":	 1687771618,	

 	 "EventMsTs":	 1687771618457	

 }

}

{

	 "EventGroupId":	1,

	 "EventType":	 103,

	 "CallbackTs":	 1687770731932,

	 "EventInfo":	 {

	 	 "RoomId":	 12345,

	 	 "EventTs":	 1687770731,

	 	 "EventMsTs":	 1687770731831,

	 	 "UserId":	 "test",

	 	 "Role":	21,

	 	 "TerminalType":	2,

	 	 "UserType":	 3,

	 	 "Reason":	 1

	 }

}

{

	 "EventGroupId":	1,

	 "EventType":	 104,

	 "CallbackTs":	 1687770731922,

	 "EventInfo":	 {

	 	 "RoomId":	 12345,

	 	 "EventTs":	 1687770731,

	 	 "EventMsTs":	 1687770731898,

	 	 "UserId":	 "test",

	 	 "Role":	20,

	 	 "Reason":	 1

	 }

}

{

	 "EventGroupId":	1,

	 "EventType":	 105,

	 "CallbackTs":	 1687772245596,

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 141
of 221

	 "EventInfo":	 {

	 	 "RoomId":	 12345,

	 	 "EventTs":	 1687772245,

	 	 "EventMsTs":	 1687772245537,

	 	 "UserId":	 "test",

	 	 "Role":	21

	 }

}

{

	 "EventGroupId":	2,

	 "EventType":	 201,

	 "CallbackTs":	 1687771803198,

	 "EventInfo":	 {

	 	 "RoomId":	 12345,

	 	 "EventTs":	 1687771803,

	 	 "EventMsTs":	 1687771803192,

	 	 "UserId":	 "test"

	 }

}

{

	 "EventGroupId":	2,

	 "EventType":	 202,

	 "CallbackTs":	 1687771919458,

	 "EventInfo":	 {

	 	 "RoomId":	 12345,

	 	 "EventTs":	 1687771919,

	 	 "EventMsTs":	 1687771919447,

	 	 "UserId":	 "test",

	 	 "Reason":	 0

	 }

}

{

	 "EventGroupId":	2,

	 "EventType":	 203,

	 "CallbackTs":	 1687771869377,

	 "EventInfo":	 {

	 	 "RoomId":	 12345,

	 	 "EventTs":	 1687771869,

	 	 "EventMsTs":	 1687771869365,

	 	 "UserId":	 "test"

	 }

}

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 142
of 221

{

	 "EventGroupId":	2,

	 "EventType":	 204,

	 "CallbackTs":	 1687770732498,

	 "EventInfo":	 {

	 	 "RoomId":	 12345,

	 	 "EventTs":	 1687770732,

	 	 "EventMsTs":	 1687770732383,

	 	 "UserId":	 "test",

	 	 "Reason":	 0

	 }

}

{

	 "EventGroupId":	2,

	 "EventType":	 205,

	 "CallbackTs":	 1687772013823,

	 "EventInfo":	 {

	 	 "RoomId":	 12345,

	 	 "EventTs":	 1687772013,

	 	 "EventMsTs":	 1687772013753,

	 	 "UserId":	 "test"

	 }

}

{

	 "EventGroupId":	2,

	 "EventType":	 206,

	 "CallbackTs":	 1687772015054,

	 "EventInfo":	 {

	 	 "RoomId":	 12345,

	 	 "EventTs":	 1687772015,

	 	 "EventMsTs":	 1687772015032,

	 	 "UserId":	 "test",

	 	 "Reason":	 0

	 }

}

Event information

Field Type Description

RoomId String/Number The room ID, which is of the same type as the room ID on the client.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 143
of 221

EventTs Number The Unix timestamp (seconds) of event occurrence. This field is reserved
for compatibility purposes.

EventMsTs Number The Unix timestamp (ms) of event occurrence.

UserId String User ID

UniqueId Number

The unique identifier of an event (optional), which is valid for the room event
group. When a user experiences unusual events such as network change
or abnormal exit and reentry, your server may receive multiple callbacks for
the entry and exit of the same user. A unique identifier helps identify a room
entry or exit.

Role Number The role type (optional), which is valid for the room entry/exit callback.

TerminalType Number The device type (optional), which is valid for the room entry callback.

UserType Number The user type (optional), which is valid for the room entry callback.

Reason Number The reason (optional), which is valid for the room entry/exit callback.

Note:
We have developed a policy that prevents repeated callbacks resulting from unusual events on the client. If you start
using the callback service after July 30, 2021, the policy will apply by default, and the room event group will no longer
carry UniqueId.

Role type

Field Value Description

MEMBER_TRTC_ANCHOR 20 Anchor

MEMBER_TRTC_VIEWER 21 Audience

Device type

Field Value Description

TERMINAL_TYPE_WINDOWS 1 Windows

TERMINAL_TYPE_ANDROID 2 Android

TERMINAL_TYPE_IOS 3 iOS

TERMINAL_TYPE_LINUX 4 Linux

https://www.tencentcloud.com/document/product/647/39558#role-type
https://www.tencentcloud.com/document/product/647/39558#device-type
https://www.tencentcloud.com/document/product/647/39558#user-type
https://www.tencentcloud.com/document/product/647/39558#reason

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 144
of 221

TERMINAL_TYPE_OTHER 100 Other

User type

Field Value Description

USER_TYPE_WEBRTC 1 WebRTC

USER_TYPE_APPLET 2 Mini Program

USER_TYPE_NATIVE_SDK 3 Native SDK

Reason

Field Description

Room entry

1: Voluntary entry
2: Network change
3: Timeout and retry
4: Cross-room communication

Room exit

1: Voluntary exit
2: Timeout
3: Removed from the room
4: Cross-room communication was canceled
5: The process was force-closed
Note: TRTC cannot capture a force-close event on Android and will send a callback
only after timeout (reason = 2).

Signature calculation

Signatures are calculated using the HMAC SHA256 encryption algorithm. Upon receiving a callback message, your
server will calculate a signature using the same method, and if the results match, it indicates that the callback is from
TRTC and not forged. See below for the calculation method.

// In the formula below, `key` is the key used to calculate a signature.

Sign = base64(hmacsha256(key, body))

Note:
 body is the original packet body of the callback request you receive. Do not make any modifications. Below is an

example.

body="{\\n\\t\\"EventGroupId\\":\\t1,\\n\\t\\"EventType\\":\\t103,\\n\\t\\"Callback

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 145
of 221

Verify signature example

Java
Python
PHP

Golang

import javax.crypto.Mac;

import javax.crypto.spec.SecretKeySpec;

import java.util.Base64;

//# Function: Third-party callback sign verification

//# Parameters:

//# key: The key configured in the console

//# body: The body returned by the Tencent Cloud callback

//# sign: The sign value returned by the Tencent Cloud callback

//# Return Value:

//# Status: OK indicates that the verification has passed, FAIL indicates that th

//# Info: Success/Failure information

public class checkSign {

 public static String getResultSign(String key, String body) throws Exception {

 Mac hmacSha256 = Mac.getInstance("HmacSHA256");

 SecretKeySpec secret_key = new SecretKeySpec(key.getBytes(), "HmacSHA256");

 hmacSha256.init(secret_key);

 return Base64.getEncoder().encodeToString(hmacSha256.doFinal(body.getBytes(

 }

 public static void main(String[] args) throws Exception {

 String key = "123654";

 String body = "{\\n" + "\\t\\"EventGroupId\\":\\t2,\\n" + "\\t\\"EventType\

 String Sign = "kkoFeO3Oh2ZHnjtg8tEAQhtXK16/KI05W3BQff8IvGA=";

 String resultSign = getResultSign(key, body);

 if (resultSign.equals(Sign)) {

 System.out.println("{'Status': 'OK', 'Info': 'validation passed'}");

 } else {

 System.out.println("{'Status': 'FAIL', 'Info': 'validation failed'}");

 }

 }

}

-*- coding: utf8 -*-

import hmac

import base64

from hashlib import sha256

Function: Third-party callback sign verification

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 146
of 221

Parameters:

key: The key configured in the console

body: The body returned by the Tencent Cloud callback

sign: The sign value returned by the Tencent Cloud callback

Return Value:

Status: OK indicates that the verification has passed, FAIL indicates that the

Info: Success/Failure information

def checkSign(key, body, sign):

 temp_dict = {}

 computSign = base64.b64encode(hmac.new(key.encode('utf-8'), body.encode('utf-8'

 print(computSign)

 if computSign == sign:

 temp_dict['Status'] = 'OK'

 temp_dict['Info'] = 'validation passed'

 return temp_dict

 else:

 temp_dict['Status'] = 'FAIL'

 temp_dict['Info'] = 'validation failed'

 return temp_dict

if __name__ == '__main__':

 key = '123654'

 body = "{\\n" + "\\t\\"EventGroupId\\":\\t2,\\n" + "\\t\\"EventType\\":\\t204,\

 sign = 'kkoFeO3Oh2ZHnjtg8tEAQhtXK16/KI05W3BQff8IvGA='

 result = checkSign(key, body, sign)

 print(result)

<?php

class TlsEventSig {

 private $key = false;

 private $body = false;

 public function __construct($key, $body) {

 $this->key = $key;

	 	 $this->body = $body;

 }

 private function __hmacsha256() {

 $hash = hash_hmac('sha256', $this->body, $this->key, true);

	 	 return base64_encode($hash);

 }

 public function genEventSig() {

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 147
of 221

 return $this->__hmacsha256();

 }

}

$key="789";

$data="{\\n\\t\\"EventGroupId\\":\\t1,\\n\\t\\"EventType\\":\\t101,\\n\\t\\"Callbac

$api = new TlsEventSig($key, $data);

echo $api->genEventSig();

package main

import "fmt"

import (

	 "crypto/hmac"

	 "crypto/sha256"

	 "encoding/base64"

)

func main () {

 var data = "{\\n\\t\\"EventGroupId\\":\\t1,\\n\\t\\"EventType\\":\\t101,\\n\\t\

 var key = "789"

 //JSRUN engine 2.0, supporting up to 30 types of languages for online running,

 fmt.Println(hmacsha256(data,key))

}

func hmacsha256(data string, key string) string {

	 h := hmac.New(sha256.New, []byte(key))

	 h.Write([]byte(data))

	 return base64.StdEncoding.EncodeToString(h.Sum(nil))

}

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 148
of 221

Relay to CDN Callback
Last updated：2024-11-06 18:24:41

The server relay to CDN callback supports notifying your server of the events generated by the relay to CDN REST
API in the form of HTTP/HTTPS requests. To receive such callbacks, you need to configure callback information in
the TRTC console.

Callback Information

In order to receive event callback notifications, you need to configure callback information in the Tencent RTC
Console.

Note：

You need to provide the following information:
Required: An HTTP/HTTPS server address to receive callback notifications.
Optional: A custom key containing up to 32 uppercase and lowercase letters and digits, which is needed for the
calculation of signatures.

Timeout and Retry

A notification will be considered failed if the callback server does not receive a response from your server within five
seconds of message sending. It will try again immediately after the first failure and retry 10 seconds after every

subsequent failure. The retries will stop one minute after the first try.

https://www.tencentcloud.com/document/product/647/48247
https://console.trtc.io/app
https://www.tencentcloud.com/document/product/647/54913#signature-calculation

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 149
of 221

Format of Callback Messages

Callbacks are sent to your server in the form of HTTP/HTTPS POST requests.
Character encoding: UTF-8
Request: JSON for the request body

Response: HTTP STATUS CODE = 200. The server ignores the content of the response packet. For protocol-
friendliness, we recommend adding JSON: {"code":0}` to the response.

Packet Example: Below is a packet example for the "relay to CDN Event Group - CDN Streaming in Progress" event.

{

 "EventGroupId": 4,

 "EventType": 401,

 "CallbackTs": 1622186275913,

 "EventInfo": {

 "RoomId": "xx",

 "RoomType": 1,

 "EventTsMs": 1622186275913,

 "UserId": "xx",

 "TaskId": "xx",

 "Payload": {

 "Url": "rtmp://tencent-url/xxxx"

 "Status": 2 //indicates that the CDNs push in progr

 }

 }

}

Parameters

Callback parameters

The header of a callback message contains the following fields.

Field Value

Content-Type application/json

Sign The signature value.

SdkAppId The SDK application ID.

The body of a callback message contains the following fields.

Field Type Description

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 150
of 221

EventGroupId Number The event group ID, mix relay event fixed as 4.

EventType Number The type of the callback event.

CallbackTs Number The Unix timestamp (ms) of callback sending.

