
TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 1
of 158

TDMQ for CKafka

Practical Tutorial

Product Documentation

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 2
of 158

Copyright Notice

©2013-2025 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by the Tencent corporate group, including
its parent, subsidiaries and affiliated companies, as the case may be. Trademarks of third parties referred to in this
document are owned by their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 3
of 158

Contents

Practical Tutorial
Practical Tutorial of CKafka Client

Practical Tutorial of Production and Consumption
Confluent Go SDK
Sarama Go
Java SDK
Kafka Python SDK
ibrdkafka SDK
tRpc Go SDK

Connector Practical Tutorial
Reporting over HTTP

Connection to Kafka over HTTP
Unified Data Reporting

Querying Subscription to Database Change Info
Analysis of Change Logs Tracked by MongoDB Change Streams

Simple Data Cleansing
Connecting Flink to CKafka
Connecting Schema Registry to CKafka
Connecting Spark Streaming to CKafka
Connecting Flume to CKafka
Connecting Kafka Connect to CKafka
Connecting Storm to CKafka
Connecting Logstash to CKafka
Connecting Filebeat to CKafka
Log Access

Connecting CLS to CKafka
Replacing Supportive Route (Old)
Practice Tutorial for Cluster Bandwidth in High CPU Utilization Scenarios
Practice Tutorial for Cluster Capacity Planning

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 4
of 158

Practical Tutorial
Practical Tutorial of CKafka Client
Practical Tutorial of Production and
Consumption
Last updated：2024-11-07 15:36:33

This document describes the practical tutorial of producing and consuming messages in TDMQ for CKafka to reduce
the possibilities of errors in message consumption.

Messages Production

Recommendations for Topic Use

Configuration requirements: It is recommended to use an integral multiple of nodes as replicas to reduce the

data skew problem. The minimum number of in-sync replicas should be 2, and the number of in-sync replicas
cannot be equal to the number of topic replicas; otherwise, the failure of 1 replica will result in the inability to produce
messages.
Creation method: You can choose whether to enable the switch for CKafka's automatic topic creation. After it is
enabled, a topic with 3 partitions and 2 replicas will be automatically created when a topic that has not been created is

produced or consumed.

Estimating Number of Partitions

To achieve as balanced data distribution as possible, it is recommended that the number of partitions is an integral
multiple of the number of nodes. Also, based on the estimated traffic, set the number of partitions at 1 MB/s per
partition. For example, for a topic with a throughput of 100 MB, it is recommended to set the number of partitions to
100.

Retry upon Failure

In a distributed environment, due to network and other issues, messages may occasionally fail to be sent. This is

probably because the message has been sent successfully but the ACK mechanism failed, or because the message
indeed has not been sent successfully.
You can set the following retry parameters based on your business needs:

Parameter Description

retries Number of retries, with the default value being 3. For applications that have zero tolerance

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 5
of 158

for data loss, you can consider setting it to Integer.MAX_VALUE (valid and maximum).

retry.backoff.ms Retry interval. We recommend you to set it to 1000.

By doing so, you will be able to deal with the issue where the broker's leader partition can't respond to producer
requests immediately.

Asynchronous Sending

The sending API is asynchronous. If you want to receive the result of sending, you can access the sending results
using the callback API provided in the send method.

One Producer Corresponding to One App

A producer is thread-safe and can send messages to any topics. Generally, we recommend that one application
correspond to one producer.

Acks

Kafka's ACK mechanism refers to the producer's mechanism for acknowledgment of message sending. It is set to

Acks on version Kafka 0.10.x or request.required.acks on version 0.8.x. The setting of Acks directly affects the
throughput of the Kafka cluster and the reliability of messages.
The Acks parameters are described as follows:

Parameter Description

acks=0 No response from the server is required. In this case, the performance is high, but the risk of data
loss is great.

acks=1
A response will be returned after the primary server node writes successfully. In this case, the
performance is moderate, and the risk of data loss is also moderate. A failure of the primary node
may cause data loss.

acks=all
A response will be returned only after the primary server node writes successfully and the nodes in
ISR sync successfully. The performance is poor, but the risk of data loss is small. Only a failure of
both the primary and secondary nodes will cause data loss.

We recommend you to select acks=1 generally and select acks=all for important services.

Batch

A TDMQ for CKafka topic generally has multiple partitions. Before the producer client sends a message to the server,
it needs to determine the topic and the partition to which the message should be sent. When sending multiple

messages to the same partition, the producer client will package the messages into a batch and then send the batch
to the server. Additional overheads will be incurred when the batch is processed. In general, a small batch will cause

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 6
of 158

the producer client to generate a large number of requests, which will cause the messages to queue up on the client
and the server, lead to an increase in the corresponding device's CPU utilization, and thus increase the delays in
message sending and consumption. A suitable batch size can reduce the number of requests sent to the server by the

client during message sending, thereby improving the throughput and reducing the delay in message sending.
The batch parameters are described as follows:

Parameter Description

batch.size
Size of cached messages sent to each partition (which is the sum of bytes of the messages
rather than the number of messages). Once the set value is reached, a network request will be
triggered, and the producer client will send the messages to the server in batch.

linger.ms Maximum amount of time each message is cached. After this time elapses, the producer client
will ignore the limit of the batch.size and immediately send the messages to the server.

buffer.memory
Once the total size of all cached messages exceeds this value, messages will be sent to the
server, and the limits of batch.size and linger.ms will be ignored. The default value for
buffer.memory is 32 MB, which ensures sufficient performance for a single Producer.

Note:
If you start multiple producers in the same JVM, it is likely that each producer will use 32 MB of cache space. In this
case, OOM (Out of Memory) errors may occur, and you need to consider the value of buffer.memory in order to avoid

OOM errors.
You can adjust the values of the parameters based on your specific business needs. The timing when the Producer
client sends messages to the server in batches is determined by both batch.size and linger.ms, and you can adjust it
based on your specific business needs. To enhance the performance of sending and ensure service stability, it is
recommended to set batch.size=16384 and linger.ms=1000.

Key and Value

Each message in TDMQ for CKafka has two fields: key (message identifier) and value (message content).

For ease of tracking, set a unique key for each message, which allows you to track a message and print its sending
and consumption logs to learn about its production and consumption conditions.
If you want to send a large number of messages, we recommend you to use the sticky partitioning policy instead of
setting keys.

Sticky Partitioning

Only messages sent to the same partition will be placed in the same batch, so one factor that determines how a batch

will be formed is the partitioning policy set by the Kafka producer. The Kafka producer allows you to choose a partition
that suits your business by setting the partitioner implementation class. If a key is specified for a message, the default
policy of the Kafka producer is to hash the message key and then select a partition based on the result of hashing to
ensure that messages with the same key are sent to the same partition.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 7
of 158

If no Key is specified for a message, the default policy of TDMQ for Kafka below v2.4 is to use all partitions in the topic
in loops and send the message to each partition in a round robin manner. However, this default policy has a poor
batch performance and may produce a large number of small batches, which increases actual delays. As it was

inefficient in partitioning messages without a key, Kafka 2.4 introduced the sticky partitioning policy.
The sticky partitioning policy mainly addresses the problem of small batches caused by the distribution of messages
without a key into different partitions. The main practice is to randomly select another partition and use it as much as
possible for subsequent messages after the batch is completed for a partition. With this policy, messages will be sent
to the same partition in the short run, but from the perspective of the entire execution, messages will be evenly sent to

different partitions, which helps avoid skewed partitions while reducing delays and improving the overall service
performance.
If a Kafka producer client is used on v2.4 or later, the default partitioning policy is sticky partitioning. If you use an
older producer client, you can implement a partitioning policy on your own based on how the sticky partitioning policy
works and then make it take effect through the partitioner.class parameter.
For more information on how to implement the sticky partitioning policy, see the following implementation of Java

code. The code is implemented by switching from one partition to another at certain time intervals.

public class MyStickyPartitioner implements Partitioner {

 // Record the time of the last partition switch.

 private long lastPartitionChangeTimeMillis = 0L;

 // Record the current partition.

 private int currentPartition = -1;

 // Partition switch time interval, which can be selected based on your business

 private long partitionChangeTimeGap = 100L;

 public void configure(Map<String, ?> configs) {}

 /**

 * Compute the partition for the given record.

 *

 * @param topic The topic name

 * @param key The key to partition on (or null if no key)

 * @param keyBytes serialized key to partition on (or null if no key)

 * @param value The value to partition on or null

 * @param valueBytes serialized value to partition on or null

 * @param cluster The current cluster metadata

 */

 public int partition(String topic, Object key, byte[] keyBytes, Object value, b

 // Get the information of all partitions.

 List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);

 int numPartitions = partitions.size();

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 8
of 158

 if (keyBytes == null) {

 List<PartitionInfo> availablePartitions = cluster.availablePartitionsFo

 int availablePartitionSize = availablePartitions.size();

 // Determine the current available partitions.

 if (availablePartitionSize > 0) {

 handlePartitionChange(availablePartitionSize);

 return availablePartitions.get(currentPartition).partition();

 } else {

 handlePartitionChange(numPartitions);

 return currentPartition;

 }

 } else {

 // For messages with a key, a partition will be selected based on the h

 return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions;

 }

 }

 private void handlePartitionChange(int partitionNum) {

 long currentTimeMillis = System.currentTimeMillis();

 // After the partition switch time interval elapses, the next partition wil

 if (currentTimeMillis - lastPartitionChangeTimeMillis >= partitionChangeTim

 || currentPartition < 0 || currentPartition >= partitionNum) {

 lastPartitionChangeTimeMillis = currentTimeMillis;

 currentPartition = Utils.toPositive(ThreadLocalRandom.current().nextInt

 }

 }

 public void close() {}

}

Order in Partition

Within a single partition, messages are stored in the order in which they are sent. Each topic is divided into a number
of partitions. If messages are distributed to different partitions, the cross-partition message order cannot be ensured.
If you want messages to be consumed in the sending order, you can specify keys for such messages on the producer.
If such messages are sent with the same key, CKafka will select a partition for their storage based on the hash of the
key. As a partition can be listened on and consumed by only one consumer, messages will be consumed in the
sending order.

Practice Tutorial for CKafka in Ordered Message Scenarios

Ordered Message Scenarios

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 9
of 158

In CKafka, the main method to ensure message order relies on its partition design and the use of message keys.
Sequential message scenarios on the client side can be divided into two categories: global order and partition order.
The practice tutorial for CKafka in these scenarios is as follows:

1. Global order: To ensure global order, you need to set the Topic partition to 1 in the CKafka console. The number of
replicas can be specified by customers based on their specific use cases and availability requirements to balance
costs, with a recommended setting of 2.
 Note:
Global order has a throughput limit due to the single partition. Therefore, overall throughput will not be very high. For

single partition throughput metrics, see Use Limits.
2. Partition order: To ensure partition order, you can estimate the business traffic of the Topic in the CKafka console,
divide it by the single partition traffic, and round the value to obtain the number of partitions. To avoid data skew, the
number of partitions should preferably be rounded to a multiple of the number of nodes, ensuring a reasonable final
number of partitions. For single partition throughput metrics, see Use Limits. When sending Kafka messages, you
need to specify a key. Then, Kafka can calculate a hash value to ensure that messages with the same key are sent to

the same partition, thereby ensuring that these messages are ordered within the partition.
 Note:
Business keys should be distributed as much as possible. If messages are produced with the same key, the partition
order will degenerate into global order, thereby reducing overall write throughput.

Practice Tutorial for Parameters

Due to the requirement for ordered messages to be both sequential and non-duplicate, when the producer parameters

use the default settings and Kafka message producers send messages in scenarios, such as network jitters, changes
in Kafka broker nodes, and partition leader elections, they may encounter issues, such as message duplication and
disorder. Therefore, in ordered message scenarios, Kafka producer parameters should be specially set. The key
settings are as follows:
 enable.idempotence

enable.idempotence indicates whether to enable the idempotence feature. It is recommended to enable the
idempotence feature in ordered message scenarios to address issues, such as partition message disorder and
duplication. It is recommended that Kafka message producers set enable.idempotence to true. Note that this feature
requires that the Kafka broker version be 0.11 or above. That is, the value of Kafka versions should be greater than or
equal to 0.11. Since Kafka 3.0, Kafka producers have enable.idempotence=true and acks=all by default. If the Kafka
version is 0.11 or above and below 3.0, idempotence is disabled by default. Therefore, in ordered message scenarios,

it is recommended to explicitly specify this parameter value to ensure that idempotence is enabled.
 acks
Once idempotence is enabled, acks should be explicitly set to all. If it is not set to all, it will fail parameter validation
and an error will occur.
 max.in.flight.requests.per.connection

https://www.tencentcloud.com/document/product/597/39601
https://www.tencentcloud.com/document/product/597/39601

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 10
of 158

By default, Kafka producers will try to send records as quickly as possible. max.in.flight.requests.per.connection
indicates the maximum number of requests that can be sent simultaneously for a connection. The default value is 5. If
the Kafka version is 0.11 or above and below 1.1 (that is, the value of Kafka versions is greater than or equal to 0.11

and less than 1.1), no optimization is implemented for this aspect in the Kafka broker. Therefore,
max.in.flight.requests.per.connection should be set to 1. If the Kafka version is 1.1 or above, throughput optimization
will be implemented in the idempotence scenario. The broker maintains a queue to verify the order of messages in 5
concurrent batches, allowing max.in.flight.requests.per.connection to be set to 5 but no more than 5.
Therefore, it is recommended:

Kafka 0.11 or above and below 1.1: Explicitly set max.in.flight.requests.per.connection to 1.
Kafka 1.1 or above: Explicitly set max.in.flight.requests.per.connection to a value from 1 to 5 (including 5). The
recommended value is 5.
 retries
In ordered message scenarios, it is recommended to specify the retries parameter. The retries parameter has different
default values in different versions. For Kafka 2.0 or below, the default value is 0. For Kafka 2.1 or above, the default

value is Integer.MAX_VALUE, that is, 2147483647. It is recommended to explicitly set it to Integer.MAX_VALUE in
ordered message scenarios.

Summary

In ordered message scenarios, the producer parameters to be enabled are as follows:
Kafka 0.11 or above and below 1.1:
 // create Producer properties

 Properties properties = new Properties();

 properties.setProperty("enable.idempotence", "true");

 properties.setProperty("acks", "all");

 properties.setProperty("max.in.flight.requests.per.connection", "1");

 properties.setProperty("retries", Integer.toString(Integer.MAX_VALUE));

Kafka 1.1 or above:
 // create Producer properties

 Properties properties = new Properties();

 properties.setProperty("enable.idempotence", "true");

 properties.setProperty("acks", "all");

 properties.setProperty("max.in.flight.requests.per.connection", "5");

 properties.setProperty("retries", Integer.toString(Integer.MAX_VALUE));

Data skew

Kafka Broker data skew problems are often caused by uneven partition distribution or uneven key distribution of
producer-sent data, leading to several types of issues:
1. Overall traffic is not rate-limited, but individual nodes have rate limits;

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 11
of 158

2. Some nodes are overloaded too quickly, leading to low overall Kafka usage and affecting total throughput.
To avoid such issues, you can optimize them in the following ways:
3. Use a reasonable number of partitions, ensuring that the number of partitions is an integral multiple of the number of

nodes.
4. Use a reasonable partitioning policy, for example: RoundRobin, Range, and Sticky or a custom partitioning policy to
deliver messages evenly.
5. Check if keys are used for sending. If so, try to design a policy to make keys more evenly distributed across
partitions.

Message Consumption

Basic Message Consumption Process

1. Poll the data.
2. Execute the consumption logic.
3. Poll the data again.

Load Balancing

Each consumer group can contain multiple consumers with the same group.id value. In this way, consumers in the
same consumer group consume the same subscribed topic.
For example, if consumer group A subscribes to topic A and enables three consumer instances C1, C2, and C3, then

each message sent to topic A will be eventually delivered to only one of the three instances. By default, CKafka will
evenly distribute messages to the consumer instances to achieve consumption load balancing.
The internal principle of CKafka load balancing is to evenly allocate the partitions of the subscribed topic to each
consumer. Therefore, the number of consumers should not exceed the number of partitions; otherwise, there will be
consumer instances that are not allocated any partitions and are in an idle state. Try to ensure that the number of

consumers can be evenly divided by the total number of partitions. Apart from the first startup, rebalance will be
triggered whenever consumer instances are restarted, increased, decreased, or the number of partitions changes.

Frequent Rebalancing

If rebalance is triggered frequently, there may be several possible causes:
1. The consumer takes a long time to process messages.
2. The consumption of a particular abnormal message causes the consumer to block or fail.

3. Heartbeat timeout triggers a rebalance.
4. For client versions before v0.10.2: The consumer did not have an independent thread to maintain the heartbeat,
instead, heartbeat maintenance was coupled with the poll API. As a result, if the user experiences consumption
congestion, it will lead to consumer heartbeat timeout, and trigger a rebalance. For client versions v0.10.2 and later: If

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 12
of 158

the consumption takes too long, and no messages is polled within a certain period (value set by max.poll.interval.ms,
with the default value being 5 minutes), the client will actively leave the Queue, triggering a rebalance.
This can be solved by methods such as optimizing consumption processing to increase consumption speed and

adjusting parameters:
1. The consumer side needs to be consistent with the broker version.
2. Adjust parameter values according to the following instructions:
session.timeout.ms: For versions before v0.10.2, increase this parameter value appropriately, making it greater than
the time it takes to consume a batch of data and not exceed 30 s. It is recommended to set the value to 25 s for

v0.10.2 and default value of 10 s for later versions.
max.poll.records: Reduce this parameter value. The recommended value is much less than the product of <the
number of messages consumed per second per thread> <the number of consumption threads>
<max.poll.interval.ms>.
max.poll.interval.ms: This value should be greater than <max.poll.records> / (<the number of messages consumed per
second per thread> x <the number of consumption threads>).

3. Increase the client's consumption speed as much as possible, handle consumption logic in a separate thread, and
monitor for any time-consuming operations.
4. Reduce the number of topics that a group subscribes to. It's best for a group not to subscribe to more than 5 topics,
ideally subscribing to only one topic.

Subscription Relationship

We recommend that all consumer instances in the same consumer group subscribe to the same topic so as to

facilitate troubleshooting.
A Consumer Group Subscribes to Multiple Topics
A consumer group can subscribe to multiple topics, and the messages in such topics will be consumed evenly by the
consumers in the consumer group. For example, if consumer group A subscribes to topics A, B, and C, then
messages in the three topics will be consumed evenly by the consumers in consumer group A.

Below is the sample code to make a consumer group subscribe to multiple topics:

String topicStr = kafkaProperties.getProperty("topic");

String[] topics = topicStr.split(",");

for (String topic: topics) {

subscribedTopics.add(topic.trim());

}

consumer.subscribe(subscribedTopics);

A Topic is Subscribed to by Multiple Consumer Groups

A topic can be subscribed to by multiple consumer groups, and the consumers in such consumer groups
independently consume all messages in the topic. For example, if both consumer groups A and B subscribe to topic A,
each message sent to topic A will be delivered to both the consumer instances in consumer group A and the
consumer instances in consumer group B, and the two processes are independent of each other.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 13
of 158

One Consumer Group Corresponding to One Application

We recommended that one consumer group corresponds to one application, i.e., different applications correspond to
different sets of code. If you need to write different sets of code in the same application, prepare multiple
kafka.properties files, for example, kafka1.properties and kafka2.properties.

Consumer Offset

Each topic has multiple partitions, and each partition counts the total number of current messages, which is called the
MaxOffset.
Consumers in TDMQ for CKafka consume each message in a partition in order, recording the number of messages
consumed, known as the ConsumerOffset.
The number of remaining unconsumed messages (also known as message backlog) = MaxOffset - ConsumerOffset.

Offset Commit
There are two parameters related to TDMQ for CKafka consumers:
enable.auto.commit: The default value is true.
auto.commit.interval.ms: The default value is 5,000, i.e., 5 s.
As a result of the combination of the two parameters, before the client polls the data, it will always check the time of
the last committed offset first, and if the time defined by the auto.commit.interval.ms parameter has elapsed, the client

will start an offset commit.
Therefore, if enable.auto.commit is set to true, it is always necessary to ensure that the data polled last time has been
consumed before data polling; otherwise, the offset may be skipped.
If you want to control offset commits by yourself, set enable.auto.commit to false and call the commit (offsets) function.
Note:

Try to avoid committing offsets too frequently; otherwise, it will cause high CPU usage on the broker, affecting normal
services. For example, set auto.commit.interval.ms to 100 ms for automatic offset commit. For manually offset commit,
commit an offset for every message consumed in high throughput scenarios.

Offset Reset

The ConsumerOffset will be reset in the following two scenarios:
The server has no committed offsets (for example, when the client is started for the first time).

A message is pulled from an invalid offset (for example, the MaxOffset in a partition is 10, but the client pulls a
message from offset 11).
For a Java client, you can configure a resetting policy through auto.offset.reset. There are three policies:
latest: Consumption will start from the maximum offset.
earliest: Consumption will start from the minimum offset.
none: No resetting will be performed.

Note:
We recommend you to set the resetting policy to latest instead of earliest, so as to avoid starting consumption from the
beginning when the offset is invalid, as that may cause a lot of repetitions.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 14
of 158

If you manage the offset by yourself, you can set the policy to none.

Message Pull

In the consumption process, the client pulls messages from the server. When the client pulls large messages, you
should control the pulling speed and pay attention to the following parameters:

max.poll.records: Set it to 1 if a single message exceeds 1 MB in size.
max.partition.fetch.bytes: Set it to a value slightly greater than the size of a single message.
fetch.max.bytes: Set it to a value slightly greater than the size of a single message.
When messages are consumed over the public network, a disconnection may often occur due to the bandwidth limit of
the public network. In this case, you should control the pulling speed and pay attention to the following parameters:

fetch.max.bytes: It is recommended to set it to half of the public network bandwidth (note that the unit of this parameter
is bytes, while the unit of public network bandwidth is bits)
max.partition.fetch.bytes: We recommend you to set it to half of the public network bandwidth (note that the unit of this
parameter is bytes, while the unit of the public network bandwidth is bits).

Pulling Large Messages

In the consumption process, the client pulls messages from the server. When pulling large messages, you should
control the pulling speed and change the configuration:

max.poll.records: The maximum number of messages polled each time. If a single message exceeds 1 MB, it is
recommended to set it to 1.
fetch.max.bytes: Set it to a value slightly greater than the size of a single message.
max.partition.fetch.bytes: Set it to a value slightly greater than the size of a single message.
The essence of pulling large messages is to fetch them one by one.

Duplicate Messages and Consumption Idempotency

TDMQ for CKafka consumption uses the at-least-once semantics, that is, a message is delivered at least once, which
guarantees that messages will never be lost. However, messages may be delivered more than once. Network issues
and client restarts may cause a few duplicate messages. If the application consumer is sensitive to duplicate
messages (such as orders and transactions), idempotency should be implemented for the messages.
Taking a database application as an example, the common practice is as follows:

When sending a message, pass in the key as the unique ID.
When consuming a message, determine whether the key has already been consumed; if so, ignore it; otherwise,
consume it once.
Of course, if the application itself is not sensitive to a small number of duplicate messages, idempotency is not
necessary.

Consumption Failure

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 15
of 158

In TDMQ for CKafka, messages are consumed from partitions one by one in sequence. If the consumer fails to
execute the consumption logic after getting a message, for example, when dirty data is stored on the application
server, the message will fail to be processed, and human intervention will be required. There are two methods for

dealing with this situation:
The consumer will keep trying to execute the consumption logic upon failure. This method may cause the consumer
thread to be jammed by the current message and lead to message heap.
As TDMQ for CKafka is not designed to process failed messages, in practice, it will typically print failed messages or
store them in a service (such as a dedicated topic created for storing failed messages), so that you can regularly

check failed messages, analyze the causes of failures, and process accordingly.

Consumption Delay

In the consumption process, the client pulls messages from the server. In general, if the client can consume messages
timely, there will be no significant delays. If a high delay is detected, you should first check whether messages heap up
and speed up consumption accordingly.

Consumption Heap

The common causes of message heap include the following:
Consumption is slower than production. In this case, you should speed up consumption.

Consumption is jammed.
After a message is received, the consumption end will execute the consumption logic and generally make some
remote calls. If it waits for the results at the same time, the consumption process may be jammed.
It should be ensured as much as possible that the consumer will not jam the consumption threads. If it needs to wait
for the call results, we recommend you to set a wait timeout period, so that the consumer will be treated as a failure

after the timeout period elapses.

Speeding up Consumption

Increase the number of consumer instances to improve parallel processing capabilities. If the ratio of consumers to
partitions reaches 1:1, you can increase the number of partitions. (Note: In scenarios where flink automatically
maintains partitions, new partitions cannot be automatically detected. Code modifications and a restart thereafter may
be required after new partitions are added.) You can increase it directly in the process (ensuring each instance

corresponds to one thread), or deploy multiple consumer instance processes.
Note:
After the number of instances exceeds the number of partitions, you can't add more instances; otherwise, there will be
idle consumer instances.
Increase the number of consumer threads.
1. Define a thread pool.

2. Poll the data.
3. Commit the data into the thread pool for concurrent processing.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 16
of 158

4. Poll the data again after a successful concurrent processing result is returned.

Socket Buffers

The default value of the receive.buffer.bytes parameter in Kafka 0.10.x is 64 KB, while the default value of the
socket.receive.buffer.bytes parameter in Kafka 0.8.x is 100 KB.

Both the default values are too small for high-throughput environments, especially when the bandwidth-delay product
of the network between the broker and the consumer is greater than that of the local area network (LAN).
For high-bandwidth networks with a delay of 1 ms or more and (such as 10 Gbps or higher), it is recommended to set
the socket buffer size to either 8 or 16 MB.
Even if you don't have enough memory, you should consider setting this parameter to at least 1 MB. You can also set

it to -1, so that the underlying operating system will adjust the buffer size based on the actual network conditions.
However, for consumers that need to start hot partitions, automatic adjustment may not be that fast.

Message Broadcasting

 CKafka currently does not support the semantics of message broadcasting. It can be simulated by creating different
groups.

Message Filtering

CKafka does not have semantics for message filtering. In practice, you can adopt the following two methods:
If there are not many categories to filter, use multiple topics to achieve the purpose of filtering.

If there are many categories to filter, it is best to filter on the client's business layer.
In practice, choose method according to specific business circumstances, or use a combination of the two methods
mentioned above.

No Consumption in Some Partitions

During the consumption process, the consumer may be online but the offsets of some partitions does not progress.
Possible causes are as follows:

1. An exception message is reported, which could be an oversized message or a format exception, causing the
consumer to convert it into a business offset when pulling messages.
2. When using public network with limited bandwidth, pulling large messages immediately fills up the bandwidth,
resulting in failure to pull messages within the timeout period.
3. Consumer hangs, leading to no message pulling.

Solution:
Shut down the consumer, set the offset in the CKafka console to skip some exception messages, or optimize the
consumption code and restart consumer consumption thereafter.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 17
of 158

Confluent Go SDK
Last updated：2024-07-04 16:00:59

Overview

TDMQ for CKafka is a distributed stream processing platform designed for building real-time data pipelines and
streaming applications. It boasts high throughput, low latency, scalability, and fault tolerance.
Sarama: A Kafka library developed by Shopify, providing features such as producers, consumers, and partition

consumers. The library performs well, and has an active community support.
Confluent-Kafka-Go: A Kafka library developed by Confluent, providing high-level APIs that are easy to use. Based on
the librdkafka C library, its performance is excellent, though it can be somewhat complex to install and use.
This document describes the key parameters, practical tutorials, and FAQs of the Confluent Go client mentioned
above.

