
TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 1 of 101

TDMQ for CKafka

General References

Product Documentation

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 2 of 101

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 3 of 101

Contents

General References
Conducting Production and Consumption Pressure Testing on CKafka
Configuration Guide for Common Parameters in CKafka
Connecting to Legacy Self-Built Kafka
Suggestions for CKafka Version Selection
CKafka Data Reliability Description
Connector

Database Change Subscription
MongoDB Data Subscription
MySQL Data Subscription
PostgreSQL Data Subscription
Official Format Description for MySQL Subscription Messages
Canal Format of MySQL Subscription Message
User Permission Settings Reference for PostgreSQL Subscription by Connector

Data Processing
Data Processing Rule Description
Regular Expression Extraction
JSONPath Description

Self-Built Cluster Connection Instructions (CLB Method)
Authorization Instructions for Access to CLS and COS Services Through Connectors
What Is a Signaling Table

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 4 of 101

General References
Conducting Production and Consumption
Pressure Testing on CKafka
Last updated：2024-01-09 15:02:47

Testing Tool

The open-source script of the Kafka client can be used for Kafka producer and consumer performance testing. Test
results are displayed mainly based on the size of messages sent per second (MB/second) and the number of
messages sent per second (records/second).

Kafka producer test script: $KAFKA_HOME/bin/kafka-producer-perf-test.sh

Kafka consumer test script: $KAFKA_HOME/bin/kafka-consumer-perf-test.sh

Testing Command

Note:
The ckafka vip:vport in the following sample commands should be replaced by the actual IP and port

assigned for your instance.

Sample command for production testing:

bin/kafka-producer-perf-test.sh

--topic test

--num-records 123

--record-size 1000

--producer-props bootstrap.servers= ckafka vip : port

--throughput 20000

Sample command for consumption testing:

bin/kafka-consumer-perf-test.sh

--topic test

--new-consumer

--fetch-size 10000

--messages 1000

--broker-list bootstrap.servers=ckafka vip : port

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 5 of 101

Suggestions

We recommend you create three or more partitions to increase throughput. This is because there must be at least
three CKafka cluster nodes at the backend. If only one partition is created, it will be distributed in a single broker,
which will affect CKafka performance.

As messages in each CKafka partition are ordered, the production performance will be affected if there are too many
partitions. We recommend you create up to six partitions.
It is necessary to simulate concurrency with multiple clients to ensure the testing effect. We recommend you use
multiple test servers as the pressure test clients (producers) and start multiple pressure test programs on each test
server to increase concurrency. To avoid the high load of test servers, you are also recommended to start one

producer every second rather than all producers simultaneously.

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 6 of 101

Configuration Guide for Common Parameters
in CKafka
Last updated：2024-01-09 15:02:48

Broker Configuration Parameter Description

The following are the configurations of a CKafka Broker for your reference:

Maximum message length in bytes.

message.max.bytes=1000012

Whether to allow automatic creation of topics. The default value is false. Curren

auto.create.topics.enable=false

Whether to allow topic deletion by calling the API.

delete.topic.enable=true

The maximum request length allowed for a Broker is 16 MB.

socket.request.max.bytes=16777216

Each IP can establish up to 5,000 connections with a Broker.

max.connections.per.ip=5000

Offset retention period. The default value is 7 days.

offsets.retention.minutes=10080

Everyone is allowed to access when there is no ACL configuration.

allow.everyone.if.no.acl.found=true

The log segment size is 1 GB.

log.segment.bytes=1073741824

The log rolling check interval is 5 minutes. If the retention period is set to le

log.retention.check.interval.ms=300000

Note:
For configurations not listed here, see the open-source Kafka default configurations.

Topic Configuration Parameter Description

http://kafka.apache.org/0102/documentation.html#brokerconfigs

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 7 of 101

1. Number of partitions

From the producer's point of view, writes to different partitions are completely in parallel; from the consumer's point of
view, the number of concurrencies depends entirely on the number of partitions (if there are more consumers than
partitions, there will definitely be idle consumers). It is important to select an appropriate number of partitions to fully

play the performance of the CKafka instance.
The number of partitions should be determined based on the throughput of production and consumption, ideally
through the following formula:
Note:
Num = max(T/PT, T/CT) = T/min(PT, CT)

Num represents the number of partitions, T the target throughput, PT the maximum production throughput by the
producer to a single partition, and CT the maximum consumption throughput by the consumer from a single partition.
The number of partitions is equal to T/PT or T/CT, whichever is larger.
In practice, the actual PT is determined by batch size, compression algorithm, acknowledgement mechanism, number
of replicas, and so on, while the actual CT is subject to business logic, which varies according to the actual conditions.
We recommend that the number of partitions be greater than or equal to that of consumers to achieve

maximum concurrency. For example, if there are 5 consumers, there should be 5 or more partitions.
However, having too many partitions will lower production throughput and increase time consumed by elections and
thus need to be avoided. See the following for reference:
A single partition can implement sequential writes of messages.
A single partition can only be consumed by a single consumer process in the same consumer group.

A single consumer process can consume multiple partitions simultaneously, so partition limits the concurrency of
consumers.
The more partitions there are, the longer it takes to elect a leader upon failure.
Offset can be down to the partition level. The more partitions there are, the more time the offset query consumes.
The number of partitions can be dynamically increased but not reduced. However, an increase will result in message

rebalance.

2. Number of replicas

At present, the number of replicas must be at least 2 to ensure availability. To ensure high reliability, we recommend
maintaining at least 3 replicas.
Note:
The number of replicas will affect the production/consumption traffic; for example, if there are 3 replicas, the actual
traffic will be 3 times the production traffic.

3. Log retention period

The log.retention.ms configuration of a topic is set through the retention period of the instance in the console.

4. Other topic-level configurations

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 8 of 101

Maximum message length at the topic level.

max.message.bytes=1000012

Messages in the 0.10.2 version are in the V1 format.

message.format.version=0.10.2-IV0

Replica not in ISR can be selected as a leader; in this case, availability is hig

unclean.leader.election.enable=true

Minimum number of replicas for producer requests submitted by ISR. If the number

min.insync.replicas=1

Producer Configuration Guide

The following describes common parameter settings for the Producer client. We recommend adjusting them based on

your actual business scenarios:

The producer will attempt to bundle and send the messages sent to the same partit

batch.size=16384

The following describes the 3 ACK mechanisms supported by a Kafka producer:

-1 or all: the Broker responds to the producer and continues to send the next mes

0: the producer continues to send the next message or next batch of messages with

1: the producer sends the next message or next batch of messages after it receive

If users do not configure this, the default value will be 1. Users can customize

acks=1

Control the maximum time a production request waits in the Broker for replica syn

timeout.ms=30000

Configure the memory that the producer uses to cache messages to be sent to the B

buffer.memory=33554432

If messages are produced faster than they are sent by the sender thread to the Br

max.block.ms=60000

Set the time to send the scheduled message, so that more messages can be sent in

linger.ms=0

Maximum size of the request packet that the producer can send, which defaults to

max.request.size=1048576

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 9 of 101

Compression format configuration. Currently, version 0.9 and earlier do not suppo

compression.type=[none, snappy, lz4]

Timeout period for the client to send a request to the Broker, which cannot be sm

request.timeout.ms=30000

Maximum number of unacknowledged requests that the client can send on each connec

max.in.flight.requests.per.connection=5

Number of retries upon request error. It is recommended that you set the paramete

retries=0

Retry interval upon request failure.

retry.backoff.ms=100

Consumer Configuration Guide

The following describes common parameter settings for the Consumer client. We recommend adjusting them based
on your actual business scenarios:

Whether to sync the offset to the Broker after a message is consumed, so the late

auto.commit.enable=true

Interval for the automatic submission of offset when auto.commit.enable=true is c

auto.commit.interval.ms=5000

Mode to initialize the offset when no offset is configured for the Broker (such a

earliest: reset to the minimum offset in the partition.

latest: reset to the maximum offset in the partition. This is the default value.

none: throw an OffsetOutOfRangeException exception without resetting the offset.

auto.offset.reset=latest

Identify the consumer group to which the consumer belongs.

group.id=""

Consumer timeout period when the Kafka consumer groups are used. If the Broker do

session.timeout.ms=10000

Interval at which the consumer sends a heartbeat when the Kafka consumer groups a

heartbeat.interval.ms=3000

Maximum interval allowed for calling the poll again when the Kafka consumer group

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 10 of 101

max.poll.interval.ms=300000

Minimum data size returned by a fetch request. The default value is 1 B, indicati

fetch.min.bytes=1

Maximum data size returned by a fetch request. The default value is 50 MB.

fetch.max.bytes=52428800

Fetch request wait time.

fetch.max.wait.ms=500

Maximum data size returned by each partition in a fetch request. The default valu

max.partition.fetch.bytes=1048576

Number of records returned in one poll call.

max.poll.records=500

Client request timeout period. If no response is received after this time elapses

request.timeout.ms=305000

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 11 of 101

Connecting to Legacy Self-Built Kafka
Last updated：2024-01-09 15:02:48

CKafka is compatible with the Producer and Consumer APIs of Apache Kafka 0.9 and above (currently, directly
purchasable versions include v0.10.2, v1.1.1, v2.4.1, v2.8.1, and v3.2.3). To connect to an on-premises Kafka of an
earlier version (such as v0.8), partial rewriting of APIs is needed. This document compares the Producer and

Consumer APIs of Kafka 0.8 and its earlier versions, and describes how to rewrite the APIs.

Kafka Producer

Overview

In Kafka 0.8.1, the Producer API is rewritten. This Producer client version is officially recommended because it
provides better performance and more features. The community will maintain the new version of the Producer API
(referred to as the New Producer API).

Comparison between new producer API and old producer API

New Producer API Demo

Properties props = new Properties();

props.put("bootstrap.servers", "localhost:4242");

props.put("acks", "all");

props.put("retries",0);

props.put("batch.size", 16384);

props.put("linger.ms", 1);

props.put("buffer.memory", 33554432);

props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer

props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializ

Producer<String, String> producer = new KafkaProducer<>(props);

producer.send(new ProducerRecord<String, String>("my-topic", Integer.toString(0), I

producer.close();

Old Producer API Demo

Properties props = new Properties();

props.put("metadata.broker.list", "broker1:9092");

props.put("serializer.class", "kafka.serializer.StringEncoder");

props.put("partitioner.class", "example.producer.SimplePartitioner");

props.put("request.required.acks", "1");

ProducerConfig config = new ProducerConfig(props);

Producer<String, String> producer = new Producer<String, String>(config);

KeyedMessage<String, String> data = new KeyedMessage<String, String>("page_visits",

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 12 of 101

producer.send(data);

producer.close();

As shown in the previous code, the basic usage of the new and old versions are the same, except for some parameter
settings. This means the cost of API partial rewriting is not high.

Compatibility description

Producer API 0.8.x can be connected to CKafka successfully without partial rewriting. We recommend using the New
Kafka Producer API.

Kafka Consumer

Overview

The open-source Apache Kafka 0.8 provides two types of the Consumer API:

High Level Consumer API (blocking configuration details)
Simple Consumer API (support for parameter configuration adjustment)
Kafka 0.9.x has introduced the New Consumer API that inherits the features of the two types of the old consumer API
(v0.8) and reduces the load on ZooKeeper.
The following describes how to transform the old consumer API (v0.8) to the new consumer API (v0.9).

Comparison between new consumer API and old consumer API

Old consumer API (v0.8)

High Level Consumer API (Demo)

The High Level Consumer API can meet general requirements if you care only about data, except for message offset.
This API, built on the consumer group logic, blocks the offset management, and supports Broker fault handling and
Consumer load balancing. It allows developers to get started with the Consumer client quickly.
Consider the following when you use the High Level Consumer API:
If the number of consumer threads is greater than the number of partitions, certain consumer threads cannot obtain

data.
If the number of partitions is greater than the number of threads, certain threads consume more than one partition.
The changes in partitions and consumers will affect rebalancing.
Low Level Consumer API (Demo)
The Low Level Consumer API is recommended if you need message offset and features like repeated consumption or

skip read, or if you want to consume specific partitions and ensure more consumption semantics. But in this case, you
need to handle offsets and Broker exceptions.
When using the Low Level Consumer API, you need to:
Track and maintain the offset and control the consumption progress.

https://cwiki.apache.org/confluence/display/KAFKA/Consumer+Group+Example
https://cwiki.apache.org/confluence/display/KAFKA/0.8.0+SimpleConsumer+Example

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 13 of 101

Find the leader of partitions for the topic, and deal with partition changes.

New consumer API (v0.9)

Kafka 0.9.x has introduced the New Consumer API that inherits the features of the two types of Old Consumer API
while providing consumer coordination (High Level API) and lower-level access to customize consumption policies.

