
Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 1
of 87

Serverless Cloud Function

Triggers

Product Documentation

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 2
of 87

Copyright Notice

©2013-2025 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by the Tencent corporate group, including
its parent, subsidiaries and affiliated companies, as the case may be. Trademarks of third parties referred to in this
document are owned by their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 3
of 87

Contents

Triggers
Trigger Overview
Trigger Event Message Structure Summary
API Gateway Trigger

Overview
Websocket

How It Works
Usage

COS Trigger
COS Trigger Description
Usage

CLS Trigger
CLS Trigger Description
Usage

Timer Trigger
Timer Trigger Description
Usage

CKafka Trigger
CKafka Trigger Description
Usage

Apache Kafka Trigger
Apache Kafka Trigger Description
Usage

MQTT Trigger
Trigger Configuration Description
MPS Trigger
CLB Trigger Description
TencentCloud API Trigger

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 4
of 87

Triggers
Trigger Overview
Last updated：2024-12-02 19:58:17

SCF currently supports two triggering modes: event-triggered and HTTP request-triggered.

Event-Triggered

Event-Triggered is a typical serverless execution mode. Its core components are SCF functions and event sources,
where an event source is a Tencent Cloud service or user-defined code that publishes an event, an SCF function is

the handler of the event, and a function trigger is a set of correspondences between functions and event sources. For
example, in the following scenarios:
Image/Video processing: the application crops the images uploaded by users into an appropriate size, stores the
images in COS, creates thumbnails of each image, and displays them on the user page. In this scenario, you need to
select COS as the event source and publish the event to the SCF function when the file is created. The event data

provides all the information about the bucket and the file.
Data processing: the data collected during the day (such as clickstreams) is analyzed with a report generated at
00:00. In this scenario, you need to select a timer as the event source to publish an event to the SCF function at a
specific time.
Custom application: the first image is invoked in your application to handle the SCF function as a module of the
application. In this scenario, you need to call the Invoke API in the application to publish an event.

These event sources can be any of the following:
Internal event sources: these are preconfigured Tencent Cloud services that can be used with SCF. If you configure
one of these event sources as a function trigger, the function will be invoked automatically when an event occurs. The
relationship between the event source and the function (i.e., event source mapping) will be maintained on the event
source side.

Custom applications: you can let custom applications publish events and invoke SCF functions.

Sample 1. COS publishes an event and invokes a function

You can configure the event source mapping for COS to determine what behaviors of COS will trigger an SCF
function (such as object PUT or DELETE). The COS event source mapping is stored in COS and uses the bucket
notification feature to direct COS to invoke the function when an event of a particular type occurs:
A COS trigger is created.

The user creates/deletes an object in the bucket.
COS detects an object creation/deletion event.

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 5
of 87

COS automatically invokes a function. It will be determined which function should be invoked based on the event
source mapping stored in the COS configuration. The bucket and object information will be passed to the function as
event data.

Sample 2. A timer publishes a time and invokes a function

The event source mapping of the timer is saved in the SCF function configuration to determine when the function
should be automatically triggered:
A timer trigger is created.
The timer automatically invokes the function at the configured time.

Sample 3. A custom application invokes a function

If you need to invoke an SCF function in a custom application, you do not need to configure a function trigger or set up

an event source mapping in this case; instead, you can use the Invoke API as the event source.

The custom application uses the Invoke API to invoke the function and pass in the event data.

The function receives the triggering request and is executed.
If sync invocation is used, the function will return the result to the application.
Note:
In this example, since the custom application and the function are produced by the same user, the user credentials

(APPID , SecretId , and SecretKey) can be specified.

Notes

1. The current trigger-related restrictions for a single function can be viewed in Quota Limits.
2. There are specific restrictions on event source mappings due to the limitations of different Tencent Cloud services.
For example, for a COS trigger, the same event (such as file upload) in the same COS bucket cannot trigger multiple
different functions.

HTTP Request-Triggered

HTTP request-triggered is a special trigger method supported by SCF web functions. A native HTTP request can be
directly passed through to the function environment through API Gateway to trigger the execution and processing of
the function. It is suitable for the development of web service scenarios. For detailed usage, please see Function
Overview.

https://www.tencentcloud.com/document/product/583/11637
https://www.tencentcloud.com/document/product/583/40688

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 6
of 87

Trigger Event Message Structure Summary
Last updated：2024-12-02 19:58:17

This document summarizes the message structures of all trigger events that are connected to SCF. For more
information on trigger configuration and restrictions, see Trigger Management.
Note:

The event structure of the input parameter passed in by a trigger has been partially defined and can be used directly.
You can get and use the Java library through the Java Cloud Event Definition or the Go library through the Go Cloud
Event Definition.

Event Message Structure of Integration Request for API Gateway
Trigger

When an API Gateway trigger receives a request, event data will be sent to the bound function in JSON format as
shown below. For more information, see API Gateway Trigger.

{

 "requestContext": {

 "serviceId": "service-f94sy04v",

 "path": "/test/{path}",

 "httpMethod": "POST",

 "requestId": "c6af9ac6-****-****-9a41-93e8deadbeef",

 "identity": {

 "secretId": "abdcdxxxxxxxsdfs"

 },

 "sourceIp": "10.0.2.14",

 "stage": "release"

 },

 "headers": {

 "Accept-Language": "en-US,en,cn",

 "Accept": "text/html,application/xml,application/json",

 "Host": "service-3ei3tii4-251000691.ap-guangzhou.apigateway.myqloud.com",

 "User-Agent": "User Agent String"

 },

 "body": "{\\"test\\":\\"body\\"}",

 "pathParameters": {

 "path": "value"

 },

 "queryStringParameters": {

 "foo": "bar"

 },

https://www.tencentcloud.com/document/product/583/9704
https://github.com/tencentyun/scf-java-libs
https://github.com/tencentyun/scf-go-lib/tree/master/events
https://www.tencentcloud.com/document/product/583/12513

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 7
of 87

 "headerParameters":{

 "Refer": "10.0.2.14"

 },

 "stageVariables": {

 "stage": "release"

 },

 "path": "/test/value",

 "queryString": {

 "foo" : "bar",

 "bob" : "alice"

 },

 "httpMethod": "POST"

}

Event Message Structure for Timer Trigger

When a function is invoked at a scheduled time, event data will be sent to the bound function in JSON format as
shown below.

{

 "Type":"Timer",

 "TriggerName":"EveryDay",

 "Time":"2019-02-21T11:49:00Z",

 "Message":"user define msg body"

}

Event Message Structure for COS Trigger

When an object creation or deletion event occurs in the specified COS bucket, event data will be sent to the bound
function in JSON format as shown below. For more information, see COS Trigger.