Producer Practice

Version Selection

When the Confluent Go SDK is used, you can specify the address of the Kafka cluster through the configuration
parameter bootstrap.servers, while the version of the Broker can be set through the api.version.request parameter,
enabling the Confluent Go SDK to automatically detect the Broker's version at startup.

config := &kafka.ConfigMap{

 "bootstrap.servers": "localhost",

 "api.version.request": true,

}

Producer Parameters and Optimization

Producer Parameters

Confluent Go is developed based on librdkafka. When writing to Kafka using the Confluent Go Client, the configuration
parameters passed to librdkafka involve the following key parameters, with the relevant parameters and default values

as follows:

package main

import (

https://github.com/Shopify/sarama
https://github.com/confluentinc/confluent-kafka-go

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 18
of 158

 "fmt"

 "github.com/confluentinc/confluent-kafka-go/kafka"

)

func main() {

 config := &kafka.ConfigMap{

 "bootstrap.servers": "localhost:9092",

 "acks": -1, //ack mode, with the def

 "client.id": "rdkafka", //Client ID.

 "compression.type": "none", // Specify compression type

 "compression.level": -1, //Compression level.

 "batch.num.messages": 10000, // By default, a batch can

 "batch.size": 1000000, //The limit for the total s

 "queue.buffering.max.ms": 5, //The delay before transmit

 "queue.buffering.max.messages": 100000, //The total number of messa

 "queue.buffering.max.kbytes": 1048576, //MessageSets for the Produ

 "message.send.max.retries": 2147483647, //Number of retries, 2,147,

 "retry.backoff.ms": 100, //Retry interval, with the

 "socket.timeout.ms": 60000, //Session timeout period, w

 }

 producer, err := kafka.NewProducer(config)

 if err != nil {

 panic(fmt.Sprintf("Failed to create producer: %s", err))

 }

 // Use producer to send messages and perform other operations...

 // Close producer

 producer.Close()

}

Parameter Description and Optimization

acks Parameter Optimization

The acks parameter is used to control the confirmation mechanism when the producer sends messages. The default
value of this parameter is -1, which means that after the message is sent to the leader broker, it is not returned until
the Leader confirmation and the corresponding follower messages are all written. The acks parameter can be set to
values of 0, 1, or -1. In cross-availability zone scenarios, and for topics with a higher number of replicas, the value of
the acks parameter will affect the message's reliability and throughput.
In some online business message scenarios, where the throughput requirements are not high, you can set the acks

parameter to -1 to ensure that the message is received and confirmed by all replicas before returning, thereby
improving the message's reliability.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 19
of 158

In scenarios involve big data, such as log collection, or offline computing, where high throughput (i.e., the volume of
data written to Kafka per second) is required, you can set the acks to 1 to increase throughput.

buffering Parameter Optimization (Caching)

By default, for transmitting the same volume of data, a single request's network transmission can effectively reduce

related computation and network resources compared to multiple requests, thereby improving the overall write
throughput.
Therefore, you can set parameter to optimize the client's message sending throughput. For Confluent kafka Go, a
default batching time of 5 ms is provided to buffer messages. If the message is small, you can increase the
queue.buffering.max.ms time to an appropriate value.

Compression Parameter Optimization

Confluent Go supports the following compression parameters: none, gzip, snappy, lz4, and zstd.
In the Confluent Kafka Go client, the following compression algorithms are supported:
none: No compression algorithm.
gzip: Compress by GZIP algorithm.
snappy: Compress by Snappy algorithm.
lz4: Compress by LZ4 algorithm.

zstd: Compress by ZSTD algorithm.
To use a compression algorithm in the producer client, you need to set the compression.type parameter when creating
the producer. For example, you can set compression.type to lz4 to compress by LZ4 algorithm. The compression
algorithm's CPU compression and CPU decompression occur on the client side, which is a way of optimizing by
trading computing power for bandwidth. However, the broker incurs extra computation costs for validating

compressed messages, especially for Gzip compression, resulting in significant server's computation costs. The
increased computation can lead to lower message processing capabilities for the broker and lower bandwidth
throughput as a result, which may not be worth it in some cases. In such cases, the following approach is
recommended:
1. Independently compress message data on the producer side to generate packed data compression:

messageCompression, and store the compression method in the message's key:

{"Compression","CompressionLZ4"}

2. On the producer side, send messageCompression as a normal message.
3. On the consumer side, read the message key to access the compression method used, and perform independent
decompression.

Creating Producer Instance

If your application requires higher throughput, you can use asynchronous producer to increase the speed of message
sending and utilize batch message sending to reduce network overhead and IO consumption. If your application

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 20
of 158

requires higher reliability, you can use synchronous producer to ensure successful message delivery. Additionally, the
ACK acknowledgement mechanism and transaction mechanism can be employed to guarantee message reliability
and consistency. For specific parameter optimization, refer to Producer Parameters and Optimization.

package main

import (

 "fmt"

 "github.com/confluentinc/confluent-kafka-go/kafka"

)

func main() {

 // Configure Kafka Producer.

 p, err := kafka.NewProducer(&kafka.ConfigMap{

 "bootstrap.servers": "localhost:9092",

 "acks": "1",

 "compression.type": "none",

 "batch.num.messages": "1000",

 })

 if err != nil {

 fmt.Printf("Failed to create producer: %s\\n", err)

 return

 }

 // Send message.

 for i := 0; i < 10; i++ {

 topic := "test-topic"

 value := fmt.Sprintf("hello world %d", i)

 message := &kafka.Message{

 TopicPartition: kafka.TopicPartition{Topic: &topic, Partition: kafka.Pa

 Value: []byte(value),

 }

 p.Produce(message, nil)

 }

 // Close Kafka Producer.

 p.Flush(15 * 1000)

 p.Close()

}

Consumer Practice

Consumer Parameters and Optimization

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 21
of 158

Consumer Parameters

package main

import (

 "fmt"

 "github.com/confluentinc/confluent-kafka-go/kafka"

)

func main() {

 // Configure Kafka Consumer.

 c, err := kafka.NewConsumer(&kafka.ConfigMap{

 "bootstrap.servers": "localhost:9092",

 "group.id": "test-group",

 "auto.offset.reset":"earliest",

 "fetch.min.bytes":1, // Minimum pulling byte count.

 "fetch.max.bytes":52428800, // Maximum pulling byte count.

 "fetch.wait.max.ms":"500", //If there are no new messages to consume, wait

 "enable.auto.commit":true, //Enable automatic offset commit, with the defau

 "auto.commit.interval.ms":5000, //Interval between automatic offset commit,

 "max.poll.interval.ms": 300000, // Maximum delay between two poll operation

 "session.timeout.ms": 45000, //Session time, with the default value being 4

 "heartbeat.interval.ms": 3000, //Heartbeat time, with the default value bei

 })

 if err != nil {

 fmt.Printf("Failed to create consumer: %s\\n", err)

 return

 }

 // Subscribe to topics.

 c.SubscribeTopics([]string{"test-topic"}, nil)

 // Manually commit offset.

 for {

 ev := c.Poll(100)

 if ev == nil {

 continue

 }

 switch e := ev.(type) {

 case *kafka.Message:

 fmt.Printf("Received message: %s\\n", string(e.Value))

 c.CommitMessage(e)

 case kafka.Error:

 fmt.Printf("Error: %v\\n", e)

 }

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 22
of 158

 }

 // Close Kafka consumer.

 c.Close()

}

Parameter Description and Optimization

1. max.poll.interval.ms is a configuration parameter for Kafka consumer. It specifies the maximum delay between two

poll operations by the consumer. Its primary function is to control the consumer's liveness, i.e., to determine whether
the consumer is still active. If the consumer does not perform a poll operation within the time specified by
max.poll.interval.ms, then Kafka considers this consumer to have failed and triggers a rebalance for the consumer.
Adjust this parameter according to the actual consumption speed. If it is too low, the consumer may frequently trigger
rebalances, increasing the burden on Kafka; if it is too high, Kafka may not be able to promptly detect issues with the

consumer, thereby affecting message consumption.
2. For general consumption, issues mainly involves frequent rebalancing and consumption thread blocking. For
parameter optimization, refer to the following method:
2.1 session.timeout.ms: For versions before v0.10.2, increase this parameter value appropriately, make it greater than
the time it takes to consume a batch of data and not exceed 30 s. The recommended value is 25 s; for v0.10.2 and

later versions, use the default value of 10 s.
2.2 heartbeat.interval.ms: Default value is 3 s. This value should be less than session.timeout.ms / 3.
2.3 max.poll.interval.ms: Default value is 5 minutes. If there are many partitions and consumers, it is recommended to
appropriately increase this value. It should be greater than <max.poll.records> / (<number of messages consumed per
second per thread> x <number of consumption threads>).
Note:

If you want to process messages synchronously, that is, pull a message, process it, and then pull the next one, you
need to make the following modifications:
Increase the MaxProcessingTime according to your needs.
Monitor for processing times that exceed the MaxProcessingTime, sample and print timeout durations.
3. For automatic offset commit requests, it's recommended not to set auto.commit.interval.ms below 1,000 ms, as too

frequent offset requests can cause high broker CPU usage, affecting the read and write operations of other normal
services.

Creating Consumer Instance

Confluent Go provides a subscription model to create consumers, and includes manual-commit offset and auto-
commit offset as two offset commit methods.

Auto-Commit Offsets

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 23
of 158

Auto-commit offsets: After pulling messages, the consumer automatically commit offsets without manual intervention.
The advantage of this method is it's easy to use, but it may lead to duplicate message consumption or loss.

package main

import (

 "fmt"

 "github.com/confluentinc/confluent-kafka-go/kafka"

)

func main() {

 // Configure Kafka consumer

 c, err := kafka.NewConsumer(&kafka.ConfigMap{

 "bootstrap.servers": "localhost:9092",

 "group.id": "test-group",

 "auto.offset.reset": "earliest",

 "enable.auto.commit": true, //Whether to enable auto-commit offset. True

 "auto.commit.interval.ms": 5000, //Interval for auto-commit offsets. Value

 "max.poll.interval.ms": 300000, //Maximum wait time for the consumer in a s

 "session.timeout.ms": 10000, //Specify the session timeout period between t

 "heartbeat.interval.ms": 3000, //Specify the interval for the consumer to s

 })

 if err != nil {

 fmt.Printf("Failed to create consumer: %s\\n", err)

 return

 }

 // Subscribe to topics.

 c.SubscribeTopics([]string{"test-topic"}, nil)

 // Automatically commit offset.

 for {

 ev := c.Poll(100)

 if ev == nil {

 continue

 }

 switch e := ev.(type) {

 case *kafka.Message:

 fmt.Printf("Received message: %s\\n", string(e.Value))

 case kafka.Error:

 fmt.Printf("Error: %v\\n", e)

 }

 }

 // Close Kafka Consumer.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 24
of 158

 c.Close()

Manual-Commit Offsets

Manual-commit offsets: After processing messages, consumers need to manually commit offsets. The advantage of
this method is that it allows for precise control over offset commit, avoiding duplicate message consumption or loss. It

should be noted that manual-commit offset can lead to high broker CPU usage, affecting performance. As message
volume increases, CPU consumption will be significantly high, affecting other features of the broker. Therefore, it is
recommended to commit an offset after a certain number of messages.

package main

import (

 "fmt"

 "github.com/confluentinc/confluent-kafka-go/kafka"

)

func main() {

 // Configure Kafka Consumer

 c, err := kafka.NewConsumer(&kafka.ConfigMap{

 "bootstrap.servers": "localhost:9092",

 "group.id": "test-group",

 "auto.offset.reset": "earliest",

 "enable.auto.commit": false,

 "max.poll.interval.ms": 300000,

 "session.timeout.ms": 10000,

 "heartbeat.interval.ms": 3000,

 })

 if err != nil {

 fmt.Printf("Failed to create consumer: %s\\n", err)

 return

 }

 // Subscribe to topics.

 c.SubscribeTopics([]string{"test-topic"}, nil)

 // Manually commit offsets.

 for {

 ev := c.Poll(100)

 if ev == nil {

 continue

 }

 switch e := ev.(type) {

 case *kafka.Message:

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 25
of 158

 fmt.Printf("Received message: %s\\n", string(e.Value))

 c.CommitMessage(e)

 case kafka.Error:

 fmt.Printf("Error: %v\\n", e)

 }

 }

 // Close Kafka Consumer.

 c.Close()

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 26
of 158

Sarama Go
Last updated：2024-07-04 16:00:59

Overview

TDMQ for CKafka is a distributed stream processing platform designed for building real-time data pipelines and
streaming applications. It boasts high throughput, low latency, scalability, and fault tolerance.
Sarama: A Kafka library developed by Shopify, offering features such as producers, consumers, and partition

consumers. The library performs well, and has an active community support.
Confluent-Kafka-Go: A Kafka library developed by Confluent, featuring high-level APIs that are easy to use. Based on
the librdkafka C library, its performance is excellent, though it can be somewhat complex to install and use.
This document mainly describes key parameters, practical tutorials, and FAQs of the aforementioned Sarama Go
client.

Producer Practices

Version Selection

When the Sarama client version is selected, it is necessary to ensure that the selected version is compatible with the
Kafka broker version. The Sarama library supports multiple Kafka protocol versions. Specify the protocol version to
use by setting config.Version. The common correspondence between Kafka protocol versions and Sarama library
versions is as follows. For the latest version, see Sarama Version.

Kafka Version Sarama Library Version Sarama Protocol Version Constants

0.8.2.x >= 1.0.0 sarama.V0_8_2_0

0.9.0.x >= 1.0.0 sarama.V0_9_0_0

0.10.0.x >= 1.0.0 sarama.V0_10_0_0

0.10.1.x >= 1.0.0 sarama.V0_10_1_0

0.10.2.x >= 1.0.0 sarama.V0_10_2_0

0.11.0.x >= 1.16.0 sarama.V0_11_0_0

1.0.x >= 1.16.0 sarama.V1_0_0_0

1.1.x >= 1.19.0 sarama.V1_1_0_0

https://github.com/Shopify/sarama
https://github.com/confluentinc/confluent-kafka-go
https://pkg.go.dev/github.com/IBM/sarama?tab=versions

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 27
of 158

2.0.x >= 1.19.0 sarama.V2_0_0_0

2.1.x >= 1.21.0 sarama.V2_1_0_0

2.2.x >= 1.23.0 sarama.V2_2_0_0

2.3.x >= 1.24.0 sarama.V2_3_0_0

2.4.x >= 1.27.0 sarama.V2_4_0_0

2.5.x >= 1.28.0 sarama.V2_5_0_0

2.6.x >= 1.29.0 sarama.V2_6_0_0

2.7.x >= 1.29.0 sarama.V2_7_0_0

2.8.x or later Recommended >=1.42.1 sarama.V2_8_0_0-sarama.V3_6_0_0

The Sarama library versions listed above represent the minimum versions that support the corresponding Kafka
protocol versions. For optimal performance and new features, it is recommended to use the latest version of Sarama.

When using the latest version, clients can specify the protocol version compatible with your Kafka broker by setting
config.Version. The setting method is as follows, be sure to set the version before use, otherwise, there will be
unexpected incompatibility issues:

config := sarama.NewConfig()

config.Version = sarama.V2_7_0_0 // Set the protocol version according to the actua

Producer Parameters and Optimization

Producer Parameters

When using the Sarama Go client to write to Kafka, you need to configure the following key parameters. Parameters
and their default values are as follows:

config := sarama.NewConfig()

sarama.MaxRequestSize = 100 * 1024 * 1024 // Maximum request size, with the defaul

sarama.MaxResponseSize = 100 * 1024 * 1024 // Maximum response size, with the defau

config.Producer.RequiredAcks = sarama.WaitForLocal // The default value is sarama.W

config.Producer.Retry.Max = 3 // Maximum retry count for produ

config.Producer.Retry.Backoff = 100 * time.Millisecond // Wait time between produce

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 28
of 158

config.Producer.Return.Successes = false // Return successful messages, wit

config.Producer.Return.Errors = true // Return failed messages, with the

config.Producer.Compression = CompressionNone // Compress messages before sending,

config.Producer.CompressionLevel = CompressionLevelDefault // Specify compression l

config.Producer.Flush.Frequency = 0 //Time for caching messages by the producer, wi

config.Producer.Flush.Bytes = 0 // Triggers a broker request when reaching a

config.Producer.Flush.Messages = 0 // Forces a broker request upon reaching a

config.Producer.Flush.MaxMessages = 0 // Messages can be cached at maximum, th

config.Producer.Timeout = 5 * time.Second // Timeout duration.

config.Producer.Idempotent = false // Whether idempotence is re

config.Producer.Transaction.Timeout = 1 * time.Minute // Transaction timeout durati

config.Producer.Transaction.Retry.Max = 50 // Maximum transaction retry

config.Producer.Transaction.Retry.Backoff = 100 * time.Millisecond

config.Net.MaxOpenRequests = 5 // Default value is 5, the numbe

config.Producer.Transaction.ID = "test" // Transaction ID.

config.ClientID = "your-client-id" // Client ID.

Parameter Description and Optimization

RequiredAcks Parameter Optimization

The RequiredAcks parameter is used to control the acknowledgement mechanism when the producer sends
messages. The default value is WaitForLocal, which means that once the message is sent to the Leader Broker and

the Leader confirms the message has been written, it is returned immediately. The RequiredAcks parameter also has
the following optional values:
NoResponse: Without waiting for any confirmation, return directly.
WaitForLocal: Wait for the Leader replica to confirm the write, then return.
WaitForAll: Wait for the Leader replica and the relevant Follower replicas to confirm the write, then return.

From the above, it's clear that in scenarios involving cross-availability zones, as well as in Topic with a higher number
of replicas, the choice of RequiredAcks parameter value can affect the reliability and throughput of messages.
Therefore:
In scenarios involving online business messages, where throughput demands are not high, you can set the
RequiredAcks parameter to WaitForAll to ensure that messages are received and confirmed by all replicas before
returning and to increase reliability.

In scenarios of big data, like log collection, or offline computing, where a high throughput (i.e., data written to Kafka per
second) is required, you can set the RequiredAcks to WaitForLocal to enhance throughput.

Flush Parameter Optimization (Caching)

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 29
of 158

By default, when the same amount of data is transmitted, compared to multiple requests, a single request can
effectively reduce computations and network resources, thus improving the overall write throughput. Therefore, you
can optimize the client's message-sending throughput by setting this parameter. In high-throughput scenarios, set

parameters in conjunction with computation:

Bytes are recommended to be set at 16 K, aligned with Kafka's standard Java SDK definition, and estimated single
message size is 1 K (1024) bytes, hence the following parameters for Messages and MaxMessages should be set:

The calculation method for Frequency is as follows: estimated traffic is 16 MB, with 16 partitions, then per partition
write traffic per second would be: 16 x 1024 x 1024 / 16 = 1 x 1024 x 1024 = 1 MB, i.e. 1 MB of traffic per second per

partition. Assuming a request size is 16 K for data transmission, to achieve 1 MB of traffic transmission in 1 s, it
requires 1x1024x1024/16/1024 = 64 requests, thus Frequency <= 15.62 ms(1000/64).

In reality, since the business traffic is not continuously produced, during off-peak hours, it might still hit 16ms but not
cache much data. Therefore, in high-throughput situations, the conditions can be simplified, based on Bytes, and
Frequency can be appropriately increased. For example, if a delay increase of 500 ms is acceptable, then it can be set
to 500 ms, because at this time, if the data volume hits greater than or equal to Bytes, requests will be sent based on

the Bytes condition.

config.Producer.Flush.Frequency = 16 // Time for the producer to cache messages, wi

config.Producer.Flush.Bytes = 16*1024 // Triggers a broker request upon reach

config.Producer.Flush.Messages = 17 // Forces a broker request upon reaching a

config.Producer.Flush.MaxMessages = 16 // Set to 16 messages. In fact, as the mess

 // Because hitting any of the Frequency, By

Transaction Parameter Optimization

config.Producer.Idempotent = true // Whether idempotence is re

config.Producer.Transaction.Timeout = 1 * time.Minute // Default transaction timeou

config.Producer.Transaction.Retry.Max = 50 // Transaction retry duration

config.Producer.Transaction.Retry.Backoff = 100 * time.Millisecond

config.Net.MaxOpenRequests = 5 //Number of requests sent at onc

config.Producer.Transaction.ID = "test" // Transaction ID.

It is important to note that ensuring the exactly once semantics for transactions requires additional computational
resources. Therefore, the selection of config.Net.MaxOpenRequests must be less than or equal to 5. The Broker's
ProducerStateManager instances will cache the most recent 5 batch data sent by each PID on each Topic-Partition. If

the customer wants to maintain a certain level of throughput in addition to transactions, set this value to 5 and
appropriately increase the transaction timeout period to accommodate delays caused by network jitter under high
load.

Compression Parameter Optimization

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 30
of 158

Sarama Go supports the following compression parameters:

config.Producer.Compression = CompressionNone // Compress messages before sending,

config.Producer.CompressionLevel = CompressionLevelDefault // Specify the compressi

In the Sarama Kafka Go client, the following compression configurations are supported:

1. sarama.CompressionNone: Do not compress.

2. sarama.CompressionGZIP: Compress by GZIP.

3. sarama.CompressionSnappy: Compress by Snappy.

4. sarama.CompressionLZ4: Compress by LZ4.

5. sarama.CompressionZSTD: Compress by ZSTD.

To use message compression in the Sarama Kafka Go client, you should set the config.Producer.Compression
parameter when creating a producer. For example, to use the LZ4 compression algorithm, set
config.Producer.Compression to sarama.CompressionLZ4. As an optimization method that exchanges computation

for bandwidth, message compression and decompression occurs on the client side. However, due to additional
computation cost of the Broker's behavior in verifying compressed messages, especially with GZIP compression, the
verification computation cost for the Broker can be significant, which is not worthwhile in some cases. Due to
increased computation, message processing capabilities of the Broker may be lower, resulting in lower bandwidth
throughput. Under circumstances of low throughput or low specification services, it is not recommended to use

message compression. If compression is necessary, the following method is recommended:
1. Independently compress message data on the Producer side to generate packed data compression:
messageCompression, and store the compression method in the message's key:

{"Compression","CompressionLZ4"}

2. On the Producer side, send messageCompression as a normal message.

3. On the Consumer side, read the message key to access the compression method used, and decompress
independently.

Creating Producer Instance

If an application requires higher throughput, use an asynchronous producer to increase the speed of message
sending. At the same time, send batch messages to reduce network overhead and IO consumption. If an application
demands higher reliability, a synchronous producer can be used to ensure successful message delivery. Additionally,

employ the ACK acknowledgement mechanism and transaction mechanism to guarantee message reliability and
consistency. For specific parameter optimization, see Producer Parameters and Optimization.

Synchronous Producer

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 31
of 158

In the Sarama Kafka Go client, there are two types of producers: synchronous and asynchronous. Their main
differences lie in the method of sending messages and processing message results. Synchronous Producer: The
synchronous producer blocks the current thread when sending messages, until the message has been sent and

acknowledged by the server. As a result, the throughput of a synchronous producer is lower, but it allows immediate
knowledge of whether the message was successfully sent. Example:

package main

import (

 "fmt"

 "log"

 "github.com/Shopify/sarama"

)

func main() {

 config := sarama.NewConfig()

 config.Producer.RequiredAcks = sarama.WaitForLocal

 config.Producer.Return.Errors = true

 brokers := []string{"localhost:9092"}

 producer, err := sarama.NewSyncProducer(brokers, config)

 if err != nil {

 log.Fatalf("Failed to create producer: %v", err)

 }

 defer producer.Close()

 msg := &sarama.ProducerMessage{

 Topic: "test",

 Value: sarama.StringEncoder("Hello, World!"),

 }

 partition, offset, err := producer.SendMessage(msg)

 if err != nil {

 log.Printf("Failed to send message: %v", err)

 } else {

 fmt.Printf("Message sent to partition %d at offset %d\\n", partition, offse

 }

}

Asynchronous Producer

Asynchronous Producer: The asynchronous producer does not block the current thread when sending messages.
Instead, it places the message into an internal sending queue and then returns immediately. Therefore, the throughput
of an asynchronous producer is higher, but it requires a callback function to process the message results.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 32
of 158

package main

import (

 "fmt"

 "log"

 "github.com/Shopify/sarama"

)

func main() {

 config := sarama.NewConfig()

 config.Producer.RequiredAcks = sarama.WaitForLocal

 config.Producer.Return.Errors = true

 brokers := []string{"localhost:9092"}

 producer, err := sarama.NewAsyncProducer(brokers, config)

 if err != nil {

 log.Fatalf("Failed to create producer: %v", err)

 }

 defer producer.Close()

 msg := &sarama.ProducerMessage{

 Topic: "test",

 Value: sarama.StringEncoder("Hello, World!"),

 }

 producer.Input() <- msg

 select {

 case success := <-producer.Successes():

 fmt.Printf("Message sent to partition %d at offset %d\\n", success.Partitio

 case err := <-producer.Errors():

 log.Printf("Failed to send message: %v", err)

 }

}

Consumer Practice

Version Selection

When a Sarama client version is selected, it is necessary to ensure that the chosen version is compatible with the
Kafka broker version. The Sarama library supports multiple Kafka protocol versions, which can be specified by setting
config.Version.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 33
of 158

config := sarama.NewConfig()

config.Version = sarama.V2_8_2_0

Consumer Parameters and Optimization

config := sarama.NewConfig()

config.Consumer.Group.Rebalance.Strategy = sarama.NewBalanceStrategyRange // The de

config.Consumer.Offsets.Initial = sarama.OffsetNewest // Without a committed offset

config.Consumer.Offsets.AutoCommit.Enable = true // Whether auto-commit for offsets

config.Consumer.Offsets.AutoCommit.Interval = 1 * time.Second // Auto-commit interv

config.Consumer.MaxWaitTime = 250 * time.Millisecond // Client's waiting time when

config.Consumer.MaxProcessingTime = 100 * time.Millisecond

config.Consumer.Fetch.Min = 1 // Minimum byte size of messages accessed in consumpt

config.Consumer.Fetch.Max = 0 // Maximum byte size for consumption requests. Defaul

config.Consumer.Fetch.Default = 1024 * 1024 // Default byte size of messages for co

config.Consumer.Return.Errors = true

config.Consumer.Group.Rebalance.Strategy = sarama.NewBalanceStrategyRange // Set th

config.Consumer.Group.Rebalance.Timeout = 60 * time.Second // Set the timeout durat

config.Consumer.Group.Session.Timeout = 10 * time.Second // Set the timeout duratio

config.Consumer.Group.Heartbeat.Interval = 3 * time.Second // Heartbeat timeout dur

config.Consumer.MaxProcessingTime = 100 * time.Millisecond // Timeout duration for

Parameter Description and Optimization

General consumption issues mainly involve frequent rebalance times and consumption thread blocking. See the
following for parameter optimization:
config.Consumer.Group.Session.Timeout: For versions earlier than v0.10.2, increase this parameter to an appropriate

value, making it greater than the time taken to consume a batch of data and not exceed 30 s. It is recommended to set
it to 25 s. For v0.10.2 and later versions, use the default value of 10 s.
config.Consumer.Group.Heartbeat.Interval: Default is 3 s. Set this value and make sure it is less than
Consumer.Group.Session.Timeout/3.
config.Consumer.Group.Rebalance.Timeout: Default is 60 s. If the number of partitions and consumers is large, it is
recommended to appropriately increase this value.

config.Consumer.MaxProcessingTime: This value should be greater than the <max.poll.records> / (<number of
records consumed per second per thread> x <number of consumer threads>).
Note:
Increase the MaxProcessingTime according to your needs.
Monitor for processing times that exceed the MaxProcessingTime, and log the instances of timeouts.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 34
of 158

Creating Consumer Instance

Sarama offers a subscription model to create consumers. It provides two ways to commit offsets: manually and
automatically.