The New Consumer also simplifies the consumer client and introduces a central coordinator to solve the herd effect
and split-brain problems resulting from the separate connections to ZooKeeper, and to reduce the load on ZooKeeper.
Advantages:
Introduces coordinators
The current version of High Level Consumer has the herd effect and split-brain problems. Placing failure detection and

rebalancing logics into a highly available central coordinator solves both problems while greatly reducing the load on
the ZooKeeper.
Allows you to assign partitions
To keep certain states of each local partition unchanged, you need to keep partition mappings unchanged. Some
other scenarios are designed to associate the Consumer with the region-dependent Broker.
Allows you to manage offsets

You can manage offsets as needed to implement repeated consumption, skipped consumption, and other semantics.
Triggers callbacks after rebalancing based on your specifications
Provides non-blocking Consumer API

Comparison between new consumer API and old consumer API

Type Version
Automatic
Offset
Storage

Manual
Offset
Management

Automatic
Exception
Handling

Automatic
Rebalance
Handling

Automatic
Leader
Search

Pros and
Cons

High
Level
Consumer

Earlier
than
v0.9

Yes No Yes Yes Yes
Herd effect
and split bra

Simple
Consumer

Earlier
than
v0.9

No Yes No No No

Various
exceptions
need to be
handled

New
Consumer

Later
than
v0.9

Yes Yes Yes Yes Yes

Mature and
recommend
for the curre
version

Transforming old consumer to new consumer

New Consumer

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 14 of 101

//The main configuration difference is that the ZooKeeper parameters are replaced.

Properties props = new Properties();

props.put("bootstrap.servers", "localhost:9092");

props.put("group.id", "test");

props.put("enable.auto.commit", "true");

props.put("auto.commit.interval.ms", "1000");

props.put("session.timeout.ms", "30000");

props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserial

props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeseri

//Compared with old consumers, new consumers are easier to create.

KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);

consumer.subscribe(Arrays.asList("foo", "bar"));

while (true) {

 ConsumerRecords<String, String> records = consumer.poll(100);

 for (ConsumerRecord<String, String> record : records)

 System.out.printf("offset = %d, key = %s, value = %s", record.offset(), reco

Old Consumer （High Level）

//Old consumers require ZooKeeper

Properties props = new Properties();

props.put("zookeeper.connect", "localhost:2181");

props.put("group.id", "test");

props.put("auto.commit.enable", "true");

props.put("auto.commit.interval.ms", "1000");

props.put("auto.offset.reset", "smallest");

ConsumerConfig config = new ConsumerConfig(props);

//Require connector creation

ConsumerConnector connector = Consumer.createJavaConsumerConnector(config);

//Create a message stream

Map<String, Integer> topicCountMap = new HashMap<String, Integer>();

topicCountMap.put("foo", 1);

Map<String, List<KafkaStream<byte[], byte[]>>> streams =

 connector.createMessageStreams(topicCountMap);

//Obtain data

KafkaStream<byte[], byte[]> stream = streams.get("foo").get(0);

ConsumerIterator<byte[], byte[]> iterator = stream.iterator();

MessageAndMetadata<byte[], byte[]> msg = null;

while (iterator.hasNext()) {

 msg = iterator.next();

 System.out.println(//

 " group " + props.get("group.id") + //

 ", partition " + msg.partition() + ", " + //

 new String(msg.message()));

}

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 15 of 101

Comparing with the old consumer, the new consumer has simpler coding and uses Kafka addresses instead of
ZooKeeper parameters. In addition, the new consumer has parameter settings for interactions with coordinators, in
which the default settings are suitable for general use.

Compatibility description

Both CKafka and the new version of Kafka in the open-source community support the rewritten new consumer API,
which blocks the interaction between the consumer client and ZooKeeper (ZooKeeper is not exposed to users any
longer). The new consumer solves the herd effect and split brain problems resulting from direct interaction with
ZooKeeper, and integrates the features of the old consumer, thus making the consumption more reliable.

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 16 of 101

Suggestions for CKafka Version Selection
Last updated：2024-11-07 15:38:50

This document describes the compatibility of CKafka with open-source Kafka and helps you select a CKafka version
that is more suitable for your business according to your business needs.

Overview

Open-Source Kafka has about 20 versions ranging from v0.7.x to v2.8.x. From the perspective of message queue, it

can be divided into three stages: v0.x, v1.x, and v2.x. At present, Tencent Cloud provides four corresponding versions
for these three community development stages: v0.10, v1.1, v2.4, and v2.8, which basically cover commonly used
Kafka versions.
Among them, the two major versions v1.x and v2.x mainly contain optimizations and improvements of Kafka Streams
but don't introduce many major features in terms of the message engine (v2.x has great improvements of the

transaction feature though). Kafka Streams is greatly improved on v2.x. Therefore, if you need to use these features,
please select v2.x at least.

Compatibility Description

CKafka is perfectly compatible with open-source Kafka with full backward compatibility with lower versions. For
example, if you build Kafka v0.10 on your own, you can select CKafka v0.10, v1.1.1, or v2.4.1 in the cloud, but if you
build Kafka on a higher version, we recommend you not select a lower version (because it is uncertain whether your
business uses features of higher versions).

The following describes the compatibility:

CKafka Version Compatible Community Versions Compatibility

0.10.2 ≤ 0.10.x 100%

1.1.1 ≤ 1.1.x 100%

2.4.1 ≤ 2.4.x 100%

2.8.1 ≤ 2.8.x 100%

3.2.3 ≤ 3.2.x 100%

Note for CKafka v2.4.1

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 17 of 101

When CKafka launched v2.4, the stable branch in the community was v2.4.1. Later, the community launched a
development branch v2.4.2. After some repairs were merged, it was positioned as v2.4.2. Then, the community
deleted v2.4.2, so there was no v2.4.2 in the community eventually. Therefore, the v2.4.2 previously displayed by

CKafka is aligned with the current v2.4.1.

Suggestions for CKafka Version Selection

If you migrate your self-built Kafka to the cloud, we recommend you select the corresponding major version. For
example, if your self-built Kafka is on v1.1.0, please select CKafka v1.1.
If the corresponding version cannot be found in the cloud, we recommend you select a higher version. For example, if
your self-built Kafka is on v1.0.0, we recommend you use CKafka v1.1.1, and if it is on v0.11.x, we also recommend

you use CKafka v1.1.1 (because each version of Broker is backward compatible).

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 18 of 101

CKafka Data Reliability Description
Last updated：2024-01-09 15:02:47

This document describes the factors that affect the reliability of CKafka from the perspectives of the producer, the
server (CKafka), and the consumer, respectively, and provides corresponding solutions.

What should I do if data gets lost on the producer?

Causes of data loss

When the producer sends data to CKafka, the data may get lost due to network jitters, and CKafka will not receive the

data. Other possible causes are as follows:
The network load is high or the disk is busy, and the producer does not have a retry mechanism.
The purchased disk capacity is exceeded. For example, if the disk capacity of an instance is 9,000 GB and it is not
expanded promptly after being used up, data cannot be written to CKafka.
Sudden or continuously increased peak traffic exceeds the purchased peak throughput. For example, if the peak

throughput of the instance is 100 MB/sec, but it is not scaled up promptly after the peak throughput is exceeded for a
long period of time, data writes to CKafka will become slower. In this case, if the producer has a queuing timeout
mechanism in place, data cannot be written to CKafka.

Solutions

Enable the retry mechanism on the producer for important data.
To avoid data loss caused by improper disk usage, set monitoring and alarm policies as preventive measures when
configuring the instance.

When the disk capacity is used up, upgrade the instance timely in the console. Upgrading Ckafka instances of
Standard Edition will not interrupt the service. The disk capacity can be expanded separately. You can also shorten
the message retention period to reduce disk usage.
To minimize the loss of messages on the producer, you can fine-tune the size of the buffer by using
 buffer.memory and batch.size (in bytes). A larger buffer is not necessarily better. When the producer fails

for any reason, more data in the buffer means more garbage to be recycled, which slows down data recovery. Pay
close attention to the number of messages produced by the producer and the average message size
(through the rich set of monitoring metrics available in CKafka).
Configure acknowledgment (ACK) for the producer.
When the producer sends data to the leader, it can set the data reliability level by using the

 request.required.acks and min.insync.replicas parameters.

When acks = 1 (default value), the leader in the ISR has successfully received a message sent by the producer,

and the next message can be sent. If the leader goes down, the data unsynced to its followers will get lost.

https://console.tencentcloud.com/monitor/policylist/create

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 19 of 101

When acks = 0 , the producer sends the next message without waiting for acknowledgment from the broker. In

this case, data transfer efficiency is the highest, but data reliability is the lowest.
Note:

When the producer is configured with acks = 0 , if the current instance is throttled, in order for the server to

provide services normally, the server will actively close the connection to the client.
When acks = -1 or acks = all , the producer needs to wait for the acknowledgment of message receipt

from all the followers in the ISR before sending the next message, which ensures the highest reliability.
Even if acks is configured as above, there is no guarantee that data will never get lost. For example, when there is

only one leader in the ISR (the number of members in the ISR may increase or decrease in certain circumstances, and
in some cases, only one leader is left), the value of acks will be 1 . Therefore, you also need to configure the

 min.insync.replicas parameter in the CKafka console by enabling the advanced configuration in Topic

Management > Edit Topic. This parameter specifies the minimum number of replicas in the ISR, and its default
value is 1. It only takes effect when acks = -1 or acks = all .

Recommended parameter values

These parameter values are for reference only, and the actual values depend on the actual conditions of your

business.
Retry mechanism: message.send.max.retries=3;retry.backoff.ms=10000;

Guarantee of high reliability: request.required.acks=-1;min.insync.replicas=2;

Guarantee of high performance: request.required.acks=0;

Reliability + performance: request.required.acks=1;

What should I do if data gets lost on the broker (CKafka)?

Causes of data loss

The partition's leader goes down before the followers complete the data backup. Even if a new leader has been
selected, data will get lost because it has not been backed up yet.
Open-source Kafka stores data to disks in an async manner. Specifically, data is first stored in PageCache before
persistence. If the broker disconnects, restarts, or fails, the data stored in PageCache will get lost because it has not
been stored persistently to the disks yet.

Stored data may get lost due to disk failures.

Solutions

Open-source Kafka has multiple replicas that are used to ensure data integrity. Data will get lost only if multiple
replicas and brokers fail at the same time, so data reliability is higher than that in the single-replica case. Therefore,
CKafka requires at least two replicas for a topic and supports configuring three replicas.
CKafka performs data flushing by configuring more reasonable parameters, such as
 log.flush.interval.messages and log.flush.interval.ms .

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 20 of 101

In CKafka, the disk is specially designed to ensure that data reliability will not be compromised even if the disk is
partially damaged.

Recommended parameter values

Whether a replica that is not in sync status can be elected as a leader:

 unclean.leader.election.enable=false // Disabled

What should I do if data gets lost on the consumer?

Causes of data loss

The offset is committed before data is consumed. If the consumer goes down in the process but the offset has been
updated, the consumer will miss a data entry, and the consumer group will have to reset the offset in order to retrieve
it.
The consumption speed differs significantly from the production speed, but the message retention period is too short;

therefore, the message will be deleted upon expiration before it is consumed.

Solutions

Configure the auto.commit.enable parameter appropriately. When it is set to true , the commit is

performed automatically. We recommend that you use the scheduled commit feature to avoid committing offsets
frequently.
Monitor the consumer and correctly adjust the data retention period. Monitor the consumption offset and the number of
unconsumed messages, and configure an alarm to prevent messages from being deleted upon expiration due to slow

consumption.

Troubleshooting data loss

Printing partition and offset information locally for troubleshooting

Below is the code for printing information:

Future<RecordMetadata> future = producer.send(new ProducerRecord<>(topic, messageKe

RecordMetadata recordMetadata = future.get();

log.info("partition: {}", recordMetadata.partition());

log.info("offset: {}", recordMetadata.offset());

If the partition and offset can be printed out, the currently sent message has been correctly saved on the server. At this
time, you can use the message query tool to query the information of the relevant offset.

If the partition and offset information cannot be printed out, the message has not been saved on the server, and the
client needs to retry.

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 21 of 101

Connector
Database Change Subscription
MongoDB Data Subscription
Last updated：2024-09-09 21:38:37

Introduction

The MongoDB Kafka Connector allows monitoring all databases or a single database within a MongoDB instance. It
also allows monitoring all collections or a single collection within a database. The connector generates change event
messages from Mongo modifications and submits them as a message flow to a Kafka topic. Client applications can

consume the messages from the corresponding Kafka topic to process database change events, achieving the goal of
monitoring specific databases.
This document summarizes and organizes information from the official MongoDB documentation. For details, see
MongoDB Change Events.

Event Format

The following JSON framework illustrates the fields that may appear in all change event messages:

{

 _id : { <BSON Object> },

 "operationType" : "<operation>",

 "fullDocument" : { <document> },

 "ns" : {

 "db" : "<database>",

 "coll" : "<collection>"

 },

 "to" : {

 "db" : "<database>",

 "coll" : "<collection>"

 },

 "documentKey" : { "_id" : <value> },

 "updateDescription" : {

 "updatedFields" : { <document> },

 "removedFields" : ["<field>", ...],

 "truncatedArrays" : [

 { "field" : <field>, "newSize" : <integer> },

 ...

https://www.mongodb.com/docs/manual/reference/change-events/

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 22 of 101

]

 },

 "clusterTime" : <Timestamp>,

 "txnNumber" : <NumberLong>,

 "lsid" : {

 "id" : <UUID>,

 "uid" : <BinData>

 }

}

Some fields may only appear in certain event types. The table below describes the corresponding fields and their
meanings.