{

 "Records": [{

 "cos": {

 "cosSchemaVersion": "1.0",

 "cosObject": {

 "url": "http://testpic-1253970026.cos.ap-chengdu.myqcloud.com/testf

 "meta": {

 "x-cos-request-id": "NWMxOWY4MGFfMjViMjU4NjRfMTUy********ZjM=",

 "Content-Type": ""

 },

 "vid": "",

https://www.tencentcloud.com/document/product/583/9707

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 8
of 87

 "key": "/1253970026/testpic/testfile",

 "size": 1029

 },

 "cosBucket": {

 "region": "cd",

 "name": "testpic",

 "appid": "1253970026"

 },

 "cosNotificationId": "unkown"

 },

 "event": {

 "eventName": "cos:ObjectCreated:*",

 "eventVersion": "1.0",

 "eventTime": 1545205770,

 "eventSource": "qcs::cos",

 "requestParameters": {

 "requestSourceIP": "192.168.15.101",

 "requestHeaders": {

 "Authorization": "q-sign-algorithm=******"

 }

 },

 "eventQueue": "qcs:0:lambda:cd:appid/1253970026:default.printevent.$LAT

 "reservedInfo": "",

 "reqid": 179398952

 }

 }]

}

Event Message Structure for CKafka Trigger

When a specified CKafka topic receives a message, the backend consumption module of SCF will consume the
message and encapsulate it into an event in JSON format like the one below, which will trigger the bound function and
pass the data content as input parameters to the function. For more information, see CKafka Trigger.

{

 "Records": [

 {

 "Ckafka": {

 "topic": "test-topic",

 "partition":1,

 "offset":36,

 "msgKey": "None",

 "msgBody": "Hello from Ckafka!"

 }

https://www.tencentcloud.com/document/product/583/17530

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 9
of 87

 },

 {

 "Ckafka": {

 "topic": "test-topic",

 "partition":1,

 "offset":37,

 "msgKey": "None",

 "msgBody": "Hello from Ckafka again!"

 }

 }

]

}

Event Message Structure for CLS Trigger

When the specified CLS trigger receives a message, the CLS backend consumption module will consume the
message and encapsulate it to asynchronously invoke your function. In order to ensure the efficiency of data transfer in
a single triggering action, the value of the data field is a Base64-encoded ZIP document. For more information, see
CLS Trigger.

{

 "clslogs": {

 "data": "ewogICAgIm1lc3NhZ2VUeXBlIjogIkRBVEFfTUVTU0FHRSIsCiAgICAib3duZXIiOiAiMT

 }

}

After being decoded and decompressed, the log data will look like the following JSON body (using decoded CLS Logs
message data as an example):

{

 "topic_id": "xxxx-xx-xx-xx-yyyyyyyy",

 "topic_name": "testname",

 "records": [{

 "timestamp": "1605578090000000",

 "content": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 }, {

 "timestamp": "1605578090000003",

 "content": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 }]

}

https://www.tencentcloud.com/document/product/583/38845

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 10
of 87

Event Message Structure for MPS Trigger

When a specified MPS trigger receives a message, the event structures and fields will be as shown below (with the
 WorkflowTask task as an example). For more information, see MPS Trigger.

{

 "EventType":"WorkflowTask",

 "WorkflowTaskEvent":{

 "TaskId":"245****654-WorkflowTask-f46dac7fe2436c47******d71946986t0",

 "Status":"FINISH",

 "ErrCode":0,

 "Message":"",

 "InputInfo":{

 "Type":"COS",

 "CosInputInfo":{

 "Bucket":"macgzptest-125****654",

 "Region":"ap-guangzhou",

 "Object":"/dianping2.mp4"

 }

 },

 "MetaData":{

 "AudioDuration":11.261677742004395,

 "AudioStreamSet":[

 {

 "Bitrate":127771,

 "Codec":"aac",

 "SamplingRate":44100

 }

],

 "Bitrate":2681468,

 "Container":"mov,mp4,m4a,3gp,3g2,mj2",

 "Duration":11.261677742004395,

 "Height":720,

 "Rotate":90,

 "Size":3539987,

 "VideoDuration":10.510889053344727,

 "VideoStreamSet":[

 {

 "Bitrate":2553697,

 "Codec":"h264",

 "Fps":29,

 "Height":720,

 "Width":1280

 }

],

 "Width":1280

https://www.tencentcloud.com/document/product/583/39163

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 11
of 87

 },

 "MediaProcessResultSet":[

 {

 "Type":"Transcode",

 "TranscodeTask":{

 "Status":"SUCCESS",

 "ErrCode":0,

 "Message":"SUCCESS",

 "Input":{

 "Definition":10,

 "WatermarkSet":[

 {

 "Definition":515247,

 "TextContent":"",

 "SvgContent":""

 }

],

 "OutputStorage":{

 "Type":"COS",

 "CosOutputStorage":{

 "Bucket":"gztest-125****654",

 "Region":"ap-guangzhou"

 }

 },

 "OutputObjectPath":"/dasda/dianping2_transcode_10",

 "SegmentObjectName":"/dasda/dianping2_transcode_10_{number}

 "ObjectNumberFormat":{

 "InitialValue":0,

 "Increment":1,

 "MinLength":1,

 "PlaceHolder":"0"

 }

 },

 "Output":{

 "OutputStorage":{

 "Type":"COS",

 "CosOutputStorage":{

 "Bucket":"gztest-125****654",

 "Region":"ap-guangzhou"

 }

 },

 "Path":"/dasda/dianping2_transcode_10.mp4",

 "Definition":10,

 "Bitrate":293022,

 "Height":320,

 "Width":180,

 "Size":401637,

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 12
of 87

 "Duration":11.26200008392334,

 "Container":"mov,mp4,m4a,3gp,3g2,mj2",

 "Md5":"31dcf904c03d0cd78346a12c25c0acc9",

 "VideoStreamSet":[

 {

 "Bitrate":244608,

 "Codec":"h264",

 "Fps":24,

 "Height":320,

 "Width":180

 }

],

 "AudioStreamSet":[

 {

 "Bitrate":48414,

 "Codec":"aac",

 "SamplingRate":44100

 }

]

 }

 },

 "AnimatedGraphicTask":null,

 "SnapshotByTimeOffsetTask":null,

 "SampleSnapshotTask":null,

 "ImageSpriteTask":null

 },

 {

 "Type":"AnimatedGraphics",

 "TranscodeTask":null,

 "AnimatedGraphicTask":{

 "Status":"FAIL",

 "ErrCode":30010,

 "Message":"TencentVodPlatErr Or Unkown",

 "Input":{

 "Definition":20000,

 "StartTimeOffset":0,

 "EndTimeOffset":600,

 "OutputStorage":{

 "Type":"COS",

 "CosOutputStorage":{

 "Bucket":"gztest-125****654",

 "Region":"ap-guangzhou"