Auto-Commit Offsets

Auto-commit offsets: After consumers pull messages, they automatically commit their offsets without manual

intervention. The advantage of this method is it is easy to use, but it may lead to duplicate message consumption or
loss.

package main

import (

 "context"

 "fmt"

 "log"

 "os"

 "os/signal"

 "sync"

 "time"

 "github.com/Shopify/sarama"

)

func main() {

 config := sarama.NewConfig()

 config.Version = sarama.V2_1_0_0

 config.Consumer.Offsets.Initial = sarama.OffsetOldest

 config.Consumer.Offsets.AutoCommit.Enable = true

 config.Consumer.Offsets.AutoCommit.Interval = 1 * time.Second

 brokers := []string{"localhost:9092"}

 topic := "test-topic"

 client, err := sarama.NewConsumerGroup(brokers, "test-group", config)

 if err != nil {

 log.Fatalf("unable to create kafka consumer group: %v", err)

 }

 defer client.Close()

 ctx, cancel := context.WithCancel(context.Background())

 signals := make(chan os.Signal, 1)

 signal.Notify(signals, os.Interrupt)

 var wg sync.WaitGroup

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 35
of 158

 wg.Add(1)

 go func() {

 defer wg.Done()

 for {

 err := client.Consume(ctx, []string{topic}, &consumerHandler{})

 if err != nil {

 log.Printf("consume error: %v", err)

 }

 select {

 case <-signals:

 cancel()

 return

 default:

 }

 }

 }()

 wg.Wait()

}

type consumerHandler struct{}

func (h *consumerHandler) Setup(sarama.ConsumerGroupSession) error {

 return nil

}

func (h *consumerHandler) Cleanup(sarama.ConsumerGroupSession) error {

 return nil

}

func (h *consumerHandler) ConsumeClaim(sess sarama.ConsumerGroupSession, claim sara

 for msg := range claim.Messages() {

 fmt.Printf("Received message: key=%s, value=%s, partition=%d, offset=%d\\n"

 sess.MarkMessage(msg, "")

 }

 return nil

}

Manual-Commit Offsets

Manually committing offsets: After processing messages, consumers need to manually commit their offsets. The
advantage of this method is that it allows for precise control over offset committing, avoiding duplicate message
consumption or loss. However, it should be noted that manual committing can lead to high Broker CPU usage,

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 36
of 158

affecting performance. As message volume increases, CPU consumption will be significantly high, affecting other
features of the Broker. Therefore, it is recommended to commit offsets after a certain number of messages.

package main

import (

 "context"

 "fmt"

 "log"

 "os"

 "os/signal"

 "sync"

 "github.com/Shopify/sarama"

)

func main() {

 config := sarama.NewConfig()

 config.Version = sarama.V2_1_0_0

 config.Consumer.Offsets.Initial = sarama.OffsetOldest

 config.Consumer.Offsets.AutoCommit.Enable = false

 brokers := []string{"localhost:9092"}

 topic := "test-topic"

 client, err := sarama.NewConsumerGroup(brokers, "test-group", config)

 if err != nil {

 log.Fatalf("unable to create kafka consumer group: %v", err)

 }

 defer client.Close()

 ctx, cancel := context.WithCancel(context.Background())

 signals := make(chan os.Signal, 1)

 signal.Notify(signals, os.Interrupt)

 var wg sync.WaitGroup

 wg.Add(1)

 go func() {

 defer wg.Done()

 for {

 err := client.Consume(ctx, []string{topic}, &consumerHandler{})

 if err != nil {

 log.Printf("consume error: %v", err)

 }

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 37
of 158

 select {

 case <-signals:

 cancel()

 return

 default:

 }

 }

 }()

 wg.Wait()

}

type consumerHandler struct{}

func (h *consumerHandler) Setup(sarama.ConsumerGroupSession) error {

 return nil

}

func (h *consumerHandler) Cleanup(sarama.ConsumerGroupSession) error {

 return nil

}

func (h *consumerHandler) ConsumeClaim(sess sarama.ConsumerGroupSession, claim sara

 for msg := range claim.Messages() {

 fmt.Printf("Received message: key=%s, value=%s, partition=%d, offset=%d\\n"

 sess.MarkMessage(msg, "")

 sess.Commit()

 }

 return nil

}

Production and Consumption FAQs with Sarama Go

1. Configured manually-commit offset, but the offset doesn't show up in the console when querying the consumption
group.
Whether you've configured manual-commit or auto-commit offset, you first need to mark the message,
sess.MarkMessage(msg, ""), indicating that the message has been fully consumed, before committing the offset.

2. Some issues with Sarama Go as a consumer exist and the Sarama Go version client has the following known
issues:
2.1 When a Topic adds a partition, the Sarama Go client cannot detect and consume the new partition. The client
must be restarted to consume the newly added partition.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 38
of 158

2.2 When the Sarama Go client subscribes to more than two Topics at the same time, it may lead to some partitions
being unable to consume messages normally.
2.3 When the resetting strategy of Sarama Go client's consumption offset is set to Oldest(earliest), if the client

experiences downtime or there is a server-side version upgrade, due to the OutOfRange mechanism implemented by
the Sarama Go client itself, it may cause the client to start re-consuming all messages from the smallest offset.
2.4 Regarding this issue, for the Confluent Go client's demo address, see kafka-confluent-go-demo.
3. Error message: Failed to produce message to topic.
The issue may be caused by misaligned versions. In this case, the client should first check the version of the Kafka

Broker, and then specify the version:

config := sarama.NewConfig()

config.Version = sarama.V2_1_0_0

https://github.com/AliwareMQ/aliware-kafka-demos/tree/master/kafka-confluent-go-demo

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 39
of 158

Java SDK
Last updated：2024-07-04 16:01:00

Overview

TDMQ for CKafka is a distributed stream processing platform used to build real-time data pipelines and streaming
applications. It offers high throughput, low latency, scalability, and fault tolerance.
Kafka Clients: These are Kafka's built-in clients, implemented in Java. They serve as clients for Kafka's standard

production and consumption protocols.
This document describes the key parameters, practical tutorials, and FAQs about the aforementioned Java clients.

Producer Practice

Version Selection

The compatibility between Kafka clients and clusters is very important. Generally, newer versions of clients are
compatible with older versions of clusters, but the reverse may not necessarily be true. Typically, the version of the
CKafka instance's broker is clear after deployment, so you can just choose the matching client version based on the

broker's version.
In the Java ecosystem, Spring Kafka is widely used. The correspondence between Spring Kafka versions and Kafka
Broker versions can be found on the official Spring website under Version Correspondence.
Producer parameters and optimization

Producer Parameters

When writing to Kafka using the Kafka Client, you need to configure the following key parameters. The parameters
and their default values are:

import org.apache.kafka.clients.producer.*;

import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

import java.util.concurrent.ExecutionException;

public class KafkaProducerExample {

 private static final String BOOTSTRAP_SERVERS = "localhost:9092";

 private static final String TOPIC = "test-topic";

 public static void main(String[] args) throws ExecutionException, InterruptedEx

https://github.com/apache/kafka
https://spring.io/projects/spring-kafka/

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 40
of 158

 // Create Kafka producer configuration.

 Properties props = new Properties();

 props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, BOOTSTRAP_SERVERS); // L

 props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.clas

 props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.cl

 // Set key parameters and default values of producers.

 props.put(ProducerConfig.ACKS_CONFIG, "1");// acks: Represents the level of

 props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);// batch.size, the batch

 props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);// buffer.memory,

 props.put(ProducerConfig.CLIENT_ID_CONFIG, "");// client.id, the client ID.

 props.put(ProducerConfig.COMPRESSION_TYPE_CONFIG, "none");// compression.ty

 props.put(ProducerConfig.CONNECTIONS_MAX_IDLE_MS_CONFIG, 540000);// connect

 props.put(ProducerConfig.DELIVERY_TIMEOUT_MS_CONFIG, 120000);// delivery.ti

 props.put(ProducerConfig.ENABLE_IDEMPOTENCE_CONFIG, false);// enable.idempo

 props.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG, "");// interceptor.cla

 props.put(ProducerConfig.LINGER_MS_CONFIG, 0);// linger.ms, the delay for s

 props.put(ProducerConfig.MAX_BLOCK_MS_CONFIG, 60000);// max.block.ms, the m

 props.put(ProducerConfig.MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION, 5);// max.i

 props.put(ProducerConfig.MAX_REQUEST_SIZE_CONFIG, 1048576);// max.request.s

 props.put(ProducerConfig.METADATA_MAX_AGE_CONFIG, 300000);//metadata.max.ag

 props.put(ProducerConfig.METRIC_REPORTER_CLASSES_CONFIG, "");// metric.repo

 props.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, "org.apache.kafka.client

 props.put(ProducerConfig.RECEIVE_BUFFER_CONFIG, 32768);// receive.buffer.by

 props.put(ProducerConfig.SEND_BUFFER_CONFIG, 131072);// send.buffer.bytes,

 props.put(ProducerConfig.RECONNECT_BACKOFF_MAX_MS_CONFIG, 1000);// reconnec

 props.put(ProducerConfig.RECONNECT_BACKOFF_MS_CONFIG, 50);// reconnect.back

 props.put(ProducerConfig.REQUEST_TIMEOUT_MS_CONFIG, 30000);// request.timeo

 props.put(ProducerConfig.RETRIES_CONFIG, 2147483647);// retries, the number

 props.put(ProducerConfig.RETRY_BACKOFF_MS_CONFIG, 100);// retry.backoff.ms,

 props.put(ProducerConfig.TRANSACTION_TIMEOUT_CONFIG, 60000);// transaction.

 props.put(ProducerConfig.TRANSACTIONAL_ID_CONFIG, null);// transactional.id

 props.put(ProducerConfig.CLIENT_DNS_LOOKUP_CONFIG, "default");// client.dns

 // Create a producer.

 KafkaProducer<String, String> producer = new KafkaProducer<>(props);

 // Send the message.

 for (int i = 0; i < 100; i++) {

 String key = "key-" + i;

 String value = "value-" + i;

 // Create a message record.

 ProducerRecord<String, String> record = new ProducerRecord<>(TOPIC, key

 // Send the message.

 producer.send(record, new Callback() {

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 41
of 158

 @Override

 public void onCompletion(RecordMetadata metadata, Exception excepti

 if (exception == null) {

 System.out.println("Message sent successfully:key=" + key +

 } else {

 System.err.println("Message sending failed:" + exception.ge

 }

 }

 });

 }

 // Close the producer.

 producer.close();

 }

}

Parameter Description and Optimization

acks Parameter Optimization

The acks parameter is used to control the confirmation mechanism when the producer sends messages. Its default

value is 1, which means that after the message is sent to the leader broker, it returns upon the leader's confirmation of
the message being written. The acks parameter also has the following optional values:
0: Do not wait for any confirmation, return directly.
1: Wait for the leader replica to confirm the write before returning.
-1 or all: Wait for the Leader replica and the relevant follower replicas to confirm the write before returning.

In cross availability zone scenarios, and for topics with a higher number of replicas, the choice of acks parameter
affects the message's reliability and throughput. Therefore:
In some online business message scenarios, where throughput requirements are not high, you can set the acks
parameter to -1 to ensure that the message is received and confirmed by all replicas before returning. This improves
message reliability but sacrifices write throughput and performance, and the latency will increase.

In scenarios involving big data, such as log collection, or offline computing, where high throughput (i.e., the volume of
data written to Kafka per second) is required, you can set the acks to 1 to improve throughput.

Batch Parameter Optimization

By default, for transmitting the same volume of data, a single request's network transmission can effectively reduce
related computation and network resources compared to multiple requests, thereby improving the overall write
throughput.
Therefore, this parameter can be set to optimize the client's message sending throughput capabilities. In high

throughput scenarios, you can set this parameter in combination with computation:
batch.size: Default is 16 K.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 42
of 158

linger.ms: Default is 0. You can appropriately increase the delay, such as setting it to 100 ms, to aggregate more
messages for batch sending.
buffer.memory: Default is 32 MB. For high-traffic producers, you can set it larger if there is sufficient heap memory,

such as setting it to 256 MB.

Transaction Parameter Optimization

put(ProducerConfig.ENABLE_IDEMPOTENCE_CONFIG, false);// enable.idempotence, determi

put(ProducerConfig.MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION, 5);// max.in.flight.reque

props.put(ProducerConfig.TRANSACTIONAL_ID_CONFIG, null);// transactional.id, transa

props.put(ProducerConfig.TRANSACTION_TIMEOUT_CONFIG, 60000);// transaction.timeout.

Note that the transaction will incur additional computing resources, because it guarantee exactly once semantics.
For transaction scenarios, it is appropriate to increase the transaction timeout to tolerate jitter brought on by write

latency in high throughput scenarios.

Compression Parameter Optimization

The Kafka Java Client supports the following Compression Parameters:

props.put(ProducerConfig.COMPRESSION_TYPE_CONFIG, "none");// compression.type, the

Currently, it supports the following Compression configurations:
none: No compression algorithm.
gzip: Compress by GZIP algorithm.
snappy: Compress by Snappy algorithm.
lz4: Compress by LZ4 algorithm.

zstd: Compress by ZSTD algorithm.
To use compressed messages in Kafka Java Client, you need to set the compression.type parameter when creating a
producer. For example, to use the LZ4 compression algorithm, you can set compression.type to lz4.
Kafka message compression is an optimization method that uses compute to save bandwidth. Although Kafka
message compression and decompression occur on the client side, the broker performs verification actions on
compressed messages, leading to extra computation cost. As the increased compute leads to high broker CPU

usage, reducing the processing capability for other requests, the overall performance drop, especially for gzip
compression. The server-side verification computation cost of such compressed messages can be very high. For
some cases, the cost is not worth the benefit. We recommend the following method to avoid broker verification in such
cases:
1. Independently compress message data on the producer side to generate packed data compression:

messageCompression, and store the compression method in the message's key:

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 43
of 158

{"Compression","lz4"}

2. On the producer side, send messageCompression as a normal message.
3. On the consumer side, read the message key, access the compression method used and performs decompression

independently.

Creating Producer Instance

If your application needs higher throughput, you can use asynchronous sending to increase the speed of message
sending. At the same time, batch message sending can be utilized to reduce network overhead and IO consumption. If
the application requires higher reliability, synchronous sending can ensure message delivery success. Meanwhile,
ACK confirmation mechanism and transaction mechanism can be used to ensure the reliability and consistency of

messages. For specific parameter optimization, see producer parameters and optimization.

Synchronous Sending

An example of synchronous sending in the Kafka Java Client:

import org.apache.kafka.clients.producer.*;

import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

import java.util.concurrent.ExecutionException;

public class KafkaProducerSyncExample {

 private static final String BOOTSTRAP_SERVERS = "localhost:9092";

 private static final String TOPIC = "test-topic";

 public static void main(String[] args) {

 // Create Kafka producer configuration.

 Properties props = new Properties();

 props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, BOOTSTRAP_SERVERS);

 props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.clas

 props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.cl

 // Set producer parameters.

 props.put(ProducerConfig.ACKS_CONFIG, "all");

 props.put(ProducerConfig.RETRIES_CONFIG, 3);

 // Create a producer.

 KafkaProducer<String, String> producer = new KafkaProducer<>(props);

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 44
of 158

 // Synchronously send messages.

 for (int i = 0; i < 10; i++) {

 String key = "sync-key-" + i;

 String value = "sync-value-" + i;

 // Create a message record.

 ProducerRecord<String, String> record = new ProducerRecord<>(TOPIC, key

 try {

 // Send messages and wait for results.

 RecordMetadata metadata = producer.send(record).get();

 System.out.println("Synchronous sending succeeded:key=" + key + ",

 } catch (InterruptedException | ExecutionException e) {

 System.err.println("Synchronous sending failed:" + e.getMessage());

 }

 }

 // Close the producer.

 producer.close();

 }

}

Asynchronous Sending

Asynchronous sending: When messages are sent asynchronously, the current thread won't be blocked, and the
producer throughput is higher. However, message results need to be handled through a callback function. Example:

import org.apache.kafka.clients.producer.*;

import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

public class KafkaProducerAsyncExample {

 private static final String BOOTSTRAP_SERVERS = "localhost:9092";

 private static final String TOPIC = "test-topic";

 public static void main(String[] args) {

 // Create Kafka producer configuration.

 Properties props = new Properties();

 props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, BOOTSTRAP_SERVERS);

 props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.clas

 props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.cl

 // Set producer parameters.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 45
of 158

 props.put(ProducerConfig.ACKS_CONFIG, "all");

 props.put(ProducerConfig.RETRIES_CONFIG, 3);

 // Create a producer.

 KafkaProducer<String, String> producer = new KafkaProducer<>(props);

 // Send messages asynchronously.

 for (int i = 0; i < 10; i++) {

 String key = "async-key-" + i;

 String value = "async-value-" + i;

 // Create a message record.

 ProducerRecord<String, String> record = new ProducerRecord<>(TOPIC, key

 // Send the message and set the callback function.

 producer.send(record, new Callback() {

 @Override

 public void onCompletion(RecordMetadata metadata, Exception excepti

 if (exception == null) {

 System.out.println("Asynchronous sending succeeded:key=" +

 } else {

 System.err.println("Asynchronous sending failed:" + excepti

 }

 }

 });

 }

 // Close the producer.

 producer.close();

 }

}

Consumer Practice

Consumer Parameters

import org.apache.kafka.clients.consumer.ConsumerConfig;

import org.apache.kafka.clients.consumer.ConsumerRecord;

import org.apache.kafka.clients.consumer.ConsumerRecords;

import org.apache.kafka.clients.consumer.KafkaConsumer;

import org.apache.kafka.common.serialization.StringDeserializer;

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 46
of 158

import java.time.Duration;

import java.util.Collections;

import java.util.Properties;

public class KafkaConsumerDemo {

 public static void main(String[] args) {

 Properties properties = new Properties();

 properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");

 properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserial

 properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeseri

 properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test-group"); // "group.id"

 properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest"); // "auto

 properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true"); // "enabl

 properties.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "5000"); // "

 properties.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, "10000"); // "sess

 properties.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, "500"); // "max.poll

 properties.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, "300000"); // "m

 properties.put(ConsumerConfig.FETCH_MIN_BYTES_CONFIG, "1"); // "fetch.min.b

 properties.put(ConsumerConfig.FETCH_MAX_BYTES_CONFIG, "52428800"); // "fetc

 properties.put(ConsumerConfig.FETCH_MAX_WAIT_MS_CONFIG, "500"); // "fetch.m

 properties.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG, "3000"); // "he

 properties.put(ConsumerConfig.CLIENT_ID_CONFIG, "my-client-id"); // "client

 properties.put(ConsumerConfig.REQUEST_TIMEOUT_MS_CONFIG, "30000"); // "requ

 KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);

 consumer.subscribe(Collections.singletonList("test-topic"));

 try {

 while (true) {

 ConsumerRecords<String, String> records = consumer.poll(Duration.of

 for (ConsumerRecord<String, String> record : records) {

 System.out.printf("offset = %d, key = %s, value = %s%n", record

 }

 }

 } finally {

 consumer.close();

 }

 }

}

Parameter Optimization

1. When using Kafka consumers, we can optimize performance by adjusting some parameters. Here are some
common parameter optimization methods:

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 47
of 158

fetch.min.bytes: If you don't know the minimum message size, we recommend you to set this parameter to 1. You can
set this value to the minimum message size if you know it.
max.poll.records: This parameter can be adjusted based on the processing capacity of the application. If your

application can handle more records, you can set this value to a larger number to reduce the frequency of poll
operations.
auto.commit.interval.ms: This parameter can be adjusted according to the needs of your application. Generally, for
scenarios with automatic offset commits, it is recommended to set it to the default value of 5,000 ms. Note that
excessively frequent offset commits can affect performance and additionally consume broker's computational

resources.
client.id: You can set a unique ID for each consumer to distinguish between different consumers in monitoring and
logs.
The above are some common parameter optimization methods, but the optimal settings might vary based on the
features and requirements of your application. When optimize parameters, remember to always conduct performance
testing to ensure the result matches your expectation.

2. For issues of frequent rebalance and consumption thread blocking, see the following parameter optimization
instructions:
session.timeout.ms: For versions before v0.10.2, increase this parameter value appropriately to make it greater than
the time it takes to consume a batch of data and not exceed 30 s. The recommended value is 25 s. For v0.10.2 and
later versions, use the default value of 10 s.

max.poll.records: Decrease this value to make it significantly less than the product of <the number of messages
consumed per second per thread> x <the number of consumption threads> x <max.poll.interval.ms> as
recommended.
max.poll.interval.ms: This value should be greater than <max.poll.records> / (<the number of messages consumed per
second per thread> x <the number of consumption threads>).

Creating Consumer Instance

The Kafka Java Client provides a subscription model to create consumers, where it offers two ways to commit the
offset: manually and automatically.

Auto-Commit Offsets

Auto-commit offsets: Consumers automatically commit their offsets after pulling messages, eliminating the need for
manual operation. This method's advantage is its simplicity and ease of use, but it may lead to duplicate message
consumption or loss. Note that the auto-commit interval, auto.commit.interval.ms, should not be set too short;
otherwise, it may lead to relatively high broker CPU utilization, affecting the processing of other requests.

import org.apache.kafka.clients.consumer.*;

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 48
of 158

import org.apache.kafka.common.serialization.StringDeserializer;

import java.time.Duration;

import java.util.Collections;

import java.util.Properties;

public class KafkaConsumerAutoCommitExample {

 private static final String BOOTSTRAP_SERVERS = "localhost:9092";

 private static final String TOPIC = "test-topic";

 private static final String GROUP_ID = "test-group";

 public static void main(String[] args) {

 // Create Kafka consumer configuration.

 Properties props = new Properties();

 props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, BOOTSTRAP_SERVERS);

 props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.

 props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserialize

 props.put(ConsumerConfig.GROUP_ID_CONFIG, GROUP_ID);

 props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");

 // Enable auto-commit offset.

 props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, true);

 props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, 5000); // Auto-com

 // Create a consumer.

 KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);

 // Subscribe to topics.

 consumer.subscribe(Collections.singletonList(TOPIC));

 // Consume messages.

 try {

 while (true) {

 ConsumerRecords<String, String> records = consumer.poll(Duration.of

 for (ConsumerRecord<String, String> record : records) {

 System.out.printf("Consume message: topic=%s, partition=%d, off

 record.topic(), record.partition(), record.offset(), re

 }

 }

 } finally {

 // Close the consumer.

 consumer.close();

 }

 }

}

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 49
of 158

Manual-Commit Offsets

Manual-commit offsets: After processing messages, consumers need to manually commit their offsets. The advantage
of this method is that it allows for precise control over offset commit, avoiding duplicate message consumption or loss.

However, it should be noted that manual commit can lead to high broker CPU usage, affecting performance. As
message volume increases, CPU consumption will be significantly high, affecting other features of the broker.
Therefore, it is recommended to commit offset after a certain number of messages.

import org.apache.kafka.clients.consumer.ConsumerConfig;

import org.apache.kafka.clients.consumer.ConsumerRecord;

import org.apache.kafka.clients.consumer.ConsumerRecords;

import org.apache.kafka.clients.consumer.KafkaConsumer;

import org.apache.kafka.common.serialization.StringDeserializer;

import java.time.Duration;

import java.util.Collections;

import java.util.Properties;

public class KafkaConsumerManualCommitExample {

 public static void main(String[] args) {

 Properties properties = new Properties();

 properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");

 properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserial

 properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeseri

 properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test-group");

 properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");

 properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");

 KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);

 consumer.subscribe(Collections.singletonList("test-topic"));

 int count = 0;

 try {

 while (true) {

 ConsumerRecords<String, String> records = consumer.poll(Duration.of

 for (ConsumerRecord<String, String> record : records) {

 System.out.printf("offset = %d, key = %s, value = %s%n", record

 count++;

 if (count % 10 == 0) {

 consumer.commitSync();

 System.out.println("Committed offsets.");

 }

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 50
of 158

 }

 }

 } finally {

 consumer.close();

 }

 }

}

Assign Consumption

The Kafka Java Client's assign consumption mode allows consumers to directly specify the partitions for subscription,
rather than automatically assigning partitions through topic subscription. This mode is suitable for scenarios where
manual control of consumed partitions is needed, such as implementing specific cloud load balancer policy, or

skipping certain partitions in some cases. The general process involves using the assign method to manually specify
the partitions consumed by the consumer, setting the starting offset for consumption with the seek method, and then
executing the consumption logic. For example:

import org.apache.kafka.clients.consumer.ConsumerRecord;

import org.apache.kafka.clients.consumer.ConsumerRecords;

import org.apache.kafka.clients.consumer.KafkaConsumer;

import org.apache.kafka.common.TopicPartition;

import java.time.Duration;

import java.util.Arrays;

import java.util.Properties;

public class KafkaConsumerAssignAndSeekApp {

 public static void main(String[] args) {

 Properties props = new Properties();

 props.put("bootstrap.servers", "localhost:9092");

 props.put("key.deserializer", "org.apache.kafka.common.serialization.String

 props.put("value.deserializer", "org.apache.kafka.common.serialization.Stri

 props.put("enable.auto.commit", "false");

 KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);

 String topic = "my-topic";

 TopicPartition partition0 = new TopicPartition(topic, 0);

 TopicPartition partition1 = new TopicPartition(topic, 1);

 consumer.assign(Arrays.asList(partition0, partition1));

 // Set the starting offset for consumption.

 long startPosition0 = 10L;

 long startPosition1 = 20L;

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 51
of 158

 consumer.seek(partition0, startPosition0);

 consumer.seek(partition1, startPosition1);

 try {

 while (true) {

 ConsumerRecords<String, String> records = consumer.poll(Duration.of

 for (ConsumerRecord<String, String> record : records) {

 System.out.printf("offset = %d, key = %s, value = %s%n", record

 }

 consumer.commitSync(); // Manually submit the offset

 }

 } finally {

 consumer.close();

 }

 }

}

Production and Consumption FAQs of Kafka Java Client

Kafka Java Producer is unable to send messages successfully
First, check if the IP and port of the Kafka cluster can be connected normally. If not, resolve the connection issues first.
Next, verify the correct configuration of the access point and whether the version matches the broker version. Send
demo according to the best practices.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 52
of 158

Kafka Python SDK
Last updated：2024-07-04 16:00:59

Overview

CKafka's Python client has the following major libraries:
kafka-python: This is a Kafka client implemented in pure Python, supporting Kafka 0.8.2 and higher versions. It
provides APIs for producers, consumers, and managing the Kafka cluster. This library is easy to use, but its

performance may not be as good as clients based on librdkafka.
Installation method: pip install kafka-python

confluent-kafka-python: This library is based on the high-performance C library librdkafka. It supports Kafka 0.9 and
later versions, and provides APIs for producers, consumers, and managing the Kafka cluster. This library has better
performance, but might require the installation of additional dependencies.