Field Type Description

_id document

A BSON object used to uniquely identify the even
The format of the _id object is as follows: { "_data
: <BinData|hex string>}. The type of _data depend
on the version of MongoDB. For a complete
description of the _data type, see Resume Token

operationType string

This field indicates the operation types that trigge
the change events, including the following 8 types
insert, delete, replace, update, drop, rename,
dropDatabase, and invalidate.

fullDocument document

This field indicates the documents affected by the
insert, replace, delete, and update operations. Fo
insert and replace operations, this field indicates
the new document. For delete operations, this field
is omitted, indicating the document no longer
exists. For update operations, this field is shown
only if fullDocument is configured as
updateLookup.

ns document Refers to the namespace, consisting of the
database and collection.

ns.db string Refers to the database name.

ns.coll string Refers to the collection name. For dropDatabase
operations, this field is omitted.

to document
When the operation type is Rename, this field
indicates the new collection name. This field is
omitted for other operations.

https://www.mongodb.com/docs/manual/reference/glossary/#std-term-BSON
https://www.mongodb.com/docs/manual/changeStreams/#std-label-change-stream-resume-token

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 23 of 101

to.db string Refers to the name of the new database.

to.coll string Refers to the new collection name.

documentKey document Refers to the ID of the document modified by the
operation.

updateDescription document

Refers to a document that describes the field
modified by the update operation. This field is
present only if the event corresponds to an update
operation.

updateDescription.updatedFields document
This field contains the fields modified by the updat
operation, with the value of the field being the
updated value.

updateDescription.removedFields array This field contains the fields deleted by the update
operation.

updateDescription.truncatedArrays array
This field records the array truncation performed
using one or more of the following pipeline-based
updates:$addFields$set$replaceRoot$replaceWi

updateDescription.truncatedArrays.field string Indicates the field that was removed.

updateDescription.truncatedArrays.newSize integer Refers to the number of elements in the truncated
array.

clusterTime Timestamp

Refers to the oplog timestamp associated with the
event. For events involving Multi-Document
Transactions, the clusterTime values associated
with the event are the same.

txnNumber NumberLong Refers to the transaction ID. It appears only when
the operation is a Multi-Document Transaction.

lsid Document
Refers to the session ID associated with the
transaction. It appears only when the operation is
Multi-Document Transaction.

Event List

Insert Event

{

https://www.mongodb.com/docs/manual/reference/operator/aggregation/addFields/#mongodb-pipeline-pipe.-addFields
https://www.mongodb.com/docs/manual/reference/operator/aggregation/set/#mongodb-pipeline-pipe.-set
https://www.mongodb.com/docs/manual/reference/operator/aggregation/replaceRoot/#mongodb-pipeline-pipe.-replaceRoot
https://www.mongodb.com/docs/manual/reference/operator/aggregation/replaceWith/#mongodb-pipeline-pipe.-replaceWith
https://www.mongodb.com/docs/manual/core/transactions/
https://www.mongodb.com/docs/manual/core/transactions/
https://www.mongodb.com/docs/manual/core/transactions/

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 24 of 101

 _id: { < Resume Token > },

 operationType: 'insert',

 clusterTime: <Timestamp>,

 ns: {

 db: 'engineering',

 coll: 'users'

 },

 documentKey: {

 userName: 'alice123',

 _id: ObjectId("599af247bb69cd8996xxxxxx")

 },

 fullDocument: {

 _id: ObjectId("599af247bb69cd8996xxxxxx"),

 userName: 'alice123',

 name: 'Alice'

 }

}

The documentKey field contains both _id and username fields, indicating that the engineering.users collection is
sharded, with the shard key being username and _id.

Update Event

{

 _id: { < Resume Token > },

 operationType: 'update',

 clusterTime: <Timestamp>,

 ns: {

 db: 'engineering',

 coll: 'users'

 },

 documentKey: {

 _id: ObjectId("58a4eb4a30c75625e0xxxxxx")

 },

 updateDescription: {

 updatedFields: {

 email: 'alice@10gen.com'

 },

 removedFields: ['phoneNumber'],

 truncatedArrays: [{

 "field" : "vacation_time",

 "newSize" : 36

 }]

 }

}

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 25 of 101

The following example shows the message content of an update event with the fullDocument :

updateLookup option configured:

{

 _id: { < Resume Token > },

 operationType: 'update',

 clusterTime: <Timestamp>,

 ns: {

 db: 'engineering',

 coll: 'users'

 },

 documentKey: {

 _id: ObjectId("58a4eb4a30c75625e0xxxxxx")

 },

 updateDescription: {

 updatedFields: {

 email: 'alice@10gen.com'

 },

 removedFields: ['phoneNumber'],

 truncatedArrays: [{

 "field" : "vacation_time",

 "newSize" : 36

 }]

 },

 fullDocument: {

 _id: ObjectId("58a4eb4a30c75625e0xxxxxx"),

 name: 'Alice',

 userName: 'alice123',

 email: 'alice@10gen.com',

 team: 'replication'

 }

}

Replace Event

{

 _id: { < Resume Token > },

 operationType: 'replace',

 clusterTime: <Timestamp>,

 ns: {

 db: 'engineering',

 coll: 'users'

 },

 documentKey: {

 _id: ObjectId("599af247bb69cd8996xxxxxx")

 },

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 26 of 101

 fullDocument: {

 _id: ObjectId("599af247bb69cd8996xxxxxx"),

 userName: 'alice123',

 name: 'Alice'

 }

}

The replace operation is performed in two steps:

Delete the original document corresponding to the documentKey .

Insert a new document with the same documentkey .

For a replace event, the fullDocument field represents the new document inserted.

Delete Event

{

 _id: { < Resume Token > },

 operationType: 'delete',

 clusterTime: <Timestamp>,

 ns: {

 db: 'engineering',

 coll: 'users'

 },

 documentKey: {

 _id: ObjectId("599af247bb69cd8996xxxxxx")

 }

}

For the delete event message, the fullDocument field is omitted.

Drop Event

{

 _id: { < Resume Token > },

 operationType: 'drop',

 clusterTime: <Timestamp>,

 ns: {

 db: 'engineering',

 coll: 'users'

 }

}

When a collection is deleted, this event is triggered, and it causes the connector subscribing to that collection to
generate an invalidate event.

Rename Event

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 27 of 101

{

 _id: { < Resume Token > },

 operationType: 'rename',

 clusterTime: <Timestamp>,

 ns: {

 db: 'engineering',

 coll: 'users'

 },

 to: {

 db: 'engineering',

 coll: 'people'

 }

}

When a collection name is modified, this event is triggered, and it causes the connector subscribing to that collection
to generate an invalidate event.

Drop Database Event

{

 _id: { < Resume Token > },

 operationType: 'dropDatabase',

 clusterTime: <Timestamp>,

 ns: {

 db: 'engineering'

 }

}

When a database is deleted, this event is triggered, and it causes the connector subscribing to that collection to
generate an invalidate event.
Before a drop database event (dropDatabase) is generated, the system will generate a drop event for each collection

in the database.

Invalidate Event

{

 _id: { < Resume Token > },

 operationType: 'invalidate',

 clusterTime: <Timestamp>

}

For a connector with a subscribed collection, when operations like drop event, rename event, or dropDatabase event
that affect the collection are performed, an invalidate event is generated.

For a connector with a subscribed database, a dropDatabase event will generate an invalidate event.

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 28 of 101

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 29 of 101

MySQL Data Subscription
Last updated：2024-09-09 21:39:35

Overview

MySQL uses a binary log (binlog) to sequentially record all operations submitted to the database, including
modifications to table structures and data within the tables. MySQL uses the binlog for backup or data recovery.
The Debezium MySQL connector generates row-level database change events by reading binlog, including INSERT,

UPDATE and DELETE, and sends these events to corresponding Kafka topics. Client applications can process
database change events by consuming messages from the corresponding topics to monitor specific databases.
Supported SQL operations for subscription:

Operation
Type

Supported SQL Operations

DML INSERT, UPDATE, and DELETE

DDL CREATE DATABASE, DROP DATABASE, CREATE TABLE, ALTER TABLE, DROP TABLE,
and RENAME TABLE

This document is organized and summarized based on the official Debezium documentation. For details, see

Debezium connector for MySQL.

Event Format

The Debezium MySQL connector generates data modifications events for each insert, update, and delete operation.
Each event is submitted as a message to the Kafka topic. Each message in the topic contains a key and a value. An
example is shown below:

https://debezium.io/documentation/reference/stable/connectors/mysql.html#mysql-events

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 30 of 101

Each Kafka message's key and value contain two fields: schema and payload. The format is as follows:

{

 "schema": {

 ...

 },

 "payload": {

 ...

 }

}

Key field description:

Item Field
Name

Description

1 schema
The schema field describes the structure of the payload field of the key, i.e., it describes
the structure of the primary key of the modified table. If the table does not have a
primary key, it describes the structure of its unique key.

2 payload The structure of the payload field is the same as that described in the first schema and
includes the key values of the modified row.

Value field description:

Item Field
Name

Description

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 31 of 101

1 schema
The schema field describes the structure of the payload field of the value, i.e., it
describes the structure of the modified row's fields. This field is usually a nested
structure.

2 payload The structure of the payload field is the same as that described in the second schema
and it includes the actual data of the modified row.

Event Message Key

The messages for different types of events all have the same key structure. Below is an example: The key of a change
event contains the primary key structure of the modified table and the actual primary key value of the corresponding

row.

CREATE TABLE customers (

 id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY,

 first_name VARCHAR(255) NOT NULL,

 last_name VARCHAR(255) NOT NULL,

 email VARCHAR(255) NOT NULL UNIQUE KEY

) AUTO_INCREMENT=1001;

Each event key capturing modifications to the customers table has the same schema. The key of the event message

corresponding to this operation is shown as follows (JSON representation):

{

 "schema": {

 "type": "struct",

 "name": "mysql-server-1.inventory.customers.Key",

 "optional": false,

 "fields": [

 {

 "field": "id",

 "type": "int32",

 "optional": false

 }

]

 },

 "payload": {

 "id": 1001

 }

}

Item Field Name Description

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 32 of 101

1 schema The schema describes the structure in the payload.

2 mysql-server-
1.inventory.customers.Key

The naming format of the schema is connector-name.database-
name.table-name.Key. In this example: The mysql-server-1 is the name
of the connector generating the event; the inventory is the name of the
corresponding database; the customers is the name of the table.

3 optional It indicates whether the field is optional.

4 fields It lists all the fields and their structure contained in the payload,
including the field name, field type, and whether it is optional.

5 payload It contains the primary key of the modified row. In the example, it
includes only one primary key value with the field name id: 1001.

DML Events

The previous section introduces the key structure of an event message. The key structures for different types of
events are the same. This section lists different event types and describes the value structures for each of these event
types.

Create Events

The following example shows the value part of the event message generated by the connector when new data are

added to the table:

{

 "schema": {

 "type": "struct",

 "fields": [

 {

 "type": "struct",

 "fields": [

 {

 "type": "int32",

 "optional": false,

 "field": "id"

 },

 {

 "type": "string",

 "optional": false,

 "field": "first_name"

 },

 {

 "type": "string",

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 33 of 101

 "optional": false,

 "field": "last_name"

 },

 {

 "type": "string",

 "optional": false,

 "field": "email"

 }

],

 "optional": true,

 "name": "mysql-server-1.inventory.customers.Value",

 "field": "before"

 },

 {

 "type": "struct",

 "fields": [

 {

 "type": "int32",

 "optional": false,

 "field": "id"

 },

 {

 "type": "string",

 "optional": false,

 "field": "first_name"

 },

 {

 "type": "string",

 "optional": false,

 "field": "last_name"

 },

 {

 "type": "string",

 "optional": false,

 "field": "email"

 }

],

 "optional": true,

 "name": "mysql-server-1.inventory.customers.Value",

 "field": "after"

 },

 {

 "type": "struct",

 "fields": [

 {

 "type": "string",

 "optional": false,

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 34 of 101

 "field": "version"

 },

 {

 "type": "string",

 "optional": false,

 "field": "connector"

 },

 {

 "type": "string",

 "optional": false,

 "field": "name"

 },

 {

 "type": "int64",

 "optional": false,

 "field": "ts_ms"

 },

 {

 "type": "boolean",

 "optional": true,

 "default": false,

 "field": "snapshot"

 },

 {

 "type": "string",

 "optional": false,

 "field": "db"

 },

 {

 "type": "string",

 "optional": true,

 "field": "table"

 },

 {

 "type": "int64",

 "optional": false,

 "field": "server_id"

 },

 {

 "type": "string",

 "optional": true,

 "field": "gtid"

 },

 {

 "type": "string",

 "optional": false,

 "field": "file"

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 35 of 101

 },

 {

 "type": "int64",

 "optional": false,

 "field": "pos"

 },

 {

 "type": "int32",

 "optional": false,

 "field": "row"

 },

 {

 "type": "int64",

 "optional": true,

 "field": "thread"

 },

 {

 "type": "string",

 "optional": true,

 "field": "query"

 }

],

 "optional": false,

 "name": "io.debezium.connector.mysql.Source",

 "field": "source"

 },

 {

 "type": "string",

 "optional": false,

 "field": "op"

 },

 {

 "type": "int64",

 "optional": true,

 "field": "ts_ms"

 }

],

 "optional": false,

 "name": "mysql-server-1.inventory.customers.Envelope"

 },

 "payload": {

 "op": "c",

 "ts_ms": 1465491411815,

 "before": null,

 "after": {

 "id": 1004,

 "first_name": "Anne",

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 36 of 101

 "last_name": "Kretchmar",

 "email": "annek@noanswer.org"

 },

 "source": {

 "version": "1.9.3.Final",

 "connector": "mysql",

 "name": "mysql-server-1",

 "ts_ms": 0,

 "snapshot": false,

 "db": "inventory",

 "table": "customers",

 "server_id": 0,

 "gtid": null,

 "file": "mysql-bin.000003",

 "pos": 154,

 "row": 0,

 "thread": 7,

 "query": "INSERT INTO customers (first_name, last_name, email) VALUES ('Anne'

 }

 }

}

Item Field Name Description

1 schema

The schema describes the structure in the payload. The field
in the schema is an array that represents multiple fields are
contained in the payload. Each element in the array is a
description of the respective field structure within the payload.