 }

 },

 "OutputObjectPath":"/dasda/dianping2_animatedGraphic_20000"

 },

 "Output":null

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 13
of 87

 },

 "SnapshotByTimeOffsetTask":null,

 "SampleSnapshotTask":null,

 "ImageSpriteTask":null

 },

 {

 "Type":"SnapshotByTimeOffset",

 "TranscodeTask":null,

 "AnimatedGraphicTask":null,

 "SnapshotByTimeOffsetTask":{

 "Status":"SUCCESS",

 "ErrCode":0,

 "Message":"SUCCESS",

 "Input":{

 "Definition":10,

 "TimeOffsetSet":[

],

 "WatermarkSet":[

 {

 "Definition":515247,

 "TextContent":"",

 "SvgContent":""

 }

],

 "OutputStorage":{

 "Type":"COS",

 "CosOutputStorage":{

 "Bucket":"gztest-125****654",

 "Region":"ap-guangzhou"

 }

 },

 "OutputObjectPath":"/dasda/dianping2_snapshotByOffset_10_{n

 "ObjectNumberFormat":{

 "InitialValue":0,

 "Increment":1,

 "MinLength":1,

 "PlaceHolder":"0"

 }

 },

 "Output":{

 "Storage":{

 "Type":"COS",

 "CosOutputStorage":{

 "Bucket":"gztest-125****654",

 "Region":"ap-guangzhou"

 }

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 14
of 87

 },

 "Definition":0,

 "PicInfoSet":[

 {

 "TimeOffset":0,

 "Path":"/dasda/dianping2_snapshotByOffset_10_0.jpg"

 "WaterMarkDefinition":[

 515247

]

 }

]

 }

 },

 "SampleSnapshotTask":null,

 "ImageSpriteTask":null

 },

 {

 "Type":"ImageSprites",

 "TranscodeTask":null,

 "AnimatedGraphicTask":null,

 "SnapshotByTimeOffsetTask":null,

 "SampleSnapshotTask":null,

 "ImageSpriteTask":{

 "Status":"SUCCESS",

 "ErrCode":0,

 "Message":"SUCCESS",

 "Input":{

 "Definition":10,

 "OutputStorage":{

 "Type":"COS",

 "CosOutputStorage":{

 "Bucket":"gztest-125****654",

 "Region":"ap-guangzhou"

 }

 },

 "OutputObjectPath":"/dasda/dianping2_imageSprite_10_{number

 "WebVttObjectName":"/dasda/dianping2_imageSprite_10",

 "ObjectNumberFormat":{

 "InitialValue":0,

 "Increment":1,

 "MinLength":1,

 "PlaceHolder":"0"

 }

 },

 "Output":{

 "Storage":{

 "Type":"COS",

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 15
of 87

 "CosOutputStorage":{

 "Bucket":"gztest-125****654",

 "Region":"ap-guangzhou"

 }

 },

 "Definition":10,

 "Height":80,

 "Width":142,

 "TotalCount":2,

 "ImagePathSet":[

 "/dasda/imageSprite/dianping2_imageSprite_10_0.jpg"

],

 "WebVttPath":"/dasda/imageSprite/dianping2_imageSprite_10.v

 }

 }

 }

]

 }

}

Event Message Structure for CLB Trigger

When a CLB trigger receives a request, event data will be sent to the bound function in JSON format as shown below.
For more information, see CLB Trigger Description.

{

 "headers": {

 "Content-type": "application/json",

 "Host": "test.clb-scf.com",

 "User-Agent": "Chrome",

 "X-Stgw-Time": "1591692977.774",

 "X-Client-Proto": "http",

 "X-Forwarded-Proto": "http",

 "X-Client-Proto-Ver": "HTTP/1.1",

 "X-Real-IP": "9.43.175.219",

 "X-Forwarded-For": "9.43.175.xx"

 "X-Vip": "121.23.21.xx",

 "X-Vport": "xx",

 "X-Uri": "/scf_location",

 "X-Method": "POST"

 "X-Real-Port": "44347",

 },

https://www.tencentcloud.com/document/product/583/39849

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 16
of 87

 "payload": {

 "key1": "123",

 "key2": "abc"

 },

 "isBase64Encoded": "false"

}

Event Message Structure for EventBridge Trigger

With EventBridge, you can further expand the function event trigger sources and send events generated by
EventBridge to SCF in the following form, where the content of the "data" field is determined by the event source.

Here, TDMQ is used as an example:

 {

 "specversion": "0",

 "id": "13a3f42d-7258-4ada-da6d-023a33******",

 "type": "connector:tdmq",

 "source": "tdmq.cloud.tencent",

 "subjuect": "qcs::tdmq:$region:$account:topicName/$topicSets.clusterId/$topicSets

 "time": "1615430559146",

 "region": "ap-guangzhou",

 "datacontenttype": "application/json;charset=utf-8",

 "data": {

 "topic": "persistent://appid/namespace/topic-1",

 "tags": "testtopic",

 "TopicType": "0",

 "subscriptionName": "xxxxxx",

 "toTimestamp": "1603352765001",

 "partitions": "0",

 "msgId": "123345346",

 "msgBody": "Hello from TDMQ!"

 }

https://www.tencentcloud.com/products/eb

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 17
of 87

API Gateway Trigger
Overview
Last updated：2024-12-02 19:58:17

You can implement backend web services by writing SCF functions and providing services through API Gateway
which will pass the request content as parameters to the function and return the result from the function back to the
requester as the response.

Note:
API Gateway triggers can trigger both event-triggered functions and HTTP-triggered functions. This document only
describes the request method of event-triggered function triggering. For more information on HTTP-triggered
function triggering, see Trigger Management.
Characteristics of API Gateway triggers:

Push model

After API Gateway receives an API request, if the API Gateway backend is connected with an SCF function, the
function will be triggered. Meanwhile, API Gateway will send the relevant information of the API request to the
triggered function as event input parameters, such as the specific service that receives the request, API rule,

actual request path, method, and path , header , and query of the request.

Sync invocation

API Gateway invokes the function synchronously, and it will wait for the function to return before the timeout period
configured in it elapses. For more information on invocation types, see Invocation Types.