Installation method: pip install confluent-kafka

aiokafka: This is an asynchronous Kafka client based on kafka-python, using the asyncio library. It is suitable for
scenarios that require asynchronous programming.
Installation method: pip install aiokafka

pykafka: This is a Python client supporting Kafka version 0.8.x. It provides APIs for producers, consumers, and
managing the Kafka cluster. This library is no longer actively maintained, but still suitable for scenarios requiring

support for older Kafka versions.
Installation method: pip install pykafka

When choosing a Python Kafka client, select the appropriate library based on your application requirements and
Kafka version. For most scenarios, kafka-python or confluent-kafka-python is recommended, as they support newer
versions of Kafka and have more comprehensive features. If your application requires asynchronous programming,

consider using aiokafka.
This document mainly describes how to use kafka-python. See the official documentation at kafka-python.

Producer Practices

Version Selection

To use kafka-python, you should install the kafka-python library first. Run the following command to install it:
 pip install kafka-python

Producer Parameters and Optimization

Producer Parameters

https://github.com/dpkp/kafka-python
https://github.com/confluentinc/confluent-kafka-python
https://github.com/aio-libs/aiokafka
https://github.com/Parsely/pykafka
https://kafka-python.readthedocs.io/en/master/

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 53
of 158

Kafka Python involves the following key parameters. The parameters and their default values are as follows:

from kafka import KafkaProducer

producer = KafkaProducer(

 bootstrap_servers='localhost:9092', # Broker list used to initialize connection

 client_id=None, # Custom client ID for identification in Kafka server logs, wit

 key_serializer=None, # Callable object used for serializing message keys into b

 value_serializer=None, # Callable object used for serializing message values in

 compression_type=None, # Message compression type, valid values are 'gzip', 'sn

 retries=0, # Number of times to retry failed messages, with the default value b

 batch_size=16384, # The size of messages used for batch processing, measured in

 linger_ms=0, # Maximum waiting time for additional messages before batch proces

 partitioner=None, # Callable object used to determine the message partition, wi

 buffer_memory=33554432, # Total memory allocated for buffering messages awaitin

 connections_max_idle_ms=540000, # Maximum duration to maintain idle connections

 max_block_ms=60000, # Maximum duration to block the send() method when reaching

 max_request_size=1048576, # Maximum byte size of requests sent to the broker, w

 metadata_max_age_ms=300000, # Maximum lifespan of metadata in the local cache,

 retry_backoff_ms=100, # Waiting time between two retry attempts, in millisecond

 request_timeout_ms=30000, # Maximum waiting time for client to receive a respon

 receive_buffer_bytes=32768, # Network buffer size for receiving data, in bytes,

 send_buffer_bytes=131072, # Network buffer size for sending data, in bytes, wit

 acks='all', # Message acknowledgment mechanism, optional values are '0', '1', o

 transactional_id=None, # Transaction ID, a unique identifier for producer parti

 transaction_timeout_ms=60000, # Transaction timeout, in milliseconds, with the

 enable_idempotence=False, # Whether to enable Idempotence, with the default val

 security_protocol='PLAINTEXT', # Security protocol type, optional values are 'P

Parameter Description and Optimization

acks Parameter Optimization

The acks parameter controls the confirmation mechanism for producers when sending messages. The default value of
this parameter is -1, indicating that the message will only be returned after being sent to the Leader Broker and
confirmed by the Leader, along with the associated Follower messages being written. The acks parameter has the
following optional values: 0, 1, -1. In cross-availability zone scenarios, as well as Topic with a higher number of

replicas, the value of the acks parameter will affect the message's reliability and throughput. Therefore:
In some online business messaging scenarios, where required throughput is not high, you can set the acks parameter
to -1. This ensures that the message is received and acknowledged by all replicas before returning, thereby increasing
the message's reliability.
In scenarios involving big data, such as log collection or offline computing, where high throughput (i.e., the volume of

data written to Kafka per second) is required, you can set the acks to 1 to improve throughput.

buffer_memory Parameter Optimization (Caching)

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 54
of 158

By default, for transmitting the same volume of data, a single request's can effectively reduce computation and
network resources compared to multiple requests, thereby improving the overall write throughput.
Therefore, the message sending throughput of the client can be optimized by setting this parameter. For Kafka Python

Client, the default linger_ms is set to 0 ms for batching time to accumulate messages, which can be optimized by
appropriately increasing the value, for example, setting it to 100 ms, to aggregate and send multiple requests in
batches, thus improving throughput. If bandwidth is high and memory on the machine is sufficient, it is recommended
to increase buffer_memory to enhance throughput.

Compression Parameter Optimization

The Kafka Python Client supports the following compression parameters: none, gzip, snappy, lz4.

none: Do not compress.
gzip: Compress by GZIP.
snappy: Compress by Snappy.
lz4: Compress by LZ4.
To use compressed messages on the Producer client, you need to set the compression_type parameter when
creating the producer. For example, to use the LZ4 compression algorithm, you can set the compression_type to lz4.

As an optimization method that exchanges computation for bandwidth, message compression and decompression
occurs on the client side. However, due to additional computation cost of the Broker's behavior in verifying
compressed messages, compression is not recommended in low traffic situations. For GZIP compression, especially,
the verification computation cost for the Broker can be significant, which is not worthwhile in some cases. Due to
increased computation, message processing capabilities of the Broker may be lower, resulting in lower bandwidth

throughput. In these situations, the following compression method is recommended:
Independently compress message data on the Producer side to generate packed data compression:
messageCompression, and store the compression method in the message's key:
 {"Compression","lz4"}

On the Producer side, send messageCompression as a normal message.

On the Consumer side, read the message key, access the compression method used, and perform independent
decompression.

Creating Producer Instance

If an application requires higher reliability, a synchronous producer can be used to ensure message delivery success.
Furthermore, the ACK acknowledgement mechanism and transaction mechanism can be used to ensure the reliability
and consistency of messages. For specific parameter optimization, see Producer Parameters and Optimization. If an
application requires higher throughput, employ an asynchronous producer to increase the speed of message delivery.

Additionally, use the batch message sending method to reduce network overhead and IO consumption. See the
example below:

from kafka import KafkaProducer

import sys

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 55
of 158

Parameter Configuration

BOOTSTRAP_SERVERS = 'localhost:9092'

TOPIC = 'test_topic'

SYNC = True

ACKS = '1' # leader replica acknowledgement suffices

LINGER_MS = 500 # Delay sending for 500 ms

BATCH_SIZE = 16384 # Message batch size 16 KB

def create_producer(servers, acks, linger_ms, batch_size):

 return KafkaProducer(bootstrap_servers=servers, acks=acks, linger_ms=linger_ms,

def send_message_sync(producer, topic, message):

 future = producer.send(topic, message)

 result = future.get(timeout=10)

 print(f"Sent message: {message} to topic: {topic}, partition: {result.partition

def send_message_async(producer, topic, message):

 def on_send_success(record_metadata):

 print(f"Sent message: {message} to topic: {topic}, partition: {record_metad

 def on_send_error(excp):

 print(f"Error sending message: {message} to topic: {topic}", file=sys.stder

 print(excp, file=sys.stderr)

 future = producer.send(topic, message)

 future.add_callback(on_send_success).add_errback(on_send_error)

def main():

 producer = create_producer(BOOTSTRAP_SERVERS, ACKS, LINGER_MS, BATCH_SIZE)

 messages = ['Hello Kafka', 'Async vs Sync', 'Demo']

 if SYNC:

 for message in messages:

 send_message_sync(producer, TOPIC, message.encode('utf-8'))

 else:

 for message in messages:

 send_message_async(producer, TOPIC, message.encode('utf-8'))

 producer.flush()

if __name__ == '__main__':

 main()

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 56
of 158

Consumer Practice

Consumer Parameters and Optimization

Consumer Parameters

from kafka import KafkaConsumer

Create a KafkaConsumer object for connecting to the Kafka cluster and consuming m

consumer = KafkaConsumer(

 'topic_name', # List of Topics to subscribe to

 bootstrap_servers=['localhost:9092'], # Access point for the Kafka cluster

 group_id=None, # Consumer Group ID used for grouping consumers, required by

 client_id='kafka-python-{version}', # The default client ID, with the defaul

 api_version=None, # Specify the Kafka API version to use. If it is set to None,

 enable_auto_commit=True, # Whether to automatically commit the consumer offs

 auto_commit_interval_ms=5000, # Interval for auto-committing consumer offset

 auto_offset_reset='latest', # Policy for consumer's consumption position in

 fetch_min_bytes=1, # Minimum bytes for consumer to read from a partition, wi

 fetch_max_wait_ms=500, # Waiting time when there is no more new consumption

 fetch_max_bytes=52428800, # Maximum bytes for consumer to read from a partit

 max_poll_interval_ms=300000 # Default interval is 300,000 milliseconds (5 mi

 retry_backoff_ms=100, # Retry interval, with the default value being 100 mil

 reconnect_backoff_max_ms=1000, # Maximum interval for reconnection attempts

 request_timeout_ms=305000, # Client request timeout, in milliseconds

 session_timeout_ms=10000, # session_timeout_ms (int) – Timeout period for de

 heartbeat_interval_ms=3000, # The expected time interval between heartbeats

 receive_buffer_bytes=32768, # Size of the TCP receive buffer (SO_RCVBUF) used w

 send_buffer_bytes=131072 # Size of the TCP send buffer (SO_SNDBUF) used when se

)

for message in consumer:

 print(f"Topic: {message.topic}, Partition: {message.partition}, Offset: {messag

Parameter Description and Optimization

1. max_poll_interval_ms is a configuration parameter for Kafka Python Consumer, specifying the maximum delay
between two poll operations. Its primary function is to control the liveness of the Consumer, i.e., to determine if the
Consumer is still active. If the Consumer does not conduct a poll operation within the time specified by

max_poll_interval_ms, Kafka considers this Consumer as failed, triggering a rebalance operation for the Consumer.
The setting of this parameter should be adjusted according to the actual consumption speed. Setting it too low may
lead to frequent triggering of rebalance operations, increasing Kafka's load; setting it too high might prevent Kafka
from timely detecting issues with the Consumer, thereby affecting message consumption. It is recommended to
increase the setting of this value under high throughput conditions.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 57
of 158

2. For auto-commit offset requests, it is advised not to set auto_commit_interval_ms lower than 1000 ms, as too
frequent offset requests can cause high CPU usage on the Broker, impacting the read/write operations of other
services.

Creating Consumer Instance

Kafka Python provides a subscription model for creating consumers, which supports both manual and automatic offset
commits.

Auto-Commit Offsets

Committing automatic offsets: After pulling messages, consumers automatically commit offsets without manual
intervention. This method is easy to use, but may lead to duplicate message consumption or loss. It is recommended
to commit offsets every 5 s.

auto_commit_consumer_interval.py

from kafka import KafkaConsumer

from time import sleep

consumer = KafkaConsumer(

 'your_topic_name',

 bootstrap_servers=['localhost:9092'],

 group_id='auto_commit_group',

 auto_commit_interval_ms=5000 # Set the interval for automatic offset commits t

)

for message in consumer:

 print(f"Topic: {message.topic}, Partition: {message.partition}, Offset: {messag

 sleep(1)

Manual-Commit Offsets

Manual-Commit Offsets: After processing messages, consumers need to manually commit their offsets. The
advantage of this method is that it allows for precise control over offset committing, avoiding duplicate message
consumption or loss. However, note that manual committing can lead to high Broker CPU usage, affecting

performance. As message volume increases, CPU consumption will be significantly high, affecting other features of
the Broker. Therefore, it is recommended to commit offsets after a certain number of messages.

manual_commit_consumer.py

from kafka import KafkaConsumer

from kafka.errors import KafkaError

from time import sleep

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 58
of 158

consumer = KafkaConsumer(

 'your_topic_name',

 bootstrap_servers=['localhost:9092'],

 group_id='manual_commit_group',

 enable_auto_commit=False

)

count = 0

for message in consumer:

 print(f"Topic: {message.topic}, Partition: {message.partition}, Offset: {messag

 count += 1

 if count % 10 == 0:

 try:

 consumer.commit()

 except KafkaError as e:

 print(f"Error while committing offset: {e}")

 sleep(1)

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 59
of 158

ibrdkafka SDK
Last updated：2024-07-04 16:00:59

Overview

TDMQ for CKafka is a distributed stream processing platform used to build real-time data pipelines and streaming
applications. It provides high throughput, low latency, scalability, and fault tolerance.
This document describes the key parameters, practical tutorials and FAQs of the librdkafka client mentioned above.

Producer Practice

Version Selection

When librdkafka is used, it automatically selects the appropriate protocol version for communication based on the
version of the Kafka cluster. Due to the rapid iteration updates of Kafka versions, usually, we recommend the latest
version of librdkafka for you to achieve the best compatibility and performance.

Producer Parameters and Optimization

Producer Parameters

The key parameters of librdkafka and their default values are as follows:

rd_kafka_conf_t *conf = rd_kafka_conf_new();

// Addresses of Kafka clusters, separated by commas, with the default value being e

rd_kafka_conf_set(conf, "bootstrap.servers", "localhost:9092", NULL, 0);

// The maximum number of attempts to send a message, including the first attempt an

rd_kafka_conf_set(conf, "message.send.max.retries", "2", NULL, 0);

// Backoff time between retries (in milliseconds), with the default value being 100

rd_kafka_conf_set(conf, "retry.backoff.ms", "100", NULL, 0);

// Client request timeout (in milliseconds), with the default value being 5000.

rd_kafka_conf_set(conf, "request.timeout.ms", "5000", NULL, 0);

// The buffer size for data sent by the client (in bytes), with the default value b

rd_kafka_conf_set(conf, "queue.buffering.max.kbytes", "131072", NULL, 0);

// Maximum number of messages in the client's send buffer, with the default value b

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 60
of 158

rd_kafka_conf_set(conf, "queue.buffering.max.messages", "100000", NULL, 0);

// Maximum total size of messages in the client's send buffer (in bytes), with the

rd_kafka_conf_set(conf, "queue.buffering.max.total.bytes", "1000000", NULL, 0);

// Linger time of the client's send buffer (in milliseconds), with the default valu

rd_kafka_conf_set(conf, "queue.buffering.max.ms", "0", NULL, 0);

// Whether to enable message compression, with the default value being 0 (disabled)

rd_kafka_conf_set(conf, "compression.codec", "none", NULL, 0);

// Message compression level, with the default value being 0 (auto-select).

rd_kafka_conf_set(conf, "compression.level", "0", NULL, 0);

// Client ID, with the default value being rdkafka.

rd_kafka_conf_set(conf, "client.id", "rdkafka", NULL, 0);

// Maximum concurrency request count for the producer, i.e., the number of requests

rd_kafka_conf_set(conf, "max.in.flight.requests.per.connection", "1000000", NULL, 0

// Maximum retry count for client connections to the Kafka cluster, with the defaul

rd_kafka_conf_set(conf, "broker.address.ttl", "3", NULL, 0);

// Interval between retry attempts for client connections to the Kafka cluster (in

rd_kafka_conf_set(conf, "reconnect.backoff.ms", "1000", NULL, 0);

// Maximum interval between retry attempts for client connections to the Kafka clus

rd_kafka_conf_set(conf, "reconnect.backoff.max.ms", "10000", NULL, 0);

// Backoff time for client API version (in milliseconds), with the default value be

rd_kafka_conf_set(conf, "api.version.request.timeout.ms", "10000", NULL, 0);

// Security protocol, with the default value being plaintext.

rd_kafka_conf_set(conf, "security.protocol", "plaintext", NULL, 0);

// For other SSL and SASL parameters, see the librdkafka documentation.

// Create a producer instance.

rd_kafka_t *producer = rd_kafka_new(RD_KAFKA_PRODUCER, conf, NULL, 0);

Parameter Description and Optimization

acks Parameter Optimization

The acks parameter controls the confirmation mechanism when the producer sends a message. The default value of
this parameter is -1, which means that it returns only after the message is sent to the leader broker, the leader

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 61
of 158

confirms, and the corresponding follower messages are all written. The acks parameter also has the following optional
values: 0, 1, and -1. In cross-availability zone scenarios, and for topics with a high number of replicas, the value of the
acks parameter can affect the message's reliability and throughput. Therefore:

In some online business messaging scenarios where the requirement for throughput is not significant, you can set the
acks parameter to -1 to ensure that the message is received and acknowledged by all replicas before returning, thus
improving the message's reliability.
In scenarios involving big data, such as log collection, and offline computing, where high throughput (i.e., the volume of
data written to Kafka per second) is required, you can set the acks to 1 to increase throughput.

Buffering Parameter Optimization (Caching)

By default, for transmitting the same volume of data, a single request's network transmission can effectively reduce
related computation and network resources compared to multiple requests, thereby improving the overall write
throughput.
Therefore, you can set this parameter to optimize the client's message sending throughput. For librdkafka, a default
batching time of 5 ms is provided to buffer messages. If the messages are small, you can increase the
queue.buffering.max.ms duration appropriately.

Compression Parameter Optimization

librdkafka supports the following compression parameters: none, gzip, snappy, lz4, and zstd.
The librdkafka client supports the following compression algorithms:
none: No compression algorithm.
gzip: Compress by GZIP algorithm.
snappy: Compress by Snappy algorithm.

lz4: Compress by LZ4 algorithm.
zstd: Compress by ZSTD algorithm.
To use a compression algorithm in the producer client, set the compression.type parameter when creating the
producer. For example, if you want to use the LZ4 compression algorithm, set compression.type to lz4. The CPU
compression and CPU decompression occur on the client side, representing a calculation-for-bandwidth optimization.

However, the broker's verification behavior for compressed messages, especially for Gzip compression, incurs
additional computation costs, resulting in significant server-side computation costs. The increased computation could
reduce the broker's message processing capability, leading to lower bandwidth throughput, which may not be
worthwhile in some cases. In such cases, we recommend the following method:
Independently compress message data on the producer side to generate packed data compression:
messageCompression, and store the compression method in the message's key:

 {"Compression","CompressionLZ4"}

On the producer side, send messageCompression as a normal message.
On the consumer side, read the message key to access the compression method used, and perform independent
decompression.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 62
of 158

Creating Producer Instance

If an application requires higher throughput, it can use an asynchronous producer to increase the speed of message
sending. At the same time, batch message sending can be utilized to reduce network overhead and IO consumption. If
an application demands higher reliability, a synchronous producer can be used to ensure successful message

delivery. Additionally, the ACK acknowledgement mechanism and transaction mechanism can be employed to
guarantee message reliability and consistency. For specific parameter optimization, see Producer Parameters and
Optimization.

#include <stdio.h>

#include <string.h>

#include <librdkafka/rdkafka.h>

// Producer message sending callback.

void dr_msg_cb(rd_kafka_t *rk, const rd_kafka_message_t *rkmessage, void *opaque) {

 if (rkmessage->err) {

 fprintf(stderr, "Message delivery failed: %s\\n", rd_kafka_err2str(rkmessag

 } else {

 fprintf(stderr, "Message delivered (%zd bytes, partition %"PRId32")\\n",

 rkmessage->len, rkmessage->partition);

 }

}

int main() {

 rd_kafka_conf_t *conf = rd_kafka_conf_new();

 // Set the addresses of the Kafka cluster.

 rd_kafka_conf_set(conf, "bootstrap.servers", "localhost:9092", NULL, 0);

 // Set ack to 1, indicating that the message is considered successfully sent on

 rd_kafka_conf_set(conf, "acks", "1", NULL, 0);

 // Set the producer message sending callback.

 rd_kafka_conf_set_dr_msg_cb(conf, dr_msg_cb);

 // Create a producer instance.

 char errstr[512];

 rd_kafka_t *producer = rd_kafka_new(RD_KAFKA_PRODUCER, conf, errstr, sizeof(err

 if (!producer) {

 fprintf(stderr, "Failed to create producer: %s\\n", errstr);

 return 1;

 }

 // Create a topic instance.

 rd_kafka_topic_t *topic = rd_kafka_topic_new(producer, "test", NULL);

 if (!topic) {

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 63
of 158

 fprintf(stderr, "Failed to create topic: %s\\n", rd_kafka_err2str(rd_kafka_

 rd_kafka_destroy(producer);

 return 1;

 }

 // Send the message.

 const char *message = "Hello, Kafka!";

 if (rd_kafka_produce(

 topic,

 RD_KAFKA_PARTITION_UA,

 RD_KAFKA_MSG_F_COPY,

 (void *)message,

 strlen(message),

 NULL,

 0,

 NULL) == -1) {

 fprintf(stderr, "Failed to produce to topic %s: %s\\n", rd_kafka_topic_name

 }

 // Wait for all messages to be sent.

 while (rd_kafka_outq_len(producer) > 0) {

 rd_kafka_poll(producer, 1000);

 }

 // Destroy topic instance.

 rd_kafka_topic_destroy(topic);

 // Destroy producer instance.

 rd_kafka_destroy(producer);

 return 0;

}

Consumer Practice

Consumer Parameters and Optimization

Consumer Parameters

 rd_kafka_conf_t *conf = rd_kafka_conf_new();

 // Set the addresses of the Kafka cluster.

 rd_kafka_conf_set(conf, "bootstrap.servers", "localhost:9092", NULL, 0);

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 64
of 158

 // Set consumer group ID, with the default value being empty.

 rd_kafka_conf_set(conf, "group.id", "mygroup", NULL, 0);

 // Set the consumer's automatic commit interval (in milliseconds), with the def

 rd_kafka_conf_set(conf, "auto.commit.interval.ms", "5000", NULL, 0);

 // Enable the consumer's automatic commit, with the default value being true.

 rd_kafka_conf_set(conf, "enable.auto.commit", "true", NULL, 0);

 // Set the consumer's automatic offset reset policy, with the default value bei

 rd_kafka_conf_set(conf, "auto.offset.reset", "latest", NULL, 0);

 // Set client ID, with the default value being rdkafka.

 rd_kafka_conf_set(conf, "client.id", "rdkafka", NULL, 0);

 // Create a consumer instance.

 char errstr[512];

 rd_kafka_t *consumer = rd_kafka_new(RD_KAFKA_CONSUMER, conf, errstr, sizeof(err

Parameter Description and Optimization

For automatic offset commit requests, it's recommended not to set auto.commit.interval.ms below 1,000 ms, as too

frequent offset requests can cause high broker CPU usage, affecting the read and write operations of other normal
services.

Creating Consumer Instance

Provide a subscription model for creating consumers, which offers two ways of offset commit: manual submission and
automatic submission.

Auto-Commit Offsets

Auto-commit offsets: After pulling messages, consumers automatically commit their offsets without manual
intervention. The advantage of this method is it's easy to use, but it may lead to duplicate message consumption or

loss.

#include <stdio.h>

#include <string.h>

#include <librdkafka/rdkafka.h>

// Consumer message processing callback.

void msg_consume(rd_kafka_message_t *rkmessage, void *opaque) {

 if (rkmessage->err) {

 fprintf(stderr, "%% Consume error for topic \\"%s\\" [%"PRId32"] "

 "offset %"PRId64": %s\\n",

 rd_kafka_topic_name(rkmessage->rkt),

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 65
of 158

 rkmessage->partition, rkmessage->offset,

 rd_kafka_message_errstr(rkmessage));

 } else {

 printf("%% Message received on topic %s [%"PRId32"] at offset %"PRId64": %.

 rd_kafka_topic_name(rkmessage->rkt),

 rkmessage->partition,

 rkmessage->offset, (int)rkmessage->len, (const char *)rkmessage->pay

 }

}

int main() {

 rd_kafka_conf_t *conf = rd_kafka_conf_new();

 // Set the addresses of the Kafka cluster.

 rd_kafka_conf_set(conf, "bootstrap.servers", "localhost:9092", NULL, 0);

 // Set consumer group ID.

 rd_kafka_conf_set(conf, "group.id", "mygroup", NULL, 0);

 // Enable the consumer's automatic offset commit, with the default value being

 rd_kafka_conf_set(conf, "enable.auto.commit", "true", NULL, 0);

 // Set the consumer's automatic commit interval (in milliseconds), default is 5

 rd_kafka_conf_set(conf, "auto.commit.interval.ms", "5000", NULL, 0);

 // Create Consumer Instance.

 char errstr[512];

 rd_kafka_t *consumer = rd_kafka_new(RD_KAFKA_CONSUMER, conf, errstr, sizeof(err

 if (!consumer) {

 fprintf(stderr, "Failed to create consumer: %s\\n", errstr);

 return 1;

 }

 // Subscribe to topics.

 rd_kafka_topic_partition_list_t *topics = rd_kafka_topic_partition_list_new(1);

 rd_kafka_topic_partition_list_add(topics, "test", RD_KAFKA_PARTITION_UA);

 if (rd_kafka_subscribe(consumer, topics) != RD_KAFKA_RESP_ERR_NO_ERROR) {

 fprintf(stderr, "Failed to subscribe to topic: %s\\n", rd_kafka_err2str(rd_

 rd_kafka_topic_partition_list_destroy(topics);

 rd_kafka_destroy(consumer);

 return 1;

 }

 rd_kafka_topic_partition_list_destroy(topics);

 // Consume messages.

 while (1) {

 rd_kafka_message_t *rkmessage = rd_kafka_consumer_poll(consumer, 1000);

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 66
of 158

 if (rkmessage) {

 msg_consume(rkmessage, NULL);

 rd_kafka_message_destroy(rkmessage);

 }

 }

 // Unsubscribe.

 rd_kafka_unsubscribe(consumer);

 // Destroy consumer instance.

 rd_kafka_destroy(consumer);

 return 0;

}

Manual-Commit Offsets

Manual-commit offsets: After processing messages, consumers need to manually commit their offsets. The advantage
of this method is that it allows for precise control over offset commit, avoiding duplicate message consumption or loss.

Not that manual commit can lead to high broker CPU usage, affecting performance. As message volume increases,
CPU consumption will be significantly high, affecting other features of the broker. Therefore, it is recommended to
commit offsets after a certain number of messages.