2 field
Each element in the fields includes a field, which indicates the
name of the corresponding field in the payload. In the
example, it includes before, after, source, etc.

3 type It indicates the type of field, such as Integer (int) and String
(string).

4
mysql-server-
1.inventory.customers.Value

It indicates that this field is part of the value information for the
customers table in the inventory database generated by the
mysql-server-1 connector.

io.debezium.connector.mysql.Source This name is bound to a specific connector, and the events
generated by the connector all share the same name.

6 payload

It includes the specific modified data in the change event,
including the data before (before field) and after (after field)
the modification, as well as some metadata information of the
connector (source field).

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 37 of 101

7 op It indicates the type of modification operation that generates
the event. In the example, c indicates an operation that
creates a new row. c = create; u = update; d = delete; r = read
(only snapshots).

8 source

The source field is a field that describes event metadata. It
includes some fields that can be used to compare with other
events, such as the order in which events are generated, and
whether they belong to the same transaction. This field
includes the following metadata information: Debezium
version Connector name binlog name where the event was
recorded binlog position Row within the event If the event was
part of a snapshot Name of the database and table that
contain the new row ID of the MySQL thread that created the
event (non-snapshot only) MySQL server ID (if available)
Timestamp for when the change was made in the database.

9 query The original SQL statement of the modification operation.

Update Events

The following example shows the value part of the event generated by the update operation:

{

 "schema": { ... },

 "payload": {

 "before": {

 "id": 1004,

 "first_name": "Anne",

 "last_name": "Kretchmar",

 "email": "annek@noanswer.org"

 },

 "after": {

 "id": 1004,

 "first_name": "Anne Marie",

 "last_name": "Kretchmar",

 "email": "annek@noanswer.org"

 },

 "source": {

 "version": "1.9.3.Final",

 "name": "mysql-server-1",

 "connector": "mysql",

 "name": "mysql-server-1",

 "ts_ms": 1465581029100,

 "snapshot": false,

 "db": "inventory",

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 38 of 101

 "table": "customers",

 "server_id": 223344,

 "gtid": null,

 "file": "mysql-bin.000003",

 "pos": 484,

 "row": 0,

 "thread": 7,

 "query": "UPDATE customers SET first_name='Anne Marie' WHERE id=1004"

 },

 "op": "u",

 "ts_ms": 1465581029523

 }

}

The schema field is the same as events in a Create operation, but the payload part is different. In a create event, the
before field is null, indicating no original data. In an update event, it includes both the data before and after the update.

Delete Events

The following example shows the value part of the event generated by the delete operation:

{

 "schema": { ... },

 "payload": {

 "before": {

 "id": 1004,

 "first_name": "Anne Marie",

 "last_name": "Kretchmar",

 "email": "annek@noanswer.org"

 },

 "after": null,

 "source": {

 "version": "1.9.3.Final",

 "connector": "mysql",

 "name": "mysql-server-1",

 "ts_ms": 1465581902300,

 "snapshot": false,

 "db": "inventory",

 "table": "customers",

 "server_id": 223344,

 "gtid": null,

 "file": "mysql-bin.000003",

 "pos": 805,

 "row": 0,

 "thread": 7,

 "query": "DELETE FROM customers WHERE id=1004"

 },

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 39 of 101

 "op": "d",

 "ts_ms": 1465581902461

 }

}

The schema field is the same as events in a Create operation, but the payload part is different. In a Delete event, it
includes the data before the update, but the data after the update is null, indicating the data has been deleted.

Primary Key Updates

If an operation modifies the primary key of a row in the table, then the connector will generate a Delete event to
represent the deletion of the row associated with the original primary key, and at the same time generate a Create
event to represent the insertion of the row associated with the new primary key. The header of each message will be
associated with the corresponding key. The official description is as follows:
The DELETE event record has __debezium.newkey as a message header. The value of this header is the

new primary key for the updated row.
The CREATE event record has __debezium.oldkey as a message header. The value of this header is the

previous (old) primary key that the updated row had.

DDL Events

Create Database

The following example shows the value part of the event generated by the Create Database operation:

{

 "source" : {

 "server" : "dip_source"

 },

 "position" : {

 "ts_sec" : 1655812326,

 "file" : "mysql-bin.000006",

 "pos" : 26063,

 "gtids" : "b24176f2-5409-11ec-80d4-b8599fe5c6ea:1-78",

 "snapshot" : true

 },

 "databaseName" : "dip_test",

 "ddl" : "CREATE DATABASE `dip_test` CHARSET utf8mb4 COLLATE utf8mb4_0900_ai_ci",

 "tableChanges" : []

}

The content of position records information such as binlog files and consumption offsets. The ddl field contains the
SQL statement that triggers the event.

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 40 of 101

Drop Database

The following example shows the value part of the event generated by the Delete Database operation:

{

 "source" : {

 "server" : "dip_source"

 },

 "position" : {

 "ts_sec" : 1655812326,

 "file" : "mysql-bin.000006",

 "pos" : 26063,

 "gtids" : "b24176f2-5409-11ec-80d4-b8599fe5c6ea:1-78",

 "snapshot" : true

 },

 "databaseName" : "dip_test",

 "ddl" : "DROP DATABASE IF EXISTS `dip_test`",

 "tableChanges" : []

}

The content of position records information such as binlog files and consumption offsets. The ddl field contains the
SQL statement that triggers the event.

Create Table

The following example shows the value part of the event generated by the create table operation:

{

 "source" : {

 "server" : "dip_source"

 },

 "position" : {

 "ts_sec" : 1655812326,

 "file" : "mysql-bin.000006",

 "pos" : 26063,

 "gtids" : "b24176f2-5409-11ec-80d4-b8599fe5c6ea:1-78",

 "snapshot" : true

 },

 "databaseName" : "dip_test",

 "ddl" : "CREATE TABLE `customers` (\\n `id` int NOT NULL AUTO_INCREMENT,\\n `fi

 "tableChanges" : [{

 "type" : "CREATE",

 "id" : "\\"dip_test\\".\\"customers\\"",

 "table" : {

 "defaultCharsetName" : "utf8",

 "primaryKeyColumnNames" : ["id"],

 "columns" : [{

 "name" : "id",

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 41 of 101

 "jdbcType" : 4,

 "typeName" : "INT",

 "typeExpression" : "INT",

 "charsetName" : null,

 "position" : 1,

 "optional" : false,

 "autoIncremented" : true,

 "generated" : true,

 "comment" : null,

 "hasDefaultValue" : false,

 "enumValues" : []

 }, {

 "name" : "first_name",

 "jdbcType" : 12,

 "typeName" : "VARCHAR",

 "typeExpression" : "VARCHAR",

 "charsetName" : "utf8",

 "length" : 255,

 "position" : 2,

 "optional" : false,

 "autoIncremented" : false,

 "generated" : false,

 "comment" : null,

 "hasDefaultValue" : false,

 "enumValues" : []

 }, {

 "name" : "last_name",

 "jdbcType" : 12,

 "typeName" : "VARCHAR",

 "typeExpression" : "VARCHAR",

 "charsetName" : "utf8",

 "length" : 255,

 "position" : 3,

 "optional" : false,

 "autoIncremented" : false,

 "generated" : false,

 "comment" : null,

 "hasDefaultValue" : false,

 "enumValues" : []

 }, {

 "name" : "email",

 "jdbcType" : 12,

 "typeName" : "VARCHAR",

 "typeExpression" : "VARCHAR",

 "charsetName" : "utf8",

 "length" : 255,

 "position" : 4,

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 42 of 101

 "optional" : false,

 "autoIncremented" : false,

 "generated" : false,

 "comment" : null,

 "hasDefaultValue" : false,

 "enumValues" : []

 }]

 },

 "comment" : null

 }]

}

The content of position records information such as binlog files and consumption offsets. The ddl field contains the
SQL statement that triggers the event. The columns field records the definition information of the different fields of the

new table.

Alter Table

The following example shows the value part of the event generated by the alter table operation:

{

 "source" : {

 "server" : "1307446078-a123"

 },

 "position" : {

 "transaction_id" : null,

 "ts_sec" : 1655782153,

 "file" : "mysql-bin.000005",

 "pos" : 1218,

 "gtids" : "ddf040ad-7509-11ec-968b-0c42a1eda2e9:1-8",

 "server_id" : 183277

 },

 "databaseName" : "test",

 "ddl" : "ALTER TABLE `user` ADD COLUMN `createtime` datetime NULL DEFAULT CURRENT

 "tableChanges" : [{

 "type" : "ALTER",

 "id" : "\\"test\\".\\"user\\"",

 "table" : {

 "defaultCharsetName" : "utf8",

 "primaryKeyColumnNames" : [],

 "columns" : [{

 "name" : "name",

 "jdbcType" : 1,

 "typeName" : "CHAR",

 "typeExpression" : "CHAR",

 "charsetName" : "utf8",

 "length" : 20,

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 43 of 101

 "position" : 1,

 "optional" : true,

 "autoIncremented" : false,

 "generated" : false,

 "comment" : null,

 "hasDefaultValue" : true,

 "defaultValueExpression" : "",

 "enumValues" : []

 }, {

 "name" : "age",

 "jdbcType" : 4,

 "typeName" : "INT",

 "typeExpression" : "INT",

 "charsetName" : null,

 "position" : 2,

 "optional" : true,

 "autoIncremented" : false,

 "generated" : false,

 "comment" : null,

 "hasDefaultValue" : true,

 "enumValues" : []

 }, {

 "name" : "createtime",

 "jdbcType" : 93,

 "typeName" : "DATETIME",

 "typeExpression" : "DATETIME",

 "charsetName" : null,

 "position" : 3,

 "optional" : true,

 "autoIncremented" : false,

 "generated" : false,

 "comment" : null,

 "hasDefaultValue" : true,

 "defaultValueExpression" : "1970-01-01 00:00:00",

 "enumValues" : []

 }]

 },

 "comment" : null

 }]

}

The content of position records information such as binlog files and consumption offsets. The ddl field contains the
SQL statement that triggers the event. The columns field records the information of the modified fields.

Drop Table

The following example shows the value part of the event generated by the Drop Table operation:

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 44 of 101

{

 "source" : {

 "server" : "dip_source"

 },

 "position" : {

 "ts_sec" : 1655812326,

 "file" : "mysql-bin.000006",

 "pos" : 26063,

 "gtids" : "b24176f2-5409-11ec-80d4-b8599fe5c6ea:1-78",

 "snapshot" : true

 },

 "databaseName" : "dip_test",

 "ddl" : "DROP TABLE IF EXISTS `dip_test`.`customers`",

 "tableChanges" : []

}

The content of position records information such as binlog files and consumption offsets. The ddl field contains the
SQL statement that triggers the event.

Rename Table

The following example shows the value part of the event generated by the Rename operation:

{

 "schema": {

 "type": "struct",

 "fields": ···,

 "optional": false,

 "name": "io.debezium.connector.mysql.SchemaChangeValue"

 },

 "payload": {

 "source": {

 "version": "1.9.0.Final",

 "connector": "mysql",

 "name": "task-lzpx4pdo",

 "ts_ms": 1656300979748,

 "snapshot": "false",

 "db": "testDB",

 "sequence": null,

 "table": "t_test",

 "server_id": 170993,

 "gtid": "b24176f2-5409-11ec-80d4-b8599fe5c6ea:80",

 "file": "mysql-bin.000006",

 "pos": 26411,

 "row": 0,

 "thread": null,

 "query": null

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 45 of 101

 },

 "databaseName": "testDB",

 "schemaName": null,

 "ddl": "rename table test to t_test",

 "tableChanges": [{

 "type": "ALTER",

 "id": "\\"testDB\\".\\"t_test\\"",

 "table": {

 "defaultCharsetName": "utf8",

 "primaryKeyColumnNames": ["id"],

 "columns": [{

 "name": "id",

 "jdbcType": -5,

 "nativeType": null,

 "typeName": "BIGINT",

 "typeExpression": "BIGINT",

 "charsetName": null,

 "length": 20,

 "scale": null,

 "position": 1,

 "optional": false,

 "autoIncremented": true,

 "generated": true,

 "comment": null

 }, {

 "name": "name",

 "jdbcType": 12,

 "nativeType": null,

 "typeName": "VARCHAR",

 "typeExpression": "VARCHAR",

 "charsetName": "utf8",

 "length": 20,

 "scale": null,

 "position": 2,

 "optional": true,

 "autoIncremented": false,

 "generated": false,

 "comment": null

 }],

 "comment": null

 }

 }]

 }

}

The schema contains the format information of the payload content. Some content is omitted here. In the payload field,
source is the metadata information, and the ddl field is the SQL statement that triggers the event. Columns are the

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 46 of 101

fields of the affected table.