API Gateway Trigger Configuration

API Gateway triggers can be configured in the SCF console or the API Gateway console.
SCF console
API Gateway console

In the SCF console, you can add API Gateway triggers, select existing or create API services, and define the request
methods (currently, six methods are supported, namely, ANY, GET, HEAD, POST, PUT, and DELETE),
environments (test, pre-release, and release environments), and authentication methods (API Gateway key pair).
When configuring API rules in the API Gateway console, you can select SCF as the backend and select functions in
the same region as the API service. In the API Gateway console, you can configure and manage advanced API

services such as traffic throttling plan, blocklist, and allowlist.
When you configure the connection with SCF in API Gateway, you also need to configure the timeout period. The
request timeout period in API Gateway and the execution timeout period in SCF take effect respectively. The timeout
rules are as follows:

https://www.tencentcloud.com/document/product/583/40691
https://www.tencentcloud.com/document/product/583/9694
https://console.tencentcloud.com/scf/index
https://console.tencentcloud.com/apigateway/index

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 18
of 87

API Gateway timeout period > SCF timeout period

The SCF timeout period takes effect first, the API request response is 200 HTTP code , but the returned content

is the error message of SCF timeout.

API Gateway timeout period < SCF timeout period

The API Gateway timeout period takes effect first, the API request response is 5xx HTTP code , which indicates

that the request timed out.

Limitation on API Gateway Trigger Binding

In API Gateway, one API rule can be bound to only one function, but one function can be bound to multiple API rules
as the backend. You can create an API with different paths in the API Gateway console and point the backend to the

same function. APIs with the same path, same request method, and different release environments are regarded as
the same API and cannot be bound repeatedly.
API Gateway triggers currently can only be bound to functions in the same region; for example, a function created in
the Guangzhou region can only be bound to and triggered by API rules created in the Guangzhou region. If you want
to trigger a function through API Gateway configuration in a specific region, please create a function in that region.

Request and Response

Request method is the method to process request sent from API Gateway to SCF, and response method is the

method to process the returned value sent from SCF to API Gateway. Both request and response methods can be
planned and implemented by means of passthrough and integration.

Integration request and passthrough request

Integration request means that API Gateway converts the content of the HTTP request into request data structures
which are passed to the function for handling as event input parameters of the function. The following details the

request data structures.

For more information on passthrough requests, see Trigger Management.
Note:
When transferring images or files to SCF through API Gateway, you need to Base64-encode them. If the size of a
Base64-encoded file is above 6 MB, we recommend you upload the file to COS through the client and pass the object
address to SCF first. Then, SCF will pull the file from COS to complete the upload.

Event message structures of integration request for API Gateway trigger

When an API Gateway trigger receives a request, it sends the event data to the bound function in JSON format as
shown below:

https://console.tencentcloud.com/apigateway/index
https://www.tencentcloud.com/document/product/583/40691#.E8.AF.B7.E6.B1.82.E4.B8.8E.E5.93.8D.E5.BA.94
https://www.tencentcloud.com/zh/product/cos

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 19
of 87

{

 "requestContext": {

 "serviceId": "service-f94sy04v",

 "path": "/test/{path}",

 "httpMethod": "POST",

 "requestId": "c6af9ac6-7b61-11e6-9a41-93e8deadbeef",

 "identity": {

 "secretId": "abdcdxxxxxxxsdfs"

 },

 "sourceIp": "10.0.2.14",

 "stage": "release"

 },

 "headers": {

 "accept-Language": "en-US,en,cn",

 "accept": "text/html,application/xml,application/json",

 "host": "service-3ei3tii4-251000691.ap-guangzhou.apigateway.myqloud.com",

 "user-Agent": "User Agent String"

 },

 "body": "{\\"test\\":\\"body\\"}",

 "pathParameters": {

 "path": "value"

 },

 "queryStringParameters": {

 "foo": "bar"

 },

 "headerParameters":{

 "Refer": "10.0.2.14"

 },

 "stageVariables": {

 "stage": "release"

 },

 "path": "/test/value",

 "queryString": {

 "foo" : "bar",

 "bob" : "alice"

 },

 "httpMethod": "POST"

}

The data structures are as detailed below:

Structure Description

requestContext Configuration information, request ID, authentication information, and source
information of the API gateway where the request comes from.
 serviceId , path , and httpMethod are service ID, API path, and
method of API Gateway.

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 20
of 87

 stage indicates the environment of the request source API.
 requestId identifies the unique ID of the current request.
 identity identifies the user's authentication method and information.
 sourceIp identifies the request source IP.

path Records the complete Path information of the actual request.

httpMethod Records the HTTP method of the actual request.

queryString Records the complete Query content of the actual request.

body
Records the content of the actual request after being converted into a
 String .

headers Records the complete Header content of the actual request.

pathParameters
Records the Path parameters configured in API Gateway and their actual
values.

queryStringParameters
Records the Query parameters configured in API Gateway and their actual
values.

headerParameters
Records the Header parameters configured in API Gateway and their actual
values.

Note:

The content of requestContext may be increased during API Gateway iteration. At present, it is guaranteed that

the content of the data structure will only be increased but not reduced, so that the existing structure will not be
compromised.
Parameters in real requests may appear in multiple locations and can be selected based on your business needs.

Integration response and passthrough response

Integration response means that API Gateway parses the returned content of the function and constructs an HTTP

response based on the parsed content. With the aid of integration response, you can control the status code, headers,
and body content of the response by using code, and implement the response in a custom format, such as XML,
HTML, JSON, and even JS. When using integration response, data structures need to be returned based on the rules
of integration response for API Gateway trigger before they can be successfully parsed by API Gateway; otherwise,
error message {"errno":403,"error":"Invalid scf response format. please check your scf

response format."} will appear.

Passthrough response means that API Gateway directly passes the returned content of the function to the API
requester. Generally, the data format of this type of responses is fixed at JSON format, the status code is defined
according to the status of function execution, and status code 200 is returned if the function is successfully executed.

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 21
of 87

With passthrough response, you can get the JSON format and parse the structures at the call location to get the
content in the structures.
Note:

If the API Gateway trigger is configured in the API Gateway console, the way to handle the response is passthrough
response by default. To enable integration response, select Enable integration response at the backend
configuration location in the API configuration and return the content in the data structures detailed below in the code.
If the API Gateway trigger is configured in the SCF console, the integration response feature is enabled by default.
Please pay attention to the format of the returned data.

Returned data structures of integration response for API Gateway trigger

If integration response is set for API Gateway, the data structure in the following JSON format should be returned to
API Gateway.

{

 "isBase64Encoded": false,

 "statusCode": 200,

 "headers": {"Content-Type":"text/html"},

 "body": "<html><body><h1>Heading</h1><p>Paragraph.</p></body></html>"

}

The data structures are as detailed below:

Structure Description

isBase64Encoded
This indicates whether the content in the body is Base64-encoded binary. It should be
 true or false in JSON format. The specification of true and false varies
by language, so you should adjust based on your actual language.

statusCode HTTP return code, which should be an integer value.

headers
HTTP return header, which should contain multiple key-value or key:
[value,value] objects. Both key and value should be strings. The Location
key header is not supported currently.

body HTTP return body.