#include <stdio.h>

#include <string.h>

#include <librdkafka/rdkafka.h>

// Consumer message processing callback.

void msg_consume(rd_kafka_message_t *rkmessage, void *opaque) {

 if (rkmessage->err) {

 fprintf(stderr, "%% Consume error for topic \\"%s\\" [%"PRId32"] "

 "offset %"PRId64": %s\\n",

 rd_kafka_topic_name(rkmessage->rkt),

 rkmessage->partition, rkmessage->offset,

 rd_kafka_message_errstr(rkmessage));

 } else {

 printf("%% Message received on topic %s [%"PRId32"] at offset %"PRId64": %.

 rd_kafka_topic_name(rkmessage->rkt),

 rkmessage->partition,

 rkmessage->offset, (int)rkmessage->len, (const char *)rkmessage->pay

 }

}

int main() {

 rd_kafka_conf_t *conf = rd_kafka_conf_new();

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 67
of 158

 // Set the addresses of the Kafka cluster.

 rd_kafka_conf_set(conf, "bootstrap.servers", "localhost:9092", NULL, 0);

 // Set consumer group ID.

 rd_kafka_conf_set(conf, "group.id", "mygroup", NULL, 0);

 // Disable the consumer's automatic commit.

 rd_kafka_conf_set(conf, "enable.auto.commit", "false", NULL, 0);

 // Create consumer instance.

 char errstr[512];

 rd_kafka_t *consumer = rd_kafka_new(RD_KAFKA_CONSUMER, conf, errstr, sizeof(err

 if (!consumer) {

 fprintf(stderr, "Failed to create consumer: %s\\n", errstr);

 return 1;

 }

 // Subscribe to topics.

 rd_kafka_topic_partition_list_t *topics = rd_kafka_topic_partition_list_new(1);

 rd_kafka_topic_partition_list_add(topics, "test", RD_KAFKA_PARTITION_UA);

 if (rd_kafka_subscribe(consumer, topics) != RD_KAFKA_RESP_ERR_NO_ERROR) {

 fprintf(stderr, "Failed to subscribe to topic: %s\\n", rd_kafka_err2str(rd_

 rd_kafka_topic_partition_list_destroy(topics);

 rd_kafka_destroy(consumer);

 return 1;

 }

 rd_kafka_topic_partition_list_destroy(topics);

 // Consume messages and manually commit the offset.

 int message_count = 0;

 while (1) {

 rd_kafka_message_t *rkmessage = rd_kafka_consumer_poll(consumer, 1000);

 if (rkmessage) {

 msg_consume(rkmessage, NULL);

 // Manually commit the offset after every 10 messages.

 if (++message_count % 10 == 0) {

 if (rd_kafka_commit_message(consumer, rkmessage, 0) != RD_KAFKA_RES

 fprintf(stderr, "Failed to commit offset for message: %s\\n", r

 } else {

 printf("Offset %"PRId64" committed\\n", rkmessage->offset);

 }

 }

 rd_kafka_message_destroy(rkmessage);

 }

 }

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 68
of 158

 // Unsubscribe.

 rd_kafka_unsubscribe(consumer);

 // Destroy consumer instance.

 rd_kafka_destroy(consumer);

 return 0;

}

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 69
of 158

tRpc Go SDK
Last updated：2024-09-10 16:08:48

Overview

TDMQ for CKafka is a distributed stream processing platform used to build real-time data pipelines and streaming
applications. It offers high throughput, low latency, scalability, and fault tolerance.
This document describes the key parameters, practical tutorials and FAQs of the tRpc-Go-Kafka client.

Optimization Practice

tRpc-GO-Kafka encapsulates the open-source Kafka SDK, using features such as the tRPC-Go interceptor to
integrate into the tRPC-Go ecosystem. Therefore, see Sarama Go for practical tutorial:

FAQs

Producer Issues

1. When messages are produced via CKafka, the error Message contents does not match its

CRC occurs.

 err:type:framework, code:141, msg:kafka client transport SendMessage: kafka server:

Message contents does not match its CRC.

By default, the plugin enables gzip compression. Add the parameter compression=none to the target to disable

compression.
 target: kafka://ip1:port1?compression=none

2. How to configure sequential production for the same user?
Add the partitioner parameter to the client, with options including random (default), roundrobin, and hash

(partitioning by key).
 target: kafka://ip1:port1?clientid=xxx&partitioner=hash

3. How to execute asynchronous production?
Add the async=1 parameter to the client

 target: kafka://ip1:port1,ip2:port2?clientid=xxx&async=1

4. How to write data callback via asynchronous production?
You need to rewrite callback functions for the success/failure of asynchronous production writing data in the code, for
example:

https://www.tencentcloud.com/document/product/597/60360#

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 70
of 158

func init() {

 // Rewrite the default callback for failures of asynchronous production writing d

 kafka.AsyncProducerErrorCallback = func(err error, topic string, key, value []byt

 // do something if async producer occurred error.

 }

 // Rewrite the default callback for successes of asynchronous production writing

 kafka.AsyncProducerSuccCallback = func(topic string, key, value []byte, headers [

 // do something if async producer succeed.

 }

}

Consumer Issues

1. What will happen if Handle is set to return non-nil during consumption?

It will sleep for 3 s and then retry consumption. This is not recommended, because returning an error will lead to
infinite retries of consumption. Retry logic for failures should be set by business side.
2. When consuming messages with CKafka, the error client has run out of available brokers

to talk to occurs.

 kafka server transport: consume fail:kafka: client has run out of available brokers

to talk to (Is your cluster reachable?)

First, check if the brokers are reachable, then check the supported Kafka client version, and try adding parameters in
the configuration file address, for example, version=0.10.2.0
 address: ip1:port1?topics=topic1&group=my-group&version=0.10.2.0

3. When multiple producers are producing messages, will the failure of some producers in establishing a
connection make the normal producers time out?

Update the version to v0.2.18. For lower versions, when a producer is created, plugins lock first, then establish a
connection, and unlock thereafter. If there are some abnormal producers which take a long time to establish
connection, it will cause other normal production requests to fail in locking when accessing producers, result in timeout
eventually. This behavior has been fixed in v0.2.18.
4. When consuming messages, you receive a prompt: The provider group protocol type is

incompatible with the other members .

 kafka server transport: consume fail:kafka server: The provider group protocol type

is incompatible with the other members.

For the same consumer group, the client re-grouping strategy is different. You can modify the strategy

parameter, valid values including sticky (by default), range, and roundrobin.

 address: ip1:port1?topics=topic12&group=my-group&strategy=range

5. How to inject custom configuration (remote configuration)?

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 71
of 158

If you need to specify your configuration in code, first configure trpc_go.yaml with fake_address , then use

the kafka.RegisterAddrConfig method for injection. Configure trpc_go.yaml as follows:

address: fake_address

Before the service is started, inject custom configuration:

func main() {

 s := trpc.NewServer()

 // Use custom addr, which should be injected before the server starts

 cfg := kafka.GetDefaultConfig()

 cfg.Brokers = []string{"127.0.0.1:9092"}

 cfg.Topics = []string{"test_topic"}

 kafka.RegisterAddrConfig("fake_address", cfg)

 kafka.RegisterKafkaConsumerService(s.Service("fake_address"), &Consumer{})

 s.Serve()

}

6. How to access the underlying Sarama's context information?

By using kafka.GetRawSaramaContext, you can access the underlying Sarama ConsumerGr

// RawSaramaContext stores Sarama ConsumerGroupSession and ConsumerGroupClaim

// Export this structure to facilitate user monitoring. The content provided is for

type RawSaramaContext struct {

 Session sarama.ConsumerGroupSession

 Claim sarama.ConsumerGroupClaim

}

Instance:

func (Consumer) Handle(ctx context.Context, msg *sarama.ConsumerMessage) error {

 if rawContext, ok := kafka.GetRawSaramaContext(ctx); ok {

 log.Infof("InitialOffset: %d", rawContext.Claim.InitialOffset())

 }

 // ...

 return nil

}

Overview

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 72
of 158

TDMQ for CKafka is a distributed stream processing platform used to build real-time data pipelines and streaming
applications. It offers high throughput, low latency, scalability, and fault tolerance.
This document describes the key parameters and best practices for the tRpc-Go-Kafka client, as well as FAQs.

Optimization Practice

tRPC-GO-Kafka encapsulates the open-source Kafka SDK, using features such as the tRPC-Go interceptor to
integrate into the tRPC-Go ecosystem. Therefore, for best practices, refer to Sarama Go:

FAQs

Producer Issues

1. When CKafka is used to produce messages, the error Message contents does not match its

CRC occurs.

 err:type:framework, code:141, msg:kafka client transport SendMessage: kafka server:

Message contents does not match its CRC.

By default, the plugin enables gzip compression. To disable compression, add the compression=none

parameter to the target.
 target: kafka://ip1:port1?compression=none

2. How to configure sequential production for the same user?
Add the partitioner parameter to the client, with options including random (default), roundrobin, and hash

(partitioning by key).
 target: kafka://ip1:port1?clientid=xxx&partitioner=hash

3. How to execute asynchronous production?
Add the async=1 parameter to the client

 target: kafka://ip1:port1,ip2:port2?clientid=xxx&async=1

4. How to write data callback via asynchronous production?
You need to rewrite callback functions for the success/failure of asynchronous production writing data in the code, for
example:

import (

 "git.code.oa.com/vicenteli/trpc-database/kafka"

)

func init() {

 // Rewrite the default callback for failures of asynchronous production writing d

 kafka.AsyncProducerErrorCallback = func(err error, topic string, key, value []byt

https://www.tencentcloud.com/document/product/597/60360#

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 73
of 158

 // do something if async producer occurred error.

 }

 // Rewrite the default callback for successes of asynchronous production writing

 kafka.AsyncProducerSuccCallback = func(topic string, key, value []byte, headers [

 // do something if async producer succeed.

 }

}

Consumer Issues

1. What will happen if Handle is set to return non-nil during consumption?

It will sleep for 3 s and then retry consumption. This is not recommended, because returning an error will lead to
infinite retries of consumption. Retry logic for failures should be set by business side.
2. When messages are consumed with CKafka, the error client has run out of available

brokers to talk to occurs.

 kafka server transport: consume fail:kafka: client has run out of available brokers

to talk to (Is your cluster reachable?)

First, check if the brokers are reachable, then check the supported Kafka client version, and try adding parameters in
the configuration file address, for example, version=0.10.2.0.
 address: ip1:port1?topics=topic1&group=my-group&version=0.10.2.0

3. When multiple producers are producing messages, will the failure of some producers in establishing a
connection make the normal producers time out?

Update the version to v0.2.18. For lower versions, when creating a producer, plugins lock first, then establish a
connection, and unlock thereafter. If there are some abnormal producers which take a long time to establish
connection, it will cause other normal production requests to fail in locking when accessing producers, result in timeout
eventually. This behavior has been fixed in v0.2.18.
4. When messages are consumed, you receive a prompt: The provider group protocol type is

incompatible with the other members .

 kafka server transport: consume fail:kafka server: The provider group protocol type

is incompatible with the other members.

For the same consumer group, the client re-grouping strategy is different. You can modify the strategy

parameter, valid values including: sticky (default), range, roundrobin.

 address: ip1:port1?topics=topic12&group=my-group&strategy=range

5. How to inject your custom configuration (remote configuration)?
If you need to specify your configuration in code, first configure trpc_go.yaml with fake_address , then use

the kafka.RegisterAddrConfig method for injection. Configure trpc_go.yaml as follows:

address: fake_address

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 74
of 158

Before the service is started, inject custom configuration:

func main() {

 s := trpc.NewServer()

 // Use custom addr, which should be injected before the server is started.

 cfg := kafka.GetDefaultConfig()

 cfg.Brokers = []string{"127.0.0.1:9092"}

 cfg.Topics = []string{"test_topic"}

 kafka.RegisterAddrConfig("fake_address", cfg)

 kafka.RegisterKafkaConsumerService(s.Service("fake_address"), &Consumer{})

 s.Serve()

}

6. How to access the underlying Sarama's context information?

By using kafka.GetRawSaramaContext, you can access the underlying Sarama ConsumerGr

// RawSaramaContext stores sarama ConsumerGroupSession and ConsumerGroupClaim

// Export this structure to facilitate user monitoring. The content provided is for

type RawSaramaContext struct {

 Session sarama.ConsumerGroupSession

 Claim sarama.ConsumerGroupClaim

}

Instance:

func (Consumer) Handle(ctx context.Context, msg *sarama.ConsumerMessage) error {

 if rawContext, ok := kafka.GetRawSaramaContext(ctx); ok {

 log.Infof("InitialOffset: %d", rawContext.Claim.InitialOffset())

 }

 // ...

 return nil

}

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 75
of 158

Connector Practical Tutorial
Reporting over HTTP
Connection to Kafka over HTTP
Last updated：2024-01-09 14:56:36

Overview

Apache Kafka, like any client-server application, offers access to its functionality through a well-defined set of APIs.
These APIs are exposed via the Kafka wire protocol, a Kafka-specific binary protocol over TCP. The best way to
interact with the Apache Kafka APIs is to make use of a client library that works with the Kafka wire protocol. The

Apache Kafka project only officially supports a client library for Java, but in addition to that, Confluent officially
supports client libraries for C/C++, C#, Go, and Python.
Unfortunately, some programming languages lack officially supported, production-grade client libraries for Kafka.
However, HTTP is a widely available, universally supported protocol. For data access, DataHub exposes message
sending APIs over the HTTP protocol to simplify client configurations.

This document describes message sending in the HTTP-based data access feature of DataHub and provides
suggestions for real world cases.

Architecture

After the HTTP data access layer is enabled, an HTTP client in the public network can directly send messages to a
CKafka instance through TencentCloud API as shown below:

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 76
of 158

Prerequisites

You have created the target CKafka instance and topic.

Directions

Creating data access task

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 77
of 158

For detailed directions, see Reporting over HTTP.

Sending message via SDK

1. Import the data reporting SDK through Maven or Gradle into the Java project. Below is the pom.xml file for

project configuration:

<dependency>

 <groupId>com.tencentcloudapi</groupId>

 <artifactId>tencentcloud-sdk-java</artifactId>

 <version>3.1.430</version>

</dependency>

2. Click Task Details in Data Access and copy the access point information to the SDK for data writes.

3. Enter the access point information. In the sample code, generateMsgFromUserAccess is used to assemble

all messages to be sent.

 List<BatchContent> batchContentList = generateMsgFromUserAccess(userId);

 // Here, `ap-xxx` is the region abbreviation of the corresponding

TencentCloud API

 CkafkaClient client = new CkafkaClient(

 new Credential("yourSecretId", "yourSecretKey"), "ap-xxx");

SendMessageRequest messageRequest = new SendMessageRequest();

// Access point ID of the data access task

messageRequest.setDataHubId("datahub-lzxxxxx6");

messageRequest.setMessage(batchContentList.toArray(BatchContent[]::new));

try {

 SendMessageResponse sendMessageResponse = client.SendMessage(messageRequest);

 String[] messageId = sendMessageResponse.getMessageId();

 for (String s : messageId) {

 LOGGER.info(s)

 }

} catch (TencentCloudSDKException e) {

 LOGGER.error(e.getMessage());

}

4. Below is a sample returned value for message sending at the HTTP access layer:

{

 "Response": {

 "MessageId": [

 "datahub-lxxxxxx6:topicDev:4:2:1648185961342:1648185961398"

https://www.tencentcloud.com/document/product/597/46807
https://console.tencentcloud.com/ckafka/datahub-access

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 78
of 158

],

 "RequestId": "3fq3na5r-xxxx-xxxx-xxxx-b2fiv0se7ded"

 }

}

5. Here, MessageId consists of a series of metadata fields returned after the message is sent to the CKafka instance,

as detailed below:

"[datahubId]:[topic name]:[topic partition number]:[topic offset]:[time when

the HTTP access layer received the message]:[time when the message was sent to

Kafka]"

Querying message

You can query messages sent at the HTTP access layer in the CKafka console. For detailed directions, see Querying
Message. In this example, messages at offset 2 in partition 4 in the topicDev topic are queried as shown below:

Pausing task

If you find that the data access task affects the normal business, you can pause the task.

https://www.tencentcloud.com/document/product/597/39719
https://www.tencentcloud.com/document/product/597/39719

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 79
of 158

1. On the Data Access page, click Pause in the Operation column of the target task to pause the task.
2. If the prompt in the top-right corner in the following figure is displayed, the task was paused successfully.
3. At this time, if you send a message at the HTTP access layer, you will receive the following response:

{

 "Response": {

 "Error": {

 "Code": "FailedOperation",

 "Message": "task status suspended [datahub-lxxxxxx6]"

 },

 "RequestId": "5f737a5b-xxxx-xxxx-xxxxx-b2fb703e7ded"

 }

}

https://console.tencentcloud.com/ckafka/datahub-access

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 80
of 158

Unified Data Reporting
Last updated：2024-01-09 14:56:36

Overview

DataHub is a data access and processing platform in Tencent Cloud, which provides data access, processing, and
distribution features at one stop. Data is vital in internet businesses, and data access and reporting serve as the
bridge between data generation, computing, storage, and analysis throughout the entire linkage. Therefore, simple yet

efficient data access is critical. A business usually has data to be reported to the backend for storage, analysis,
computing, and search, such as business metrics, process information, and monitoring data. The general processing
linkage is as shown below:

You can set up a classic data reporting architecture generally in the following steps:
1. Build/Purchase a storage engine to store reported data.
2. Develop and deploy a server to receive data, define APIs, and run the service.
3. Define information such as API protocol and authentication on the client and server.
4. Write code based on the protocol information for the client to report data.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 81
of 158

In the above four steps, the development and deployment workload for the server is the highest, as you need to
consider code logic development as well as the scalability and stability of the server and downstream storage. In
addition, when the data volume gets high, problems on the server will become more obvious, and the server needs to

be maintained with a lot of manpower and resources. As tasks involved in this regard are generally universal, DataHub
aims to meet the requirements in such scenario by offering a stable, elastic, high-reliability, and high-throughput data
access service.

How It Works

DataHub provides SDKs for various programming languages, including Java, Python, Go, PHP, Node.js, C++, and
.NET, to help the client better report data. Data can be reported to a storage engine such as CKafka in three simple

steps (more Tencent Cloud message queue services like TDMQ for RocketMQ, Pulsar, RabbitMQ, and CMQ will be
supported in the future).
1. Create an access point in the DataHub console.
2. Report the data via the SDK.
3. Query the data.

Directions

1. Create an access point in the DataHub console as instructed in Reporting over HTTP.

2. Report the data via the SDK as instructed in Data Reporting SDK.
3. Query the data. After the data is reported to DataHub, you can query the message content in real time as instructed
in Querying Message.

Data Empowerment

After you complete data access easily and quickly through DataHub, how to make the data generate value becomes
the most important thing. To address this, DataHub provides two core features:

Data processing

DataHub offers a simple data ETL engine, which can cleanse most types of data in order to simply format and process
data for subsequent use.

Data distribution

 After data processing is completed, DataHub can also meet the data distribution needs in various scenarios:

https://www.tencentcloud.com/document/product/597/46807
https://www.tencentcloud.com/document/product/597/46808
https://www.tencentcloud.com/document/product/597/39719

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 82
of 158

Real-time search: When you need to search for data, you can export real-time data streams to a search service such
as Elasticsearch and CLS.
OLAP analysis: When you need to analyze data, you can export real-time data streams to an engine such as

ClickHouse and TDW.
Persistent storage: When you need to persistently store data, you can export real-time data streams to a persistent
storage engine such as HDFS and COS.
Stream computing: When you need to process data with custom code, you can use Flink, Spark, and code in different
programming languages over the standard Kafka protocol for data processing.

After the data has gone through the four stages of reporting, access, processing, and distribution, the general data
reporting and analysis needs can be easily and quickly satisfied, creating data value at ultra low costs.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 83
of 158

Querying Subscription to Database Change
Info
Analysis of Change Logs Tracked by
MongoDB Change Streams
Last updated：2024-01-09 14:56:36

Overview

MongoDB uses change streams to track changes. However, to better search for change logs, you usually need to
sync them to Elasticsearch or CLS.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 84
of 158

This document uses connecting MongoDB to CKafka and distributing CKafka data to CLS as an example to describe
how to use the data dump service of DataHub to analyze change logs tracked by change streams in MongoDB.

How It Works

For more information on data access configuration items for MongoDB, see Source Connector. You can set different
configuration items to perform corresponding data processing tasks on the accessed change logs and then write them
to a topic in the CKafka instance.

Prerequisites

https://docs.mongodb.com/kafka-connector/current/source-connector/

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 85
of 158

TencentDB for MongoDB has been activated, or CLB is used to listen on the self-built MongoDB instance.

The TCP:27017 port has been opened in the security group.
The CKafka service has been activated.

The CLS service has been activated.

Directions

Step 1. Create a data access task

1. Log in to the CKafka console.
2. Click Data Access on the left sidebar, select the region, and click Create Task.
3. In the pop-up window, select Asynchronously pulled data > MongoDB for Data Source Type.
4. Click Next and enter the task details.

5. Click Submit and wait for the task status to become Healthy.
6. When MongoDB data changes, you can see that there will be incremental messages in the selected topic in the
CKafka instance.

Step 2. Create a data distribution task

1. Log in to the CKafka console.
2. Click Data Distribution on the left sidebar, select the region, and click Create Task.
3. Select Cloud Log Service (CLS) as the Target Type and click Next.

4. Enter the task details and select the same CKafka instance and topic as those used in the data access task, so that
produced messages can be directly consumed.
5. Click Submit and wait for the task status to become Healthy.
Note:
When a task is in Healthy status and incremental messages are written to the topic, they will be directly consumed to

the specified CLS log topic.

Step 3. View the distributed data

1. Log in to the CLS console.
2. Select Search and Analysis on the left sidebar, select the logset ID and log topic ID entered during distribution
task creation, and you can view the change logs of MongoDB.
3. You can search by keyword to directly get the required logs.

https://console.tencentcloud.com/ckafka
https://console.tencentcloud.com/ckafka
https://console.tencentcloud.com/cls/overview?region=ap-guangzhou

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 86
of 158

Simple Data Cleansing
Last updated：2024-01-09 14:56:36

Overview

When using the data access and distribution services in DataHub, you may encounter the following issues:
You need to parse certain fields in messages to get the relevant information.
You need to process a field in messages multiple times in an iterative manner.

You need to convert messages to unstructured raw messages before you can use them.
You need to process messages in a multi-level nested format.
Based on the long-term experience of technical experts in the CKafka team, the brand new data processing
component v2.0 is launched. It has the following new features while remaining fully compatible with v1.0:
Diverse plugins: Data processing supports various preconfigured processing plugins to help you quickly generate data

in desired consumption formats.
Chain processing: Data processing supports chain message processing; that is, the previous processing result can be
used as the input parameters in the current processing. This greatly facilitates processing complex data structures.
Visual preview: Data processing supports real-time structured JSON preview to help you quickly locate and
troubleshoot problems.
Type conversion: Data processing can convert data between different types to make data format check easier.

How It Works

The overall data processing flow is as shown below, with each component structure detailed as follows:

In the data processing component cluster, multiple workers form a consumer group to batch read messages from the
source topic and process each message in sequence.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 87
of 158

In each message, the nested structure of message fields is expanded according to the processing chain sequence
configured in the console, and operations such as replacement, extraction, data conversion, and time formatting are
performed.

The current processing chain reads the result of the previous processing chain, preforms chain processing, and ships
the processing result to the next chain.
The result of the last processing chain is shipped to the configured target topic. At this time, the data processing of a
message is completed.

Prerequisites

The CKafka service has been activated.

The message format is JSON or string. Currently, other encoding protocols are not supported.

Actual Application

Processing string-type log

Below is a log in the default Nginx format (aka combined format), from which you can parse information such as

requester, packet, and request status for further analysis.

66.249.65.159 - - [06/Nov/2014:19:10:38 +0600] "GET

/news/53f8d72920ba2744fe873ebc.html HTTP/1.1" 404 177 "-" "Mozilla/5.0 (iPhone;

CPU iPhone OS 6_0 like Mac OS X) AppleWebKit/536.26 (KHTML, like Gecko)

Version/6.0 Mobile/10A5376e Safari/8536.25 (compatible; Googlebot/2.1;

+http://www.google.com/bot.html)"

As the combined format of Nginx uses spaces and - to separate data, design the parsing process in the

following steps:
1. First, use the " separator to initially parse the data. At this time, data processing automatically converts the log

to the JSON structure.