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 47 of 101

PostgreSQL Data Subscription
Last updated：2024-09-09 21:40:39

Overview

The Debezium PostgreSQL connector can capture row-level modification operations in the PostgreSQL database and
generate corresponding change events. When the Debezium PostgreSQL connector connects to the PostgreSQL
server for the first time, it generates a snapshot of all databases. Subsequently, it continuously captures row-level

modification operations, including insert, update, and delete, and generates data change events, which are then
submitted as messages to the corresponding Kafka topics. Client applications can consume these topic messages to
process database change events, enabling monitoring of specific databases.
This document is organized and summarized based on the official Debezium documentation. For details, see
Debezium connector for PostgreSQL.

Event Format

The Debezium PostgreSQL connector generates data change events for each row-level insert, update, or delete
operation. Each event is submitted as a message to the Kafka Topic. Each message in the Topic contains key and
value parts. Here is an example:

https://debezium.io/documentation/reference/stable/connectors/postgresql.html#postgresql-events

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 48 of 101

Each Kafka message's key and value contain two fields: schema and payload. The format is as follows:

{

 "schema": {

 ...

 },

 "payload": {

 ...

 }

}

Key field description:

Item Field
Name

Description

1 schema
The schema field describes the structure of the key's payload field, which describes the
primary key structure of the modified table. If the table has no primary key, it describes
the structure of its unique key.

2 payload The structure of the payload field is the same as that descried in the schema, and
includes the key values of the modified row.

Value field description:

Item Field
Name

Description

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 49 of 101

1 schema The schema field describes the structure of the payload field of the value, i.e., it
describes the structure of the modified row's fields. This field is usually a nested
structure.

2 payload The structure of the payload field is the same as that described in the schema, and it
contains the actual data of the modified row.

Event Message Key

The messages for different types of events all have the same key structure. Below is an example: The key of a change
event contains the primary key structure of the modified table and the actual primary key value of the corresponding
row.

CREATE TABLE customers (

 id SERIAL,

 first_name VARCHAR(255) NOT NULL,

 last_name VARCHAR(255) NOT NULL,

 email VARCHAR(255) NOT NULL,

 PRIMARY KEY(id)

);

The key of the event message corresponding to this operation is shown as follows (JSON representation):

{

 "schema": {

 "type": "struct",

 "name": "PostgreSQL_server.public.customers.Key",

 "optional": false,

 "fields": [

 {

 "name": "id",

 "index": "0",

 "schema": {

 "type": "INT32",

 "optional": "false"

 }

 }

]

 },

 "payload": {

 "id": "1"

 },

}

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 50 of 101

Item Field Name Description

1 schema The schema describes the structure in the payload.

2 PostgreSQL_server.inventory.customers.Key

The schema field name follows the format connector-
name.database-name.table-name.Key. In this
example: PostgreSQL_server is the name of the
connector generating the event; the inventory is the
name of the database; the customers is the name of
the table.

3 optional It indicates whether the field is optional.

4 fields
It lists all the fields and their structure contained in the
payload, including the field name, field type, and
whether it is optional.

5 payload
It contains the primary key of the modified row. In the
example, it includes only one primary key value with
the field name id: 1.

Event List

The previous section introduces the structure of an event message key. The key structures for different types of
events are the same. This section lists different event types and describes the value structures for each of these event
types.

Create Events

Below is a message generated by the Debezium PostgreSQL connector for a database Insert operation:

{

 "schema": {

 "type": "struct",

 "fields": [

 {

 "type": "struct",

 "fields": [

 {

 "type": "int32",

 "optional": false,

 "field": "id"

 },

 {

 "type": "string",

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 51 of 101

 "optional": false,

 "field": "first_name"

 },

 {

 "type": "string",

 "optional": false,

 "field": "last_name"

 },

 {

 "type": "string",

 "optional": false,

 "field": "email"

 }

],

 "optional": true,

 "name": "PostgreSQL_server.inventory.customers.Value",

 "field": "before"

 },

 {

 "type": "struct",

 "fields": [

 {

 "type": "int32",

 "optional": false,

 "field": "id"

 },

 {

 "type": "string",

 "optional": false,

 "field": "first_name"

 },

 {

 "type": "string",

 "optional": false,

 "field": "last_name"

 },

 {

 "type": "string",

 "optional": false,

 "field": "email"

 }

],

 "optional": true,

 "name": "PostgreSQL_server.inventory.customers.Value",

 "field": "after"

 },

 {

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 52 of 101

 "type": "struct",

 "fields": [

 {

 "type": "string",

 "optional": false,

 "field": "version"

 },

 {

 "type": "string",

 "optional": false,

 "field": "connector"

 },

 {

 "type": "string",

 "optional": false,

 "field": "name"

 },

 {

 "type": "int64",

 "optional": false,

 "field": "ts_ms"

 },

 {

 "type": "boolean",

 "optional": true,

 "default": false,

 "field": "snapshot"

 },

 {

 "type": "string",

 "optional": false,

 "field": "db"

 },

 {

 "type": "string",

 "optional": false,

 "field": "schema"

 },

 {

 "type": "string",

 "optional": false,

 "field": "table"

 },

 {

 "type": "int64",

 "optional": true,

 "field": "txId"

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 53 of 101

 },

 {

 "type": "int64",

 "optional": true,

 "field": "lsn"

 },

 {

 "type": "int64",

 "optional": true,

 "field": "xmin"

 }

],

 "optional": false,

 "name": "io.debezium.connector.postgresql.Source",

 "field": "source"

 },

 {

 "type": "string",

 "optional": false,

 "field": "op"

 },

 {

 "type": "int64",

 "optional": true,

 "field": "ts_ms"

 }

],

 "optional": false,

 "name": "PostgreSQL_server.inventory.customers.Envelope"

 },

 "payload": {

 "before": null,

 "after": {

 "id": 1,

 "first_name": "Anne",

 "last_name": "Kretchmar",

 "email": "annek@noanswer.org"

 },

 "source": {

 "version": "1.9.3.Final",

 "connector": "postgresql",

 "name": "PostgreSQL_server",

 "ts_ms": 1559033904863,

 "snapshot": true,

 "db": "postgres",

 "sequence": "[\\"24023119\\",\\"24023128\\"]"

 "schema": "public",

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 54 of 101

 "table": "customers",

 "txId": 555,

 "lsn": 24023128,

 "xmin": null

 },

 "op": "c",

 "ts_ms": 1559033904863

 }

}

Item Field Name Description

1 schema

The schema describes the structure in the payload.
The field in the schema is an array that represents
multiple fields are contained in the payload. Each
element in the array is a description of the
respective field structure within the payload.

2 field

Each element in the fields includes a field, which
indicates the name of the corresponding field in the
payload. In the example, it includes before, after,
source, etc.

3 type It indicates the type of field, such as Integer (int)
and String (string).

4 PostgreSQL_server.inventory.customers.Value

It indicates that this field is part of the value
information of the customers table in the inventory
database generated by the PostgreSQL_server
connector.

5 io.debezium.connector.postgresql.Source
This name is bound to a specific connector, and the
events generated by the connector all share the
same name.

6 payload

It includes the specific modified data in the change
event, including the data before (before field) and
after (after field) the modification, as well as some
metadata information of the connector (source
field).

7 op

It indicates the type of modification operation that
generates the event. In the example, c indicates an
operation that creates a new row. c = create; u =
update; d = delete; r = read (only snapshots); t =
truncate; m = message

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 55 of 101

8 source The source field is a field that describes event
metadata. It contains several fields that can be
used to compare with other events, such as the
order in which events are generated and whether
they belong to the same transaction. The source
field includes the following metadata: Debezium
version; Connector type and name; Database and
table that contains the new row; Stringified JSON
array of additional offset information (the first value
is always the last committed LSN, the second value
is the current LSN; either value may be null);
Schema name; Whether the event was part of a
snapshot; Transaction ID in which the operation
was performed; Offset of the operation in the
database log; Timestamp for when the change was
made in the database.

Update Events

Below is a message generated by the Debezium PostgreSQL connector for a database update operation:

{

 "schema": { ... },

 "payload": {

 "before": {

 "id": 1

 },

 "after": {

 "id": 1,

 "first_name": "Anne Marie",

 "last_name": "Kretchmar",

 "email": "annek@noanswer.org"

 },

 "source": {

 "version": "1.9.3.Final",

 "connector": "postgresql",

 "name": "PostgreSQL_server",

 "ts_ms": 1559033904863,

 "snapshot": false,

 "db": "postgres",

 "schema": "public",

 "table": "customers",

 "txId": 556,

 "lsn": 24023128,

 "xmin": null

 },

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 56 of 101

 "op": "u",

 "ts_ms": 1465584025523

 }

}

The schema field is the same as that in the create event, but the payload part differs. In the create event, the before
field is null, indicating there is no original data. In contrast, in the update event, both the before and after fields are

present, showing the data before and after the update.

Truncate Events

When a truncate table event occurs, the key of the event message is null. An example of such a message is shown
below:

{

 "schema": { ... },

 "payload": {

 "source": {

 "version": "1.9.3.Final",

 "connector": "postgresql",

 "name": "PostgreSQL_server",

 "ts_ms": 1559033904863,

 "snapshot": false,

 "db": "postgres",

 "schema": "public",

 "table": "customers",

 "txId": 556,

 "lsn": 46523128,

 "xmin": null

 },

 "op": "t",

 "ts_ms": 1559033904961

 }

}

If a TRUNCATE statement affects multiple tables, the connector will generate a separate truncate event message for
each affected table.

Message Events

This message type only supports the Postgres 14+ pgoutput plugin. An example of a transaction message event

format is shown below:

{

 "schema": { ... },

 "payload": {

 "source": {

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 57 of 101

 "version": "1.9.3.Final",

 "connector": "postgresql",

 "name": "PostgreSQL_server",

 "ts_ms": 1559033904863,

 "snapshot": false,

 "db": "postgres",

 "schema": "",

 "table": "",

 "txId": 556,

 "lsn": 46523128,

 "xmin": null

 },

 "op": "m",

 "ts_ms": 1559033904961,

 "message": {

 "prefix": "foo",

 "content": "Ymfy"

 }

 }

}

An example of a non-transaction message format is shown below:

{

 "schema": { ... },

 "payload": {

 "source": {

 "version": "1.9.3.Final",

 "connector": "postgresql",

 "name": "PostgreSQL_server",

 "ts_ms": 1559033904863,

 "snapshot": false,

 "db": "postgres",

 "schema": "",

 "table": "",

 "lsn": 46523128,

 "xmin": null

 },

 "op": "m",

 "ts_ms": 1559033904961

 "message": {

 "prefix": "foo",

 "content": "Ymfy"

 }

}

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 58 of 101

The transaction message event includes a txId field representing the transaction ID. Additionally, the message event
contains a message field, which is explained as follows:

Field Name Description

message
This field contains the metadata of the message:
prefix(text)
Content (byte array that is encoded based on the binary handling mode setting)

Delete Events

Below is a message generated by the Debezium PostgreSQL connector for a database delete operation:

{

 "schema": { ... },

 "payload": {

 "before": {

 "id": 1

 },

 "after": null,

 "source": {

 "version": "1.9.3.Final",

 "connector": "postgresql",

 "name": "PostgreSQL_server",

 "ts_ms": 1559033904863,

 "snapshot": false,

 "db": "postgres",

 "schema": "public",

 "table": "customers",

 "txId": 556,

 "lsn": 46523128,

 "xmin": null

 },

 "op": "d",

 "ts_ms": 1465581902461

 }

}

The schema field is the same as that in the create event, but the payload part is different. In a Delete event, it includes
the data before the modification, but the data after the update is null, indicating the data has been deleted.

Primary Key Events

If an operation modifies the primary key of a row in the data table, then the connector will generate a delete event to
indicate that the row with the original primary key has been deleted, and a create event is generated to

https://debezium.io/documentation/reference/stable/connectors/postgresql.html#postgresql-property-binary-handling-mode

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 59 of 101

represent the insertion of the row with the new primary key. The header of each message will be associated with the
corresponding key. The official description is as follows:
The DELETE event record has __debezium.newkey as a message header. The value of this header is the

new primary key for the updated row.
The CREATE event record has __debezium.oldkey as a message header. The value of this header is the

previous (old) primary key that the updated row had.