EventInfo JSON Object The event information.﻿

Event group ID

Field Value Description

EVENT_GROUP_CLOUD_PUBLISH 4 Relay event group

Event type

Field Value Description

EVENT_TYPE_CLOUD_PUBLISH_CDN_STATUS 401 Cloud relay CDN status
callback

Event information

Field Type Description

RoomId String/Number Room ID (Type consistent with client-side room ID
type)

RoomType Number 0 represents numeric room ID, 1 represents string
room ID

EventMsTs Number Event's Unix timestamp, unit in milliseconds

UserId String User ID of the companion robot specified when
initiating the task (AgentParams.UserId)

TaskId Number Task ID

Payload﻿ JSON Object Learn more about the event

Payload (Learn more)

Field Value Description

Url String Push destination URL

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 151
of 221

Status Number Relay status﻿

ErrorCode Number Error code

ErrorMsg String Error message

Relay status

Field Value Description Callback
Frequency

PUBLISH_CDN_STREAM_STATE_IDLE 0 Push not started or
ended

Callback only
once

PUBLISH_CDN_STREAM_STATE_CONNECTING 1
Connecting TRTC
Server and CDN
Server

Callback
every 5
seconds, no
more
callbacks after
60 seconds
timeout

PUBLISH_CDN_STREAM_STATE_RUNNING 2 CDNs push in
progress

Callback only
once

PUBLISH_CDN_STREAM_STATE_RECOVERING 3

TRTC server and
CDN server push
interrupted,
recovering

Callback
every 5
seconds, no
more
callbacks after
60 seconds
timeout

PUBLISH_CDN_STREAM_STATE_FAILURE 4

TRTC server and
CDN server push
interrupted, and
recovery or
connection timeout

Callback only
once

PUBLISH_CDN_STREAM_STATE_DISCONNECTING 5
Disconnecting
TRTC Server and
CDN Server

Callback only
once

Relay status recommendation processing

Status Processing Method

https://www.tencentcloud.com/document/product/647/54913#Status

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 152
of 221

PUBLISH_CDN_STREAM_STATE_IDLE Indicates URL removal successful, no need to
handle.

PUBLISH_CDN_STREAM_STATE_CONNECTING

Indicates URL is connecting, callback every 5s, until
connected successfully with
 PUBLISH_CDN_STREAM_STATE_RUNNING , or
after 60s callback
 PUBLISH_CDN_STREAM_STATE_FAILURE .
You can replace the problematic URL when
receiving
 PUBLISH_CDN_STREAM_STATE_FAILURE , and
call UpdatePublishCdnStream to update
Publish parameters.
If your business is time-sensitive, you can replace
the problematic URL after receiving 2 or more
 PUBLISH_CDN_STREAM_STATE_CONNECTING
callbacks, and call
 UpdatePublishCdnStream to update Publish
parameters.

PUBLISH_CDN_STREAM_STATE_RUNNING Indicates URL push successful, no need to handle.

PUBLISH_CDN_STREAM_STATE_RECOVERING

Indicates an interruption occurred during the push
process, reconnecting, callback every 5s, until
reconnected successfully with
 PUBLISH_CDN_STREAM_STATE_RUNNING , or
after 60s callback
 PUBLISH_CDN_STREAM_STATE_FAILURE .
Usually caused by network jitter, no need to handle.
If
 PUBLISH_CDN_STREAM_STATE_RECOVERING
and PUBLISH_CDN_STREAM_STATE_RUNNING
appear alternately in a short time, you need to check
if there are multiple tasks using the same push URL.

PUBLISH_CDN_STREAM_STATE_FAILURE

Indicates push URL connection failed or failed to
recover push within 60s, you can replace the
problematic URL and call
 UpdatePublishCdnStream to update Publish
parameters.

PUBLISH_CDN_STREAM_STATE_DISCONNECTING

Indicates that the push URL is being removed, and
after removal successful, it will callback
PUBLISH_CDN_STREAM_STATE_IDLE, no need
to handle.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 153
of 221

Basic Callback Transfer Example

Initiate relay/add relay address to relay success event transfer
 PUBLISH_CDN_STREAM_STATE_CONNECTING -> PUBLISH_CDN_STREAM_STATE_RUNNING

Stop relay/delete relay address to stop relay success event transfer

 PUBLISH_CDN_STREAM_STATE_RUNNING -> PUBLISH_CDN_STREAM_STATE_DISCONNECTING ->

 PUBLISH_CDN_STREAM_STATE_IDLE

During the relay process, connection failure to retry connection success event transfer
 PUBLISH_CDN_STREAM_STATE_RUNNING -> PUBLISH_CDN_STREAM_STATE_RECOVERING ->

 PUBLISH_CDN_STREAM_STATE_RUNNING

During the relay process, connection failure to retry connection timeout failure event transfer
 PUBLISH_CDN_STREAM_STATE_RUNNING -> PUBLISH_CDN_STREAM_STATE_RECOVERING ->

 PUBLISH_CDN_STREAM_STATE_FAILURE -> PUBLISH_CDN_STREAM_STATE_IDLE

Note：
Push callback may arrive at your callback server out of order. In this case, you need to sort the events based on the
EventMsTs in EventInfo. If you only care about the latest status of the URL, you can ignore the expired events that

arrive later.

Signature calculation

Signatures are calculated using the HMAC SHA256 encryption algorithm. Upon receiving a callback message, your
server will calculate a signature using the same method, and if the results match, it indicates that the callback is from
TRTC and not forged. See below for the calculation method.

// In the formula below, `key` is the key used to calculate a signature.

Sign = base64(hmacsha256(key, body))

Note:
 body is the original packet body of the callback request you receive. Do not make any modifications. Below is an

example.

body="{\\n\\t\\"EventGroupId\\":\\t1,\\n\\t\\"EventType\\":\\t103,\\n\\t\\"Callback

Verify signature example

Java
Python
PHP

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 154
of 221

Golang

import javax.crypto.Mac;

import javax.crypto.spec.SecretKeySpec;

import java.util.Base64;

//# Function: Third-party callback sign verification

//# Parameters:

//# key: The key configured in the console

//# body: The body returned by the Tencent Cloud callback

//# sign: The sign value returned by the Tencent Cloud callback

//# Return Value:

//# Status: OK indicates that the verification has passed, FAIL indicates that th

//# Info: Success/Failure information

public class checkSign {

 public static String getResultSign(String key, String body) throws Exception {

 Mac hmacSha256 = Mac.getInstance("HmacSHA256");

 SecretKeySpec secret_key = new SecretKeySpec(key.getBytes(), "HmacSHA256");

 hmacSha256.init(secret_key);

 return Base64.getEncoder().encodeToString(hmacSha256.doFinal(body.getBytes(

 }

 public static void main(String[] args) throws Exception {

 String key = "123654";

 String body = "{\\n" + "\\t\\"EventGroupId\\":\\t2,\\n" + "\\t\\"EventType\

 String Sign = "kkoFeO3Oh2ZHnjtg8tEAQhtXK16/KI05W3BQff8IvGA=";

 String resultSign = getResultSign(key, body);

 if (resultSign.equals(Sign)) {

 System.out.println("{'Status': 'OK', 'Info': 'validation passed'}");

 } else {

 System.out.println("{'Status': 'FAIL', 'Info': 'validation failed'}");

 }

 }

}

-*- coding: utf8 -*-

import hmac

import base64

from hashlib import sha256

Function: Third-party callback sign verification

Parameters:

key: The key configured in the console

body: The body returned by the Tencent Cloud callback

sign: The sign value returned by the Tencent Cloud callback

Return Value:

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 155
of 221

Status: OK indicates that the verification has passed, FAIL indicates that the

Info: Success/Failure information

def checkSign(key, body, sign):

 temp_dict = {}

 computSign = base64.b64encode(hmac.new(key.encode('utf-8'), body.encode('utf-8'

 print(computSign)

 if computSign == sign:

 temp_dict['Status'] = 'OK'

 temp_dict['Info'] = 'validation passed'

 return temp_dict

 else:

 temp_dict['Status'] = 'FAIL'

 temp_dict['Info'] = 'validation failed'

 return temp_dict

if __name__ == '__main__':

 key = '123654'

 body = "{\\n" + "\\t\\"EventGroupId\\":\\t2,\\n" + "\\t\\"EventType\\":\\t204,\

 sign = 'kkoFeO3Oh2ZHnjtg8tEAQhtXK16/KI05W3BQff8IvGA='

 result = checkSign(key, body, sign)

 print(result)

<?php

class TlsEventSig {

 private $key = false;

 private $body = false;

 public function __construct($key, $body) {

 $this->key = $key;

	 	 $this->body = $body;

 }

 private function __hmacsha256() {

 $hash = hash_hmac('sha256', $this->body, $this->key, true);

	 	 return base64_encode($hash);

 }

 public function genEventSig() {

 return $this->__hmacsha256();

 }

}

$key="789";

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 156
of 221

$data="{\\n\\t\\"EventGroupId\\":\\t1,\\n\\t\\"EventType\\":\\t101,\\n\\t\\"Callbac

$api = new TlsEventSig($key, $data);

echo $api->genEventSig();

package main

import "fmt"

import (

	 "crypto/hmac"

	 "crypto/sha256"

	 "encoding/base64"

)

func main () {

 var data = "{\\n\\t\\"EventGroupId\\":\\t1,\\n\\t\\"EventType\\":\\t101,\\n\\t\

 var key = "789"

 //JSRUN engine 2.0, supporting up to 30 types of languages for online running,

 fmt.Println(hmacsha256(data,key))

}

func hmacsha256(data string, key string) string {

	 h := hmac.New(sha256.New, []byte(key))

	 h.Write([]byte(data))

	 return base64.StdEncoding.EncodeToString(h.Sum(nil))

}

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 157
of 221

Cloud Recording Callback
Last updated：2025-03-27 15:26:00

This document describes the callback events of the updated cloud recording feature.

Configuration Information

On the Tencent RTC Console, you can configure callback information. Upon configuration completion, you can receive
event callback notifications.

Note：
You need to prepare the following information in advance and complete the Callback Configuration in the console.
Required: the HTTP/HTTPS server address to receive callback notifications.

Optional: Key for signature computation. You can customize a key of up to 32 characters, composed of uppercase
and lowercase letters and numbers.

Timeout Retry

If your server does not respond within 5 seconds after the event callback server sends the message notification, it is
deemed as a failed notification. If the initial notification fails, an immediate retry is performed. If the notification fails
again, retry will be performed at an interval of 10 seconds until the message has been kept for 1 minute, after which
retries will not be performed.

Callback API

You can assign an HTTP/HTTPS service gateway for subscribing to callback messages. When any related event
happens, the cloud recording system calls back the event notification to your message receiving server.

Format of the Event Callback Message

Event callback messages are sent to your server via HTTP/HTTPS POST requests, in which:
Character Encoding Format: UTF-8.
Request: The body is in the JSON format.

https://www.tencentcloud.com/document/product/647/45169#
https://console.trtc.io/app
https://www.tencentcloud.com/document/product/647/39559#
https://www.tencentcloud.com/document/product/647/54914#.E8.AE.A1.E7.AE.97.E7.AD.BE.E5.90.8D

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 158
of 221

Response: HTTP STATUS CODE = 200. The server ignores the specific content of the response package. To
ensure protocol friendliness, it is recommended that the customer put the following in the response content: JSON:
{"code":0}.

Parameter Description

The Header of the Event Callback Message Contains the Following Fields:

Field name Value

Content-Type application/json

Sign Signature value

SdkAppId sdk application id

The Body of the Event Callback Message Includes the Following Fields:

Field Name Type Description

EventGroupId Number Event group ID, fixed at 3 for cloud recording

EventType Number Event type for callback notification

CallbackTs Number The Unix timestamp (in milliseconds) when the event callback
server sends a callback request to your server

EventInfo JSON Object The event information

Event Type Description:

Field Name Type Description

EVENT_TYPE_CLOUD_RECORDING_RECORDER_START 301﻿ The cloud recording
module starts.

EVENT_TYPE_CLOUD_RECORDING_RECORDER_STOP 302﻿ The cloud recording
module exits.

EVENT_TYPE_CLOUD_RECORDING_UPLOAD_START 303﻿

The cloud recording file
upload task starts, and it
is called back only when
COS is chosen.

EVENT_TYPE_CLOUD_RECORDING_FILE_INFO 304 Cloud recording:
Generating the M3U8

https://www.tencentcloud.com/document/product/647/54914#301
https://www.tencentcloud.com/document/product/647/54914#302
https://www.tencentcloud.com/document/product/647/54914#303
https://www.tencentcloud.com/document/product/647/54914#304

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 159
of 221

index file. After the first
successful generation and
upload, it is called back
only when COS is chosen
through API recording.

EVENT_TYPE_CLOUD_RECORDING_UPLOAD_STOP 305

The cloud recording file
upload is complete. It is
called back only when
COS is chosen.

EVENT_TYPE_CLOUD_RECORDING_FAILOVER 306

Cloud recording migration
occurs. It is triggered
when the existing
recording task is migrated
to a new load.

EVENT_TYPE_CLOUD_RECORDING_FILE_SLICE 307

Cloud recording:
Generating the M3U8
index file (generating the
first ts slice). After
generation, it is called
back only when COS is
chosen through API
recording.

EVENT_TYPE_CLOUD_RECORDING_DOWNLOAD_IMAGE_ERROR 309

An error occurs when the
cloud recording attempts
to download and decode
the image file.

EVENT_TYPE_CLOUD_RECORDING_MP4_STOP 310

The MP4 recording task
of cloud recording stops,
and it is called back only
when COS is chosen via
API recording (when
automatic recording is
turned on in the console
and the authorized VOD
COS is selected as
storage, please pay
attention to event 311).

EVENT_TYPE_CLOUD_RECORDING_VOD_COMMIT 311 The cloud recording VOD
recording task has
completed the upload of

https://www.tencentcloud.com/document/product/647/54914#305
https://www.tencentcloud.com/document/product/647/54914#306
https://www.tencentcloud.com/document/product/647/54914#307
https://www.tencentcloud.com/document/product/647/54914#309
https://www.tencentcloud.com/document/product/647/54914#310
https://www.tencentcloud.com/document/product/647/46960
https://www.tencentcloud.com/document/product/647/54914#311

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 160
of 221

media resources, and it is
called back when you
select Video on Demand
and automatically
recording to COS via the
console (after file
recording ends, the VOD
index information is
carried. Please subscribe
to this type of callback
event).