{

 "0": "66.249.65.159 - - [06/Nov/2014:19:10:38 +0600] ",

 "1": "GET /news/53f8d72920ba2744fe873ebc.html HTTP/1.1",

 "2": " 404 177 ",

 "5": "Mozilla/5.0 (iPhone; CPU iPhone OS 6_0 like Mac OS X)

AppleWebKit/536.26 (KHTML, like Gecko) Version/6.0 Mobile/10A5376e

Safari/8536.25 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)"

}

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 88
of 158

2. As shown in the above JSON structure, there are still concatenated coupled data records in the fields of keys 0

and 2 as affected by - and spaces. Therefore, split the fields of the two keys with the space and

 - separators. The JSON result after splitting is as follows:

{

 "1": "GET /news/53f8d72920ba2744fe873ebc.html HTTP/1.1",

 "5": "Mozilla/5.0 (iPhone; CPU iPhone OS 6_0 like Mac OS X)

AppleWebKit/536.26 (KHTML, like Gecko) Version/6.0 Mobile/10A5376e

Safari/8536.25 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)",

 "0.0": "66.249.65.159 ",

 "0.2": " [06/Nov/2014:19:10:38 +0600] ",

 "2.1": "404",

 "2.2": "177"

}

3. As the time format is enclosed by square brackets “[]”, use a separator again to extract the time information. The
JSON structure after extraction is as follows:

{

 "1": "GET /news/53f8d72920ba2744fe873ebc.html HTTP/1.1",

 "5": "Mozilla/5.0 (iPhone; CPU iPhone OS 6_0 like Mac OS X)

AppleWebKit/536.26 (KHTML, like Gecko) Version/6.0 Mobile/10A5376e

Safari/8536.25 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)",

 "0.0": "66.249.65.159 ",

 "0.2": "06/Nov/2014:19:10:38 +0600",

 "2.1": "404",

 "2.2": "177"

}

4. At this point, all fields have been split appropriately. Name the keys of the corresponding mapped fields based

on the field attribute. The eventual modification result is as follows:

{

 "request": "GET /news/53f8d72920ba2744fe873ebc.html HTTP/1.1",

 "http_user_agent": "Mozilla/5.0 (iPhone; CPU iPhone OS 6_0 like Mac OS X)

AppleWebKit/536.26 (KHTML, like Gecko) Version/6.0 Mobile/10A5376e

Safari/8536.25 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)",

 "remote_addr": "66.249.65.159 ",

 "dateTime": "06/Nov/2014:19:10:38 +0600",

 "status": "404",

 "body_bytes_sent ": "177"

}

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 89
of 158

Processing nested log

Below is a sample TKE collection format. The TKE collector will place the metadata into the kubernetes field in

the JSON structure and place the collected log into the log field. The overall structure is as follows:

{

 "@timestamp": 1648803500.63659,

 "@filepath": "/var/log/tke-log-agent/test7/c816991f-adfe-4617-8cf3-

9997aea90ded/c_tke-es-687995d557-n29jr_default_nginx-

add90ccf49626ef42d5615a636aae74d6380996043cf6f6560d8131f21a4d8ba/jgw_INFO_2022-

02-10_15_4.log",

 "log": "15:00:00.000[4349811564226374227] [http-nio-8081-exec-64] INFO

com.qcloud.jgw.gateway.server.topic.TopicService",

 "kubernetes": {

 "pod_name": "tke-es-687995d557-n29jr",

 "namespace_name": "default",

 "pod_id": "c816991f-adfe-4617-8cf3-9997aea90ded",

 "labels": {

 "k8s-app": "tke-es",

 "pod-template-hash": "687995d557",

 "qcloud-app": "tke-es"

 },

 "annotations": {

 "qcloud-redeploy-timestamp": "1648016531476",

 "tke.cloud.tencent.com/networks-status": "[{\\n \\"name\\": \\"tke-

bridge\\",\\n \\"interface\\": \\"eth0\\",\\n \\"ips\\": [\\n

\\"172.16.0.31\\"\\n],\\n \\"mac\\": \\"ae:61:12:4a:c2:ba\\",\\n

\\"default\\": true,\\n \\"dns\\": {}\\n}]"

 },

 "host": "10.0.96.47",

 "container_name": "nginx",

 "docker_id":

"add90ccf49626ef42d5615a636aae74d6380996043cf6f6560d8131f21a4d8ba",

 "container_hash":

"nginx@sha256:e1211ac17b29b585ed1aee166a17fad63d344bc973bc63849d74c6452d549b3e"

,

 "container_image": "nginx"

 }

}

When collected logs are shipped to Elasticsearch, as the nested JSON format is supported, you don't need to make
major changes on the data. However, when logs are shipped to a database, you need to convert the data to an
identifiable single-level JSON format. In this case, design the parsing process in the following steps:
1. Use the JSONPATH statement to process the $.kubernetes JSON structure at the first nested level and

select JSON as the parsing mode. This converts the nested JSON structure to a single-level JSON structure. The

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 90
of 158

tested result is as follows:

{

 "@timestamp": 1.64880350063659E9,

 "@filepath": "/var/log/tke-log-agent/test7/c816991f-adfe-4617-8cf3-

9997aea90ded/c_tke-es-687995d557-n29jr_default_nginx-

add90ccf49626ef42d5615a636aae74d6380996043cf6f6560d8131f21a4d8ba/jgw_INFO_2022-

02-10_15_4.log",

 "log": "15:00:00.000[4349811564226374227] [http-nio-8081-exec-64] INFO

com.qcloud.jgw.gateway.server.topic.TopicService",

 "$.kubernetes.pod_name": "tke-es-687995d557-n29jr",

 "$.kubernetes.namespace_name": "default",

 "$.kubernetes.pod_id": "c816991f-adfe-4617-8cf3-9997aea90ded",

 "$.kubernetes.labels": {

 "k8s-app": "tke-es",

 "pod-template-hash": "687995d557",

 "qcloud-app": "tke-es"

 },

 "$.kubernetes.annotations": {

 "qcloud-redeploy-timestamp": "1648016531476",

 "tke.cloud.tencent.com/networks-status": "[{\\n \\"name\\": \\"tke-

bridge\\",\\n \\"interface\\": \\"eth0\\",\\n \\"ips\\": [\\n

\\"172.16.0.31\\"\\n],\\n \\"mac\\": \\"ae:61:12:4a:c2:ba\\",\\n

\\"default\\": true,\\n \\"dns\\": {}\\n}]"

 },

 "$.kubernetes.host": "10.0.96.47",

 "$.kubernetes.container_name": "nginx",

 "$.kubernetes.docker_id":

"add90ccf49626ef42d5615a636aae74d6380996043cf6f6560d8131f21a4d8ba",

 "$.kubernetes.container_hash":

"nginx@sha256:e1211ac17b29b585ed1aee166a17fad63d344bc973bc63849d74c6452d549b3e"

,

 "$.kubernetes.container_image": "nginx"

}

2. Process the $.kubernetes.annotations and $.kubernetes.labels nested structures at the second

level. Use Map to select the two names in the processing chain to convert the nested format into a single-level

JSON format. The processing result is as follows:

{

 "@timestamp": 1648803500.63659,

 "@filepath": "/var/log/tke-log-agent/test7/c816991f-adfe-4617-8cf3-

9997aea90ded/c_tke-es-687995d557-n29jr_default_nginx-

add90ccf49626ef42d5615a636aae74d6380996043cf6f6560d8131f21a4d8ba/jgw_INFO_2022-

02-10_15_4.log",

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 91
of 158

 "log": "15:00:00.000[4349811564226374227] [http-nio-8081-exec-64] INFO

com.qcloud.jgw.gateway.server.topic.TopicService",

 "$.kubernetes.pod_name": "tke-es-687995d557-n29jr",

 "$.kubernetes.namespace_name": "default",

 "$.kubernetes.pod_id": "c816991f-adfe-4617-8cf3-9997aea90ded",

 "$.kubernetes.host": "10.0.96.47",

 "$.kubernetes.container_name": "nginx",

 "$.kubernetes.docker_id":

"add90ccf49626ef42d5615a636aae74d6380996043cf6f6560d8131f21a4d8ba",

 "$.kubernetes.container_hash":

"nginx@sha256:e1211ac17b29b585ed1aee166a17fad63d344bc973bc63849d74c6452d549b3e"

,

 "$.kubernetes.container_image": "nginx",

 "$.kubernetes.labels.k8s-app": "tke-es",

 "$.kubernetes.labels.pod-template-hash": "687995d557",

 "$.kubernetes.labels.qcloud-app": "tke-es",

 "$.kubernetes.annotations.qcloud-redeploy-timestamp": "1648016531476",

 "$.kubernetes.annotations.tke.cloud.tencent.com/networks-status": "[{\\n

\\"name\\": \\"tke-bridge\\",\\n \\"interface\\": \\"eth0\\",\\n

\\"ips\\": [\\n \\"172.16.0.31\\"\\n],\\n \\"mac\\":

\\"ae:61:12:4a:c2:ba\\",\\n \\"default\\": true,\\n \\"dns\\": {}\\n}]"

}

3. Rename the keys of the corresponding mapped fields and delete unnecessary fields. Click Add Processing

Chain and Process All Upper-Level Results. Below is a sample result after organization and optimization:

{

 "@timestamp": 1.64880350063659E9,

 "@filepath": "/var/log/tke-log-agent/test7/c816991f-adfe-4617-8cf3-

9997aea90ded/c_tke-es-687995d557-n29jr_default_nginx-

add90ccf49626ef42d5615a636aae74d6380996043cf6f6560d8131f21a4d8ba/jgw_INFO_2022-

02-10_15_4.log",

 "log": "15:00:00.000[4349811564226374227] [http-nio-8081-exec-64] INFO

com.qcloud.jgw.gateway.server.topic.TopicService",

 "pod_name": "tke-es-687995d557-n29jr",

 "namespace_name": "default",

 "pod_id": "c816991f-adfe-4617-8cf3-9997aea90ded",

 "host": "10.0.96.47",

 "container_name": "nginx",

 "docker_id":

"add90ccf49626ef42d5615a636aae74d6380996043cf6f6560d8131f21a4d8ba"

}

Note:

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 92
of 158

If the key contains a period (.) when you use JSONPath to process a parameter, you need to add square brackets

and single quotation marks to the path for isolation.
For example, to get the desired fields from {"key1.key2":"value1"} , you need to use $.['key1.key2']

to get the corresponding key values.

Processing serialized JSON string-type log

Sometimes, the JSON format needs to be escaped to the string format during data transfer in order to meet the format
or performance requirements. This string format is called raw JSON, which must be deserialized to the JSON format
in data processing. The following uses the raw JSON format in MongoDB as an example, and the overall structure is
as shown below:

{

 "key": " {\\n \\"categories\\": [\\"dev\\"],\\n \\"created_at\\":

\\"2020-01-05 13:42:19.324003\\",\\n \\"icon_url\\":

\\"https://assets.chucknorris.host/img/avatar/chuck-norris.png\\",\\n

\\"id\\": \\"elgv2wkvt8ioag6xywykbq\\",\\n \\"updated_at\\": \\"2020-01-05

13:42:19.324003\\",\\n \\"url\\":

\\"https://api.chucknorris.io/jokes/elgv2wkvt8ioag6xywykbq\\",\\n

\\"value\\": \\"Chuck Norris's keyboard doesn't have a Ctrl key because nothing

controls Chuck Norris.\\"\\n }\\n"

}

After the raw JSON format is converted to the general JSON format during data processing, the message can be

directly shipped to the target downstream service without changing the field format. The overall processing process is
as follows:
1. Set Parsing Mode to JSON to preread the message into the internal MAP format. The parsing result is as follows:

{

 "key": " {\\n \\"categories\\": [\\"dev\\"],\\n \\"created_at\\":

\\"2020-01-05 13:42:19.324003\\",\\n \\"icon_url\\":

\\"https://assets.chucknorris.host/img/avatar/chuck-norris.png\\",\\n

\\"id\\": \\"elgv2wkvt8ioag6xywykbq\\",\\n \\"updated_at\\": \\"2020-01-05

13:42:19.324003\\",\\n \\"url\\":

\\"https://api.chucknorris.io/jokes/elgv2wkvt8ioag6xywykbq\\",\\n

\\"value\\": \\"Chuck Norris's keyboard doesn't have a Ctrl key because nothing

controls Chuck Norris.\\"\\n }\\n"

}

2. Click Add Processing Chain, use MAP to select the key , and select JSON as the parsing mode. Then, data

processing can automatically convert the raw JSON format to the JSON format. The parsing result is as follows:

{

 "key.categories": [

 "dev"

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 93
of 158

],

 "key.created_at": "2020-01-05 13:42:19.324003",

 "key.icon_url": "https://assets.chucknorris.host/img/avatar/chuck-

norris.png",

 "key.id": "elgv2wkvt8ioag6xywykbq",

 "key.updated_at": "2020-01-05 13:42:19.324003",

 "key.url": "https://api.chucknorris.io/jokes/elgv2wkvt8ioag6xywykbq",

 "key.value": "Chuck Norris's keyboard doesn't have a Ctrl key because nothing

controls Chuck Norris."

}

3. Click Add Processing Chain and Process All Upper-Level Results, rename the keys of the corresponding

mapped fields, and delete unnecessary fields. Below is a sample result after organization and optimization:

{

 "categories": [

 "dev"

],

 "created_at": "2020-01-05 13:42:19.324003",

 "icon_url": "https://assets.chucknorris.host/img/avatar/chuck-norris.png",

 "id": "elgv2wkvt8ioag6xywykbq",

 "updated_at": "2020-01-05 13:42:19.324003",

 "url": "https://api.chucknorris.io/jokes/elgv2wkvt8ioag6xywykbq",

 "value": "Chuck Norris's keyboard doesn't have a Ctrl key because nothing

controls Chuck Norris."

}

Note:
Currently, only MAP-type data in the raw JSON format can be parsed. If the first level is in List type, such as "

[\\"test1\\",\\"test2\\"]" or "[{\\"key\\":\\"value\\"}]" , as it cannot be parsed into

appropriate key values, a parsing failure will be reported.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 94
of 158

Connecting Flink to CKafka
Last updated：2024-01-09 14:56:36

Overview

Apache Flink is a framework and distributed processing engine for stateful computations over unbounded and
bounded data streams. Flink has been designed to run in all common cluster environments, perform computations at
in-memory speed and at any scale.

Apache Flink excels at processing unbounded and bounded data sets. Precise control of time and state enable Flink’s
runtime to run any kind of application on unbounded streams. Bounded streams are internally processed by algorithms
and data structures that are specifically designed for fixed sized data sets, yielding excellent performance.

Apache Flink requires real-time data from various sources (such as Apache Kafka or Kinesis) in order to execute
applications. Flink provides special Kafka Connectors for reading and writing data from/to Kafka topics, which offers
exactly-once processing semantics.

Directions

Step 1. Get the CKafka instance access address

1. Log in to the CKafka console.
2. Select Instance List on the left sidebar and click the ID of the target instance to enter its basic information page.
3. On the instance’s basic information page, get the instance access address in the Access Mode module, which is

the bootstrap-server required by production and consumption.

https://console.tencentcloud.com/ckafka

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 95
of 158

Step 2. Create a topic

1. On the instance’s basic information page, select the Topic Management tab at the top.
2. On the topic management page, click Create to create a topic named test . This topic is used as an example

below to describe how to consume messages.

Step 3. Add Maven dependencies

Configure pom.xml as follows:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>org.example</groupId>

 <artifactId>Test-CKafka</artifactId>

 <version>1.0-SNAPSHOT</version>

 <dependencies>

 <dependency>

 <groupId>org.apache.kafka</groupId>

 <artifactId>kafka-clients</artifactId>

 <version>0.10.2.2</version>

 </dependency>

 <dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-simple</artifactId>

 <version>1.7.25</version>

 <scope>compile</scope>

 </dependency>

 <dependency>

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 96
of 158

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-java</artifactId>

 <version>1.6.1</version>

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-streaming-java_2.11</artifactId>

 <version>1.6.1</version>

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-connector-kafka_2.11</artifactId>

 <version>1.7.0</version>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-compiler-plugin</artifactId>

 <version>3.3</version>

 <configuration>

 <source>1.8</source>

 <target>1.8</target>

 </configuration>

 </plugin>

 </plugins>

 </build>

</project>

Step 4. Consume CKafka messages

You can click the tabs below to view the two methods of message consumption and view consumption results in the
console or through printed logs.
Consume via VPC
Consume via public domain name

import org.apache.flink.api.common.serialization.SimpleStringSchema;

import org.apache.flink.streaming.api.datastream.DataStream;

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;

import java.util.Properties;

public class CKafkaConsumerDemo {

 public static void main(String args[]) throws Exception {

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 97
of 158

 StreamExecutionEnvironment env =

StreamExecutionEnvironment.getExecutionEnvironment();

 Properties properties = new Properties();

 //Domain name address for public network access, i.e., public

routing address, which can be obtained in the access mode module of the

instance details page.

 properties.setProperty("bootstrap.servers", "IP:PORT");

 //Consumer group ID.

 properties.setProperty("group.id", "testConsumerGroup");

 DataStream<String> stream = env

 .addSource(new FlinkKafkaConsumer<>

("topicName", new SimpleStringSchema(), properties));

 stream.print();

 env.execute();

 }

}

import org.apache.flink.api.common.serialization.SimpleStringSchema;

import org.apache.flink.streaming.api.datastream.DataStream;

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;

import java.util.Properties;

public class CKafkaConsumerDemo {

 public static void main(String args[]) throws Exception {

 StreamExecutionEnvironment env =

StreamExecutionEnvironment.getExecutionEnvironment();

 Properties properties = new Properties();

 //Domain name address for public network access, i.e., public

routing address, which can be obtained in the access mode module of the

instance details page.

 properties.setProperty("bootstrap.servers", "IP:PORT");

 //Consumer group ID.

 properties.setProperty("group.id", "testConsumerGroup");

 properties.setProperty("security.protocol", "SASL_PLAINTEXT");

 properties.setProperty("sasl.mechanism", "PLAIN");

 //Username and password. The username is not the one on the

console, but needs to be concatenated as “instanceId#username” instead.

 properties.setProperty("sasl.jaas.config",

"org.apache.kafka.common.security.plain.PlainLoginModule

required\\nusername=\\"yourinstanceId#yourusername\\"\\npassword=\\"yourpasswor

d\\";");

 properties.setProperty("sasl.kerberos.service.name","kafka");

 DataStream<String> stream = env

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 98
of 158

 .addSource(new FlinkKafkaConsumer<>

("topicName", new SimpleStringSchema(), properties));

 stream.print();

 env.execute();

 }

}

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 99
of 158

Connecting Schema Registry to CKafka
Last updated：2024-07-19 14:25:46

We can serialize/deserialize classes by using Avro APIs or the Twitter Bijection class library, but the disadvantage of
the two methods is that the Kafka record size will multiply as each record must be embedded with a schema.
However, the schema is required for reading the records.

CKafka makes it possible for data to share one schema by registering the content of the schema in Confluent Schema
Registry. Kafka producers and consumers can implement serialization/deserialization by identifying the schema
content in Confluent Schema Registry.

Prerequisites

You have downloaded JDK 8.
You have downloaded Confluent OSS 4.1.1.

You have created an instance as instructed in Creating Instance.

Directions

Step 1. Obtain the instance access address and enable automatic topic creation

1. Log in to the CKafka console.
2. Select Instance List on the left sidebar and click the ID of the target instance to enter its basic information page.
3. On the instance's basic information page, get the instance access address in the Access Mode module.

https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
http://packages.confluent.io/archive/4.1/confluent-oss-4.1.1-2.11.tar.gz
https://www.tencentcloud.com/document/product/597/39718
https://console.tencentcloud.com/ckafka

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 100
of 158

4. Enable automatic topic creation in the Auto-Create Topic module.
Note:
Automatic topic creation must be enabled as a topic named schemas will be automatically created when OSS is

started.

Step 2. Prepare Confluent configurations

1. Modify the server address and other information in the OSS configuration file.

The configuration information of the PLAINTEXT access method is as follows:

kafkastore.bootstrap.servers=PLAINTEXT://xxxx

kafkastore.topic=schemas

debug=true

The configuration information of the SASL_PLAINTEXT access method is as follows:

kafkastore.bootstrap.servers=SASL_PLAINTEXT://ckafka-xxxx.ap-

xxx.ckafka.tencentcloudmq.com:50004

kafkastore.security.protocol=SASL_PLAINTEXT

kafkastore.sasl.mechanism=PLAIN

kafkastore.sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginMo

dule required username='ckafka-xxxx#xxxx' password='xxxx';

kafkastore.topic=schemas

debug=true

Note：
bootstrap.servers: Access the network and copy from the network column of the Access Method section on the
instance details page in the CKafka Console.

https://console.tencentcloud.com/ckafka
https://console.tencentcloud.com/ckafka

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 101
of 158

2. Run the following command to start Schema Registry.

bin/schema-registry-start etc/schema-registry/schema-registry.properties

The execution result is as follows:

Step 3. Receive/Send messages

Below is the content of the schema file:

{

 "type": "record",

 "name": "User",

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 102
of 158

 "fields": [

 {"name": "id", "type": "int"},

 {"name": "name", "type": "string"},

 {"name": "age", "type": "int"}

]

}

1. Register the schema in the topic named test .

The script below is an example of registering a schema by calling an API with the curl command in the

environment deployed in Schema Registry.

 curl -X POST -H "Content-Type: application/vnd.schemaregistry.v1+json" \\

 --data '{"schema": "{\\"type\\": \\"record\\", \\"name\\": \\"User\\", \\"field

 http://127.0.0.1:8081/subjects/test/versions

2. The Kafka producer sends messages.

package schemaTest;

import java.util.Properties;

import java.util.Random;

import org.apache.avro.Schema;

import org.apache.avro.generic.GenericData;

import org.apache.avro.generic.GenericRecord;

import org.apache.kafka.clients.producer.KafkaProducer;

import org.apache.kafka.clients.producer.Producer;

import org.apache.kafka.clients.producer.ProducerRecord;

public class SchemaProduce {

 public static final String USER_SCHEMA = "{\\"type\\": \\"record\\",

\\"name\\": \\"User\\", " +

 "\\"fields\\": [{\\"name\\": \\"id\\", \\"type\\": \\"int\\"},

" +

 "{\\"name\\": \\"name\\", \\"type\\": \\"string\\"},

{\\"name\\": \\"age\\", \\"type\\": \\"int\\"}]}";

 public static void main(String[] args) throws Exception {

 Properties props = new Properties();

 // Add the access address of the CKafka instance

 props.put("bootstrap.servers", "xx.xx.xx.xx:xxxx");

 props.put("key.serializer",

"org.apache.kafka.common.serialization.StringSerializer");

 // Use the Confluent `KafkaAvroSerializer`

 props.put("value.serializer",

"io.confluent.kafka.serializers.KafkaAvroSerializer");

 // Add the schema service address to obtain the schema

 props.put("schema.registry.url", "http://127.0.0.1:8081");

 Producer<String, GenericRecord> producer = new KafkaProducer<>

(props);	

 Schema.Parser parser = new Schema.Parser();

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 103
of 158

 Schema schema = parser.parse(USER_SCHEMA);

 Random rand = new Random();

 int id = 0;

 while(id < 100) {

 id++;

 String name = "name" + id;

 int age = rand.nextInt(40) + 1;

 GenericRecord user = new GenericData.Record(schema);

 user.put("id", id);

 user.put("name", name);

 user.put("age", age);	

 ProducerRecord<String, GenericRecord> record = new

ProducerRecord<>("test", user);	

 producer.send(record);

 Thread.sleep(1000);

 }

 producer.close();

 }

}

After running the script for a while, go to the CKafka console, select the Topic Management tab on the instance
details page, select the topic, and click More > Message Query to view the message just sent.

3. The Kafka consumer consumes messages.

package schemaTest;

import java.util.Collections;

import java.util.Properties;

https://console.tencentcloud.com/ckafka

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 104
of 158

import org.apache.avro.generic.GenericRecord;

import org.apache.kafka.clients.consumer.ConsumerRecord;

import org.apache.kafka.clients.consumer.ConsumerRecords;

import org.apache.kafka.clients.consumer.KafkaConsumer;

public class SchemaProduce {

 public static void main(String[] args) throws Exception {

 Properties props = new Properties();

 props.put("bootstrap.servers", "xx.xx.xx.xx:xxxx"); // Access address

of the CKafka instance

 props.put("group.id", "schema");

 props.put("key.deserializer",

"org.apache.kafka.common.serialization.StringDeserializer");

 // Use the Confluent `KafkaAvroDeserializer`

 props.put("value.deserializer",

"io.confluent.kafka.serializers.KafkaAvroDeserializer");

 // Add the schema service address to obtain the schema

 props.put("schema.registry.url", "http://127.0.0.1:8081");

 KafkaConsumer<String, GenericRecord> consumer = new KafkaConsumer<>

(props);

 consumer.subscribe(Collections.singletonList("test"));

 try {

 while (true) {

 ConsumerRecords<String, GenericRecord> records =

consumer.poll(10);

 for (ConsumerRecord<String, GenericRecord> record : records) {

 GenericRecord user = record.value();

 System.out.println("value = [user.id = " + user.get("id") +

", " + "user.name = "

 + user.get("name") + ", " + "user.age = " +

user.get("age") + "], "

 + "partition = " + record.partition() + ", " +

"offset = " + record.offset());

 }

 }

 } finally {

 consumer.close();

 }

 }

}

On the Consumer Group tab page in the CKafka console, select the consumer group named schema , enter the

topic name, and click View Consumer Details to view the consumption details.

https://console.tencentcloud.com/ckafka

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 105
of 158

Start the consumer for consumption. Below is a screenshot of the consumption log:

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 106
of 158

Connecting Spark Streaming to CKafka
Last updated：2024-01-09 14:56:36

As an extension of Spark Core, Spark Streaming is used for high-throughput and fault-tolerant processing of
continuous data. Currently supported external input sources include Kafka, Flume, HDFS/S3, Kinesis, Twitter, and
TCP socket.

Spark Streaming abstracts continuous data into a Discretized Stream (DStream), which consists of a series of
continuous resilient distributed datasets (RDDs). Each RDD contains data generated at a certain time interval.
Processing DStream with functions is actually processing these RDDs.

When Spark Streaming is used as data input for Kafka, the following stable and experimental Kafka versions are
supported:

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 107
of 158

Kafka Version spark-streaming-kafka-0.8 spark-streaming-kafka-0.10

Broker Version 0.8.2.1 or later 0.10.0 or later

API Maturity Deprecated Stable

Language Support Scala, Java, and Python Scala and Java

Receiver DStream Yes No

Direct DStream Yes Yes

SSL / TLS Support No Yes

Offset Commit API No Yes

Dynamic Topic Subscription No Yes

Currently, CKafka is compatible with version above 0.9. The Kafka dependency of v0.10.2.1 is used in this practice
scenario.
In addition, Spark Streaming in EMR also supports direct connection to CKafka. For more information, see
Connecting Spark Streaming to CKafka.

Directions

Step 1. Get the CKafka instance access address

1. Log in to the CKafka console.
2. Select Instance List on the left sidebar and click the ID of the target instance to enter its basic information page.
3. On the instance's basic information page, get the instance access address in the Access Mode module, which is
the bootstrap-server required by production and consumption.

https://www.tencentcloud.com/document/product/1026/31134
https://console.tencentcloud.com/ckafka

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 108
of 158

Step 2. Create a topic

1. On the instance's basic information page, select the Topic Management tab at the top.
2. On the topic management page, click Create to create a topic named test . This topic is used as an example

below to describe how to produce and consume messages.

Step 3. Prepare the CVM environment

CentOS 6.8

Package Version

sbt 0.13.16

Hadoop 2.7.3

Spark 2.1.0

Protobuf 2.5.0

SSH Installed on CentOS by default

Java 1.8

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 109
of 158

For specific installation steps, see [Configuring environment](#Configuring environment).

Step 4. Connect to CKafka

Producing Messages to CKafka
Consuming Messages from CKafka

The Kafka dependency of v0.10.2.1 is used here.
1. Add dependencies to build.sbt :

name := "Producer Example"

version := "1.0"

scalaVersion := "2.11.8"

libraryDependencies += "org.apache.kafka" % "kafka-clients" % "0.10.2.1"

2. Configure producer_example.scala :

 import java.util.Properties

 import org.apache.kafka.clients.producer._

 object ProducerExample extends App {

 val props = new Properties()

 props.put("bootstrap.servers", "172.16.16.12:9092") // Private IP and port

in the instance information

 props.put("key.serializer",

"org.apache.kafka.common.serialization.StringSerializer")

 props.put("value.serializer",

"org.apache.kafka.common.serialization.StringSerializer")

 val producer = new KafkaProducer[String, String](props)

 val TOPIC="test" // Specify the topic to produce to

 for(i<- 1 to 50){

 val record = new ProducerRecord(TOPIC, "key", s"hello $i") //

Produce a message whose `key` is "key" and `value` is "hello i"

 producer.send(record)

 }

 val record = new ProducerRecord(TOPIC, "key", "the end "+new

java.util.Date)

 producer.send(record)

 producer.close() // Disconnect at the end

 }

For more information on how to use ProducerRecord , see ProducerRecord.