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 60 of 101

Official Format Description for MySQL
Subscription Messages
Last updated：2024-09-09 21:41:37

Overview

When the CKafka connector is used to subscribe to MySQL change operations, various message formats can be
selected. By default, the debezium format is used, and it also provides compatibility with other message formats. This
document introduces the message format compatible with Custom Official Definition Format.

Official Format I Description

Official Format I currently supports only DML messages. The DDL message format is consistent with the canal format.

Field Name Field Description

BINLOG_NAME The binlog file name.

BINLOG_POS The binlog pos position.

DATABASE The database name.

EVENT_SERVER_ID It is temporarily set to null by default.

GLOBAL_ID If GTID is enabled, this field contains GTID information.

GROUP_ID It is temporarily set to null by default.

NEW_VALUES
If type = U, this field contains the updated row information in JSON format.
If type = D, this field is null.
If type = I, this field contains the newly inserted row information in JSON format.

OLD_VALUES
If type = U, this field contains the row information before the update in JSON format.
If type = D, this field contains the deleted row information in JSON format.
If type = I, this field is null.

TABLE The table name.

TIME The log generation time.

TYPE The log type:

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 61 of 101

U: update
D: delete
l: insert

DDL Format

Create Database

{

 "data": null,

 "database": "dip_test",

 "es": 1655812326,

 "id": 0,

 "isDdl": true,

 "mysqlType": null,

 "old": null,

 "pkNames": null,

 "sql": "CREATE DATABASE `dip_test` CHARSET utf8mb4 COLLATE utf8mb4_0900_ai_ci",

 "sqlType": null,

 "table": "",

 "ts": 1655812326,

 "type": "QUERY"

}

Drop Database

{

 "data": null,

 "database": "dip_test",

 "es": 1655812326,

 "id": 0,

 "isDdl": true,

 "mysqlType": null,

 "old": null,

 "pkNames": null,

 "sql": "DROP DATABASE IF EXISTS `dip_test`",

 "sqlType": null,

 "table": "",

 "ts": 1655812326,

 "type": "QUERY"

}

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 62 of 101

Create Table

{

 "data": null,

 "database": "dip_test",

 "es": 1655812326,

 "id": 0,

 "isDdl": true,

 "mysqlType": null,

 "old": null,

 "pkNames": null,

 "sql": "CREATE TABLE `customers` (

 `id` int NOT NULL AUTO_INCREMENT,

 `first_name` varchar(255) NOT NULL,

 `last_name` varchar(255) NOT NULL,

 `email` varchar(255) NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `email` (`email`),

 KEY `ix_id` (`id`)

) ENGINE=InnoDB AUTO_INCREMENT=1041 DEFAULT CHARSET=utf8",

 "sqlType": null,

 "table": "customers",

 "ts": 1655812326,

 "type": "CREATE"

}

Alter Table

{

 "data": null,

 "database": "test",

 "es": 1655782153,

 "id": 0,

 "isDdl": true,

 "mysqlType": null,

 "old": null,

 "pkNames": null,

 "sql": "ALTER TABLE `user` ADD COLUMN `createtime` datetime NULL DEFAULT CURREN

 "sqlType": null,

 "table": "user",

 "ts": 1655782153,

 "type": "ALTER"

}

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 63 of 101

Drop Table

{

 "data": null,

 "database": "dip_test",

 "es": 1655812326,

 "id": 0,

 "isDdl": true,

 "mysqlType": null,

 "old": null,

 "pkNames": null,

 "sql": "DROP TABLE IF EXISTS `dip_test`.`customers`",

 "sqlType": null,

 "table": "customers",

 "ts": 1655812326,

 "type": "ERASE"

}

Rename Table

{

 "data": null,

 "database": "testDB",

 "es": 1656300979748,

 "id": 0,

 "isDdl": true,

 "mysqlType": null,

 "old": null,

 "pkNames": null,

 "sql": "rename table test to t_test",

 "sqlType": null,

 "table": "t_test",

 "ts": 1656300979748,

 "type": "RENAME"

}

DML Format

Insert

{

 "BINLOG_NAME": "mysql-bin.000003",

 "BINLOG_POS": 154,

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 64 of 101

 "DATABASE": "inventory",

 "EVENT_SERVER_ID": null,

 "GLOBAL_ID": null,

 "GROUP_ID": null,

 "NEW_VALUES": {

 "last_name": "Kretchmar",

 "id": "1004",

 "first_name": "Anne",

 "email": "annek@noanswer.org"

 },

 "OLD_VALUES": null,

 "TABLE": "customers",

 "TIME": "19700101080000",

 "TYPE": "I"

}

Update

{

 "BINLOG_NAME": "mysql-bin.000003",

 "BINLOG_POS": 484,

 "DATABASE": "inventory",

 "EVENT_SERVER_ID": null,

 "GLOBAL_ID": null,

 "GROUP_ID": null,

 "NEW_VALUES": {

 "last_name": "Kretchmar",

 "id": "1004",

 "first_name": "Anne Marie",

 "email": "annek@noanswer.org"

 },

 "OLD_VALUES": {

 "last_name": "Kretchmar",

 "id": "1004",

 "first_name": "Anne",

 "email": "annek@noanswer.org"

 },

 "TABLE": "customers",

 "TIME": "20160611015029",

 "TYPE": "U"

}

Delete

{

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 65 of 101

 "BINLOG_NAME": "mysql-bin.000003",

 "BINLOG_POS": 805,

 "DATABASE": "inventory",

 "EVENT_SERVER_ID": null,

 "GLOBAL_ID": null,

 "GROUP_ID": null,

 "NEW_VALUES": null,

 "OLD_VALUES": {

 "last_name": "Kretchmar",

 "id": "1004",

 "first_name": "Anne Marie",

 "email": "annek@noanswer.org"

 },

 "TABLE": "customers",

 "TIME": "20160611020502",

 "TYPE": "D"

}

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 66 of 101

Canal Format of MySQL Subscription
Message
Last updated：2024-01-09 15:02:47

Overview

When using CKafka Connector to subscribe to change operations in MySQL, you can select multiple message
formats, and the default format is Debezium. In addition, the system provides compatibility with other message
formats. This document describes the message formats compatible with the official custom format.

Official Format 1

Official format 1 currently is supported only for DML messages, while the DDL message format is the same as the
Canal format.

Field Description

BINLOG_NAME Binlog filename

BINLOG_POS Binlog position

DATABASE Database name

EVENT_SERVER_ID It is null currently

GLOBAL_ID GTID information if GTID is enabled

GROUP_ID It is null currently

NEW_VALUES
If type is U , it is the row information after the update in JSON format.
If type is D , it is null.
If type is I , it is the inserted row information in JSON format.

OLD_VALUES
If type is U , it is the row information before the update in JSON format.
If type is D , it is the deleted row information in JSON format.
If type is I , it is null.

TABLE Table name

TIME Log generation time

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 67 of 101

TYPE Log type. Valid values: U (UPDATE); D (DELETE); I (INSERT).

DDL Format

create database

{

 "data": null,

 "database": "dip_test",

 "es": 1655812326,

 "id": 0,

 "isDdl": true,

 "mysqlType": null,

 "old": null,

 "pkNames": null,

 "sql": "CREATE DATABASE `dip_test` CHARSET utf8mb4 COLLATE utf8mb4_0900_ai_ci",

 "sqlType": null,

 "table": "",

 "ts": 1655812326,

 "type": "QUERY"

}

drop database

{

 "data": null,

 "database": "dip_test",

 "es": 1655812326,

 "id": 0,

 "isDdl": true,

 "mysqlType": null,

 "old": null,

 "pkNames": null,

 "sql": "DROP DATABASE IF EXISTS `dip_test`",

 "sqlType": null,

 "table": "",

 "ts": 1655812326,

 "type": "QUERY"

}

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 68 of 101

create table

{

 "data": null,

 "database": "dip_test",

 "es": 1655812326,

 "id": 0,

 "isDdl": true,

 "mysqlType": null,

 "old": null,

 "pkNames": null,

 "sql": "CREATE TABLE `customers` (

 `id` int NOT NULL AUTO_INCREMENT,

 `first_name` varchar(255) NOT NULL,

 `last_name` varchar(255) NOT NULL,

 `email` varchar(255) NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `email` (`email`),

 KEY `ix_id` (`id`)

) ENGINE=InnoDB AUTO_INCREMENT=1041 DEFAULT CHARSET=utf8",

 "sqlType": null,

 "table": "customers",

 "ts": 1655812326,

 "type": "CREATE"

}

alter table

{

 "data": null,

 "database": "test",

 "es": 1655782153,

 "id": 0,

 "isDdl": true,

 "mysqlType": null,

 "old": null,

 "pkNames": null,

 "sql": "ALTER TABLE `user` ADD COLUMN `createtime` datetime NULL DEFAULT CURREN

 "sqlType": null,

 "table": "user",

 "ts": 1655782153,

 "type": "ALTER"

}

drop table

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 69 of 101

{

 "data": null,

 "database": "dip_test",

 "es": 1655812326,

 "id": 0,

 "isDdl": true,

 "mysqlType": null,

 "old": null,

 "pkNames": null,

 "sql": "DROP TABLE IF EXISTS `dip_test`.`customers`",

 "sqlType": null,

 "table": "customers",

 "ts": 1655812326,

 "type": "ERASE"

}

rename table

{

 "data": null,

 "database": "testDB",

 "es": 1656300979748,

 "id": 0,

 "isDdl": true,

 "mysqlType": null,

 "old": null,

 "pkNames": null,

 "sql": "rename table test to t_test",

 "sqlType": null,

 "table": "t_test",

 "ts": 1656300979748,

 "type": "RENAME"

}

DML Format

insert

{

 "BINLOG_NAME": "mysql-bin.000003",

 "BINLOG_POS": 154,

 "DATABASE": "inventory",

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 70 of 101

 "EVENT_SERVER_ID": null,

 "GLOBAL_ID": null,

 "GROUP_ID": null,

 "NEW_VALUES": {

 "last_name": "Kretchmar",

 "id": "1004",

 "first_name": "Anne",

 "email": "annek@noanswer.org"

 },

 "OLD_VALUES": null,

 "TABLE": "customers",

 "TIME": "19700101080000",

 "TYPE": "I"

}

update

{

 "BINLOG_NAME": "mysql-bin.000003",

 "BINLOG_POS": 484,

 "DATABASE": "inventory",

 "EVENT_SERVER_ID": null,

 "GLOBAL_ID": null,

 "GROUP_ID": null,

 "NEW_VALUES": {

 "last_name": "Kretchmar",

 "id": "1004",

 "first_name": "Anne Marie",

 "email": "annek@noanswer.org"

 },

 "OLD_VALUES": {

 "last_name": "Kretchmar",

 "id": "1004",

 "first_name": "Anne",

 "email": "annek@noanswer.org"

 },

 "TABLE": "customers",

 "TIME": "20160611015029",

 "TYPE": "U"

}

delete

{

 "BINLOG_NAME": "mysql-bin.000003",

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 71 of 101

 "BINLOG_POS": 805,

 "DATABASE": "inventory",

 "EVENT_SERVER_ID": null,

 "GLOBAL_ID": null,

 "GROUP_ID": null,

 "NEW_VALUES": null,

 "OLD_VALUES": {

 "last_name": "Kretchmar",

 "id": "1004",

 "first_name": "Anne Marie",

 "email": "annek@noanswer.org"

 },

 "TABLE": "customers",

 "TIME": "20160611020502",

 "TYPE": "D"

}

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 72 of 101

User Permission Settings Reference for
PostgreSQL Subscription by Connector
Last updated：2024-09-09 21:42:25

Background

When using the CKafka connector to subscribe to a Postgresql database, you need to assign the appropriate
permissions to the PostgreSQL users configured in the Connection Management. Only users with the
corresponding permissions can synchronize messages when accessing the database from an authorized host.

This document explains how to set up user permissions and host access permissions.

User Permission Settings

Permissions need to be granted based on the decode plugin being used, as different plugins require different
permissions.

User Permissions Settings When the decoderbufs Plugin Is Used

Log in to the PostgreSQL as a superuser, create a role, and grant the role at least REPLICATION and LOGIN

permissions.

Grant permissions:

 CREATE ROLE userName REPLICATION LOGIN;

Note
Superusers have the necessary permissions by default, so if the user is a superuser, you generally don't need to grant
the above permissions. However, for security reasons, it is not recommended to use the superuser.

User Permission Settings When the pgoutput Plugin Is Used

Caution
The pgoutput plugin requires the user configured in Connection Management to have superuser permissions.
Step 1: Verify if the user has superuser permissions.

// Log in to the postgresql, execute the \\du command to check user permissions.

postgres=# \\du

Role name | List of roles Attributes

 admin | Superuser

 postgres | Superuser, Create role, Create DB, Replication, Bypass RLS

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 73 of 101

 slave | Replication

 // If the configured user does not have superuser permissions, grant the permissio

postgres=# ALTER USER userName WITH SUPERUSER;

Step 2: After the user has superuser permissions, follow these steps to grant the necessary permissions.
The connector pgoutput plugin obtains change events by subscribing to publications on the PostgreSQL node. You

can either manually create the publication before starting the connector or grant the configured user the permissions to
create publications.
Grant the user the following permissions: Replication , CREATE , and SELECT .