EVENT_TYPE_CLOUD_RECORDING_VOD_STOP 312﻿

The cloud recording VOD
task stops, and it is called
back only when VOD is
chosen.

Note：
The callback statuses from event types 301 to 309 are intermediate states of real-time recording, for you to better
understand the recording process and keep track of the status. The successful upload of the actual recording file to
video on demand will trigger an event 311 callback, and the overall task is completed and an event 312 is called back.

Event Information Description:

Field Name Type Description

RoomId String/Number The room name, consistent with the room ID type on the client
side

EventTs Number The Unix timestamp of when the event occurred, in seconds (this
field is not recommended. Instead, EventMsTs is recommended)

EventMsTs Number The Unix timestamp of when the event occurred, in milliseconds

UserId String The user ID of the recording robot

TaskId String The recording ID, which is a unique ID of a single cloud recording
task

Payload JsonObject Defined based on various event types

When the event type is

301
 (EVENT_TYPE_CLOUD_RECORDING_RECORDER_START), the definition of Payload is as follows:

https://www.tencentcloud.com/document/product/647/54914#312

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 161
of 221

Field Name Type Description

Status Number 0: Indicates that the recording module successfully starts.
1: Indicates that the recording module fails to start.

{

 "EventGroupId": 3,

 "EventType": 301,

 "CallbackTs": 1622186275913,

 "EventInfo": {

 "RoomId": "xx",

 "EventTs": "1622186275",

 "EventMsTs": 1622186275757,

 "UserId": "xx",

 "TaskId": "xx",

 "Payload": {

 "Status": 0

 }

 }

}

When the event type is

302
(EVENT_TYPE_CLOUD_RECORDING_RECORDER_STOP), the definition of Payload is as follows:

Field Name Type Description

LeaveCode Number

0: The invocation of recording module normally stops and exits.
1: The customer kicks out the recording robot from the room.
2: The customer disbands the room.
3: The server kicks out the recording robot from the room.
4: The server disbands the room.
99: There is no other user flow in the room except for the
recording robot, which will exit after a specified time.
100: Exit from the room due to timeout.
101: Repeated entry of the same user into the same room causes
the robot to exit.

{

 "EventGroupId": 3,

 "EventType": 302,

 "CallbackTs": 1622186354806,

 "EventInfo": {

 "RoomId": "xx",

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 162
of 221

 "EventTs": "1622186354",

 "EventMsTs": 1622186275757,

 "UserId": "xx",

 "TaskId": "xx",

 "Payload": {

 "LeaveCode": 0

 }

 }

}

When the event type is
303
 (EVENT_TYPE_CLOUD_RECORDING_UPLOAD_START), the definition of Payload is as follows:

Field Name Type Description

Status Number 0: Indicates that the upload module normally starts.

1: Indicates that the upload module fails to be initiated.

When the event type is
304

(EVENT_TYPE_CLOUD_RECORDING_FILE_INFO), the definition of Payload is as follows:

Field Name Type Description

FileList String The generated M3U8 filename

When the event type is
305
(EVENT_TYPE_CLOUD_RECORDING_UPLOAD_STOP), the definition of Payload is as follows:

Field Name Type Description

LeaveCode Number

0: Indicates that this recording upload task has been completed,
and all files have been uploaded to the specified third-party cloud
storage.

1: Indicates that this recording upload task has been completed,
but at least one file is lingering on the server or backup storage.

2: Indicates that files lingering on the server or backup storage
have been restored and uploaded to the designated third-party
cloud storage.
Note: 305 indicates the event that the HLS file upload is complete.

When the event type is

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 163
of 221

306
 (EVENT_TYPE_CLOUD_RECORDING_FAILOVER), the definition of Payload is as follows:

Field Name Type Description

Status Number 0: Indicates that this migration is completed.

{

 "EventGroupId": 3,

 "EventType": 306,

 "CallbackTs": 1622191989674,

 "EventInfo": {

 "RoomId": "20015",

 "EventTs": 1622191989,

 "EventMsTs": 1622186275757,

 "UserId": "xx",

 "TaskId": "xx",

 "Payload": {

 "Status": 0

 }

 }

}

When the event type is
307
(EVENT_TYPE_CLOUD_RECORDING_FILE_SLICE), the definition of Payload is as follows:

Field Name Type Description

FileName String M3U8 filename

UserId String The user ID corresponding to the recorded file

TrackType String Audio/Video types: audio/video/audio_video

BeginTimeStamp String The Unix timestamp of the server when the recording starts (in
milliseconds)

When the event type is

309
 (EVENT_TYPE_CLOUD_RECORDING_DOWNLOAD_IMAGE_ERROR), the definition of Payload is as follows:

Field Name Type Description

Url String The URL of the failed download

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 164
of 221

{

 "EventGroupId": 3,

 "EventType": 309,

 "CallbackTs": 1622191989674,

 "EventInfo": {

 "RoomId": "20015",

 "EventTs": 1622191989,

 "EventMsTs": 1622186275757,

 "UserId": "xx",

 "TaskId": "xx",

 "Payload": {

 "Url": "http://xx"

 }

 }

}

When the event type is

310
 (EVENT_TYPE_CLOUD_RECORDING_MP4_STOP), the definition of Payload is as follows:
Note：
310 is a callback event after an MP4 file is uploaded to the user-specified third-party COS. A recording task may call
back multiple events of 310 (each event corresponds to a recorded file information).

Field Name Type Description

Status Number

0: Indicates that the MP4 recording task has exited normally, and all
files have been uploaded to the designated third-party cloud storage.
1: Indicates that this MP4 recording task has exited normally, but at
least one file lingers on the server or backup storage.

2: Indicates that this MP4 recording task exits abnormally (the
possible reason is the failure of extracting HLS files from COS).

FileList Array All generated MP4 file names

FileMessage Array All generated MP4 file information

FileName String MP4 file name

UserId String The user ID corresponding to the MP4 file (this field is empty when
the recording mode is set to mixed streaming mode)

TrackType String audio for audio / video for pure video / audio_video for audio and
video

MediaId String The primary and auxiliary stream tag. main indicates the primary
stream (camera), aux indicates the auxiliary streams (screen

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 165
of 221

sharing), and mix indicates mixed stream recording.

StartTimeStamp Number The Unix timestamp at the beginning of the MP4 file (in milliseconds)

EndTimeStamp Number The UNIX timestamp at the end of the MP4 file (in milliseconds)

{

 "EventGroupId": 3,

 "EventType": 310,

 "CallbackTs": 1622191965320,

 "EventInfo": {

 "RoomId": "20015",

 "EventTs": 1622191989,

 "EventMsTs": 1622186275757,

 "UserId": "xx",

 "TaskId": "xx",

 "Payload": {

 "Status": 0,

 "FileList": ["xxxx1.mp4", "xxxx2.mp4"],

 "FileMessage": [

 {

 "FileName": "xxxx1.mp4",

 "UserId": "xxxx",

 "TrackType": "audio_video",

 "MediaId": "main",

 "StartTimeStamp": 1622186279145,

 "EndTimeStamp": 1622186282145

 },

 {

 "FileName": "xxxx2.mp4",

 "UserId": "xxxx",

 "TrackType": "audio_video",

 "MediaId": "main",

 "StartTimeStamp": 1622186279153,

 "EndTimeStamp": 1622186282153

 }

]

 }

 }

}

When the event type is
311
 (EVENT_TYPE_CLOUD_RECORDING_VOD_COMMIT), the definition of Payload is as follows:

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 166
of 221

Field Name Type Description

Status Number

0: Indicates that the recorded file has been successfully uploaded
to the VOD platform.
1: Indicates that the recorded file lingers on the server or backup
storage.
2: Indicates that the upload and VOD task for this recorded file to
is abnormal.

UserId String The user ID corresponding to this recorded file (this field is empty
when the recording mode is set to mixed stream mode)

TrackType String audio for audio / video for pure video / audio_video for audio and
video

MediaId String
The primary and auxiliary stream tag. main indicates the primary
stream (camera), aux indicates the auxiliary stream (screen
sharing), and mix indicates mixed stream recording.

FileId String The unique ID of this recorded file in the VOD platform

VideoUrl String The playback address of this recorded file on the VOD platform

CacheFile String The filename corresponding to this MP4/HLS recording file

StartTimeStamp Number The Unix timestamp of the beginning of this recorded file (in
milliseconds)

EndTimeStamp Number The Unix timestamp of the end of this recorded file (in
milliseconds)

Errmsg String Corresponding error message when the status is not 0

Callback for successful upload:

{

 "EventGroupId": 3,

 "EventType": 311,

 "CallbackTs": 1622191965320,

 "EventInfo": {

 "RoomId": "20015",

 "EventTs": 1622191965,

 "EventMsTs": 1622186275757,

 "UserId": "xx",

 "TaskId": "xx",

 "Payload": {

 "Status": 0,

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 167
of 221

 "TencentVod": {

 "UserId": "xx",

 "TrackType": "audio_video",

 "MediaId": "main",

 "FileId": "xxxx",

 "VideoUrl": "http://xxxx",

 "CacheFile": "xxxx.mp4",

 "StartTimeStamp": 1622186279153,

 "EndTimeStamp": 1622186282153

 }

 }

 }

}

Callback for upload failure:

{

 "EventGroupId": 3,

 "EventType": 311,

 "CallbackTs": 1622191965320,

 "EventInfo": {

 "RoomId": "20015",

 "EventTs": 1622191965,

 "EventMsTs": 1622186275757,

 "UserId": "xx",

 "TaskId": "xx",

 "Payload": {

 "Status": 1,

 "Errmsg": "xxx",

 "TencentVod": {

 "UserId": "123",

 "TrackType": "audio_video",

 "CacheFile": "xxx.mp4"

 }

 }

 }

}

Note：
After the callback of 311 is received, the file upload is completed, and you need to wait for 30 seconds to 3 minutes

for the file to be completely recorded, depending on the file size.
When the event type is
312
 (EVENT_TYPE_CLOUD_RECORDING_VOD_STOP), the definition of Payload is as follows:

Field Name Type Description

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 168
of 221

Status Number 0: Indicates that this VOD upload task has exited normally.
1: Indicates that this VOD upload task exits abnormally.

{

 "EventGroupId": 3,

 "EventType": 312,

 "CallbackTs": 1622191965320,

 "EventInfo": {

 "RoomId": "20015",

 "EventTs": 1622191965,

 "EventMsTs": 1622186275757,

 "UserId": "xx",

 "TaskId": "xx",

 "Payload": {

 "Status": 0

 }

 }

}

Calculating a Signature

Signatures are calculated using the HMAC SHA256 encryption algorithm. After your event callback server receives
the callback message, it calculates the signature in the same manner. If they match, it is an event callback from
Tencent Real-Time Communication (TRTC), not a forged one. The signature calculation is as follows:

// In the signature Sign calculation formula, key is the encryption key used for ca

Sign = base64(hmacsha256(key, body))

Note：
The body is the original package body of the callback request received by you. Do not convert it. See the following
example:

body="{\\n\\t\\"EventGroupId\\":\\t1,\\n\\t\\"EventType\\":\\t103,\\n\\t\\"Callback

Signature Verification Example

Java
Python
PHP
Golang

import javax.crypto.Mac;

import javax.crypto.spec.SecretKeySpec;

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 169
of 221

import java.util.Base64;

//# Function: Third-party callback sign verification

//# Parameters:

//# key: The key configured in the console

//# body: The body returned in Tencent Cloud callback

//# sign: Signature value of sign returned in Tencent Cloud callback

//# Returned values:

//# Status: OK indicates successful verification, and FAIL indicates verification

//# Info: Success/Failure message

public class checkSign {

 public static String secureFinalSign(String key, String entityBody) throws Exce

 Mac hmacSha256 = Mac.getInstance("HmacSHA256");

 SecretKeySpec secret_key = new SecretKeySpec(key.getBytes(), "HmacSHA256");

 hmacSha256.initialize(secret_key);

 return Base64.getEncoder().encodeToString(hmacSha256.doFinal(body.getBytes(

 }

 public static void main(String[] args) throws Exception {

 String key = "123654";

 String body = "{\\n" + "\\t\\"EventGroupId\\":\\t2,\\n" + "\\t\\"EventType\

 String Sign = "kkoFeO3Oh2ZHnjtg8tEAQhtXK16/KI05W3BQff8IvGA=";

 String resultSign = obtainResultSignature(key, body);

 if (resultSign.equals(Sign)) {

 System.out.println("{'Status': 'OK', 'Info': 'Verification passed'}");

 } else {

 System.out.println("{'Status': 'FAIL', 'Info': 'Verification failed'}")

 }

 }

}

-*- coding: utf8 -*-

import hmac

import base64

from hashlib import sha256

Function: Third-party callback sign verification

Parameters:

key: The key configured in the console

body: The body returned in Tencent Cloud callback

Sign: The signature value sign returned in Tencent Cloud's callback

Returned values:

Status: OK indicates successful verification, and FAIL indicates verification fai

Info: Success/Failure Information

def checkSign(key, body, sign):

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 170
of 221

 temp_dict = {}

 computSign = base64.b64encode(hmac.new(key.encode('utf-8'), body.encode('utf-8'

 print(computSign)

 if computSign equals sign:

 temp_dict['Status'] = 'OK'

 temp_dict['Info'] = 'Verification passed'

 return temp_dict

 else:

 temp_dict['Status'] = 'FAIL'

 temp_dict['Info'] = 'Verification failed'

 return temp_dict

if __name__ == '__main__':

 key = '123654'

 body = "{\\n" + "\\t\\"EventGroupId\\":\\t2,\\n" + "\\t\\"EventType\\":\\t204,\

 `sign` = 'kkoFeO3Oh2ZHnjtg8tEAQhtXK16/KI05W3BQff8IvGA='

 result = verifySignature(key, body, sign)

 print(result)

<?php

class TlsEventSig {

 private $key = false;

 private $body = false;

 public function __construct($key, $body) {

 $this->key = $key;

	 	 $this->body = $body;

 }

 private function __hmacsha256() {

 $hash = hash_hmac('sha256', $this->body, $this->key, true);

	 	 return base64_encode($hash);

 }

 public function genEventSig() {

 return $this->__hmacsha256();

 }

}

$key="789";

$data="{\\n\\t\\"EventGroupId\\":\\t1,\\n\\t\\"EventType\\":\\t101,\\n\\t\\"Callbac

$api = new TlsEventSig($key, $data);

echo $api->genEventSig();

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 171
of 221

package main

import "fmt"

import (

	 "crypto/hmac"

	 "crypto/sha256"

	 "encoding/base64"

)

func main () {

 var data = "{\\n\\t\\"EventGroupId\\":\\t1,\\n\\t\\"EventType\\":\\t101,\\n\\t\

 var key = "789"

 //JSRUN engine 2.0, supporting up to 30 types of languages for online running,

 fmt.Println(hmacsha256(data,key))

}

func hmacsha256(data string, key string) string {

	 h := hmac.New(sha256.New, []byte(key))

	 h.Write([]byte(data))

	 return base64.StdEncoding.EncodeToString(h.Sum(nil))

}

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 172
of 221

Push Online Media Stream Callback
Last updated：2024-08-01 16:20:02

The server-side push online media stream callback supports notifying your server of push online media stream events
generated using the Push Online Media Stream REST API in the form of HTTP/HTTPS requests. You can provide
Tencent Cloud with relevant configuration information to enable this service.