DirectStream

1. Add de

https://kafka.apache.org/0100/javadoc/org/apache/kafka/clients/producer/ProducerRecord.html

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 110
of 158

pe
ndencies to build.sbt :

name := "Consumer Example"

version := "1.0"

scalaVersion := "2.11.8"

libraryDependencies += "org.apache.spark" %% "spark-core" % "2.1.0"

libraryDependencies += "org.apache.spark" %% "spark-streaming" % "2.1.0"

libraryDependencies += "org.apache.spark" %% "spark-streaming-kafka-0-10" %

"2.1.0"

2. Configure DirectStream_example.scala :

import org.apache.kafka.clients.consumer.ConsumerRecord

import org.apache.kafka.common.serialization.StringDeserializer

import org.apache.kafka.common.TopicPartition

import org.apache.spark.streaming.kafka010._

import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent

import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe

import org.apache.spark.streaming.kafka010.KafkaUtils

import org.apache.spark.streaming.kafka010.OffsetRange

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.SparkConf

import org.apache.spark.SparkContext

import collection.JavaConversions._

import Array._

object Kafka {

 def main(args: Array[String]) {

 val kafkaParams = Map[String, Object](

 "bootstrap.servers" -> "172.16.16.12:9092",

 "key.deserializer" -> classOf[StringDeserializer],

 "value.deserializer" -> classOf[StringDeserializer],

 "group.id" -> "spark_stream_test1",

 "auto.offset.reset" -> "earliest",

 "enable.auto.commit" -> "false"

)

 val sparkConf = new SparkConf()

 sparkConf.setMaster("local")

 sparkConf.setAppName("Kafka")

 val ssc = new StreamingContext(sparkConf, Seconds(5))

 val topics = Array("spark_test")

 val offsets : Map[TopicPartition, Long] = Map()

 for (i <- 0 until 3){

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 111
of 158

 val tp = new TopicPartition("spark_test", i)

 offsets.updated(tp , 0L)

 }

 val stream = KafkaUtils.createDirectStream[String, String](

 ssc,

 PreferConsistent,

 Subscribe[String, String](topics, kafkaParams)

)

 println("directStream")

 stream.foreachRDD{ rdd=>

 // Output the obtained message

 rdd.foreach{iter =>

 val i = iter.value

 println(s"${i}")

 }

 // Get the offset

 val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges

 rdd.foreachPartition { iter =>

 val o: OffsetRange = offsetRanges(TaskContext.get.partitionId)

 println(s"${o.topic} ${o.partition} ${o.fromOffset}

${o.untilOffset}")

 }

 }

 // Start the computation

 ssc.start()

 ssc.awaitTermination()

 }

}

RDD

1. Configure build.sbt in the way as detailed here.

2. Configure RDD_example :

import org.apache.kafka.clients.consumer.ConsumerRecord

import org.apache.kafka.common.serialization.StringDeserializer

import org.apache.spark.streaming.kafka010._

import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent

import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe

import org.apache.spark.streaming.kafka010.KafkaUtils

import org.apache.spark.streaming.kafka010.OffsetRange

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.SparkConf

import org.apache.spark.SparkContext

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 112
of 158

import collection.JavaConversions._

import Array._

object Kafka {

 def main(args: Array[String]) {

 val kafkaParams = Map[String, Object](

 "bootstrap.servers" -> "172.16.16.12:9092",

 "key.deserializer" -> classOf[StringDeserializer],

 "value.deserializer" -> classOf[StringDeserializer],

 "group.id" -> "spark_stream",

 "auto.offset.reset" -> "earliest",

 "enable.auto.commit" -> (false: java.lang.Boolean)

)

 val sc = new SparkContext("local", "Kafka", new SparkConf())

 val java_kafkaParams : java.util.Map[String, Object] = kafkaParams

 // Pull messages in the corresponding offset range from the partition

in order. The request will be blocked if no messages can be pulled, until the

specified waiting time elapses or the number of produced new messages reaches

the number for messages to be pulled

 val offsetRanges = Array[OffsetRange](

 OffsetRange("spark_test", 0, 0, 5),

 OffsetRange("spark_test", 1, 0, 5),

 OffsetRange("spark_test", 2, 0, 5)

)

 val range = KafkaUtils.createRDD[String, String](

 sc,

 java_kafkaParams,

 offsetRanges,

 PreferConsistent

)

 range.foreach(rdd=>println(rdd.value))

 sc.stop()

 }

}

For more information on how to use kafkaParams , see kafkaParams.

Configuring environment[](id:Configuring environment)

Installing sbt

1. Download the sbt package from sbt's official website.
2. After decompression, create an sbt_run.sh script with the following content in the sbt directory and add

executable permissions:

#!/bin/bash

http://kafka.apache.org/documentation.html#newconsumerconfigs
http://www.scala-sbt.org/download.html

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 113
of 158

SBT_OPTS="-Xms512M -Xmx1536M -Xss1M -XX:+CMSClassUnloadingEnabled -

XX:MaxPermSize=256M"

java $SBT_OPTS -jar `dirname $0`/bin/sbt-launch.jar "$@"

chmod u+x ./sbt_run.sh

3. Run the following command:

./sbt-run.sh sbt-version

The display of sbt version indicates a successful installation.

Installing Protobuf

1. Download an appropriate version of Protobuf.
2. Decompress and enter the directory.

./configure

make && make install

You should install gcc-g++ in advance, and the root permission may be required during installation.
3. Log in again and enter the following on the command line:

protoc --version

4. The display of Protobuf version indicates a successful installation.

Installing Hadoop

1. Download the required version at Hadoop's official website.
2. Add a Hadoop user.

useradd -m hadoop -s /bin/bash

3. Grant admin permissions.

visudo

4. Add the following in a new line under root ALL=(ALL) ALL :

 hadoop ALL=(ALL) ALL

https://github.com/google/protobuf/releases
http://hadoop.apache.org/releases.html

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 114
of 158

Save and exit.
5. Use Hadoop for operations.

su hadoop

6. Configure SSH password-free login.

cd ~/.ssh/ # If there is no such directory, run `ssh

localhost` first

ssh-keygen -t rsa # There will be prompts. Simply press Enter

cat id_rsa.pub >> authorized_keys # Add authorization

chmod 600 ./authorized_keys # Modify file permission

7. Install Java.

sudo yum install java-1.8.0-openjdk java-1.8.0-openjdk-devel

8. Configure ${JAVA_HOME} .

vim /etc/profile

Add the following at the end:

export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.121-

0.b13.el6_8.x86_64/jre

export PATH=$PATH:$JAVA_HOME

Modify the corresponding path based on the installation information.
9. Decompress Hadoop and enter the directory.

./bin/hadoop version

The display of version information indicates a successful installation.
10. Configure the pseudo-distributed mode (so that you can build different forms of clusters as needed).

vim /etc/profile

Add the following at the end:

export HADOOP_HOME=/usr/local/hadoop

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 115
of 158

export PATH=$HADOOP_HOME/bin:$PATH

Modify the corresponding path based on the installation information.
11. Modify /etc/hadoop/core-site.xml .

<configuration>

 <property>

 <name>hadoop.tmp.dir</name>

 <value>file:/usr/local/hadoop/tmp</value>

 <description>Abase for other temporary directories.</description>

 </property>

 <property>

 <name>fs.defaultFS</name>

 <value>hdfs://localhost:9000</value>

 </property>

</configuration>

12. Modify /etc/hadoop/hdfs-site.xml .

<configuration>

 <property>

 <name>dfs.replication</name>

 <value>1</value>

 </property>

 <property>

 <name>dfs.namenode.name.dir</name>

 <value>file:/usr/local/hadoop/tmp/dfs/name</value>

 </property>

 <property>

 <name>dfs.datanode.data.dir</name>

 <value>file:/usr/local/hadoop/tmp/dfs/data</value>

 </property>

</configuration>

13. Change JAVA_HOME in /etc/hadoop/hadoop-env.sh to the Java path.

export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.121-

0.b13.el6_8.x86_64/jre

14. Format the NameNode.

./bin/hdfs namenode -format

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 116
of 158

The display of Exitting with status 0 indicates a success.

15. Start Hadoop.

./sbin/start-dfs.sh

 NameNode , DataNode , and SecondaryNameNode processes will exist upon successful startup.

Installing Spark

Download the required version at Spark's official website.
As Hadoop has already been installed, select Pre-build with user-provided Apache Hadoop here.

Note:
This example also uses the hadoop user for operations.

1. Decompress and enter the directory.
2. Modify the configuration file.

cp ./conf/spark-env.sh.template ./conf/spark-env.sh

vim ./conf/spark-env.sh

Add the following in the first line:

export SPARK_DIST_CLASSPATH=$(/usr/local/hadoop/bin/hadoop classpath)

Modify the path based on the Hadoop installation information.
3. Run the example.

bin/run-example SparkPi

The display of an approximate value of π output by the program indicates a successful installation.

http://spark.apache.org/downloads.html

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 117
of 158

Connecting Flume to CKafka
Last updated：2024-01-09 14:56:36

Apache Flume is a distributed, reliable, and highly available log collection system that supports a wide variety of data
sources such as HTTP, log files, JMS, and listening ports. It can efficiently collect, aggregate, move, and store
massive amounts of log data to a specified storage system like Kafka, HDFS, and Solr search server.

Flume is structured as follows:

Agents are the smallest unit that runs independently in Flume. A Flume agent is a JVM composed of three main
components: source, sink, and channel.

Flume and Kafka
When you store data in a downstream storage module or compute module such as HDFS or HBase, you need to
consider a lot of complex factors such as the number of concurrent writes, system load, and network delay. As a

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 118
of 158

flexible distributed system, Flume provides various APIs and customizable pipelines.
In the production process, Kafka can act as a cache when the production and consumption are at different paces. It
has a high throughput thanks to the partition structure and data appending feature. It is also very fault-tolerant

because of the replication structure.
Therefore, Flume and Kafka can work together to meet most requirements in production environments.

Connecting Flume to Open-Source Kafka

Preparations

Download Apache Flume (v1.6.0 or later is compatible with Kafka).
Download Kafka (v0.9.x or later is required as v0.8 is no longer supported).
Confirm that Kafka's source and sink components are already in Flume.

Connection method

Kafka can be used as a source or sink to import or export messages.
Using Kafka as a Source
Using Kafka as a Sink
Configure Kafka as the message source, that is, pull data as a consumer from Kafka into a specified sink. The main
configuration items are as follows:

Configuration Item Description

channels The configured channel

type It must be org.apache.flume.source.kafka.KafkaSource

kafka.bootstrap.servers Kafka broker server address

kafka.consumer.group.id ID of Kafka's consumer group

kafka.topics Data source topics in Kafka

batchSize Size of each write into the channel

batchDurationMillis The maximum write interval

Sample:

tier1.sources.source1.type = org.apache.flume.source.kafka.KafkaSource

tier1.sources.source1.channels = channel1

tier1.sources.source1.batchSize = 5000

tier1.sources.source1.batchDurationMillis = 2000

http://flume.apache.org/download.html
https://kafka.apache.org/downloads

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 119
of 158

tier1.sources.source1.kafka.bootstrap.servers = localhost:9092

tier1.sources.source1.kafka.topics = test1, test2

tier1.sources.source1.kafka.consumer.group.id = custom.g.id

For more information, visit Apache Flume's official website.
Configure Kafka as the message receiver, that is, push data to the Kafka server as a producer for subsequent
operations. The main configuration items are as follows:

Configuration Item Description

channel The configured channel

type
It must be
 org.apache.flume.sink.kafka.KafkaSink

kafka.bootstrap.servers Kafka broker server

kafka.topics Data target topics in Kafka

kafka.flumeBatchSize Size of each written batch

kafka.producer.acks Production policy of Kafka producer

Sample:

a1.sinks.k1.channel = c1

a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink

a1.sinks.k1.kafka.topic = mytopic

a1.sinks.k1.kafka.bootstrap.servers = localhost:9092

a1.sinks.k1.kafka.flumeBatchSize = 20

a1.sinks.k1.kafka.producer.acks = 1

For more information, visit Apache Flume's official website.

Connecting Flume to CKafka

Using CKafka as a Sink
Using CKafka as a Source

Step 1. Obtain the CKafka instance access address

1. Log in to the CKafka console.
2. Select Instance List on the left sidebar and click the ID of the target instance to enter the instance details page.
3. You can obtain the instance access address in the Access Mode module on the Basic Info tab page.

https://flume.apache.org/FlumeUserGuide.html
https://flume.apache.org/FlumeUserGuide.html
https://console.tencentcloud.com/ckafka

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 120
of 158

Step 2. Create a topic

1. On the instance details page, select the Topic Management tab at the top.
2. On the topic management page, click Create to create a topic named flume_test .

Step 3. Configure Flume

1. Download the Apache Flume toolkit and decompress it.
2. Write the configuration file flume-kafka-sink.properties . Below is a simple demo (configured in the

 conf folder in the extracted directory) for Java. If there is no special requirement, simply replace your own instance

IP address and topic in the configuration file. In this demo, the source is tail -F flume-test , which is the

newly added information in the file.

http://flume.apache.org/download.html

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 121
of 158

The sample code is as shown below:

Demo for using Kafka as the sink

agentckafka.source = exectail

agentckafka.channels = memoryChannel

agentckafka.sinks = kafkaSink

Set the source type based on different requirements. If you have a special source

agentckafka.sources.exectail.type = exec

agentckafka.sources.exetail.command = tail -F ./flume.test

agentckafka.sources.exectail.batchSize = 20

Set the source channel

agentckafka.sources.exectail.channels = memoryChannel

Set the sink type. It is set to Kafka here

agentckafka.sinks.kafkaSink.type = org.apache.flume.sink.kafka.KafkaSink

Set the ip:port provided by CKafka

agentckafka.sinks.kafkaSink.brokerList = 172.16.16.12:9092 # Configure the instance

Set the topic to which data is to be imported. Create the topic in the CKafka con

agentckafka.sinks.kafkaSink.topic = flume test #Configure the topic

Set the sink channel

agentckafka.sinks.kafkaSink.channel = memoryChannel

Use the default configuration for the channel

Each channel's type is defined

agentckafka.channels.memoryChannel.type = memory

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 122
of 158

agentckafka.channels.memoryChannel.keep-alive = 10

Other config values specific to each type of channel (sink or source) can be defi

In this case, it specifies the capacity of the memory channel

agentckafka.channels.memoryChannel.capacity = 1000

agentckafka.channels.memoryChannel.transactionCapacity = 1000

3. Run the following command to start Flume:

./bin/flume-ng agent -n agentckafka -c conf -f conf/flume-kafka-sink.properties

4. Write messages to the flume-test file. At this time, the messages will be written by Flume to CKafka.

5. Start the CKafka client for consumption.

./kafka-console-consumer.sh --bootstrap-server xx.xx.xx.xx:xxxx --topic

flume_test --from-beginning --new-consumer

Note:
Enter the access address of the CKafka instance just created for the bootstrap-server field and the name of

the topic just created for topic .

You can see that the messages have been consumed.

Step 1. Obtain the CKafka instance access address

1. Log in to the CKafka console.
2. Select Instance List on the left sidebar and click the ID of the target instance to enter the instance details page.
3. You can obtain the instance access address in the Access Mode module on the Basic Info tab page.

https://console.tencentcloud.com/ckafka

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 123
of 158

Step 2. Create a topic

1. On the instance details page, select the Topic Management tab at the top.
2. On the topic management page, click Create to create a topic named flume_test .

Step 3. Configure Flume

1. Download the Apache Flume toolkit‌ and decompress it.
2. Write the configuration file flume-kafka-source.properties . Below is a simple demo (configured in the

 conf folder in the extracted directory). If there is no special requirement, simply replace your own instance IP

address and topic in the configuration file. The sink is logger in this example.

http://flume.apache.org/download.html

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 124
of 158

3. Run the following command to start Flume:

./bin/flume-ng agent -n agentckafka -c conf -f conf/flume-kafka-

source.properties

4. View the logger output information. The default path is logs/flume.log .

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 125
of 158

Connecting Kafka Connect to CKafka
Last updated：2024-01-09 14:56:36

Kafka Connect currently supports two execution modes: standalone and distributed.

Starting Connect in Standalone Mode

Start Connect in standalone mode by running the following command:

bin/connect-standalone.sh config/connect-standalone.properties

connector1.properties [connector2.properties ...]

Accessing CKafka is basically the same as accessing the open-source Kafka, except that you need to change the
value of bootstrap.servers to the IP address assigned when you apply for the instance.

Starting Connect in Distributed Mode

Start Connect in distributed mode by running the following command:

bin/connect-distributed.sh config/connect-distributed.properties

In this mode, Kafka Connect stores the offset, configuration, and task status information in Kafka topics, which are
configured in the following fields in connect-distributed :

config.storage.topic

offset.storage.topic

status.storage.topic

These topics need to be created manually to ensure that their attributes meet the requirements of Connect.
 config.storage.topic should have only one partition and multiple replicas and be in compact mode.

 offset.storage.topic should have multiple partitions and replicas and be in compact mode.

 status.storage.topic should have multiple partitions and replicas and be in compact mode.

Set bootstrap.servers to the IP address assigned when you apply for the instance.

Configure group.id to identify the Connect cluster, which should be differentiated from the consumer group.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 126
of 158

Connecting Storm to CKafka
Last updated：2024-01-09 14:56:36

Storm is a distributed real-time computing framework that can perform stream-based data processing and provide
universal distributed RPC calling so as to reduce the delay of event processing down to sub-seconds. It is suitable for
real-time data processing scenarios where low delay is required.

How Storm Works

There are two types of nodes in a Storm cluster: master node and worker node . The Nimbus process

runs on the master node for resource allocation and status monitoring, and the Supervisor process runs on

the worker node for listening on work tasks and starting the executor . The entire Storm cluster relies on

 ZooKeeper for common data storage, cluster status listening, task assignment, etc.

A data processing program submitted to Storm is called a topology . The minimum message unit it processes is

 tuple (an array of arbitrary objects). A topology consists of spout and bolt , where spout is the

source of tuple , while bolt can subscribe to any tuple issued by spout or bolt for processing.

Storm with CKafka

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 127
of 158

Storm can use CKafka as a spout to consume data for processing or as a bolt to store the processed data for

consumption by other components.

Testing environment

CentOS 6.8

Package Version

Maven 3.5.0

Storm 2.1.0

SSH 5.3

Java 1.8

Prerequisites

Download and install JDK 8. For detailed directions, see Java SE Development Kit 8 Downloads.
Download and install Storm. For more information, see Apache Storm downloads.
You have created a CKafka instance.

Directions

Step 1. Get the CKafka instance access address

1. Log in to the CKafka console.
2. Select Instance List on the left sidebar and click the ID of the target instance to enter its basic information page.

3. On the instance's basic information page, get the instance access address in the Access Mode module.

https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
http://storm.apache.org/downloads.html
https://www.tencentcloud.com/document/product/597/39718
https://console.tencentcloud.com/ckafka

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 128
of 158

Step 2. Create a topic

1. On the instance's basic information page, select the Topic Management tab at the top.
2. On the topic management page, click Create to create a topic.

Step 3. Add Maven dependencies

Configure pom.xml as follows:

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>storm</groupId>

 <artifactId>storm</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <name>storm</name>

 <properties>

 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.apache.storm</groupId>

 <artifactId>storm-core</artifactId>

 <version>2.1.0</version>

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 129
of 158

 </dependency>

 <dependency>

 <groupId>org.apache.storm</groupId>

 <artifactId>storm-kafka-client</artifactId>

 <version>2.1.0</version>

 </dependency>

 <dependency>

 <groupId>org.apache.kafka</groupId>

 <artifactId>kafka_2.11</artifactId>

 <version>0.10.2.1</version>

 <exclusions>

 <exclusion>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-log4j12</artifactId>

 </exclusion>

 </exclusions>

 </dependency>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.12</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <artifactId>maven-assembly-plugin</artifactId>

 <configuration>

 <descriptorRefs>

 <descriptorRef>jar-with-dependencies</descriptorRef>

 </descriptorRefs>

 <archive>

 <manifest>

 <mainClass>ExclamationTopology</mainClass>

 </manifest>

 </archive>

 </configuration>

 <executions>

 <execution>

 <id>make-assembly</id>

 <phase>package</phase>

 <goals>

 <goal>single</goal>

 </goals>

 </execution>

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 130
of 158

 </executions>

 </plugin>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-compiler-plugin</artifactId>

 <configuration>

 <source>1.8</source>

 <target>1.8</target>

 </configuration>

 </plugin>

 </plugins>

 </build>

</project>

Step 4. Produce a message

Using spout/bolt

Topology code:

//TopologyKafkaProducerSpout.java

import org.apache.storm.Config;

import org.apache.storm.LocalCluster;

import org.apache.storm.StormSubmitter;

import org.apache.storm.kafka.bolt.KafkaBolt;

import org.apache.storm.kafka.bolt.mapper.FieldNameBasedTupleToKafkaMapper;

import org.apache.storm.kafka.bolt.selector.DefaultTopicSelector;

import org.apache.storm.topology.TopologyBuilder;

import org.apache.storm.utils.Utils;

import java.util.Properties;

public class TopologyKafkaProducerSpout {

 // `ip:port` of the CKafka instance applied for

 private final static String BOOTSTRAP_SERVERS = "xx.xx.xx.xx:xxxx";

 // Specify the topic to which to write messages

 private final static String TOPIC = "storm_test";

 public static void main(String[] args) throws Exception {

 // Set producer attributes

 // For functions, visit

https://kafka.apache.org/0100/javadoc/index.html?

org/apache/kafka/clients/consumer/KafkaConsumer.html

 // For attributes, visit

http://kafka.apache.org/0102/documentation.html

 Properties properties = new Properties();

 properties.put("bootstrap.servers", BOOTSTRAP_SERVERS);

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 131
of 158

 properties.put("acks", "1");

 properties.put("key.serializer",

"org.apache.kafka.common.serialization.StringSerializer");

 properties.put("value.serializer",

"org.apache.kafka.common.serialization.StringSerializer");

 // Create a bolt to be written to Kafka. `fields("key" "message")` is

used as the key and message for the produced message by default, which can also

be specified in `FieldNameBasedTupleToKafkaMapper()`

 KafkaBolt kafkaBolt = new KafkaBolt()

 .withProducerProperties(properties)

 .withTopicSelector(new DefaultTopicSelector(TOPIC))

 .withTupleToKafkaMapper(new

FieldNameBasedTupleToKafkaMapper());

 TopologyBuilder builder = new TopologyBuilder();

 // A spout class that generates messages in sequence with the output

field being `sentence`

 SerialSentenceSpout spout = new SerialSentenceSpout();

 AddMessageKeyBolt bolt = new AddMessageKeyBolt();

 builder.setSpout("kafka-spout", spout, 1);

 // Add the fields required to produce messages to CKafka for the tuple

 builder.setBolt("add-key", bolt, 1).shuffleGrouping("kafka-spout");

 // Write to CKafka

 builder.setBolt("sendToKafka", kafkaBolt, 8).shuffleGrouping("add-

key");

 Config config = new Config();

 if (args != null && args.length > 0) {

 // Cluster mode, which is used to package a jar file and run it in

Storm

 config.setNumWorkers(1);

 StormSubmitter.submitTopologyWithProgressBar(args[0], config,

builder.createTopology());

 } else {

 // Local mode

 LocalCluster cluster = new LocalCluster();

 cluster.submitTopology("test", config, builder.createTopology());

 Utils.sleep(10000);

 cluster.killTopology("test");

 cluster.shutdown();

 }

 }

}

Create a spout class that generates messages in sequence:

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 132
of 158

import org.apache.storm.spout.SpoutOutputCollector;

import org.apache.storm.task.TopologyContext;

import org.apache.storm.topology.OutputFieldsDeclarer;

import org.apache.storm.topology.base.BaseRichSpout;

import org.apache.storm.tuple.Fields;

import org.apache.storm.tuple.Values;

import org.apache.storm.utils.Utils;

import java.util.Map;

import java.util.UUID;

public class SerialSentenceSpout extends BaseRichSpout {

 private SpoutOutputCollector spoutOutputCollector;

 @Override

 public void open(Map map, TopologyContext topologyContext,

SpoutOutputCollector spoutOutputCollector) {

 this.spoutOutputCollector = spoutOutputCollector;

 }

 @Override

 public void nextTuple() {

 Utils.sleep(1000);

 // Produce a `UUID` string and send it to the next component

 spoutOutputCollector.emit(new Values(UUID.randomUUID().toString()));

 }

 @Override

 public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer)

{

 outputFieldsDeclarer.declare(new Fields("sentence"));

 }

}

Add key and message fields to the tuple . If key is null, the produced messages will be evenly allocated

to each partition. If a key is specified, the messages will be hashed to specific partitions based on the key value:

//AddMessageKeyBolt.java

import org.apache.storm.topology.BasicOutputCollector;

import org.apache.storm.topology.OutputFieldsDeclarer;

import org.apache.storm.topology.base.BaseBasicBolt;

import org.apache.storm.tuple.Fields;

import org.apache.storm.tuple.Tuple;

import org.apache.storm.tuple.Values;

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 133
of 158

public class AddMessageKeyBolt extends BaseBasicBolt {

 @Override

 public void execute(Tuple tuple, BasicOutputCollector basicOutputCollector)

{

 // Take out the first field value

 String messae = tuple.getString(0);

// System.out.println(messae);

 // Send to the next component

 basicOutputCollector.emit(new Values(null, messae));

 }

 @Override

 public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer)

{

 // Create a schema to send to the next component

 outputFieldsDeclarer.declare(new Fields("key", "message"));

 }

}

Using trident

Use the trident class to generate a topology

//TopologyKafkaProducerTrident.java

import org.apache.storm.Config;

import org.apache.storm.LocalCluster;

import org.apache.storm.StormSubmitter;

import org.apache.storm.kafka.trident.TridentKafkaStateFactory;

import org.apache.storm.kafka.trident.TridentKafkaStateUpdater;

import org.apache.storm.kafka.trident.mapper.FieldNameBasedTupleToKafkaMapper;

import org.apache.storm.kafka.trident.selector.DefaultTopicSelector;

import org.apache.storm.trident.TridentTopology;

import org.apache.storm.trident.operation.BaseFunction;

import org.apache.storm.trident.operation.TridentCollector;

import org.apache.storm.trident.tuple.TridentTuple;

import org.apache.storm.tuple.Fields;

import org.apache.storm.tuple.Values;

import org.apache.storm.utils.Utils;

import java.util.Properties;

public class TopologyKafkaProducerTrident {

 // `ip:port` of the CKafka instance applied for

 private final static String BOOTSTRAP_SERVERS = "xx.xx.xx.xx:xxxx";

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 134
of 158

 // Specify the topic to which to write messages

 private final static String TOPIC = "storm_test";

 public static void main(String[] args) throws Exception {

 // Set producer attributes

 // For functions, visit

https://kafka.apache.org/0100/javadoc/index.html?

org/apache/kafka/clients/consumer/KafkaConsumer.html

 // For attributes, visit

http://kafka.apache.org/0102/documentation.html

 Properties properties = new Properties();

 properties.put("bootstrap.servers", BOOTSTRAP_SERVERS);

 properties.put("acks", "1");

 properties.put("key.serializer",

"org.apache.kafka.common.serialization.StringSerializer");

 properties.put("value.serializer",

"org.apache.kafka.common.serialization.StringSerializer");

 // Set the trident

 TridentKafkaStateFactory stateFactory = new TridentKafkaStateFactory()

 .withProducerProperties(properties)

 .withKafkaTopicSelector(new DefaultTopicSelector(TOPIC))

 // Set to use `fields("key", "value")` as the written message,

which doesn't have a default value as `FieldNameBasedTupleToKafkaMapper` does

 .withTridentTupleToKafkaMapper(new

FieldNameBasedTupleToKafkaMapper("key", "value"));

 TridentTopology builder = new TridentTopology();

 // A spout that generates messages in batches with the output field

being `sentence`

 builder.newStream("kafka-spout", new TridentSerialSentenceSpout(5))

 .each(new Fields("sentence"), new AddMessageKey(), new

Fields("key", "value"))

 .partitionPersist(stateFactory, new Fields("key", "value"), new

TridentKafkaStateUpdater(), new Fields());

 Config config = new Config();

 if (args != null && args.length > 0) {

 // Cluster mode, which is used to package a jar file and run it in

Storm

 config.setNumWorkers(1);

 StormSubmitter.submitTopologyWithProgressBar(args[0], config,

builder.build());

 } else {

 // Local mode

 LocalCluster cluster = new LocalCluster();

 cluster.submitTopology("test", config, builder.build());

 Utils.sleep(10000);

 cluster.killTopology("test");

 cluster.shutdown();