CREATE ROLE userName REPLICATION LOGIN;

GRANT CREATE ON DATABASE databaseName TO userName;

GRANT SELECT ON TABLE tableName TO userName;

The user configured in Connection Management needs to have owner permissions of the subscribed tables. You can
grant the user owner permissions as follows:
1. Create a replication group.

CREATE ROLE <replication_group>;

2. Add the owner of the table to the replication group.

GRANT REPLICATION_GROUP TO <original_owner>;

3. Add the connector user to the replication group.

GRANT REPLICATION_GROUP TO <replication_user>;

4. Transfer the owner permissions of the table to the replication group.

ALTER TABLE <table_name> OWNER TO REPLICATION_GROUP;

Host Access Permission Settings (Required for Self-Built Clusters)

You need to configure the database to allow the host access of the connector. This can be done by setting the
corresponding policies in the pg_hba.conf file. For detailed information about pg_hba.conf , see

pg_hba.conf. The configuration file format is as follows:

host databaseName userName 11.163.0.0/16 md5

host databaseName userName 11.163.0.0/16 trust

https://www.postgresql.org/docs/10/auth-pg-hba-conf.html

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 74 of 101

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 75 of 101

Data Processing
Data Processing Rule Description
Last updated：2024-11-07 11:40:36

Overview

It is usually necessary to perform some cleaning operations on data, such as formatting raw data, parsing specific
fields, and converting data format, when CKafka Connector is used to handle data transfer tasks. Developers often
need to build their own data cleaning services (ETL).

Logstash is a free and open server-side data processing pipeline that can collect data from multiple sources,
transform the data, and send the data to the respective "storage". Logstash has many filter plugins, making it a widely
used and powerful data transformation tool.
However, building, configuring, and maintaining Logstash services increases the difficulty of development and Ops.
Therefore, CKafka provides data processing services comparable to Logstash. Developers only need to create data

processing tasks in the console. The data processing services allow users to edit the corresponding data processing
rules, create chained processing tasks, and preview the data processing result.

Feature List

Logstash Data Processing Services of
Connector

Feature

Codec.json ✔ Data parsing (JSON)

Filter.grok ✔ Data parsing (regular expression match)

Filter.mutate.split ✔ Data parsing (character segmentation)

Filter.date ✔ Date format processing

Filter.json ✔ Internal JSON struct parsing

Filter.mutate.convert ✔ Data modification (format conversion)

Filter.mutate.gsub ✔ Data modification (character replacement)

Filter.mutate.strip ✔ Data modification (leading and trailing space

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 76 of 101

removal)

Filter.mutate.join ✔ Data modification (field concatenation)

Filter.mutate.rename ✔ Field modification (field renaming)

Filter.mutate.update ✔ Field modification (field update)

Filter.mutate.replace ✔ Field modification (field replacement)

Filter.mutate.add_field ✔ Field modification (field addition)

Filter.mutate.remove_field ✔ Field modification (field deletion)

Filter.mutate.copy ✔ Field modification (field value copying)

Filter.mutate.merge TODO

Filter.mutate.uppercase TODO

Filter.mutate.lowercase TODO

Introduction to Operation Methods

Data Parsing

Logstash processing method:

 // Codec.json

 input {

 file {

 path => "/var/log/nginx/access.log_json""

 codec => "json"

 }

 }

 // Filter.grok

 filter {

 grok {

 match => {

 "message" => "\\s+(?<request_time>\\d+(?:\\.\\d+)?)\\s+"

 }

 }

 }

 // Filter.mutate.split

 filter {

 split {

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 77 of 101

 field => "message"

 terminator => "#"

 }

 }

Connector processing method:
Select the corresponding data parsing mode, and click the button to preview the result:

Date Format Processing

Logstash processing method:

 // Filter.date

 filter {

 date {

 match => ["client_time", "yyyy-MM-dd HH:mm:ss"]

 }

 }

Connector processing method:
1.1 Assign a value to a field by presetting the current system time:
1.2 Process the data by using the Process value feature:

Internal JSON Struct Parsing

Logstash processing method:

 // Filter.json

 filter {

 json {

 source => "message"

 target => "jsoncontent"

 }

 }

Connector processing method:
Select the Map operation for a specific field to parse the field into a JSON object:

Data Modification

Logstash processing method:

 // Filter.mutate.convert

 filter {

 mutate {

 convert => ["request_time", "float"]

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 78 of 101

 }

 }

 // Filter.mutate.gsub

 filter {

 mutate {

 gsub => ["urlparams", ",", "_"]

 }

 }

 // Filter.mutate.strip

 filter {

 mutate {

 strip => ["field1", "field2"]

 }

 }

 // Filter.mutate.join

 filter {

 mutate {

 join => { "fieldname" => "," }

 }

 }

Connector processing method:
Select the corresponding value processing mode to set the rule:

1.1 Select the data format to change the data format of the corresponding field with one click:

1.2 Use JSONPath syntax to concatenate elements. For example, use the
 $.concat($.data.Response.SubnetSet[0].VpcId,"#",$.data.Response.SubnetSet

[0].SubnetId,"#",$.data.Response.SubnetSet[0].CidrBlock)) syntax to concatenate

VPC and subnet attributes, which can be separated with the # character.

1.3 The result is as follows:

Field Modification

Logstash processing method:

 // Filter.mutate.rename

 filter {

 mutate {

 rename => ["syslog_host", "host"]

 }

 }

 // Filter.mutate.update

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 79 of 101

 filter {

 mutate {

 update => { "sample" => "My new message" }

 }

 }

 // Filter.mutate.replace

 filter {

 mutate {

 replace => { "message" => "%{source_host}: My new message" }

 }

 }

 // Filter.mutate.add_field

 filter {

 mutate {

 split => { "hostname" => "." }

 add_field => { "shortHostname" => "%{[hostname][0]}" }

 }

 }

 // Filter.mutate.remove_field

 filter {

 mutate {

 remove_field => ["field_name"]

 }

 }

 // Filter.mutate.copy

 filter {

 mutate {

 copy => { "source_field" => "dest_field" }

 }

 }

Connector processing method:

Examples

Example 1: Multi-Level Field Parsing

Input message:

{

 "@timestamp": "2022-02-26T22:25:33.210Z",

 "beat": {

 "hostname": "test-server",

 "ip": "6.6.6.6",

 "version": "5.6.9"

 },

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 80 of 101

 "input_type": "log",

 "message": "{\\"userId\\":888,\\"userName\\":\\"testUser\\"}",

 "offset": 3030131,

}

Output message :

{

 "@timestamp": "2022-02-26T22:25:33.210Z",

 "input_type": "log",

 "hostname": "test-server",

 "ip": "6.6.6.6",

 "userId": 888,

 "userName": "testUser"

}

Connector configuration:
1.1 The configuration of processing chain 1 is as follows:
1.2 The result of processing chain 1 is as follows:

{

 "@timestamp": "2022-02-26T22:25:33.210Z",

 "input_type": "log",

 "message": "{\\"userId\\":888,\\"userName\\":\\"testUser\\"}",

 "hostname": "test-server",

 "ip": "6.6.6.6"

}

1.3 The configuration of processing chain 2 is as follows:

1.4 The result of processing chain 2 is as follows:

{

 "@timestamp": "2022-02-26T22:25:33.210Z",

 "input_type": "log",

 "hostname": "test-server",

 "ip": "6.6.6.6",

 "userId": 888,

 "userName": "testUser"

}

Example 2: Non-JSON Data Parsing

Input message:

region=Shanghai$area=a1$server=6.6.6.6$user=testUser$timeStamp=2022-02-26T22:25:33.

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 81 of 101

Output message:

{

 "region": "Shanghai",

 "area": "a1",

 "server": "6.6.6.6",

 "user": "testUser",

 "timeStamp": "2022-02-27 06:25:33",

 "processTimeStamp": "2022-06-27 11:14:49"

}

Connector configuration:
1.1 Use delimiter $ to parse the original message:
1.2 The preliminary parsing result is as follows:

{

 "0": "region=Shanghai",

 "1": "area=a1",

 "2": "server=6.6.6.6",

 "3": "user=testUser",

 "4": "timeStamp=2022-02-26T22:25:33.210Z"

}

1.3 Use delimiter = for further parsing:
1.4 The parsing result is as follows:

{

 "0": "region=Shanghai",

 "1": "area=a1",

 "2": "server=6.6.6.6",

 "3": "user=testUser",

 "4": "timeStamp=2022-02-26T22:25:33.210Z",

 "0.region": "Shanghai",

 "1.area": "a1",

 "2.server": "6.6.6.6",

 "3.user": "testUser",

 "4.timeStamp": "2022-02-26T22:25:33.210Z"

}

1.5 Edit and delete fields, adjust the timestamp format, and add the field of the current system time:
The final result is as follows:

{

 "region": "Shanghai",

 "area": "a1",

 "server": "6.6.6.6",

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 82 of 101

 "user": "testUser",

 "timeStamp": "2022-02-27 06:25:33",

 "processTimeStamp": "2022-06-27 11:14:49"

}

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 83 of 101

Regular Expression Extraction
Last updated：2024-11-07 11:40:11

The data processing feature of CKafka Connector provides the capability to extract message content based on
regular expressions. Regular expression extraction uses the open-source regular expression package re2.
Java's standard regular expression package java.util.regex and other widely used regular expression

packages, such as PCRE, Perlre, and Python(re), use the backtracking policy. That is, when two options a|b are

available for a pattern, the engine will first try to match a . If the match fails, it will reset the input stream and try to

match b .

If the matching pattern is deeply nested, the policy requires exponential nested parsing of the input data. If the input
string is very long, the matching time can be infinitely long

In contrast, the RE2J algorithm uses a nondeterministic finite automaton (NFA) to check all matches in a single parse
of the input data, achieving regular expression matching in linear time.
Regular expression extraction of data processing applies to the extraction of specific fields from messages of long
array types. Some common extraction patterns are described below.

Example 1: Extracting the Phone Number Field

Input message:

{"message":

 [

 {"email":123456@qq.com,"phoneNumber":"13890000000","IDNumber":"130423199301

 {"email":123456789@163.com,"phoneNumber":"15920000000","IDNumber":"61063019

 {"email":usr333@gmail.com,"phoneNumber":"18830000000","IDNumber":"420602198

]

}

Output message:

{

 "0": "\\"phoneNumber\\":\\"13890000000\\"",

 "1": "\\"phoneNumber\\":\\"15920000000\\"",

 "2": "\\"phoneNumber\\":\\"18830000000\\""

}

The regular expression used is:

"phoneNumber":"(13[0-9]|14[5|7]|15[0|1|2|3|5|6|7|8|9]|18[0|1|2|3|5|6|7|8|9])\\d{8}"

https://github.com/google/re2j

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 84 of 101

Example 2: Extracting the Email Field

Input message:

{"message":

 [

 {"email":123456@qq.com,"phoneNumber":"13890000000","IDNumber":"130423199301

 {"email":123456789@163.com,"phoneNumber":"15920000000","IDNumber":"61063019

 {"email":usr333@gmail.com,"phoneNumber":"18830000000","IDNumber":"420602198

]

}

Output message:

{

 "0": "\\"email\\":\\"123456@qq.com\\"",

 "1": "\\"email\\":\\"123456789@163.com\\"",

 "2": "\\"email\\":\\"usr333@gmail.com\\""

}

The regular expression used is:

"email":"\\w+([-+.]\\w+)*@\\w+([-.]\\w+)*\\.\\w+([-.]\\w+)*"

Example 3: Extracting the ID Number Field

Input message:

{

 "@timestamp": "2022-02-26T22:25:33.210Z",

 "input_type": "log",

 "operation": "INSERT",

 "operator": "admin",

 "message": "{\\"email\\":\\"123456@qq.com\\",\\"phoneNumber\\":\\"13890000000\\

}

Output message. Retain other fields and extract N IDNumber fields from the message separately:

{

 "@timestamp": "2022-02-26T22:25:33.210Z",

 "input_type": "log",

 "operation": "INSERT",

 "operator": "admin",

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 85 of 101

 "message.0": "130423199301067425",

 "message.1": "610630199109235723",

 "message.2": "42060219880213301X"

}

The used regular expression is:

[1-9]\\d{5}(18|19|20)\\d{2}((0[1-9])|(1[0-2]))(([0-2][1-9])|10|20|30|31)\\d{3}[0-9X

Multiple processing chains are used, and the result of the first processing chain is as follows:

The message field needs to be further processed, and the result of the second processing chain is as follows:

Processing result:

{

 "@timestamp": "2022-02-26T22:25:33.210Z",

 "input_type": "log",

 "operation": "INSERT",

 "operator": "admin",

 "message.0": "130423199301067425",

 "message.1": "610630199109235723",

 "message.2": "42060219880213301X"

}

The required N IDNumber fields are extracted, the original message field is deleted, and other fields such as operation

are retained.