Configuration Information

The TRTC console supports self-service configuration of callback information. Once the configuration is completed,
you can receive event callback notifications. For detailed operation instructions, see the Callback Configuration.
Note:
You need to prepare the following information in advance:
Required item: An HTTP/HTTPS server address to receive callback notifications.

Optional item: A key for signature calculation, which is a key of up to 32 characters defined by you and consists of
uppercase and lowercase letters and numbers.

Timeout Retry

If the event callback server does not receive a response from your server within 5 seconds after sending a message
notification, the notification is considered to have failed. After the first notification failure, a retry will be made
immediately. Subsequent retries will occur at 10-second intervals until the message retention time exceeds 1 minute,
after which no further retries will be made.

Format of Event Callback Messages

Event callback messages are sent to your server via HTTP/HTTPS POST requests, where:
Character Encoding Format: UTF-8.
Request: The body is in the JSON format.
Response: HTTP STATUS CODE = 200. The server ignores the specific content of the response package. For the
sake of protocol friendliness, it is recommended that the customer response carry JSON: {"code":0}.

Package Body Example: Below is a package body example for the "push online media stream started successfully"
event.

{

https://www.tencentcloud.com/document/product/647/57835
https://www.tencentcloud.com/document/product/647/39559#
https://www.tencentcloud.com/document/product/647/54913#signature-calculation

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 173
of 221

 "EventGroupId": 7,

 "EventType": 701,

 "CallbackMsTs": 1701937900012,

 "EventInfo": {

 "EventMsTs": 1701937900013,

 "TaskId":"xx",

 "Status":0

 }

}

Description of Parameters

Callback Message Parameters

The header of the event callback message contains the following fields:

Field name Value

Content-Type application/json

Sign Signature value

SdkAppId sdk application id

The body of the event callback message includes the following fields:

Field name Type Meaning

EventGroupId Number Event group ID, which is 4 for a stream mixing and relaying event

EventType Number The event type of the callback notification

CallbackMsTs Number The Unix timestamp of the callback request sent by the event callback
server to your server, in milliseconds

EventInfo JSON Object Event information

Event Group ID

Field name Value Meaning

EVENT_GROUP_STREAM_INGEST 7 Push online media stream event group

Event Type

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 174
of 221

Field name Value Meaning

EVENT_TYPE_STREAM_INGEST_START 701 Push online media stream start

EVENT_TYPE_STREAM_INGEST_STOP 702 Push online media stream stop

Definition of Event Information when the Event Type is
(EVENT_TYPE_STREAM_INGEST_START 701):

Field name Type Meaning

EventMsTs String The Unix timestamp of the event occurred, in milliseconds

TaskId String Push online media stream task ID

Status Number Status of push online media stream start

Status of Push Online Media Stream Start

Field name Value Meaning Callback frequency

STATUS_START_SUCCESS 0 The push online media stream
start succeeded.

Callback is made once upon
success.

STATUS_START_FAILURE 1 The push online media stream
start failed.

Callback is made once upon
failure.

STATUS_START_AGAIN 2
The push online media stream
starts again.

A retry is made at the 0th,
1st, and 3rd second, with
callback during the retry.

Recommended Handling of Push Online Media Stream Status

Status Handling method

STATUS_START_SUCCESS It indicates success, with no need for handling.

STATUS_START_FAILURE If you receive push online media stream failure status three times, check the
source URL and restart the push online media stream.

STATUS_START_AGAIN Received within 1 minute after the push online media stream starts: It
indicates the URL connection failed or the RTMP push failed. The system
automatically triggers a retry. If it fails in the end, check if the URL is properly
connected
Received beyond 1 minute after the push online media stream starts: A restart
may be triggered due to source stream or background network fluctuation,

https://www.tencentcloud.com/document/product/647/62717#Status

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 175
of 221

with no need for handling.

Basic Callback Transfer Example

Event transfer of push online media stream failure/push online media stream restart/push online media
stream start success

 STATUS_START_FAILURE -> STATUS_START_AGAIN -> STATUS_START_SUCCESS

Note:
Push online media stream callback events may arrive at your callback server out of sequence. You need to sort events
based on EventMsTs in EventInfo. If you only care about the latest status of the URL, you can ignore the expired
events that arrive later.

Definition of Event Information when the Event Type is
(EVENT_TYPE_STREAM_INGEST_STOP 702):

Field name Type Meaning

EventMsTs String The Unix timestamp of the event occurred, in milliseconds

TaskId String Push online media stream task ID

Status Number Status of push online media stream stop

Status of Push Online Media Stream Stop

Field name Value Meaning Callback Frequency

STATUS_STOP_SUCCESS 0 The push online media stream
stop succeeded.

Callback is made once
upon success.

Calculating a Signature

A signature is calculated with the HMAC SHA256 encryption algorithm. After your event callback server receives the

callback message, it calculates the signature in the same manner. A match means that it is TRTC's event callback,
with no falsification. The signature calculation is shown below:

// In the signature calculation formula Sign, the key refers to the encryption key

Sign = base64(hmacsha256(key, body))

Note:
 The body refers to the original package body of the callback request received by you, with no transformation. An
example is as follows:

https://www.tencentcloud.com/document/product/647/62717#d463b03d-a623-49a5-afc9-0fb8eeef1ea8

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 176
of 221

body="{\\n\\t\\"Ebody="{\\"EventGroupId\\":7,\\"EventType\\":701,\\"CallbackMsTs\\"

Signature Verification Example

Java

Python
PHP
Golang

import javax.crypto.Mac;

import javax.crypto.spec.SecretKeySpec;

import java.util.Base64;

//# Feature: Third-party Callback Sign Verification

//# Parameters:

//# key: The Key Configured on the Console

//# body: The Body Returned by Tencent Cloud Callback

//# sign: The Signature Value Returned by Tencent Cloud Callback

//# Returned Values:

//# Status: OK Indicates that Verification Succeeded, and FAIL Indicates that Ver

//# Info: Success/Failure Information

public class checkSign {

 public static String secureFinalSign(String key, String entityBody) throws Exce

 Mac hmacSha256 = Mac.getInstance("HmacSHA256");

 SecretKeySpec secret_key = new SecretKeySpec(key.getBytes(), "HmacSHA256");

 hmacSha256.initialize(secret_key);

 return Base64.getEncoder().encodeToString(hmacSha256.doFinal(body.getBytes(

 }

 public static void main(String[] args) throws Exception {

 String key = "123654";

 String body = "{\\n" + "\\t\\"EventGroupId\\":\\t2,\\n" + "\\t\\"EventType\

 String Sign = "kkoFeO3Oh2ZHnjtg8tEAQhtXK16/KI05W3BQff8IvGA=";

 String resultSign = obtainResultSignature(key, body);

 if (resultSign.equals(Sign)) {

 System.out.println("{'Status': 'OK', 'Info': 'Verification succeeded'}"

 } else {

 System.out.println("{'Status': 'FAIL', 'Info': 'Verification failed'}")

 }

 }

}

-*- coding: utf8 -*-

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 177
of 221

import hmac

import base64

from hashlib import sha256

Feature: Third-party Callback Sign Verification

Parameters:

key: The Key on the Console

body: The Body Returned by Tencent Cloud Callback

sign: The Signature Value Returned by Tencent Cloud Callback

Returned Values:

Status: OK Indicates that Verification Succeeded, and FAIL Indicates that Verif

Info: Success/Failure Information

def checkSign(key, body, sign):

 temp_dict = {}

 computSign = base64.b64encode(hmac.new(key.encode('utf-8'), body.encode('utf-8'

 print(computSign)

 if computSign equals sign:

 temp_dict['Status'] = 'OK'

 temp_dict['Info'] = 'Verification succeeded'

 return temporary_dictionary

 else:

 temp_dict['Status'] = 'FAIL'

 temp_dict['Info'] = 'Verification failed'

 return temporary_dictionary

if __name__ == '__main__':

 key = '123654'

 body = "{\\n" + "\\t\\"EventGroupId\\":\\t2,\\n" + "\\t\\"EventType\\":\\t204,\

 `sign` = 'kkoFeO3Oh2ZHnjtg8tEAQhtXK16/KI05W3BQff8IvGA='

 result = verifySignature(key, body, sign)

 print(result)

<?php

class TlsEventSig {

 private $key = false;

 private $body = false;

 public function __construct($key, $body) {

 $this->key = $key;

	 	 $this->body = $body;

 }

 private function __hmacsha256() {

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 178
of 221

 $hash = hash_hmac('sha256', $this->body, $this->key, true);

	 	 return base64_encode($hash);

 }

 public function genEventSig() {

 return $this->__hmacsha256();

 }

}

$key="789";

$data="{\\n\\t\\"EventGroupId\\":\\t1,\\n\\t\\"EventType\\":\\t101,\\n\\t\\"Callbac

$api = new TlsEventSig($key, $data);

echo $api->genEventSig();

package main

import "fmt"

import (

	 "crypto/hmac"

	 "crypto/sha256"

	 "encoding/base64"

)

func main () {

 var data = "{\\n\\t\\"EventGroupId\\":\\t1,\\n\\t\\"EventType\\":\\t101,\\n\\t\

 var key = "789"

 //JSRUN Engine 2.0, which supports online running in up to 30 languages and ful

 fmt.Println(hmacsha256(data,key))

}

func hmacsha256(data string, key string) string {

	 h := hmac.New(sha256.New, []byte(key))

	 h.Write([]byte(data))

	 return base64.StdEncoding.EncodeToString(h.Sum(nil))

}

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 179
of 221

Conversational AI & Speech-to-Text
Callbacks
Last updated：2024-11-19 16:56:42

This document introduces events generated by Tencent Cloud APIs related to AI services (Conversational AI and
Speech-to-Text features), which are then notified to your server in the form of HTTP/HTTPS requests. You can
provide relevant configuration information to Tencent Cloud to activate this service. You can also use it in combination

with Tencent Real-Time Communication (TRTC)'s Event Callbacks to implement more custom logic.

Configuration Information

The TRTC console supports self-service configuration of callback information. Once the configuration is complete, you
can receive event callback notifications. For detailed instructions, see Callback Configuration.
Note:
You need to prepare the following information in advance:

Required: the HTTP/HTTPS server address to receive callback notifications.
Optional: the key for calculating a signature, which is a key of up to 32 characters defined by you, consisting of
uppercase and lowercase letters and digits.

Timeout Retry

If the event callback server does not receive a response from your server within 5 seconds after sending a message
notification, it will consider the notification as failed. After the first failure, an immediate retry is attempted. Subsequent
retries will occur at 10-second intervals until the message retention time exceeds 1 minute, after which no further

retries will be made.

Event Callback Message Format

Event callback messages are sent to your server via HTTP/HTTPS POST requests, where:
Character encoding format: UTF-8.
Request: The body is in JSON format.
Response: The HTTP status code is 200. The server ignores the specific content of a response packet. For protocol

friendliness, it is recommended that the client response content carry JSON: {"code":0}.
Packet example: The following is a packet example for the event of "successfully starting an AI conversation task".

https://www.tencentcloud.com/document/product/647/64658#
https://www.tencentcloud.com/document/product/647/66148#
https://www.tencentcloud.com/document/product/647/39558#
https://www.tencentcloud.com/document/product/647/39559#

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 180
of 221

{	

	 "EventGroupId":	 9,

 	 "CallbackTs": 1687770730166,

 	 "EventInfo": {

 	 "EventMsTs": 1622186275757,

 "TaskId": "hKPD2Q7kBVzu-6ezFiqmcEBJQCykqbZrS9OOTE46uYlb4NvQDIaEXlpOlLXFtGBi

 	 "RoomId": "1234",

 "RoomIdType": 0,

 "Payload": {

 "Status": 0

 }

	 }

}

Parameter Description

Callback Message Parameters

The header of an event callback message contains the following fields:

Field Name Value

Content-Type application/json.