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 135
of 158

 }

 }

 private static class AddMessageKey extends BaseFunction {

 @Override

 public void execute(TridentTuple tridentTuple, TridentCollector

tridentCollector) {

 // Take out the first field value

 String messae = tridentTuple.getString(0);

 //System.out.println(messae);

 // Send to the next component

 //tridentCollector.emit(new

Values(Integer.toString(messae.hashCode()), messae));

 tridentCollector.emit(new Values(null, messae));

 }

 }

}

Create a spout class that generates messages in batches:

//TridentSerialSentenceSpout.java

import org.apache.storm.Config;

import org.apache.storm.task.TopologyContext;

import org.apache.storm.trident.operation.TridentCollector;

import org.apache.storm.trident.spout.IBatchSpout;

import org.apache.storm.tuple.Fields;

import org.apache.storm.tuple.Values;

import org.apache.storm.utils.Utils;

import java.util.Map;

import java.util.UUID;

public class TridentSerialSentenceSpout implements IBatchSpout {

 private final int batchCount;

 public TridentSerialSentenceSpout(int batchCount) {

 this.batchCount = batchCount;

 }

 @Override

 public void open(Map map, TopologyContext topologyContext) {

 }

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 136
of 158

 @Override

 public void emitBatch(long l, TridentCollector tridentCollector) {

 Utils.sleep(1000);

 for(int i = 0; i < batchCount; i++){

 tridentCollector.emit(new Values(UUID.randomUUID().toString()));

 }

 }

 @Override

 public void ack(long l) {

 }

 @Override

 public void close() {

 }

 @Override

 public Map<String, Object> getComponentConfiguration() {

 Config conf = new Config();

 conf.setMaxTaskParallelism(1);

 return conf;

 }

 @Override

 public Fields getOutputFields() {

 return new Fields("sentence");

 }

}

Step 5. Consume the message

Using spout/bolt

//TopologyKafkaConsumerSpout.java

import org.apache.kafka.clients.consumer.ConsumerConfig;

import org.apache.storm.Config;

import org.apache.storm.LocalCluster;

import org.apache.storm.StormSubmitter;

import org.apache.storm.kafka.spout.*;

import org.apache.storm.task.OutputCollector;

import org.apache.storm.task.TopologyContext;

import org.apache.storm.topology.OutputFieldsDeclarer;

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 137
of 158

import org.apache.storm.topology.TopologyBuilder;

import org.apache.storm.topology.base.BaseRichBolt;

import org.apache.storm.tuple.Fields;

import org.apache.storm.tuple.Tuple;

import org.apache.storm.tuple.Values;

import org.apache.storm.utils.Utils;

import java.util.HashMap;

import java.util.Map;

import static org.apache.storm.kafka.spout.FirstPollOffsetStrategy.LATEST;

public class TopologyKafkaConsumerSpout {

 // `ip:port` of the CKafka instance applied for

 private final static String BOOTSTRAP_SERVERS = "xx.xx.xx.xx:xxxx";

 // Specify the topic to which to write messages

 private final static String TOPIC = "storm_test";

 public static void main(String[] args) throws Exception {

 // Set a retry policy

 KafkaSpoutRetryService kafkaSpoutRetryService = new

KafkaSpoutRetryExponentialBackoff(

KafkaSpoutRetryExponentialBackoff.TimeInterval.microSeconds(500),

 KafkaSpoutRetryExponentialBackoff.TimeInterval.milliSeconds(2),

 Integer.MAX_VALUE,

 KafkaSpoutRetryExponentialBackoff.TimeInterval.seconds(10)

);

 ByTopicRecordTranslator<String, String> trans = new

ByTopicRecordTranslator<>(

 (r) -> new Values(r.topic(), r.partition(), r.offset(),

r.key(), r.value()),

 new Fields("topic", "partition", "offset", "key", "value"));

 // Set consumer parameters

 // For functions, visit

http://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/kafka/spout/Ka

fkaSpoutConfig.Builder.html

 // For parameters, visit

http://kafka.apache.org/0102/documentation.html

 KafkaSpoutConfig spoutConfig =

KafkaSpoutConfig.builder(BOOTSTRAP_SERVERS, TOPIC)

 .setProp(new HashMap<String, Object>(){{

 put(ConsumerConfig.GROUP_ID_CONFIG, "test-group1"); // Set

the group

 put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, "50000"); //

Set the session timeout period

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 138
of 158

 put(ConsumerConfig.REQUEST_TIMEOUT_MS_CONFIG, "60000"); //

Set the request timeout period

 }})

 .setOffsetCommitPeriodMs(10_000) // Set the automatic

confirmation period

 .setFirstPollOffsetStrategy(LATEST) // Set to pull the latest

message

 .setRetry(kafkaSpoutRetryService)

 .setRecordTranslator(trans)

 .build();

 TopologyBuilder builder = new TopologyBuilder();

 builder.setSpout("kafka-spout", new KafkaSpout(spoutConfig), 1);

 builder.setBolt("bolt", new BaseRichBolt(){

 private OutputCollector outputCollector;

 @Override

 public void declareOutputFields(OutputFieldsDeclarer

outputFieldsDeclarer) {

 }

 @Override

 public void prepare(Map map, TopologyContext topologyContext,

OutputCollector outputCollector) {

 this.outputCollector = outputCollector;

 }

 @Override

 public void execute(Tuple tuple) {

 System.out.println(tuple.getStringByField("value"));

 outputCollector.ack(tuple);

 }

 }, 1).shuffleGrouping("kafka-spout");

 Config config = new Config();

 config.setMaxSpoutPending(20);

 if (args != null && args.length > 0) {

 config.setNumWorkers(3);

 StormSubmitter.submitTopologyWithProgressBar(args[0], config,

builder.createTopology());

 }

 else {

 LocalCluster cluster = new LocalCluster();

 cluster.submitTopology("test", config, builder.createTopology());

 Utils.sleep(20000);

 cluster.killTopology("test");

 cluster.shutdown();

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 139
of 158

 }

 }

}

Using trident

//TopologyKafkaConsumerTrident.java

import org.apache.kafka.clients.consumer.ConsumerConfig;

import org.apache.storm.Config;

import org.apache.storm.LocalCluster;

import org.apache.storm.StormSubmitter;

import org.apache.storm.generated.StormTopology;

import org.apache.storm.kafka.spout.ByTopicRecordTranslator;

import org.apache.storm.kafka.spout.trident.KafkaTridentSpoutConfig;

import org.apache.storm.kafka.spout.trident.KafkaTridentSpoutOpaque;

import org.apache.storm.trident.Stream;

import org.apache.storm.trident.TridentTopology;

import org.apache.storm.trident.operation.BaseFunction;

import org.apache.storm.trident.operation.TridentCollector;

import org.apache.storm.trident.tuple.TridentTuple;

import org.apache.storm.tuple.Fields;

import org.apache.storm.tuple.Values;

import org.apache.storm.utils.Utils;

import java.util.HashMap;

import static org.apache.storm.kafka.spout.FirstPollOffsetStrategy.LATEST;

public class TopologyKafkaConsumerTrident {

 // `ip:port` of the CKafka instance applied for

 private final static String BOOTSTRAP_SERVERS = "xx.xx.xx.xx:xxxx";

 // Specify the topic to which to write messages

 private final static String TOPIC = "storm_test";

 public static void main(String[] args) throws Exception {

 ByTopicRecordTranslator<String, String> trans = new

ByTopicRecordTranslator<>(

 (r) -> new Values(r.topic(), r.partition(), r.offset(),

r.key(), r.value()),

 new Fields("topic", "partition", "offset", "key", "value"));

 // Set consumer parameters

 // For functions, visit

http://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/kafka/spout/Ka

fkaSpoutConfig.Builder.html

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 140
of 158

 // For parameters, visit

http://kafka.apache.org/0102/documentation.html

 KafkaTridentSpoutConfig spoutConfig =

KafkaTridentSpoutConfig.builder(BOOTSTRAP_SERVERS, TOPIC)

 .setProp(new HashMap<String, Object>(){{

 put(ConsumerConfig.GROUP_ID_CONFIG, "test-group1"); // Set

the group

 put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true"); //

Set automatic confirmation

 put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, "50000"); //

Set the session timeout period

 put(ConsumerConfig.REQUEST_TIMEOUT_MS_CONFIG, "60000"); //

Set the request timeout period

 }})

 .setFirstPollOffsetStrategy(LATEST) // Set to pull the latest

message

 .setRecordTranslator(trans)

 .build();

 TridentTopology builder = new TridentTopology();

// Stream spoutStream = builder.newStream("spout", new

KafkaTridentSpoutTransactional(spoutConfig)); // Transaction type

 Stream spoutStream = builder.newStream("spout", new

KafkaTridentSpoutOpaque(spoutConfig));

 spoutStream.each(spoutStream.getOutputFields(), new BaseFunction(){

 @Override

 public void execute(TridentTuple tridentTuple, TridentCollector

tridentCollector) {

 System.out.println(tridentTuple.getStringByField("value"));

 tridentCollector.emit(new

Values(tridentTuple.getStringByField("value")));

 }

 }, new Fields("message"));

 Config conf = new Config();

 conf.setMaxSpoutPending(20);conf.setNumWorkers(1);

 if (args != null && args.length > 0) {

 conf.setNumWorkers(3);

 StormSubmitter.submitTopologyWithProgressBar(args[0], conf,

builder.build());

 }

 else {

 StormTopology stormTopology = builder.build();

 LocalCluster cluster = new LocalCluster();

 cluster.submitTopology("test", conf, stormTopology);

 Utils.sleep(10000);

 cluster.killTopology("test");

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 141
of 158

 cluster.shutdown();stormTopology.clear();

 }

 }

}

Step 6. Submit Storm

After being compiled with mvn package , Storm can be submitted to the local cluster for debugging or submitted to

the production cluster for running.

storm jar your_jar_name.jar topology_name

storm jar your_jar_name.jar topology_name tast_name

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 142
of 158

Connecting Logstash to CKafka
Last updated：2024-12-18 15:08:14

Logstash is an open-source log processing tool that can be used to collect data from multiple sources, filters it, and
then stores it for other uses.
Logstash is highly flexible and has powerful syntax analysis capabilities. With a variety of plugins, it supports multiple

types of inputs and outputs. In addition, as a horizontally scalable data pipeline, it has powerful log collection and
retrieval features that work with Elasticsearch and Kibana.

How Logstash Works

The Logstash data processing pipeline can be divided into three stages: inputs → filters → outputs.
1. Inputs: Collect data from multiple sources like file, syslog, redis, and beats.
2. Filters: Modify and filter the collected data. Filters are intermediate processing components in the Logstash data

pipeline. They can modify events based on specific conditions. Some commonly used filters are grok, mutate, drop,
and clone.
3. Outputs: Transfer the processed data to other destinations. An event can be transferred to multiple outputs, and the
event ends when the transfer is completed. Elasticsearch is the most commonly-used output.
In addition, Logstash supports encoding and decoding data, so you can specify data formats on the input and output
ends.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 143
of 158

Strengths of Connecting Logstash to Kafka

Data can be asynchronously processed to prevent traffic spikes.
Components are decoupled, so when an exception occurs in Elasticsearch, the upstream work will not be affected.

Note:
Logstash consumes resources when processing data. If you deploy Logstash on a production server, the performance
of the server may be affected.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 144
of 158

Directions

Preparations

Download and install Logstash as instructed in Installing Logstash.
Download and install JDK 8 as instructed in Java SE Development Kit 8u341.

Create a CKafka instance as instructed in Creating Instance.

Step 1. Get the CKafka instance access address

1. Log in to the CKafka console.
2. Select Instance List on the left sidebar and click the ID of the target instance to enter its basic information page.
3. On the instance's basic information page, get the instance access address in the Access Mode module.

https://www.elastic.co/guide/en/logstash/7.6/installing-logstash.html?spm=a2c4g.11186623.2.10.7d625287CKP6MX
https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
https://www.tencentcloud.com/document/product/597/39718
https://console.tencentcloud.com/ckafka

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 145
of 158

Step 2. Create a topic

1. On the instance's basic information page, select the Topic Management tab at the top.
2. On the topic management page, click Create to create a topic named logstash_test .

Step 3. Connect to CKafka

Note:
You can click the following tabs to view the detailed directions for using CKafka as inputs or outputs .

Connecting as inputs

Connecting as outputs
1. Run bin/logstash-plugin list to check whether logstash-input-kafka is included in the

supported plugins.

2. Write the configuration file input.conf in the .bin/ directory.

In the following example, Kafka is used as the data source, and the standard output is taken as the data destination.

input {

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 146
of 158

 kafka {

 bootstrap_servers => "xx.xx.xx.xx:xxxx" // CKafka instance access

address

 group_id => "logstash_group" // CKafka group ID

 topics => ["logstash_test"] // CKafka topic name

 consumer_threads => 3 // Number of consumer threads, which is generally

the same as the number of CKafka partitions

 auto_offset_reset => "earliest"

 }

}

output {

 stdout{codec=>rubydebug}

}

3. Run the following command to start Logstash and consume messages.

./logstash -f input.conf

The returned result is as follows:

You can see that the data in the topic above has been consumed now.
1. Run bin/logstash-plugin list to check whether logstash-output-kafka is included in the

supported plugins.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 147
of 158

2. Write the configuration file output.conf in the .bin/ directory.

In the following example, the standard input is taken as the data source, and Kafka is used as the data destination.

input {

 stdin{}

}

output {

kafka {

 bootstrap_servers => "xx.xx.xx.xx:xxxx"

 topic_id => "logstash_test"

 }

}

3. Run the following command to start Logstash and send messages to the created topic:

./logstash -f output.conf

4. Start the CKafka consumer and verify the production data from the previous step.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 148
of 158

Connecting Filebeat to CKafka
Last updated：2024-01-09 14:56:36

The Beats platform offers various single-purpose data shippers. Once installed, these shippers can be used as
lightweight agents to send the collected data from hundreds or thousands of machines to the target systems.

Beats offers a wide variety of shippers. You can download the most appropriate one based on your needs. This
document uses Filebeat, a lightweight log shipper, as an example to describe how to connect Filebeat to CKafka and
handle common problems that may occur after the connection.

Prerequisites

You have downloaded and installed Filebeat. For more information, see Filebeat quick start: installation and

configuration.
You have downloaded and installed JDK 8. For more information, see Java Downloads.
You have created a CKafka instance. For more information, see Creating Instance.

https://www.elastic.co/cn/products/beats
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation-configuration.html
https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
https://www.tencentcloud.com/document/product/597/39718

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 149
of 158

Directions

Step 1. Obtain the CKafka instance access address

1. Log in to the CKafka console.
2. Select Instance List on the left sidebar and click the ID of the target instance to enter the instance details page.
3. You can obtain the instance access address in the Access Mode module on the Basic Info tab page.

Step 2. Create a topic

1. On the instance details page, select the Topic Management tab at the top.
2. On the topic management page, click Create to create a topic named test .

Step 3. Prepare the configuration file

Enter the installation directory of Filebeat and create the configuration monitoring file filebeat.yml .

#======= For Filebeat 7.x or later versions, change `filebeat.prospectors` to

`filebeat.inputs` =======

filebeat.prospectors:

- input_type: log

This is the path to the monitoring file.

https://console.tencentcloud.com/ckafka

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 150
of 158

 paths:

 - /var/log/messages

#======= Outputs =========

#------------------ kafka -------------------------------------

output.kafka:

 version:0.10.2 // Set the value to the open-source version of the CKafka

instance

 # Set to the access address of the CKafka instance

 hosts: ["xx.xx.xx.xx:xxxx"]

 # Set the name of the target topic

 topic: 'test'

 partition.round_robin:

 reachable_only: false

 required_acks: 1

 compression: none

 max_message_bytes: 1000000

 # The following parameters need to be configured for SASL. If SASL is not

required, skip them.

 username: "yourinstance#yourusername" // You need to concatenate the

instance ID and username

 password: "yourpassword"

Step 4. Use Filebeat to send a message

1. Run the following command to start the client:

sudo ./filebeat -e -c filebeat.yml

2. Add data to the monitoring file (for example: testlog).

echo ckafka1 >> testlog

echo ckafka2 >> testlog

echo ckafka3 >> testlog

3. Start the consumer to consume the corresponding topic and obtain the following data.

{"@timestamp":"2017-09-29T10:01:27.936Z","beat":

{"hostname":"10.193.9.26","name":"10.193.9.26","version":"5.6.2"},"input_type":

"log","message":"ckafka1","offset":500,"source":"/data/ryanyyang/hcmq/beats/fil

ebeat-5.6.2-linux-x86_64/testlog","type":"log"}

{"@timestamp":"2017-09-29T10:01:30.936Z","beat":

{"hostname":"10.193.9.26","name":"10.193.9.26","version":"5.6.2"},"input_type":

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 151
of 158

"log","message":"ckafka2","offset":508,"source":"/data/ryanyyang/hcmq/beats/fil

ebeat-5.6.2-linux-x86_64/testlog","type":"log"}

{"@timestamp":"2017-09-29T10:01:33.937Z","beat":

{"hostname":"10.193.9.26","name":"10.193.9.26","version":"5.6.2"},"input_type":

"log","message":"ckafka3","offset":516,"source":"/data/ryanyyang/hcmq/beats/fil

ebeat-5.6.2-linux-x86_64/testlog","type":"log"}

SASL/PLAINTEXT mode

If you want to configure SASL/PLAINTEXT, you need to set the username and password under the Kafka
configuration.

 # The following parameters need to be configured for SASL. If SASL is not

required, skip them.

 username: "yourinstance#yourusername" // You need to concatenate the

instance ID and username

 password: "yourpassword"

FAQs

The Filebeat log file (default path: /var/log/filebeat/filebeat) contains a large number of INFO logs as

follows:

2019-03-20T08:55:02.198+0800 INFO kafka/log.go:53 producer/broker/544

starting up

2019-03-20T08:55:02.198+0800 INFO kafka/log.go:53 producer/broker/544

state change to [open] on wp-news-filebeat/4

2019-03-20T08:55:02.198+0800 INFO kafka/log.go:53 producer/leader/wp-

news-filebeat/4 selected broker 544

2019-03-20T08:55:02.198+0800 INFO kafka/log.go:53 producer/broker/478

state change to [closing] because EOF

2019-03-20T08:55:02.199+0800 INFO kafka/log.go:53 Closed connection to

broker bitar1d12:9092

2019-03-20T08:55:02.199+0800 INFO kafka/log.go:53 producer/leader/wp-

news-filebeat/5 state change to [retrying-3]

2019-03-20T08:55:02.199+0800 INFO kafka/log.go:53 producer/leader/wp-

news-filebeat/4 state change to [flushing-3]

2019-03-20T08:55:02.199+0800 INFO kafka/log.go:53 producer/leader/wp-

news-filebeat/5 abandoning broker 478

2019-03-20T08:55:02.199+0800 INFO kafka/log.go:53 producer/leader/wp-

news-filebeat/2 state change to [retrying-2]

2019-03-20T08:55:02.199+0800 INFO kafka/log.go:53 producer/leader/wp-

news-filebeat/2 abandoning broker 541

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 152
of 158

2019-03-20T08:55:02.199+0800 INFO kafka/log.go:53 producer/leader/wp-

news-filebeat/3 state change to [retrying-2]

2019-03-20T08:55:02.199+0800 INFO kafka/log.go:53 producer/broker/478

shut down

This problem may be related to the Filebeat version. Products in the Elastic family are updated frequently, and major
version incompatibility problems often occur.

For example, v6.5.x supports Kafka v0.9, v0.10, v1.1.0, and v2.0.0 by default, while v5.6.x supports Kafka v0.8.2.0 by
default.
Check the version configuration in the configuration file:

output.kafka:

 version:0.10.2 // Set the value to the open-source version of the CKafka

instance

Note

When data is sent to CKafka, compression.codec cannot be set.

Gzip compression is not supported by default. To use it, submit a ticket.

As Gzip compression causes high CPU consumption, if it is used, all messages will become InValid .

The program cannot run properly when the LZ4 compression is used. Possible causes include:

The message format is incorrect. The default message version of CKafka is v0.10.2. You need to use the message
format v1.
The setting method for SDK varies by Kafka client. You can query the setting method in the open-source community
(such as the description for C/C++ Client) to set the version of the message format.

https://console.tencentcloud.com/workorder/category
https://github.com/edenhill/librdkafka/blob/master/INTRODUCTION.md#compression

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 153
of 158

Log Access
Connecting CLS to CKafka
Last updated：2024-01-09 14:56:36

Overview

You can ship log topic data to CKafka for real-time stream computing and storage. If you haven't purchased a CKafka
instance, you can consider using the Consumption over Kafka feature of CLS.

Prerequisites

You have activated the CKafka service.

Make sure that the current account has the permission to enable shipping to CKafka. If your account is a sub-account,
it needs to be authorized by the root account first. For more information, see Examples of Custom Access Policies.

Directions

1. Create a CKafka instance in the same region as the log topic. For more information, see Creating Instance.
2. Configure the following parameters to create a topic in the same region as the log topic. For more information, see
Creating Topic.

Preset ACL Policy: Disable this option.
Show advanced configuration:
CleanUp.policy: Select delete; otherwise, shipping will fail.
max.message.bytes: Set this value to 8 MB or above. Otherwise, when the size of a single message in CLS exceeds
the specified limit, the message cannot be written to the CKafka topic, and shipping will fail.
3. Go to the CLS console and enter the shipping task management page or log topic management page as needed.

On the left sidebar, click Shipping Task Management and select a region, logset, and log topic.
On the left sidebar, click Log Topic and select a log topic to be shipped to CKafka to enter the log topic management
page.
4. Click the Ship to CKafka tab to enter the configuration page.
5. Click Edit on the right to enable shipping to CKafka. Then, select the target CKafka instance and topic as well as

the log field to be shipped.
6. Click OK to start shipping to CKafka. If the task status is Enabled, the feature is enabled successfully.
Note:

https://www.tencentcloud.com/document/product/614/42752
https://www.tencentcloud.com/document/product/614/45004
https://www.tencentcloud.com/document/product/597/39718
https://www.tencentcloud.com/document/product/597/47584
https://console.tencentcloud.com/cls

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 154
of 158

To cleanse the log data before shipping to CKafka, see Log Filtering and Distribution.

FAQs

What should I do if the log data cannot be shipped to CKafka?

If ACL authentication is enabled in CKafka, the log data cannot be shipped. In this case, you need to disable the ACL
of the topic.

What should I do if the system prompts that I have no permissions to read/write the CKafka topic?

If you directly use an API to ship data to CKafka, you may not have the read/write permissions of the CKafka topic. If
you ship data in the console, the system will guide you through the authorization process, but if you directly call an API
for shipping, you need to authorize manually. For more information, see Viewing and Configuring Shipping
Permissions.

https://www.tencentcloud.com/document/product/614/46135
https://www.tencentcloud.com/document/product/614/46142

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 155
of 158

Replacing Supportive Route (Old)
Last updated：2024-01-09 14:56:36

Background

To enjoy more stable and reliable services, we recommend you switch to the new supportive route.

Impact

Because it is necessary to update the bootstrap-server addresses of producers and consumers and restart the
service, the switch will cause a momentary interruption in business production and consumption.

Directions

1. Create a supportive route.
2. Switch the CKafka bootstrap-server addresses of all producers and consumers to the newly created supportive
route. The switch order does not matter as long as they are all switched.
3. Restart producers and consumers based on the business conditions. The restart order does not matter.
4. Observe whether the business is stable for at least 3 hours (recommended).

5. Delete the old supportive route.

Rollback

If an exception occurs during business verification, you need to roll back to the old supportive route in the following
steps provided that it has not been deleted.
1. Change back to the old supportive route address on all producers and consumers.
2. Restart all producer and consumer services.
3. Verify the business.

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 156
of 158

Practice Tutorial for Cluster Bandwidth in High
CPU Utilization Scenarios
Last updated：2024-11-07 15:08:17

Applicable Scenarios

CKafka Pro Edition.
The cluster bandwidth specification is higher than 3,000 MB.
In certain special business scenarios, the bandwidth utilization is low but the CPU utilization is high. Therefore, the

cluster bandwidth needs to be scaled out based on the CPU utilization.

Scale-out Policies

It is recommended that the CPU utilization of a single node does not exceed 60%. If it exceeds 60%, linear scaling
needs to be conducted based on the CPU utilization of the current cluster.

Examples

Current Cluster Status

The cluster bandwidth specification is 3,000 MB, the average CPU utilization is 80%, and the bandwidth utilization is
50%.

For more information on the node-level CPU utilization, see Querying Advanced Monitoring (Pro Edition).

Scale-out Objectives

Business traffic increased by 50%.
CPU utilization decreased to 60%.

Scale-out Solutions

Scale-out coefficient = 80%/60% x (1 + 50%) = 2
Reserved buffer = 30%
Specification after scale-out = 3,000 MB x Scale-out coefficient x Reserved buffer = 3,000 MB x 2 x (1 + 30%) = 7,800

MB

https://www.tencentcloud.com/document/product/597/40038

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 157
of 158

Practice Tutorial for Cluster Capacity Planning
Last updated：2024-11-07 15:05:18

When you use the TDMQ for CKafka, the main specifications include bandwidth and storage, as well as availability
zone (AZ) distribution and the number of partitions. These metrics determine the cluster's load capability to some
extent. However, in actual operations, due to differences in business scenarios, the actual load of the cluster may be

affected by various factors, such as the message size, whether the messages are compressed, message
sending/receiving ratio, number of Topic replicas, and their key attributes. Therefore, it is not comprehensive enough
to simply use the cluster's bandwidth and storage ratio as the sole judgment metrics for cluster scaling.
To better ensure the stable operation of business and to plan and manage cluster capacity reasonably, advanced
monitoring currently provides the cluster load metric. This metric can help you obtain the current cluster's load status

in a simpler way, thus serving as a reference for assessing whether the current CKafka cluster needs to be scaled out.

Applicable Scenarios

CKafka Pro Edition.
In some special business scenarios, the bandwidth utilization is low but the cluster load is high. Therefore, the cluster
bandwidth needs to be scaled out based on the cluster load metric.

Metric Viewing Path

View the overall cluster load at the node level. For more information, see Querying Advanced Monitoring (Pro Edition).

Reference Policies

To ensure the stability of your production business and the processing performance of the CKafka cluster, it is

recommended to reasonably plan the cluster capacity according to the deployment method and load status of the
cluster. If the cluster load exceeds the following reference value, it is recommended to increase the cluster bandwidth
specifications promptly.
Single-AZ deployment
When the cluster is deployed in a single AZ, it is recommended that the maximum cluster load value be kept about

70%.
Multi-AZ deployment
When the cluster is deployed in multiple AZs, a certain level of redundancy needs to be considered so that if an
unexpected exception occurs in one AZ, the remaining AZs can handle the business load normally. For example:

https://www.tencentcloud.com/document/product/597/40038

TDMQ for CKafka

©2013-2025 Tencent Cloud International Pte. Ltd. Page 158
of 158

Two-AZ deployment: When a single AZ is unavailable, the cluster has half of its nodes remaining. Considering the
70% utilization, it is recommended to keep the normal load of the cluster below 35%.
Three-AZ deployment: When a single AZ is unavailable, the cluster has 2/3 of its nodes remaining. Considering the

70% utilization, it is recommended to keep the normal load of the cluster below 47%.