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 86 of 101

JSONPath Description
Last updated：2024-11-07 11:39:19

Overview

JSON is currently one of the most commonly used format protocols for Internet information transmission. Data
processing mainly focus on parsing and handling JSON data.
JSONPath is a message query syntax specification designed for the JSON format. For data processing, simple

JSONPath syntax can be used to quickly retrieve the value of a member in a complex nested JSON struct, and
extension functions in the JayWay library can also be used to aggregate or operate on a certain type of member
fields.

Basic Features

Basic Syntax

 $ is a root node operator and represents the root node of the current JSON struct.

 .<childName> is a dot operator, and ['<childName>'] is a bracket operator. They represent the selected

child member named childName of the current object.

 .. is a recursive operator and indicates recursively obtaining all child members of the current object.

 [<index>] is a selection operator and indicates obtaining the No. index child member of the current iterable

object.

Obtaining Specific Member Variable of Nested JSON Struct

The following figure shows the structure of container standard output logs collected by TKE:

{

 "@timestamp": 1648803500.63659,

 "@filepath": "/var/log/tke-log-agent/test7/xxxxxxxx-adfe-4617-8cf3-9997aea90ded/c

 "log": "15:00:00.000[4349811564226374227] [http-nio-8081-exec-64] INFO com.qclou

 "kubernetes": {

 "pod_name": "tke-es-xxxxxxxxxx-n29jr",

 "namespace_name": "default",

 "pod_id": "xxxxxxxx-adfe-4617-8cf3-9997aea90ded",

 "labels": {

 "k8s-app": "tke-es",

 "pod-template-hash": "xxxx95d557",

 "qcloud-app": "tke-es"

 },

https://github.com/json-path/JsonPath

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 87 of 101

 "annotations": {

 "qcloud-redeploy-timestamp": "1648016531476",

 "tke.cloud.tencent.com/networks-status": "[{\\n \\"name\\": \\"tke-bridge\

 },

 "host": "10.0.xx.xx",

 "container_name": "nginx",

 "docker_id": "xxxxxxxx49626ef42d5615a636aae74d6380996043cf6f6560d8131f21a4d8ba"

 "container_hash": "nginx@sha256:xxxxxxxx7b29b585ed1aee166a17fad63d344bc973bc638

 "container_image": "nginx"

 }

}

When users need to obtain the current Pod name, that is, the qcloud-app member field, they can use the

 $.kubernetes.labels.qcloud-app or $.['kubernetes'].['labels'].['qcloud-app']

JSONPath syntax.
The running result is as follows. The figure shows that the corresponding logs have been successfully read using
JSONPath:

Note
When JSONPath is used to handle parameters, only the square bracket operator can be used if a JSON variable
name contains special characters such as . .

For example, for a JSON struct like {"key1.key2":"value1"} , $.['key1.key2'] must be used to obtain

the corresponding member fields.

Advanced Features

Advanced Syntax

 * is a wildcard operator and indicates obtaining all child objects of the current object.

 *~ is a built-in function and indicates obtaining the names of all child objects of the current iterable object.

 min() is a built-in function and indicates obtaining the minimum value of child objects of the current iterable object.

 max() is a built-in function and indicates obtaining the maximum value of child objects of the current tterable

object.
 sum() is a built-in function and indicates obtaining the sum of child objects of the current iterable object.

 concat() is a built-in function that concatenates multiple objects into a string.

Aggregating Data of Specific Fields

When there is an object list in a JSON struct, the list length is usually variable. Take the request response log in the
figure below as an example:

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 88 of 101

{

 "data": {

 "Response": {

 "Result": {

 "Routers": [

 {

 "AccessType": 0,

 "RouteId": 81111,

 "VpcId": "vpc-xxxxxxxx",

 "VipType": 3,

 "VipList": [

 {

 "Vip": "10.0.0.189",

 "Vport": "9xxx"

 }

]

 },

 {

 "AccessType": 0,

 "RouteId": 81112,

 "VpcId": "vpc-r5sbavzp",

 "VipType": 3,

 "VipList": [

 {

 "Vip": "10.0.0.248",

 "Vport": "9xxx"

 }

]

 },

 {

 "AccessType": 0,

 "RouteId": 81113,

 "VpcId": "vpc-xxxxxxxx",

 "VipType": 3,

 "VipList": [

 {

 "Vip": "10.0.0.210",

 "Vport": "9xxx"

 }

]

 }

]

 },

 "RequestId": "20e74750-ca40-403d-9ea9-d3f63b5415d2"

 }

 },

 "code": 0

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 89 of 101

}

When you need to aggregate the member attributes of a variable-length list, you cannot use the processing chain for
aggregation. Instead, you can use the JSONPath syntax * to match all elements in the list.

For example, if you want to obtain all the Vip elements in VipList, you can use the JSONPath syntax
 $.data.Response.Result.Routers[*].VipList[0].Vip .

The running result is shown below. It shows that all Vip elements in the struct are successfully obtained.

Concatenating and Modify Struct Members

In some scenes, multiple objects in a JSON struct need to be concatenated during data processing to facilitate
transfer to the downstream for further operations. The following syntax can be used:

{

 "data": {

 "Response": {

 "SubnetSet": [

 {

 "VpcId": "vpc-xxxxxxxx",

 "SubnetId": "subnet-xxxxxxxx",

 "SubnetName": "ckafka_cloud_subnet-1",

 "CidrBlock": "10.0.0.0/19",

 "Ipv6CidrBlock": "",

 "IsDefault": false,

 "IsRemoteVpcSnat": false,

 "EnableBroadcast": false,

 "Zone": "ap-changsha-ec-1",

 "RouteTableId": "rtb-xxxxxxxx",

 "NetworkAclId": "",

 "TotalIpAddressCount": 8189,

 "AvailableIpAddressCount": 8033,

 "CreatedTime": "2021-01-25 17:31:00",

 "TagSet": [],

 "CdcId": "",

 "IsCdcSubnet": 0,

 "LocalZone": false,

 "IsShare": false

 }

],

 "TotalCount": 1,

 "RequestId": "705c4955-0cd9-48b2-9132-79eadae2e3e6"

 }

 },

 "code": 0

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 90 of 101

}

If the downstream has no computing capability, and the VPC and subnet attributes need to be concatenated during
data processing, the JSONPath function concat() can be used to concatenate multiple fields and modify the

output string.
For example, the syntax
 $.concat($.data.Response.SubnetSet[0].VpcId,"#",$.data.Response.SubnetSet[0].Subnet

Id,"#",$.data.Response.SubnetSet[0].CidrBlock)) can be used to concatenate the VPC and subnet

attributes, which can be separated with the character # .

The running result is shown below. It shows that the information on concatenated VPC resources are successfully
obtained:

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 91 of 101

Self-Built Cluster Connection Instructions
(CLB Method)
Last updated：2024-09-09 21:45:28

Overview

When self-built services on Cloud Virtual Machine (CVM) are connected through the CKafka connector, it is necessary
to follow the cross-VPC resource access solution standard set by the Tencent Cloud Network Team. You need to first
mount your self-built services onto the Cloud Load Balancer (CLB) to achieve cross-VPC resource access to

resources.
That is, when you build your MySQL or Mongo services on CVM and use them as a data source to connect the
CKafka connector, you need to connect them by mounting the CLB. This document describes the related operation
process.

Operation Process

Step 1: Purchasing a CLB Instance (Optional)

If the customer's account already has a private network CLB instance, it can be reused to save costs.

Alternatively, a separate CLB instance can be created to provide services. Below is the operation process for creating
a new private network CLB.
Note
When a CLB instance is purchased, ensure it is in the same region and VPC as that of the CVM cluster. This ensures
the CLB can be properly mounted to the CVM instance. Also, choose to purchase a private network CLB instance.

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 92 of 101

Step 2: Configuring the CLB Instance

1. Create a TCP listener: Enter the CLB Console > Instance Management page and find the instance to be
configured. On the instance details page, click Listener Management, and then click Create TCP Listener.

The port configured here is the port used to access the CLB. Health checks and session persistence can be

configured based on actual needs.

https://console.tencentcloud.com/clb/instance

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 93 of 101

2. Bind self-built services: After successful creation of the listener, click the corresponding listener, and then click Bind
on the right side to bind the CVM instance.

Select the CVM instance to be bound and fill in the service port number:

Note:
For self-built MySQL clusters, it is recommended to bind only one CVM instance (either a primary node or a
secondary node).This is because there may be a delay in binlog synchronization between the MySQL primary and
secondary databases, which can cause binlog read errors when the connector’s requests are forwarded to different
MySQL services. Therefore, it is recommended to bind only a single MySQL service in self-built clusters.

3. View service health status: After the service is created, you can view the corresponding services and their health
status.

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 94 of 101

Step 3: Creating a Connection

Enter the CKafka console, click Connector > Connection List, and then click New Connection.
Note
Select the CLB instance that is mounted to the CVM service, the port should be the corresponding CLB listener port,

and the username and password should be the ones corresponding to the service.

https://console.tencentcloud.com/ckafka/datahub-connect

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 95 of 101

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 96 of 101

Authorization Instructions for Access to CLS
and COS Services Through Connectors
Last updated：2024-09-09 21:46:31

Overview

When the CKafka connector is used to access services like CLS and COS, users need to grant the connector
permissions to access these services under their accounts. If the CKafka sub-account has the CAM policy
permissions (QcloudCamRoleFullAccess), select Role Authorization when a CKafka task is created, and the

connector will automatically complete the authorization for you. Otherwise, a user with AdministratorAccess need to
grant the necessary permissions before a connector task is created through the sub-account.

List of Services Requiring Authorization

Service Requiring Authorization Associated Role Required Policy Permission

Cloud Log Service (CLS) Datahub_QcsRole QcloudCLSFullAccess

Cloud Object Storage (COS) Datahub_QcsRole QcloudCOSFullAccess

Authorization Steps

If the sub-account creating the connector task does not have the CAM policy permissions
(QcloudCamRoleFullAccess), you may encounter prompts about missing CreateRole or AttachRolePolicy
permissions. If your account does not yet have the Datahub_QcsRole role, see Creating Role for authorization

instructions. If the account has the Datahub_QcsRole role, see Authorizing Role for authorization instructions.

Creating a Role

1. If you encounter a prompt about missing CreateRole policy permissions, a user with AdministratorAccess is
required to go to the CAM console, enter the role page, and click Create Role.

https://console.tencentcloud.com/cam/role

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 97 of 101

2. On the Select Role Entity page, select Tencent Cloud product service:

3. Proceed to the Enter Role Entity Information step, and select **Message Service (ckafka)**:

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 98 of 101

4. In the Configure Role Policy step, select the policy corresponding to the service that the connector task needs to
access. Here, the policies for CLS and COS are selected:

5. In the Configure Role Tag step, you can configure the appropriate tags for the role, but this step can be skipped.

6. In the Review step, name the role as Datahub_QcsRole:

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 99 of 101

7. Once the role is successfully created, the sub-account can proceed with creating the corresponding connector
tasks.

Authorize the Role

1. If you encounter a prompt about missing AttachRolePolicy policy permissions, a user with AdministratorAccess

needs to go to the CAM console, enter the role page, and find the role corresponding to the service. Here, the
Datahub_QcsRole role is taken as an example.

https://console.tencentcloud.com/cam/role

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 100 of 101

2. Click the role name to enter the role management details page. In the permissions section, click Associate
Policy:

3. Find the policy related to the service you need to authorize. Here, take the CLS service as an example, click

Confirm to complete the authorization:

4. Once the role has the permissions to access the respective service, the sub-account can successfully create the
corresponding connector tasks.

TDMQ for CKafka

©2013-2024 Tencent Cloud. All rights reserved. Page 101 of 101

What Is a Signaling Table
Last updated：2024-09-09 21:47:20

Background

The debezium connector initially synchronizes the existing data of the table only when a connection task is created.
Subsequent newly added tables cannot trigger the synchronization of existing data. To support the synchronization of
existing data for newly added tables, debezium uses a signal mode to notify the connector to trigger the

synchronization of existing data for newly added tables.

Principles

You need to create a signaling table in the subscribed database. When you want to trigger the synchronization of
existing data for a new table, insert the relevant information into the signaling table. Additionally, the connector needs
to subscribe to this signaling table. When the connector receives a message from the signaling table, the
synchronization of existing data for newly added tables will be triggered.

Notes

1. Since the subscription to the signaling table (dip_signal_taskId) messages has been added, the target Topic will
include messages from the signaling table, which will require the business side to perform appropriate filtering.
2. Ensure that the user configured in Connection Management has the permissions to create, modify, and delete
tables in the database. (This is only necessary for operations on the signaling table.)
3. If the signaling table is used to synchronize existing data for a newly added table, there may be instances of
duplicate incremental data. To avoid duplicate data, you can pause the insert, update, and delete operations on the

new table, edit the connector task's data source to add the table, and then resume the operations on the new table.
Alternatively, you can perform idempotent processing downstream.
4. If you did not select the option to synchronize existing data when the task is created, and later select the option
when you modified the data source to add a table with no change messages generated during this period, Debezium
will synchronize the existing data of both the old and new tables (not related to the signaling table) by default. If there

were incremental change messages in the old table before modifying the data source, then when you modify the data
source to add a table and select the existing data synchronization, only the existing data of the new table will be
synchronized (triggered by the signaling table).