Sign Signature value.

SdkAppId SDK application ID.

The body of an event callback message contains the following fields:

Field Name Type Meaning

EventGroupId Number Event group ID, which is fixed at 4 for stream mixing and relay events.

EventType Number The event type of the callback notification.

CallbackMsTs Number The Unix timestamp (in milliseconds) when the event callback server
sends a callback request to your server.

EventInfo JSON Object Event information.

Event Group ID

Field Name Value Meaning

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 181
of 221

EVENT_GROUP_AI_SERVICE 9 AI service event group.

Event Type

Field Name Value Meaning

EVENT_TYPE_AI_SERVICE_START 901 Callback for the AI task start status.

EVENT_TYPE_AI_SERVICE_STOP 902 Callback for the AI task end status.

EVENT_TYPE_AI_SERVICE_MSG 903

Callback for a complete sentence.
Conversational AI: Callback after recognizing a
complete sentence.
Speech-to-text: Callback for a transcribed complete
sentence.

Definition of Event Information When the Event Type Is (EVENT_TYPE_AI_SERVICE_START
901):

Field Name Type Meaning

EventMsTs String The Unix timestamp (in milliseconds) when an event occurs.

TaskId String AI task ID.

RoomId String TRTC room ID.

RoomIdType Integer 0: indicates a numeric room number.
1: indicates a string room number.

Payload.Status Number 0: AI task started successfully.
1: AI task failed to start.

{	

	 "EventGroupId":	9,

 	 "EventType": 901,

 	 "CallbackTs": 1687770730166,

 	 "EventInfo": {

 	 "EventMsTs": 1622186275757,

 "TaskId": "xx",

 	 "RoomId": "1234",

 	 "RoomIdType": 0,

 "Payload": {

 "Status": 0

 }

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 182
of 221

	 }

}

Definition of Event Information When the Event Type Is (EVENT_TYPE_AI_SERVICE_STOP
902):

Field Name Type Meaning

EventMsTs String The Unix timestamp (in milliseconds) when an event occurs.

TaskId String AI task ID.

RoomId String TRTC room ID.

RoomIdType Integer 0: indicates a numeric room number.
1: indicates a string room number.

Payload.LeaveCode Integer

0: The task exits after the stop API is normally called.
1: The task exits after the customer's application removes the
transcription bot.
2: The task exits after the customer's application dissolves the room.
3: The TRTC server removes the bot.
4: The TRTC server dissolves the room.
98: Internal error. It is recommended to retry.
99: There is no user stream in the room except the transcription bot.
The task exits after exceeding the specified time.

{	

	 "EventGroupId":	9,

	 "EventType": 902,

 	 "CallbackTs": 1687770730166,

 	 "EventInfo": {

 	 "EventMsTs": 1622186275757,

 "TaskId": "xx",

 	 "RoomId": "1234",

 	 "RoomIdType": 0,

 "Payload": {

 "LeaveCode": 0

 }

	 }

}

Definition of Event Information When the Event Type Is (EVENT_TYPE_AI_SERVICE_MSG
903):

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 183
of 221

Field Name Type Meaning

EventMsTs String The Unix timestamp (in milliseconds) when an event occurs.

TaskId String AI task ID.

RoomId String TRTC room ID.

RoomIdType Integer 0: indicates a numeric room number.
1: indicates a string room number.

Payload
JSON
Object

It is a JSON object, which is consistent with the custom message
callback format on the client.
 {

 "UserId":"",
 "Text":"",
 "StartTimeMs":1234,
 "EndTimeMs":1269,
 "RoundId":"xxxxxx" // uuid
 }

{	

	 "EventGroupId":	 9,

	 "EventType":	 903,

 	 "CallbackTs":	 1687770730166,

 	 "EventInfo": {

 	 "EventMsTs": 1622186275757,

 "TaskId": "xx",

 	 "RoomId": "1234",

 	 "RoomIdType": 0,

 "Payload": {

 "UserId":"",

 "Text":"",

 "StartTimeMs":1234,

 "EndTimeMs":1269,

 "RoundId":"xxxxxx"

 }

	 }

}

Calculating a Signature

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 184
of 221

Signatures are calculated using the HMAC SHA256 encryption algorithm. After your event callback server receives a
callback message, it calculates the signature in the same manner. If they match, it indicates that it is an event callback
from TRTC and has not been forged. The signature calculation is as follows:

// In the signature calculation formula, the 'key' is the encryption key used for c

Sign = base64 (hmacsha256 (key, body))

Note:
 Body refers to the original packet body of the callback request received by you, and do not do any transformation, as

shown below:

body="{\\n\\t\\"Ebody="{\\"EventGroupId\\":7,\\"EventType\\":701,\\"CallbackMsTs\\"

Signature Verification Example

Java
Python
PHP

Golang

import javax.crypto.Mac;

import javax.crypto.spec.SecretKeySpec;

import java.util.Base64;

//# Feature: third-party callback signature verification

//# Parameters:

//# key: key configured in the console

//# body: body returned by Tencent Cloud callbacks

//# sign: signature value returned by Tencent Cloud callbacks

//# Returned values:

//# Status: OK indicates verification successful. FAIL indicates verification fai

//# Info: success/failure information

public class checkSign {

 public static String secureFinalSign(String key, String entityBody) throws Exce

 Mac hmacSha256 = Mac.getInstance("HmacSHA256");

 SecretKeySpec secret_key = new SecretKeySpec(key.getBytes(), "HmacSHA256");

 hmacSha256.initialize(secret_key);

 return Base64.getEncoder().encodeToString(hmacSha256.doFinal(body.getBytes(

]

 public static void main(String[] args) throws Exception {

 String key = "123654";

 String body = "{\\n" + "\\t\\"EventGroupId\\":\\t2,\\n" + "\\t\\"EventType\

 String Sign = "kkoFeO3Oh2ZHnjtg8tEAQhtXK16/KI05W3BQff8IvGA=";

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 185
of 221

 String resultSign = obtainResultSignature(key, body);

 if (resultSign.equals(Sign)) {

 System.out.println("{'Status': 'OK', 'Info': 'Verification successful.'

 } else {

 System.out.println("{'Status': 'FAIL', 'Info': 'Verification failed.'}"

]

]

]

-*- coding: utf8 -*-

import hmac

import base64

from hashlib import sha256

Feature: third-party callback signature verification

Parameters:

key: key configured in the console

body: body returned by Tencent Cloud callbacks

sign: signature value returned by Tencent Cloud callbacks

Returned values:

Status: OK indicates verification successful. FAIL indicates verification faile

Info: success/failure information

def checkSign(key, body, sign):

 temp_dict = {}

 computSign = base64.b64encode(hmac.new(key.encode('utf-8'), body.encode('utf-8'

 print(computSign)

 if computSign equals sign:

 temp_dict['Status'] = 'OK'

 temp_dict['Info'] = 'Verification successful.'

 return temporary_dictionary

 else:

 temp_dict['Status'] = 'FAIL'

 temp_dict['Info'] = 'Verification failed.'

 return temporary_dictionary

if __name__ == '__main__':

 key = '123654'

 body = "{\\n" + "\\t\\"EventGroupId\\":\\t2,\\n" + "\\t\\"EventType\\":\\t204,\

 `sign` = 'kkoFeO3Oh2ZHnjtg8tEAQhtXK16/KI05W3BQff8IvGA='

 result = verifySignature(key, body, sign)

 print(result)

<?php

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 186
of 221

class TlsEventSig {

 private $key = false;

 private $body = false;

 public function __construct($key, $body) {

 $this->key = $key;

	 	 $this->body = $body;

]

 private function __hmacsha256() {

 $hash = hash_hmac('sha256', $this->body, $this->key, true);

	 	 return base64_encode($hash);

]

 public function genEventSig() {

 return $this->__hmacsha256();

]

]

$key="789";

$data="{\\n\\t\\"EventGroupId\\":\\t1,\\n\\t\\"EventType\\":\\t101,\\n\\t\\"Callbac

$api = new TlsEventSig($key, $data);

echo $api->genEventSig();

package main

import "fmt"

import (

	 "crypto/hmac"

	 "crypto/sha256"

	 "encoding/base64"

)

func main () {

 var data = "{\\n\\t\\"EventGroupId\\":\\t1,\\n\\t\\"EventType\\":\\t101,\\n\\t\

 var key = "789"

 //JSRUN Engine 2.0 supports running online in up to 30 languages, providing ful

 fmt.Println(hmacsha256(data,key))

]

func hmacsha256(data string, key string) string {

	 h := hmac.New(sha256.New, []byte(key))

	 h.Write([]byte(data))

	 return base64.StdEncoding.EncodeToString(h.Sum(nil))

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 187
of 221

]

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 188
of 221

Verify Signature Example
Last updated：2023-10-08 16:01:32

Tencent Real-Time Communication(TRTC) console supports self-configuration of callback information. After the
configuration is completed, you can receive event callback notifications. Before configuring the callback information,
you need to prepare a key for signature calculation. You can define a key with a maximum of 32 characters, composed

of uppercase and lowercase letters and numbers.
This document will help you verify signature after calculating it and show you how to perform an example.

Signature calculation

Signatures are calculated using the HMAC SHA256 encryption algorithm. Upon receiving a callback message, your
server will calculate a signature using the same method, and if the results match, it indicates that the callback is from
TRTC and not forged. See below for the calculation method.

// In the formula below, `key` is the key used to calculate a signature.

Sign = base64(hmacsha256(key, body))

Note
 body is the original packet body of the callback request you receive. Do not make any modifications. Below is an

example.

body="{\\n\\t\\"EventGroupId\\":\\t1,\\n\\t\\"EventType\\":\\t103,\\n\\t\\"Callback

Verify signature example

Java
Python
PHP

Golang

import javax.crypto.Mac;

import javax.crypto.spec.SecretKeySpec;

import java.util.Base64;

//# Function: Third-party callback sign verification

//# Parameters:

//# key: The key configured in the console

//# body: The body returned by the Tencent Cloud callback

https://console.tencentcloud.com/trtc
https://www.tencentcloud.com/document/product/647/54912#signature-calculation

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 189
of 221

//# sign: The sign value returned by the Tencent Cloud callback

//# Return Value:

//# Status: OK indicates that the verification has passed, FAIL indicates that th

//# Info: Success/Failure information

public class checkSign {

 public static String getResultSign(String key, String body) throws Exception {

 Mac hmacSha256 = Mac.getInstance("HmacSHA256");

 SecretKeySpec secret_key = new SecretKeySpec(key.getBytes(), "HmacSHA256");

 hmacSha256.init(secret_key);

 return Base64.getEncoder().encodeToString(hmacSha256.doFinal(body.getBytes(

 }

 public static void main(String[] args) throws Exception {

 String key = "123654";

 String body = "{\\n" + "\\t\\"EventGroupId\\":\\t2,\\n" + "\\t\\"EventType\

 String Sign = "kkoFeO3Oh2ZHnjtg8tEAQhtXK16/KI05W3BQff8IvGA=";

 String resultSign = getResultSign(key, body);

 if (resultSign.equals(Sign)) {

 System.out.println("{'Status': 'OK', 'Info': 'validation passed'}");

 } else {

 System.out.println("{'Status': 'FAIL', 'Info': 'validation failed'}");

 }

 }

}

-*- coding: utf8 -*-

import hmac

import base64

from hashlib import sha256

Function: Third-party callback sign verification

Parameters:

key: The key configured in the console

body: The body returned by the Tencent Cloud callback

sign: The sign value returned by the Tencent Cloud callback

Return Value:

Status: OK indicates that the verification has passed, FAIL indicates that the

Info: Success/Failure information

def checkSign(key, body, sign):

 temp_dict = {}

 computSign = base64.b64encode(hmac.new(key.encode('utf-8'), body.encode('utf-8'

 print(computSign)

 if computSign == sign:

 temp_dict['Status'] = 'OK'

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 190
of 221

 temp_dict['Info'] = 'validation passed'

 return temp_dict

 else:

 temp_dict['Status'] = 'FAIL'

 temp_dict['Info'] = 'validation failed'

 return temp_dict

if __name__ == '__main__':

 key = '123654'

 body = "{\\n" + "\\t\\"EventGroupId\\":\\t2,\\n" + "\\t\\"EventType\\":\\t204,\

 sign = 'kkoFeO3Oh2ZHnjtg8tEAQhtXK16/KI05W3BQff8IvGA='

 result = checkSign(key, body, sign)

 print(result)

<?php

class TlsEventSig {

 private $key = false;

 private $body = false;

 public function __construct($key, $body) {

 $this->key = $key;

	 	 $this->body = $body;

 }

 private function __hmacsha256() {

 $hash = hash_hmac('sha256', $this->body, $this->key, true);

	 	 return base64_encode($hash);

 }

 public function genEventSig() {

 return $this->__hmacsha256();

 }

}

$key="789";

$data="{\\n\\t\\"EventGroupId\\":\\t1,\\n\\t\\"EventType\\":\\t101,\\n\\t\\"Callbac

$api = new TlsEventSig($key, $data);

echo $api->genEventSig();

package main

import "fmt"

import (

	 "crypto/hmac"

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 191
of 221

	 "crypto/sha256"

	 "encoding/base64"

)

func main () {

 var data = "{\\n\\t\\"EventGroupId\\":\\t1,\\n\\t\\"EventType\\":\\t101,\\n\\t\

 var key = "789"

 //JSRUN engine 2.0, supporting up to 30 types of languages for online running,

 fmt.Println(hmacsha256(data,key))

}

func hmacsha256(data string, key string) string {

	 h := hmac.New(sha256.New, []byte(key))

	 h.Write([]byte(data))

	 return base64.StdEncoding.EncodeToString(h.Sum(nil))

}

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 192
of 221

Access Management
Overview
Last updated：2023-10-08 16:02:33

notice
This document describes the management of access to TRTC. For access management of other Tencent Cloud
services, see CAM-Enabled Products.