Taking Python 3.6 as an example, the sample code is as follows:

-*- coding: utf8 -*-

import json

def main_handler(event, context):

 return {

 "isBase64Encoded": false,

 "statusCode": 200,

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 22
of 87

 "headers": {"Content-Type":"text/html"},

 "body": "<html><body><h1>Heading</h1><p>Paragraph.</p></body></html>"

 }

The returned result of a function triggered by API Gateway is as follows:

If you need to return multiple headers with the same key, you can use a string array to describe different values; for

example:

{

 "isBase64Encoded": false,

 "statusCode": 200,

 "headers": {"Content-Type":"text/html","Key":["value1","value2","value3"]},

 "body": "<html><body><h1>Heading</h1><p>Paragraph.</p></body></html>"

}

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 23
of 87

Websocket
How It Works
Last updated：2024-12-02 19:58:17

Note:
This document describes how to support WebSocket for event-triggered functions. Currently, HTTP-triggered
functions already supports the native WebSocket protocol.

How to Implement

WebSocket is a new TCP-based network protocol. It implements full-duplex communication between browser and
server, i.e., allowing server to actively send information to client. In contrast, a server using the traditional HTTP
protocol only allows a client to get the data that needs to be pushed through polling or long polling.
Since SCF is stateless and trigger-based (i.e., it will be triggered only when an event arrives), in order to implement
WebSocket, SCF is used in conjunction with API Gateway to sustain and maintain the connection with the client

through API Gateway. You can assume that API Gateway and SCF work together to implement the server. When sent
by the client, a message is first passed to API Gateway, which then triggers the SCF function. When the server
function sends a message to the client, the function first posts the message to the reverse push link of API Gateway,
which then pushes the message to the client. The specific implementation architecture is as follows:

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 24
of 87

The entire lifecycle of WebSocket mainly consists of the following events:
Connection establishment: the client requests to connect with the server and establishes a connection.

Data upstream: the client sends data to the server through the established connection.
Data downstream: the server sends data to the client through the established connection.
Client disconnection: the client requests to close the established connection.
Server disconnection: the server requests to close the established connection.
SCF and API Gateway handle the events throughout the lifecycle of WebSocket as follows:

Connection establishment: the client establishes a WebSocket connection with API Gateway which sends a
connection establishment event to SCF.
Data upstream: the client sends data through WebSocket, and API Gateway forwards the data to SCF.
Data downstream: SCF sends a request to the push address specified by API Gateway, which then sends the data to
the client through WebSocket.
Client disconnection: the client requests to disconnect, and API Gateway sends a disconnection event to SCF.

Server disconnection: SCF sends a disconnection request to the push address specified by API Gateway, which will
close the WebSocket connection after receiving the request.
Therefore, the interaction between API Gateway and SCF needs to be sustained by three types of functions:

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 25
of 87

Registration function: this function is triggered when a WebSocket connection is requested and established between
the client and API Gateway, notifying SCF of the secConnectionID of the WebSocket connection. The

 secConnectionID is usually recorded in the persistent storage in this function for reverse push of subsequent

data.
Cleanup function: this function is triggered when the client initiates a WebSocket disconnection request, notifying SCF
to prepare to disconnect the secConnectionID . The secConnectionID is usually cleaned from the

persistent storage in this function.
Transfer function: this function is triggered when the client sends data through the WebSocket connection, notifying

SCF of the secConnectionID of the connection and the data sent. Business data is usually processed in this

function. For example, it determines whether to push data to other secConnectionID values in the persistent

storage.
Note:
When you need to actively push data to a secConnectionID or disconnect a secConnectionID , the

reverse push address of API Gateway has to be used.

Data Structures

Connection establishment

1. When the client initiates a WebSocket connection establishment request, API Gateway encapsulates the agreed
upon JSON data structures in the request body and sends it to the registration function in the HTTP POST method.
You can get the request body from the function's event. Below is a sample:

{

 "requestContext": {

 "serviceName": "testsvc",

 "path": "/test/{testvar}",

 "httpMethod": "GET",

 "requestId": "c6af9ac6-7b61-11e6-9a41-93e8deadbeef",

 "identity": {

 "secretId": "abdcdxxxxxxxsdfs"

 },

 "sourceIp": "10.0.2.14",

 "stage": "prod",

 "websocketEnable":true

 },

 "websocket":{

 "action":"connecting",

 "secConnectionID":"xawexasdfewezdfsdfeasdfffa==",

 "secWebSocketProtocol":"chat,binary",

 "secWebSocketExtensions":"extension1,extension2"

 }

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 26
of 87

}

The data structures are as detailed below:

Structure
Name

Content

requestContext

Configuration information, request ID, authentication information, and source information of
API Gateway where the request comes from, including:
serviceName, path, httpMethod: they point to API Gateway's service, API path, and method.
stage: it points to the environment where the request source API is located.
requestId: it identifies the unique ID of the current request.
identity: it identifies the user's authentication method and authentication information.
sourceIp: it identifies the request source IP.

websocket

Details of connection establishment, including:
action: action of this request.
secConnectionID: a string that identifies the ID of the WebSocket connection. The original
length is 128 bits, which is a Base64-encoded string with a total of 32 characters.
secWebSocketProtocol: string; optional.It represents the list of sub-protocols. If this field is in
the original request, it will be passed to the function; otherwise, it will not appear.
secWebSocketExtensions: string; optional.It represents the list of extensions. If this field is in
the original request, it will be passed to the function; otherwise, it will not appear.

Note:
The content of requestContext may be increased significantly during API Gateway iteration. At present, it is

guaranteed that the content of the data structure will only be increased but not reduced, so that the existing structure

will not be compromised.
2. When the registration function receives the connection establishment request, it needs to return the response
message of whether to agree to establish the connection to API Gateway at the end of function handling. The
response body must be in JSON format as shown in the sample below:

{

 "errNo":0,

 "errMsg":"ok",

 "websocket":{

 "action":"connecting",

 "secConnectionID":"xawexasdfewezdfsdfeasdfffa==",

 "secWebSocketProtocol":"chat,binary",

 "secWebSocketExtensions":"extension1,extension2"

 }

}

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 27
of 87

The data structures are as detailed below:

Structure
Name

Content

errNo Integer; required. Response error code. If `errNo` is 0, the handshake succeeded, and the
connection was allowed to be established.

errMsg String; required. Cause of error. If `errNo` is not 0, this field will take effect.

websocket

Details of connection establishment, including:
action: action of this request.
secConnectionID: a string that identifies the ID of the WebSocket connection. The original length
is 128 bits, which is a Base64-encoded string with a total of 32 characters.
secWebSocketProtocol: string; optional.It is the value of a single sub-protocol. If this field is in the
original request, it will be passed through to the client by API Gateway.
secWebSocketExtensions: string; optional.It is the value of a single extension. If this field is in the
original request, it will be passed through to the client by API Gateway.