Cloud Access Management (CAM) is a web service provided by Tencent Cloud that helps customers securely
manage access to their Tencent Cloud account resources. CAM allows you to create, manage, or terminate users or
user groups and control who is allowed to access and use your Tencent Cloud resources through identity and policy
management.
TRTC has supported CAM. You can grant TRTC permissions to sub-accounts as needed.

Getting Started

Before you start, make sure that you understand the basic concepts of CAM and TRTC, including:
CAM: User Types and Policy
TRTC: Application and SDKAppID

Use Cases

Granting product-level permissions

A company has multiple departments that are using Tencent Cloud’s products. Department A is solely responsible for
TRTC-related business, and the company needs to grant the department access to TRTC but not to other Tencent
Cloud products. To achieve this, the company can create a sub-account for department A under its root account and

grant the sub-account only TRTC-related permissions.

Granting application-level permissions

A company has multiple businesses that are using TRTC and needs to isolate them from each other. There are two
dimensions to isolation: resource isolation and permission isolation. The former is enabled by TRTC’s application
system, and the latter by CAM. The company can create a sub-account for each of the businesses and grant them
access only to the TRTC applications they are responsible for.

Granting action-level permissions

https://www.tencentcloud.com/document/product/598/10588
https://www.tencentcloud.com/document/product/598
https://www.tencentcloud.com/document/product/598/32633
https://www.tencentcloud.com/document/product/598/10601
https://www.tencentcloud.com/document/product/647/37714
https://www.tencentcloud.com/document/product/647/37714

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 193
of 221

A company has a business that is using TRTC. It needs to grant the business’ operational staff access to the TRTC
console so that they can obtain usage statistics, and at the same time deny them access to critical operations such as
modifying relayed push and on-cloud recording configurations. To achieve this, the company can create a custom

policy that has the permissions to use relevant APIs to log in to the TRTC console and view usage statistics, and
associate the policy with the sub-account created for the operational staff.

Authorization Granularity

In essence, CAM enables you to allow or forbid specified accounts to access certain resources. TRTC access
management supports resource-level authorization. The granularity of manageable resources is TRTC applications,
and the granularity of manageable actions is TencentCloud APIs, including server APIs and the APIs used to access

the TRTC console. For more information, please see Manageable Resources and Actions.

Limitations

The granularity of manageable resources for TRTC access management is applications. Access control of finer
granularity (e.g., application information or configuration information) is not supported.
TRTC does not support project-level access management. We recommend that you use tags to manage your cloud
service resources.

https://www.tencentcloud.com/document/product/598/10588#.E7.AE.80.E4.BB.8B
https://www.tencentcloud.com/document/product/647/37714
https://www.tencentcloud.com/product/api
https://www.tencentcloud.com/document/product/647/34260
https://www.tencentcloud.com/document/product/647/39549
https://www.tencentcloud.com/document/product/647/37714
https://www.tencentcloud.com/document/product/651/13335

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 194
of 221

Manageable Resources and Actions
Last updated：2023-10-08 16:03:14

notice
This document describes the management of access to TRTC. For access management of other Tencent Cloud
services, see CAM-Enabled Products.

In essence, CAM enables you to allow or forbid specified accounts to access certain resources. TRTC access
management supports resource-level authorization. The granularity of manageable resources is TRTC applications,
and the granularity of authorizable actions is TencentCloud APIs, including server APIs and APIs that may be needed
to access the TRTC console.
If you need to manage access to TRTC, please log in to the console with a Tencent Cloud root account and use a

preset policy or a custom policy to grant permissions.

Type of Manageable Resources

TRTC access management allows you to control access to applications.

APIs Supporting Resource-Level Authorization

Barring a few exceptions, all API actions listed in this section support resource-level authorization. Authorization
policies related to these API actions use the same syntax conventions. See below for details.
Authorizing access to all applications: qcs::trtc::uin/${uin}:sdkappid/*

Authorizing access to single applications: qcs::trtc::uin/${uin}:sdkappid/${SdkAppId} .

Server API actions

API Category Description

DismissRoom Room management Closes a room.

RemoveUser Room management Removes a user.

RemoveUserByStrRoomId Room management Removes a user (string room ID).

DismissRoomByStrRoomId Room management Closes a room (string room ID).

StartMCUMixTranscode Stream mixing and
transcoding

Starts On-Cloud MixTranscoding.

https://www.tencentcloud.com/document/product/598/10588
https://www.tencentcloud.com/document/product/598/10588#.E7.AE.80.E4.BB.8B
https://www.tencentcloud.com/document/product/647/37714
https://www.tencentcloud.com/product/api
https://www.tencentcloud.com/document/product/647/34260
https://www.tencentcloud.com/document/product/598/34899
https://www.tencentcloud.com/document/product/647/39550
https://www.tencentcloud.com/document/product/647/39551
https://www.tencentcloud.com/document/product/647/37714
https://www.tencentcloud.com/document/product/647/39551#grammar
https://www.tencentcloud.com/document/product/647/39631
https://www.tencentcloud.com/document/product/647/34268
https://www.tencentcloud.com/document/product/647/39630
https://www.tencentcloud.com/document/product/647/39631
https://www.tencentcloud.com/document/product/647/37761

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 195
of 221

StopMCUMixTranscode Stream mixing and
transcoding

Stops On-Cloud MixTranscoding.

StartMCUMixTranscodeByStrRoomId Stream mixing and
transcoding

Starts On-Cloud MixTranscoding (string
room ID).

StopMCUMixTranscodeByStrRoomId Stream mixing and
transcoding

Stops On-Cloud MixTranscoding (string
room ID).

CreateTroubleInfo Call quality monitoring Generates information about exceptional
conditions.

DescribeAbnormalEvent Call quality monitoring Queries abnormal events.

DescribeCallDetail Call quality monitoring Queries user list and call metrics.

DescribeHistoryScale Call quality monitoring Queries room and user numbers in the
past.

DescribeRoomInformation Call quality monitoring Queries room list.

DescribeUserInformation Call quality monitoring Queries the list of historical users.

Console API actions

API Console Description

DescribeAppStatList

TRTC console:

Overview﻿
Usage Statistics﻿
Monitoring Dashboard﻿
Development Assistance >
UserSig Generation &
Verification﻿
Application Management﻿

Gets application list.

DescribeSdkAppInfo
TRTC console: Application
Management > Application
Info

Gets application information.

ModifyAppInfo
TRTC console: Application
Management > Application
Info

Modifies application information.

ChangeSecretKeyFlag TRTC console: Application
Management > Application

Enables/Disables encryption keys.

https://www.tencentcloud.com/document/product/647/37760
https://www.tencentcloud.com/document/product/647/39637
https://www.tencentcloud.com/document/product/647/39636
https://www.tencentcloud.com/document/product/647/37764
https://www.tencentcloud.com/document/product/647/37763
https://www.tencentcloud.com/document/product/647/36759
https://www.tencentcloud.com/document/product/647/36758
https://www.tencentcloud.com/document/product/647/36754
https://www.tencentcloud.com/document/product/647/39096
https://console.tencentcloud.com/trtc
https://console.tencentcloud.com/trtc/statistics
https://console.tencentcloud.com/trtc/monitor
https://console.tencentcloud.com/trtc/usersigtool
https://console.tencentcloud.com/trtc/app
https://console.tencentcloud.com/trtc/app
https://console.tencentcloud.com/trtc/app
https://console.tencentcloud.com/trtc/app

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 196
of 221

Info

CreateWatermark
TRTC console: Application
Management > Material
Management

Uploads an image.

DeleteWatermark
TRTC console: Application
Management > Material
Management

Deletes an image.

ModifyWatermark
TRTC console: Application
Management > Material
Management

Edits an image.

DescribeWatermark
TRTC console: Application
Management > Material
Management

Searches an image.

CreateSecret TRTC console: Application
Management > Quick Start

Generates a symmetric encryption key.

ToggleSecretVersion
TRTC console:Application
Management > Quick Start

Switches between asymmetric keys
(private and public keys) and symmetric
keys.

DescribeSecret

TRTC console:

Development Assistance >
Demo Quick Run﻿
Development Assistance >
UserSig Generation &
Verification﻿
Application Management >
Quick Start﻿

Gets a symmetric encryption key.

DescribeTrtcAppAndAccountInfo

TRTC console:
Development Assistance >
UserSig Generation &
Verification

Gets application and account information
to obtain a pair of public and private keys.

CreateSecretUserSig

TRTC console:
Development Assistance >
UserSig Generation &
Verification

Uses a symmetric encryption key to
generate a UserSig.

DescribeSig TRTC console: Gets a UserSig generated using a pair of
public and private keys.

https://console.tencentcloud.com/trtc/app
https://console.tencentcloud.com/trtc/app
https://console.tencentcloud.com/trtc/app
https://console.tencentcloud.com/trtc/app
https://console.tencentcloud.com/trtc/app
https://console.tencentcloud.com/trtc/app
https://console.tencentcloud.com/trtc/app
https://console.tencentcloud.com/trtc/quickstart
https://console.tencentcloud.com/trtc/usersigtool
https://console.tencentcloud.com/trtc/app
https://console.tencentcloud.com/trtc/usersigtool
https://console.tencentcloud.com/trtc/usersigtool

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 197
of 221

Development Assistance >
UserSig Generation &
Verification﻿
Application Management >
Quick Start﻿

VerifySecretUserSig

TRTC console:
Development Assistance >
UserSig Generation &
Verification

Verifies a UserSig generated using a
symmetric encryption key.

VerifySig

TRTC console:
Development Assistance >
UserSig Generation &
Verification

Verifies a UserSig generated using a pair
of public and private keys.

CreateSpearConf
TRTC console: Application
Management > Image
Settings

Adds an image setting. This module is
available only in iLiveSDK 1.9.6 and earlier
versions. For TRTC SDK 6.0 and later
versions, see Setting Image Quality

DeleteSpearConf
TRTC console: Application
Management > Image
Settings

Deletes an image setting. This module is
available only in iLiveSDK 1.9.6 and earlier
versions. For TRTC SDK 6.0 and later
versions, see Setting Image Quality

ModifySpearConf
TRTC console: Application
Management > Image
Settings

Modifies image settings. This module is
available only in iLiveSDK 1.9.6 and earlier
versions. For TRTC SDK 6.0 and later
versions, see Setting Image Quality

DescribeSpearConf
TRTC console: Application
Management > Image
Settings

Gets image settings. This module is
available only in iLiveSDK 1.9.6 and earlier
versions. For TRTC SDK 6.0 and later
versions, see Setting Image Quality

ToggleSpearScheme
TRTC console: Application
Management > Image
Settings

Switches image setting scenarios. This
module is available only in iLiveSDK 1.9.6
and earlier versions. For TRTC SDK 6.0
and later versions, see Setting Image
Quality

https://console.tencentcloud.com/trtc/usersigtool
https://console.tencentcloud.com/trtc/app
https://console.tencentcloud.com/trtc/usersigtool
https://console.tencentcloud.com/trtc/usersigtool
https://console.tencentcloud.com/trtc/app
https://www.tencentcloud.com/document/product/647/35153
https://console.tencentcloud.com/trtc/app
https://www.tencentcloud.com/document/product/647/35153
https://console.tencentcloud.com/trtc/app
https://www.tencentcloud.com/document/product/647/35153
https://console.tencentcloud.com/trtc/app
https://www.tencentcloud.com/document/product/647/35153
https://console.tencentcloud.com/trtc/app
https://www.tencentcloud.com/document/product/647/35153

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 198
of 221

APIs Not Supporting Resource-Level Authorization

Due to special restrictions, the following APIs do not support resource-level authorization.

Server API actions

API Category Description Restriction

DescribeDetailEvent
Call
quality
monitoring

Queries specific
events.

The parameters entered do not
include SDKAppID , making
resource-level authorization
impossible.

DescribeRecordStatistic
Other
APIs

Queries the billing
period of on-cloud
recording.

For business reasons, resource-
level authorization is not supported
currently.

DescribeTrtcInteractiveTime Other
APIs

Queries the billing
period for
audio/video
interactive features.

For business reasons, resource-
level authorization is not supported
currently.

DescribeTrtcMcuTranscodeTime
Other
APIs

Queries the billing
period of relayed
transcoding.

For business reasons, resource-
level authorization is not supported
currently.

Console API actions

API Console Description Restriction

DescribeTrtcStatistic

TRTC
console:

Overview﻿
Usage
Statistics﻿

Gets usage
statistics.

This API returns the statistics of all
`SDKAppIDs`. Limiting a query to specific
`SDKAppIDs` will lead to an error. You
can use `DescribeAppStatList` to specify
a list of applications to query.

DescribeDurationPackages

TRTC
console:

Overview﻿
Package
Management﻿

Gets the list of
prepaid
packages.

A prepaid package is shared by all
TRTC applications under the same
Tencent Cloud account. There is no
`SDKAppID` parameter in the package
information, so resource-level
authorization cannot be performed.

GetUserList TRTC
console:

Gets user list. The parameters entered do not include
`SDKAppID`, making resource-level

https://console.tencentcloud.com/trtc
https://console.tencentcloud.com/trtc/statistics
https://console.tencentcloud.com/trtc
https://console.tencentcloud.com/trtc/package

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 199
of 221

Monitoring
Dashboard

authorization impossible. You can use
`DescribeAppStatList` to specify a list of
applications to query.

GetUserInfo

TRTC
console:
Monitoring
Dashboard

Gets user
information.

The parameters entered do not include
`SDKAppID`, making resource-level
authorization impossible. You can use
`DescribeAppStatList` to specify a list of
applications to query.

GetCommState

TRTC
console:
Monitoring
Dashboard

Gets call status.

The parameters entered do not include
`SDKAppID`, making resource-level
authorization impossible. You can use
`DescribeAppStatList` to specify a list of
applications to query.

GetElasticSearchData

TRTC
console:
Monitoring
Dashboard

Queries
Elasticsearch
data.

The parameters entered do not include
`SDKAppID`, making resource-level
authorization impossible. You can use
`DescribeAppStatList` to specify a list of
applications to query.

CreateTrtcApp

TRTC
console:

Development
Assistance >
Demo Quick
Run﻿
Application
Management﻿

Creates a TRTC
application.

The parameters entered do not include
`SDKAppID`, making resource-level
authorization impossible. `SDKAppID` is
the unique ID of a TRTC application and
is generated after application creation.

HardDescribeMixConf

TRTC
console:
Application
Management
> Function
Configuration

Queries relayed
push status.

The parameters entered do not include
`SDKAppID`, making resource-level
authorization impossible. You can use
`DescribeAppStatList` to specify a list of
applications to query.

ModifyMixConf

TRTC
console:
Application
Management
> Function
Configuration

Enables/Disables
relayed push.

The parameters entered do not include
`SDKAppID`, making resource-level
authorization impossible. You can use
`DescribeAppStatList` to specify a list of
applications to query.

RemindBalance TRTC Gets the balance A prepaid package is shared by all

https://console.tencentcloud.com/trtc/monitor
https://console.tencentcloud.com/trtc/monitor
https://console.tencentcloud.com/trtc/monitor
https://console.tencentcloud.com/trtc/monitor
https://console.tencentcloud.com/trtc/quickstart
https://console.tencentcloud.com/trtc/app
https://console.tencentcloud.com/trtc/app
https://console.tencentcloud.com/trtc/app

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 200
of 221

console:
Package
Management

alarm information
of a prepaid
package.

TRTC applications under the same
Tencent Cloud account. There is no
`SDKAppID` parameter in the package
information, so resource-level
authorization cannot be performed.

notice

You can use a custom policy to control access to an API that does not support resource-level authorization. In the
policy statement, set the resource element to * .

https://console.tencentcloud.com/trtc/package
https://www.tencentcloud.com/document/product/647/39551

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 201
of 221

Preset Policies
Last updated：2023-10-08 16:03:39

notice
This document describes the management of access to TRTC. For access management of other Tencent Cloud
services, see CAM-Enabled Products.

TRTC access management works by associating permission policies with sub-accounts or granting policies to sub-
accounts. The preset policies in the console allow you to perform some simple authorization. For more sophisticated
authorization, see Custom Policies.
TRTC offers the following preset policies currently.

Policy Description

QcloudTRTCFullAccess Read-and-write permission

QcloudTRTCReadonlyAccess Read-only permission

Examples of Using Preset Policies

Creating a sub-account with the read-and-write permission

1. Go to the User List page of the CAM console using a Tencent Cloud root account and click Create User.

2. On the displayed page, click Custom Creation to go to the "Create Sub-user" page.
explain
Finish the steps before User Permissions as instructed in Creating a Custom Sub-user.
3. On the User Permissions page:
3.1 Search for and check the preset policy QcloudTRTCFullAccess .

3.2 Click Next.

4. In the Review step, click Complete. After the sub-user is created successfully, download the login link and security
credential file and store them properly. They contain the following information.

Information Source Use Storage
Required

Login link Copied from the
console page

Facilitates console login. Root account information is
not required for login via the link.

No

User ID Security credential file
in CSV format

Required for console login Yes

Password Security credential file Required for console login Yes

https://www.tencentcloud.com/document/product/598/10588
https://www.tencentcloud.com/document/product/647/39551
https://console.tencentcloud.com/cam
https://www.tencentcloud.com/document/product/598/32633
https://www.tencentcloud.com/document/product/598/13674

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 202
of 221

in CSV format

SecretId Security credential file
in CSV format

Required for server API calling. For more information,
seeAccess Key

Yes

SecretKey Security credential file
in CSV format

Required for server API calling. For more information,
seeAccess Key

Yes

5. Provide the login link and security credentials to the party you want to authorize access, who will be able to use the
sub-account to perform all kinds of TRTC operations, including visiting the TRTC console, calling TRTC server APIs,
etc.

Granting read-and-write permission to existing sub-account

1. Go to the User List of the CAM console using a Tencent Cloud root account and click the target sub-account.
2. On the User Details page, click Add under the Permission tab. If the sub-account already has permissions, click
Associate Policy.
3. Click Select policies from the policy list, search for and check the preset policy QcloudTRTCFullAccess ,

and complete the authorization as prompted.

Revoke the read-and-write permission of a sub-account

1. Go to the User List of the CAM console using a Tencent Cloud root account and click the target sub-account.
2. On the User Details page, find the preset policy QcloudTRTCFullAccess under the Permission tab, click

Disassociate on the right, and complete the deauthorization as prompted.

https://www.tencentcloud.com/document/product/598/32675
https://www.tencentcloud.com/document/product/598/32675
https://console.tencentcloud.com/cam
https://www.tencentcloud.com/document/product/598/32633
https://console.tencentcloud.com/cam
https://www.tencentcloud.com/document/product/598/32633

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 203
of 221

Custom Policies
Last updated：2023-10-08 16:05:09

notice
This document describes the management of access to TRTC. For access management of other Tencent Cloud
services, see CAM-Enabled Products.

It may be convenient to use a preset policy for access management in TRTC, but with preset policies, the granularity
level of permissions is low, and permission granting cannot be specific to TRTC applications or TencentCloud APIs.
To perform fine-grained authorization, you need to create custom policies.

Custom Policy Creation

There are multiple ways to create a custom policy. The table below offers a comparison of different methods. For
detailed directions, see the remaining part of the document.

Access Tool Effect Resource Action Flexibility Complexity

CAM
console

Policy
generator

Manual
selection

Syntax
conventions

Manual
selection

Medium Medium

CAM
console

Policy
syntax

Syntax
conventions

Syntax
conventions

Syntax
conventions

High High

CAM
server API

CreatePolicy Syntax
conventions

Syntax
conventions

Syntax
conventions

High High

explain
TRTC does not support custom policy creation by product feature or project.
Manual selection means that you can select an object from a list of candidates offered in the console.
Syntax conventions means using the permission policy syntax to describe an object.

Permission Policy Syntax

Resource syntax conventions

The granularity level of manageable resources in TRTC access management is applications. Syntax conventions of
permission policies for applications are in line with the Resource Description Method. In the example below, the

https://www.tencentcloud.com/document/product/598/10588
https://www.tencentcloud.com/document/product/647/39550
https://www.tencentcloud.com/document/product/647/37714
https://www.tencentcloud.com/product/api
https://console.tencentcloud.com/cam/policy
https://console.tencentcloud.com/cam/policy
https://www.tencentcloud.com/document/product/598/32248
https://www.tencentcloud.com/document/product/598/10606

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 204
of 221

developer (root account ID: 12345678) has created three applications, whose SDKAppIDs are

 1400000000 , 1400000001 , and 1400000002 .

Syntax convention of permission policy for all TRTC applications

"resource": [

 "qcs::trtc::uin/12345678:sdkappid/*"

]

Syntax convention of permission policy for single TRTC applications

"resource": [

 "qcs::trtc::uin/12345678:sdkappid/1400000001"

]

Syntax convention of permission policy for multiple TRTC applications

"resource": [

 "qcs::trtc::uin/12345678:sdkappid/1400000000",

 "qcs::trtc::uin/12345678:sdkappid/1400000001"

]

Action syntax conventions

The granularity level of authorizable actions in TRTC access management is TencentCloud APIs. For details, see
Manageable Resources and Actions. The examples below use TencentCloud APIs such as DescribeAppList

(gets application list) and DescribeAppInfo (gets application information).

Syntax convention of permission policy for all TencentCloud APIs

"action": [

 "name/trtc:*"

]

Syntax convention of permission policy for single TencentCloud APIs

"action": [

 "name/trtc:DescribeAppStatList"

]

Syntax convention of permission policy for multiple TencentCloud APIs

"action": [

 "name/trtc:DescribeAppStatList",

 "name/trtc:DescribeTrtcAppAndAccountInfo"

]

https://www.tencentcloud.com/document/product/647/39549

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 205
of 221

Examples of Using Custom Policies

Using the policy generator

In the example below, we create a custom policy that allows all actions under TRTC application 1400000001

except calling the server API RemoveUser .

1. Go to the Policy page of the CAM console using a Tencent Cloud root account and click Create Custom Policy.

2. Select Create by Policy Generator.
3. Select the service and action.
For Effect, select Allow.
For Service, select Tencent Real-Time Communication (trtc) .
For Action, check all the items.

For Resource, enter qcs::trtc::uin/12345678:sdkappid/1400000001 , which aligns with the syntax

described in Resource syntax conventions.
No configuration is needed for Condition.
Click Add Statement, and a statement indicating that any action is allowed under TRTC application 1400000001

appears below.
4. Add another statement on the same page.

For Effect, select Deny.
For Service, select Tencent Real-Time Communication (trtc).
For Action, select RemoveUser . You can use the search feature to quickly locate the action.

For Resource, enter qcs::trtc::uin/12345678:sdkappid/1400000001 , which aligns with the syntax

described in Resource syntax conventions.

No configuration is needed for Condition.
Click Add Statement, and a statement indicating that calling RemoveUser is forbidden under TRTC application

 1400000001 appears below.

5. Click Next and rename the policy if necessary.
6. Click Done to complete the creation.

You can then grant the policy to other sub-accounts as described in Granting read-and-write permission to existing
sub-account.

Using the policy syntax

In the example below, we create a custom policy that allows all actions under TRTC application 1400000002 and

all actions but calling RemoveUser under 1400000001 .

1. Go to the Policy page of the CAM console using a Tencent Cloud root account and click Create Custom Policy.
2. Select Create by Policy Syntax.

3. In the Select a template type section, select Blank Template.
explain

https://console.tencentcloud.com/cam/policy
https://www.tencentcloud.com/document/product/598/32633
https://www.tencentcloud.com/document/product/647/39551#resource-syntax-conventions
https://www.tencentcloud.com/document/product/647/39551#resource-syntax-conventions
https://www.tencentcloud.com/document/product/647/39550#FullRW
https://console.tencentcloud.com/cam/policy
https://www.tencentcloud.com/document/product/598/32633

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 206
of 221

A policy template allows you to create a policy by modifying a copy of an existing policy (preset or custom). You can
choose a policy template that fits your actual conditions to reduce the complexity and workload of writing permission
policies.

4. Click Next and rename the policy if necessary.
5. Enter the following content in the Policy Content box.

{

 "version": "2.0",

 "statement":[

 {

 "effect": "allow",

 "action": [

 "name/trtc:*"

],

 "resource": [

 "qcs::trtc::uin/12345678:sdkappid/1400000001",

 "qcs::trtc::uin/12345678:sdkappid/1400000002"

]

 },

 {

 "effect": "deny",

 "action": [

 "name/trtc:RemoveUser"

],

 "resource": [

 "qcs::trtc::uin/12345678:sdkappid/1400000001"

]

 }

]

}

explain
 Policy content must align with the Syntax Logic. About the syntax of the resource and action elements, see Resource
syntax conventions and Action syntax conventions above.

6. Click Create Policy to complete the creation.
You can then grant the policy to other sub-accounts as described in Granting read-and-write permission to existing
sub-account.

Using server APIs provided by CAM

Managing access in the console can meet the business needs of most developers, but to automate and systematize
your access management, you need to use server APIs.

Permission policy-related server APIs belong to CAM. For details, see CAM documentation. Only a few main APIs are
listed below:

https://www.tencentcloud.com/document/product/598/10603
https://www.tencentcloud.com/document/product/647/39551#resource-syntax-conventions
https://www.tencentcloud.com/document/product/647/39551#action-syntax-conventions
https://www.tencentcloud.com/document/product/647/39550#FullRW
https://www.tencentcloud.com/document/product/598

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 207
of 221

CreatePolicy
DeletePolicy
AttachUserPolicy

DetachUserPolicy

https://www.tencentcloud.com/document/product/598/32248
https://www.tencentcloud.com/document/product/598/32247
https://www.tencentcloud.com/document/product/598/32249
https://www.tencentcloud.com/document/product/598/32245

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 208
of 221

Enable Watermark
Flutter
Last updated：2024-09-02 17:21:28

This document mainly explains how to add a watermark to a video stream.