Note:
If the SCF request times out, it will be deemed by default that the connection establishment failed.
When API Gateway receives the response message from SCF, it will check the HTTP response code first. If the
response code is 200, it will parse the response body; otherwise, it will deem that SCF failed and connection

establishment was refused.

Data transfer

Upstream data transfer

Transfer request

When the client sends data through WebSocket, API Gateway will encapsulate the agreed JSON data structures in
the request body and send it to the transfer function in the HTTP POST method. You can get the request body from
the function's event. Below is a sample:

{

 "websocket":{

 "action":"data send",

 "secConnectionID":"xawexasdfewezdfsdfeasdfffa==",

 "dataType":"text",

 "data":"xxx"

 }

}

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 28
of 87

The data structures are as detailed below:

Parameter Content

websocket Details of data transfer.

action Action of this request, such as "data send" in this
document.

secConnectionID
A string that identifies the ID of the WebSocket
connection. The original length is 128 bits, which is a
Base64-encoded string with a total of 32 characters.

dataType
Type of the transferred data.
"binary": binary.
"text": text.

data
Transferred data. If `dataType` is `binary`, it will be a
Base64-encoded binary stream; if `dataType` is `text`,
it will be a string.

Transfer response

After the transfer function finishes executing, it will return an HTTP response to API Gateway which will act according
to the response code:

If the response code is 200, the function was executed successfully.
If the response code is not 200, a system failure occurred, and API Gateway will actively send a FIN packet to the
client.
Note:
API Gateway does not handle the content in the response body.

Downstream data callback

Callback request

When SCF needs to push data to the client or actively disconnect, it can initiate a request, encapsulate the data in the
request body, and send it to the reverse push address of API Gateway in the POST method. The request body must
be in JSON format, as shown in the sample below:

{

 "websocket":{

 "action":"data send", // Send data to the client

 "secConnectionID":"xawexasdfewezdfsdfeasdfffa==",

 "dataType":"text",

 "data":"xxx"

 }

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 29
of 87

}

{

 "websocket":{

 "action":"closing", // Send the disconnection request

 "secConnectionID":"xawexasdfewezdfsdfeasdfffa=="

 }

}

The data structures are as detailed below:

Field Content

websocket Details of data transfer.

action

Action of this request, which can be data send or closing :
"data send": it is to send data to the client.
"closing": it is to initiate a disconnection request to the client, where the dataType
and data are optional.

secConnectionID A string that identifies the ID of the WebSocket connection. The original length is 128
bits, which is a Base64-encoded string with a total of 32 characters.

dataType
Type of the transferred data, including two types:
"binary": binary.
"text": text.

data
Transferred data:
If dataType is binary , it is a Base64-encoded binary stream.
If dataType is text , it is a string.

Callback response

After the callback is over, the result of the callback can be determined based on the response code of API Gateway:
If the response code is 200, the call succeeded.

If the response code is not 200, a system failure occurred, and API Gateway will actively send a FIN packet to the
client.
In addition, the response body in JSON format can be obtained in the response result as shown in the sample below:

{

 "errNo":0,

 "errMsg":"ok"

}

The data structures are as detailed below:

Field Content

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 30
of 87

errNo Integer; response error code. 0 means success.

errMsg String; cause of error.

Connection cleanup

Active disconnection by client

Logout request

When the client actively initiates a WebSocket disconnection request, API Gateway will encapsulate the agreed upon
JSON data structures in the request body and send it to the cleanup function in the HTTP POST method. You can get
the request body from the function's event. Below is a sample:

{

 "websocket":{

 "action":"closing",

 "secConnectionID":"xawexasdfewezdfsdfeasdfffa=="

 }

}

The data structures are as detailed below:

Field Content

websocket Details of disconnection.

action Action of this request, which is "closing" here.

secConnectionID
String.
It identifies the ID of the WebSocket connection. The original length is 128 bits, which is
a Base64-encoded string with a total of 32 characters.

Note:
In the cleanup function, you can get the secConnectionID from the event and delete the ID from the persistent

storage (such as a database).

Logout response

After the cleanup function finishes executing, it will return an HTTP response to API Gateway, which will act according
to the response code:
If the response code is 200, the function was executed successfully.
If the response code is not 200, a system failure occurred.
Note:

API Gateway does not handle the content in the response body.

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 31
of 87

Active disconnection by server

Please see Downstream data callback. SCF can initiate a request in the function, encapsulate the following data
structures in the request body, and send it to the reverse push address of API Gateway in the POST method.

{

 "websocket":{

 "action":"closing", // Send the disconnection request

 "secConnectionID":"xawexasdfewezdfsdfeasdfffa=="

 }

}

Note:
When actively disconnecting the link with the client, you need to get the secConnectionID of the client's

WebSocket, enter it in the data structure, and then delete the ID from the persistent storage (such as a database).

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 32
of 87

Usage
Last updated：2024-12-02 19:58:17

In the How It Works document, it is mentioned that three types of SCF functions are required to sustain the interaction
with API Gateway:
Registration function: this function is triggered when a WebSocket connection is requested and established between

the client and API Gateway, notifying SCF of the secConnectionID of the WebSocket connection. The

 secConnectionID is usually recorded in the persistent storage in this function for reverse push of subsequent

data.
Cleanup function: this function is triggered when the client initiates a WebSocket disconnection request, notifying SCF
to prepare to disconnect the secConnectionID . The secConnectionID is usually cleaned from the

persistent storage in this function.
Transfer function: this function is triggered when the client sends data through the WebSocket connection, notifying
SCF of the secConnectionID of the connection and the data sent. Business data is usually processed in this

function. For example, it determines whether to push data to other secConnectionID values in the persistent

storage.
Note:

When you need to actively push data to a secConnectionID or disconnect a secConnectionID , the

reverse push address of API Gateway has to be used.
This document uses Python 2.7 as an example to describe how to write the main_handler for various functions.