Implementation Steps

Enable the camera

trtcCloud.startLocalPreview(isFrontCamera, viewId);

Watermarking

Assuming we need to add a local image bg_main_title.png as a watermark on the Main Screen

(TRTC_VIDEO_STREAM_TYPE_BIG):

trtcCloud.setWatermark("images/bg_main_title.png", TRTCCloudDef.TRTC_VIDEO_STREAM_T

The position of the watermark is specified by the rect parameter, which is a tuple parameter in the format
(x,y,width,height)

 x: Coordinates of the watermark, value range is a float between 0 and 1.
 y: Coordinates of the watermark, value range is a float between 0 and 1.
 width: Width of the watermark, value range is a float between 0 and 1.
 height: No need to set, the SDK will automatically calculate a suitable height based on the aspect ratio of the
watermark image.

Example of parameter setting:
If the current video encoding resolution is 540 × 960, and the rect parameter is set to (0.1, 0.1, 0.2, 0.0),
then the top-left coordinate point of the watermark will be (540 × 0.1, 960 × 0.1) which is (54, 96). The watermark's
width will be 540 × 0.2 = 108px. The height of the watermark will be automatically calculated by the SDK based on the
aspect ratio of the watermark image.

Note:
The watermark image must use a transparent background PNG format.
The watermark added through the setWatermark interface is not visible in the local preview. To view the watermark
effect, you need to get the user stream with the set watermark from the remote end.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 209
of 221

Pulling the video stream with a watermark

Pull the user video stream with a watermark on another device.

trtcCloud.startRemoteView("denny", TRTCCloudDef.TRTC_VIDEO_STREAM_TYPE_BIG, viewId)

Cancel the watermark

By passing a null value, you can cancel the watermark in your published video stream.

trtcCloud.setWatermark("", TRTCCloudDef.TRTC_VIDEO_STREAM_TYPE_BIG, 0.3, 0.4, 0.4);

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 210
of 221

How to push stream to TRTC room with OBS
WHIP
Last updated：2024-08-07 10:53:53

Overview

OBS includes WHIP support, which allows you to do many interesting things by combining the powers of both OBS
and WHIP.
WHIP is a standard protocol that lets you use HTML5 and different clients to publish and play live streams. Plus, you

can use open-source tools to build your own live streaming platform.
You can also use TRTC (Tencent Real-Time Communication) cloud services with OBS WHIP support for a streaming
platform. This is a great option if you don't want to build your own platform or need a more reliable and stable platform
with dedicated support.
Additionally, TRTC (Tencent Real-Time Communication) provides a free trial that includes a specific amount of

streaming time, making it super easy for you to try out.
If you need help or run into any problems, don't hesitate to contact us on Discord.

Prerequisites

Before you move forward, double-check that you've got these necessary items ready:
OBS with WHIP support, please download from OBS﻿
TRTC (Tencent Real-Time Communication) account, please register here﻿
Next, you need to create a TRTC application and generate a Bearer Token for WHIP.

Step 1: Create a TRTC application

Please follow the steps below to create a TRTC application:
1. Log in to the Tencent RTC Console and click Create Application.

https://discord.gg/vDHty6ddrZ
https://obsproject.com/
https://www.tencentcloud.com/account/login?s_url=https%253A%252F%252Fconsole.tencentcloud.com%252Ftrtc&utm_source=community&utm_medium=github&utm_campaign=OBS-WHIP-TRTC&_channel_track_key=6vGiu0P3
https://console.trtc.io/app

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 211
of 221

2. In the creation pop-up, based on the actual business needs, select a product and enter the application name, select
the Data Storage Region, and click Create.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 212
of 221

3. After completing the application creation, you will automatically enter the application details page of the selected
product. You can view the SDKAppID and SDKSecretKey in the Application Overview, which will be used in

subsequent steps.

Step 2: Create a Bearer Token for WHIP

Following that, you must generate a Bearer Token for WHIP, which will be utilized in OBS.
You can directly visit https://tencent-rtc.github.io/obs-trtc/bearer.html to create a WHIP Bearer Token. Ensure that use
the AppID with your own SDKAppID and secret with your own SDKSecretKey , then click the Generate

Bearer Token button.

https://tencent-rtc.github.io/obs-trtc/bearer.html

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 213
of 221

Note：
You can also access the url https://tencent-rtc.github.io/obs-trtc/bearer.html?

appid=2000xxx&secret=yyyyyy to setup the parameters.

Next, use the generated WHIP Bearer Token to configure OBS.

Step 3: Configure OBS

In the OBS WHIP section, you will find the generated WHIP Server and Bearer Token for configuring

OBS.

Please follow the steps below to configure OBS:
1. Open OBS and click Settings.
2. Click Stream on the left sidebar.
3. Select WHIP for Service.

4. Make sure to input the Server and Bearer Token accurately.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 214
of 221

5. Click OK to save the settings.
6. Click Start Streaming to start.

At this point, the stream is streaming to the TRTC service.

Step 4: Play the stream

Open the previous webpage, go to the WHEP Player section, and click Play Stream to play the stream via

WHEP.

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 215
of 221

Another option is to go to the TRTC Room section, and click Join Room to access the TRTC room and watch the

stream via TRTC, or you can utilize the TRTC mobile SDK to join the room and view the stream.

Since both WHIP and WHEP are standard protocols, you can utilize any client that supports them to play the stream.

Conclusion

We looked into using TRTC (Tencent Real-Time Communication) cloud services to make a stronger streaming
platform and the steps needed to create a TRTC app with OBS WHIP help. These tools make it easier to organize and
provide real-time live streaming experiences for different situations, with the power of OBS.

If you require assistance or encounter any difficulties, please feel free to reach out to us via Discord.

https://discord.gg/vDHty6ddrZ

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 216
of 221

Video Screenshot Upload
Last updated：2024-10-21 17:53:26

Feature Overview

TRTC currently supports the automatic screenshot upload feature of SDK. Screenshots can be used in scenarios
such as third-party review and setting cover images to meet the needs of users.

Prerequisites

Log in to Console to create an RTC Engine application.

Navigate to Application> Advanced Features, enable the Video Screenshot Upload feature, and configure the
specified storage location (currently supporting Tencent Cloud Object Storage (COS) and AWS S3).

Note:
1. To use the Video Screenshot Upload feature, you need to purchase the RTC Engine Pro Edition package. For
more information on monthly packages, see RTC-Engine Monthly Packages.

2. The Video Screenshot Upload feature will incur charges based on the number of screenshots taken. For more
details, see Fee Details.
3. To use the Video Screenshot Upload feature, please submit a ticket to contact us for the latest version of the
SDK (currently supported on Android, iOS/Mac and Windows).

Feature Overview

https://console.trtc.io/
https://console.trtc.io/features
https://www.tencentcloud.com/document/product/647/56025#
https://www.tencentcloud.com/document/product/647/64803#

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 217
of 221

1. See Prerequisites, enable the feature toggle and set the storage location.
2. Use the SDK experimental interface callExperimentalAPI to utilize this feature. The parameters shall be passed as a
JSON string. The parameter description is as follows:

{

 "api": "enableAutoSnapshotAndUpload",

 "params" : {

 "'enable": 1, //Start/stop automatic screenshot, int, required. Field values: 0

 "intervalS": 1, //Screenshot interval, int, optional. The interval is expressed

 "streamType": 0, //Stream type, int, optional. Field values: 0: BigStream, and

 "extraInfo": "customized messages" //Screenshot upload additional information,

 }

}

Note:
The screenshot upload task will only start after the enterRoom is successful.
It is recommended to call this method after the startLocalPreview is successful to avoid screenshot upload task failure.

Receiving Server-side Event Callbacks

Configuration Information

TRTC Console supports self-configured callback information. Once configured, you can receive event callback
notifications. For detailed directions, see Callback Configuration.
Note:

You need to prepare the following information in advance:
Required: The HTTP/HTTPS server address to receive callback notifications.
Optional: The key for calculating the signature. It is a key of up to 32 characters defined by you, consisting of
uppercase and lowercase letters and numbers.

Timeout Retry

If the event callback server does not receive a response from your server within 5 seconds after sending a message

notification, it is considered a notification failure. After the first failure, an immediate retry is attempted. Subsequent
retries will occur at 10-second intervals until the message retention time exceeds 1 minute, after which no further
retries will be made.

Format of Event Callback Message

The event callback message is dispatched to your server via HTTP/HTTPS POST requests, in which:
Character Encoding Format: UTF-8.

https://www.tencentcloud.com/document/product/647/39559#

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 218
of 221

Request: The body is in JSON format.
Response: HTTP STATUS CODE = 200. The server ignores the specific content of the response package. For the
sake of a friendly protocol, it is recommended that the response content from a customer shall carry JSON: {"code":0}.

Package Example: The following is a package example of the "Retweet Time Group - CDN Streaming in Progress"
event.

Callback Message Parameters

The header of the event callback message contains the following fields:

Field name Value

Content-Type application/json

Sign Signature value

SdkAppId sdk application id

The body of the event callback message contains the following fields:

Field name Type Meaning

EventGroupId Number Event group ID, the value of a screenshot event
(EVENT_GROUP_SCREEN_SHOT) is 6

EventType Number
The event type of the callback notification, the value of a
video screenshot (EVENT_TYPE_VIDEO_SCREENSHOT)
is 601

CallbackTs Number The Unix timestamp when the event callback server sends a
callback request to your server, expressed in millisecond

EventInfo JSON
Object

Event information

Description of event information :

Field name Type Meaning

eventId String The event ID for this callback

callbackData String Screenshot upload additional information, reported via the
client's extraInfo

pictureURL String The URL of the screenshot

code Number Task execution status code, default: 0, indicating that the

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 219
of 221

task is executed successfully

msg String Description information of task execution

roomID String/Number Room ID

streamType String Stream type of the screenshot, BigStream or
SubStream

userID String Screenshot username

timestamp Number UTC timestamp of the screenshot, accurate to millisecond

Callback Request Example

{

 "EventGroupId": 6,

 "EventType": 601,

 "CallbackTs": 1698410059705,

 "EventInfo": {

 "eventID": "ap-guangzhou-1400000000-1698410059243691647-60022-jpg.jpg",

 "callbackData": "test",

 "pictureURL": "https://sotest-1200000000.cos.ap-guangzhou.myqcloud.com/14000

 "code": 0,

 "msg": "",

 "roomID": "464884",

 "streamType": "BigStream",

 "userID": "dd",

 "timestamp": 1698410059693

 }

}

Calculating Signature

The signature is calculated by using the HMAC SHA256 encryption algorithm. When your event callback receiver
receives a callback message, it calculates the signature in the same way. If the signatures match, it indicates that the

callback is from Tencent Cloud Real-Time Audio and Video and has not been tampered with. The calculations of the
signature are as follows:

//In the calculation formula of Sign, the key is the encryption key for calculating

Sign = base64 (hmacsha256(key, body))

Note:
The body is the original package of the callback request you received. Do not perform any transformations; it is
imperative to preserve in its entirety, including \\n\\t escape characters. An example is provided below:

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 220
of 221

body="{\\n\\t\\"EventGroupId\\":\\t1,\\n\\t\\"EventType\\":\\t103,\\n\\t\\"Callback

Signature Verification Example (Java)

import javax.crypto.Mac;

import javax.crypto.spec.SecretKeySpec;

import java.util.Base64;

//# Feature: Verification of the third-party callback sign

//# Parameters:

//# Key: The key configured in the console

//# Body: The body returned by Tencent Cloud callback

//# Sign: The sign returned by Tencent Cloud callback

//# Returned values:

//# Status OK indicates that it has passed the verification, and FAIL indicates tha

//# Info: The information of pass/fail

	 	

	 	 	 	 	 	 	 	 	

public class checkSign {

 public static String getResultSign(String key, String body) throws

	 	 	 	 	 	

Exception {

 Mac hmacSha256 = Mac.getInstance("HmacSHA256");

 SecretKeySpec secret_key = new SecretKeySpec(key.getBytes(),

"HmacSHA256");

 hmacSha256.initialize(secret_key);

	 	 return	 	 	 	 	

Base64.getEncoder().encodeToString(hmacSha256.doFinal(body.getBytes()));

 }	 	 	 	 	

 public static void main(String[] args) throws Exception {

 String key = "123654";

 String body = "{\\n" + "\\t\\"EventGroupId\\":\\t2,\\n" +	

"\\t\\"EventType\\":\\t204,\\n" + "\\t\\"CallbackTs\\":\\t1664209748188,\\n" +

"\\t\\"EventInfo\\":\\t{\\n" + "\\t\\t\\"RoomId\\":\\t8489,\\n" +

"\\t\\t\\"EventTs\\":\\t1664209748,\\n" + "\\t\\t\\"EventMsTs\\":\\t1664209748180,\

"\\t\\t\\"UserId\\":\\t\\"user_85034614\\",\\n" + "\\t\\t\\"Reason\\":\\t0\\n" + "\

"}";

	 	 	 	 	 	

 String Sign = "kkoFeO3Oh2ZHnjtg8tEAQhtXK16/KI05W3BQff8IvGA=";

 String resultSign = obtainResultSignature(key, body);

 if (resultSign.equals(Sign)) {

 System.out.println("{'Status': 'OK', 'Info': 'Verification passed'}");

 } else {

 System.out.println("{'Status': 'FAIL', 'Info': 'Verification failed'}")

Tencent Real-Time Communication

©2013-2025 Tencent Cloud International Pte. Ltd. Page 221
of 221

 }

 }

} 	

Note:
For more signature examples, see Signature Verification Example.

https://www.tencentcloud.com/document/product/647/54912#