Sample Function Code

Registration function

-*- coding: utf8 -*-

import json

import requests

def main_handler(event, context):

 print('Start Register function')

 print("event is %s"%event)

 retmsg = {}

 global connectionID

 if 'requestContext' not in event.keys():

 return {"errNo":101, "errMsg":"not found request context"}

 if 'websocket' not in event.keys():

 return {"errNo":102, "errMsg":"not found websocket"}

 connectionID = event['websocket']['secConnectionID']

 retmsg['errNo'] = 0

https://www.tencentcloud.com/document/product/583/31437

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 33
of 87

 retmsg['errMsg'] = "ok"

 retmsg['websocket'] = {

 "action":"connecting",

 "secConnectionID":connectionID

 }

 if "secWebSocketProtocol" in event['websocket'].keys():

 retmsg['websocket']['secWebSocketProtocol'] = event['websocket']['secWebSoc

 if "secWebSocketExtensions" in event['websocket'].keys():

 ext = event['websocket']['secWebSocketExtensions']

 retext = []

 exts = ext.split(";")

 print(exts)

 for e in exts:

 e = e.strip(" ")

 if e == "permessage-deflate":

 #retext.append(e)

 pass

 if e == "client_max_window_bits":

 #retext.append(e+"=15")

 pass

 retmsg['websocket']['secWebSocketExtensions'] = ";".join(retext)

 print("connecting \\n connection id:%s"%event['websocket']['secConnectionID'])

 print(retmsg)

 return retmsg

Note:
In this function, you can add other business logic as needed. For example, you can save secConnectionID to

TencentDB or create and associate a chat room.

Transfer function

-*- coding: utf8 -*-

import json

import requests

g_connectionID = 'xxxx' # Forward the message to a specific WebSocket connection

sendbackHost = "http://set-7og8wn64.cb-beijing.apigateway.tencentyun.com/api-xxxx"

Actively push the message to the client

def send(connectionID,data):

 retmsg = {}

 retmsg['websocket'] = {}

 retmsg['websocket']['action'] = "data send"

 retmsg['websocket']['secConnectionID'] = connectionID

 retmsg['websocket']['dataType'] = 'text'

 retmsg['websocket']['data'] = json.dumps(data)

 print("send msg is %s"%retmsg)

 r = requests.post(sendbackHost, json=retmsg)

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 34
of 87

def main_handler(event, context):

 print('Start Transmission function')

 print("event is %s"%event)

 if 'websocket' not in event.keys():

 return {"errNo":102, "errMsg":"not found web socket"}

 for k in event['websocket'].keys():

 print(k+":"+event['websocket'][k])

 # Send the content to a specific client

 #connectionID = event['websocket']['secConnectionID']

 data = event['websocket']['data']

 send(g_connectionID,data)

 return event

Note:
In this function, you can add other business logic as needed. For example, you can forward the data obtained in this
request to another secConnectionID stored in TencentDB.

In the API details in API Gateway, you can get the reverse push address.

Cleanup function

import json

import requests

g_connectionID = 'xxxx' # Forward the message to a specific WebSocket connection

sendbackHost = "http://set-7og8wn64.cb-beijing.apigateway.tencentyun.com/api-xxxx"

Actively send disconnection information

def close(connectionID):

 retmsg = {}

 retmsg['websocket'] = {}

 retmsg['websocket']['action'] = "closing"

 retmsg['websocket']['secConnectionID'] = connectionID

 r = requests.post(sendbackHost, json=retmsg)

 return retmsg

def main_handler(event, context):

 print('Start Delete function')

 print("event is %s"%event)

 if 'websocket' not in event.keys():

 return {"errNo":102, "errMsg":"not found web socket"}

 for k in event['websocket'].keys():

 print(k+":"+event['websocket'][k])

 #close(g_connectionID)

 return event

Note:
In this function, you can add other business logic as needed. For example, you can remove the
 secConnectionID disconnected in this request from TencentDB or force the client of a secConnectionID

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 35
of 87

to go offline.

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 36
of 87

COS Trigger
COS Trigger Description
Last updated：2024-12-02 19:58:17

You can write an SCF function to handle object creation and deletion events in a COS bucket. COS can publish
events to the function and invoke it by using the event data as parameters. You can add a bucket notification
configuration in the COS bucket, which can identify information such as the trigger event type and name of the

function to be invoked.
Characteristics of COS triggers:
Push model

COS monitors the specified bucket action (event type) and invokes the associated function to push the event data to
the function. In the push model, the bucket notification is used to store the event source mapping with COS.

Async invocation

A COS trigger always invokes a function asynchronously, and the result is not returned to the invoker. For more
information on invocation types, see "Invocation Types" in How It Works.

COS Trigger Attributes

COS bucket (required): The configured COS bucket, which can only be a COS bucket in the same region.
Event type (required): It supports "file upload" and "file deletion" as well as finer-grained upload and deletion events.
For specific event types, see the table below. The event type determines when the trigger triggers the function. For

example, if "File upload" is selected, the function will be triggered when there is a file uploaded to the COS bucket.

Event Type Description

cos:ObjectCreated:* All upload events mentioned below can trigger the function.

cos:ObjectCreated:Put The function will be triggered when a file is created through the
`Put Object` API.

cos:ObjectCreated:Post The function will be triggered when a file is created through the
`Post Object` API.

cos:ObjectCreated:Copy The function will be triggered when a file is created through the
`Put Object - Copy` API.

cos:ObjectCreated:CompleteMultipartUpload The function will be triggered when a file is created through the
`CompleteMultipartUpload` API.

cos:ObjectCreated:Origin The function will be triggered when an object is created through

https://www.tencentcloud.com/document/product/583/9694

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 37
of 87

COS origin-pull.

cos:ObjectCreated:Replication The function will be triggered when an object is created through
cross-region replication.

cos:ObjectRemove:* All deletion events mentioned below can trigger the function.

cos:ObjectRemove:Delete

The function will be triggered when an object in a bucket for
which versioning is not enabled is deleted through the `Delete
Object` API, or an object on a specified version is deleted with
`versionid`.

cos:ObjectRemove:DeleteMarkerCreated
The function will be triggered when an object in a bucket for
which versioning is enabled or suspended is deleted through
the `Delete Object` API.

cos:ObjectRestore:Post The function will be triggered when an archive restoration job is
created.

cos:ObjectRestore:Completed The function will be triggered when an archive restoration job is
completed.

Prefix filtering (optional): Prefix filtering is usually used to filter file events in a specified directory. For example, if the
prefix to be filtered is test/ , only file events in the test/ directory can trigger the function, while those in the

 hello/ directory cannot.

Suffix filtering (optional): Suffix filtering is usually used to filter file events in a specified type or with a specified suffix.

For example, if the suffix to be filtered is .jpg , only file events of the .jpg type can trigger the function, while

those of the .png/ type cannot.

COS Trigger Use Limits

In order to avoid errors in COS event production and delivery, for the combination of each event (such as file
upload/deletion) and prefix/suffix filter in each bucket, COS limits that the same rule can be bound to only one function
that can be triggered. Therefore, when you create a COS trigger, do not configure repeated rules for the same COS

bucket. For example, if you configure a Created: * event trigger in the test bucket for function A (with no filter

rule configured), then the upload events (including Created:Put and Created:Post) in the test bucket

cannot be bound to other functions, but you can configure an ObjectRemove event trigger in the test bucket for

function B.
When using prefix and suffix filter rule, in order to ensure the uniqueness of the triggering events in the same bucket, it
should be noted that the same bucket cannot use overlapping prefixes, overlapping suffixes, or overlapping

combinations of prefixes and suffixes to define the filter rule for the same event type. For example, if you configure a

https://www.tencentcloud.com/document/product/436/31508

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 38
of 87

 Created: * trigger event with prefix filter of Log in the test bucket for function A, then you cannot configure a

 Created: * trigger event with prefix filter of Log in the test bucket.

In addition, COS triggers can only trigger functions in the same region; for example, for an SCF function created in the

Guangzhou region, you can only select a COS bucket in the Guangzhou region (South China) when configuring a
COS trigger. If you want to trigger a function through COS bucket events in a specific region, create a function in that
region.
A COS trigger has limits in two dimensions: SCF and COS, as detailed below:
SCF dimension: One function can be bound to 10 COS triggers at most.

COS dimension: Only one function can be bound to the same event and prefix/suffix rules in a single COS bucket.

Event Message Structure for COS Trigger

When an object creation or deletion event occurs in the specified COS bucket, event data will be sent to the bound
function in JSON format as shown below.

{

 "Records": [{

 "cos": {

 "cosSchemaVersion": "1.0",

 "cosObject": {

 "url": "http://testpic-1253970026.cos.ap-chengdu.myqcloud.com/testf

 "meta": {

 "x-cos-request-id": "NWMxOWY4MGFfMjViMjU4NjRfMTUyMVxxxxxxxxx=",

 "Content-Type": "",

 "x-cos-meta-mykey": "myvalue"

 },

 "vid": "",

 "key": "/1253970026/testpic/testfile",

 "size": 1029

 },

 "cosBucket": {

 "region": "cd",

 "name": "testpic",

 "appid": "1253970026"

 },

 "cosNotificationId": "unkown"

 },

 "event": {

 "eventName": "cos:ObjectCreated:*",

 "eventVersion": "1.0",

 "eventTime": 1545205770,

 "eventSource": "qcs::cos",

 "requestParameters": {

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 39
of 87

 "requestSourceIP": "192.168.15.101",

 "requestHeaders": {

 "Authorization": "q-sign-algorithm=sha1&q-ak=xxxxxxxxxxxxxx&q-s

 }

 },

 "eventQueue": "qcs:0:scf:cd:appid/1253970026:default.printevent.$LATEST

 "reservedInfo": "",

 "reqid": 179398952

 }

 }]

}

The data structures are as detailed below:

Structure Description

Records List structure. There may be multiple messages merged in the list.

event This records the event information, including event version, event source, event name, time,
queue information, request parameters, and request ID.

cos This records the COS information corresponding to the event.

cosBucket
This records the bucket of the specific event, including bucket name, region, and user
 APPID (which can be obtained on the Account Info page).

cosObject This records the object of the specific event, including object file path, size, custom metadata,
and access URL.

Sample

The following is a sample COS trigger in Java for your reference:

https://github.com/tencentyun/scf-demo-

java/blob/master/src/main/java/example/Cos.java

https://console.tencentcloud.com/developer

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 40
of 87

Usage
Last updated：2024-12-02 19:58:17

This document describes how to create a COS trigger and invoke a function.

Step 1. Create a function

Log in to the SCF console and upload and deploy your function code on the Create page. For more information,
please see Creating Functions in Console.

The following takes the COS sample template as an example to create a function project. In the default creation
process with the template, a trigger is directly configured. In actual use cases, you can also configure a trigger after
creating the function. Here, configuration after function creation is used as an example for description:

Step 2. Configure a trigger

After selecting COS Trigger, configure the bucket, triggering event type, and other information as prompted to create

a trigger:

https://console.tencentcloud.com/scf/list-create?rid=1&ns=default
https://www.tencentcloud.com/document/product/583/32742

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 41
of 87

Step 3. Manage the trigger

After successful creation, you can see the information of the created trigger on the Trigger Management page.

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 42
of 87

CLS Trigger
CLS Trigger Description
Last updated：2024-12-02 19:58:17

You can write an SCF function to process the logs collected in the CLS service. By passing the collected logs as a
parameter, the function can be invoked and the function code can process and analyze the data or dump it to other
Tencent Cloud services.

Characteristics of CLS triggers:
Push model

CLS monitors the specified log topic, aggregates data within a certain period of time, and invokes the associated
function to push the event data to the function.
Async invocation

a CLS trigger always invokes a function asynchronously, and the result is not returned to the invoker. For more
information on invocation types, please see "Invocation Types" in How It Works.

CLS Trigger Attributes

Logset: configure the CLS logset you want to connect to. It can only be a logset in the same region as the function.
Log topic: configure the CLS log topic you want to connect to, which is the smallest unit for managing and configuring
CLS triggers.
Maximum waiting time: configure the longest waiting time for a single event pull.

CLS Trigger Consumption and Message Delivery

After consuming messages, the CLS backend consumption module will encapsulate them into event structures
according to the max waiting time, delivery process, and message body size and then initiate async function
invocation. The applicable limits are as follows:
Maximum waiting time

at present, the SCF backend consumption module requires this value to be between 3s and 300s to avoid an

excessive latency before consumption. For example, if the maximum waiting time is set to 60s, the consumption
template will aggregate log data once every 60s and deliver it to the function.
Event size limit for async invocation

128 KB. For more information, please see Limits. If a message of the log topic is large (for example, if the message
body size exceeds 128 KB after being compressed by the backend component within the maximum waiting time),

then due to the limit of 128 KB for async invocation, the system will extract and deliver the message body of 128 KB

https://www.tencentcloud.com/document/product/583/9694
https://www.tencentcloud.com/document/product/583/11637

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 43
of 87

after being compressed by gzip in sequence from the event structure passed to the function instead of using the data
aggregated within the maximum waiting time.
Delivery process

if a non-retriable error occurs during the delivery process, such as AccessDeniedException or

 ResourceNotFoundException , the CLS trigger will pause the transfer retry logic.

Note:
In the message delivery process, the time aggregation may vary by combination; that is, the number of messages in
each event structure ranges from 1 to the maximum waiting time. If the configured maximum waiting time is too

long, there may be cases where the aggregation time in an event structure will never reach the maximum aggregation
time.
After the event content is obtained by the function, each message can be guaranteed for processing by loop handling,
and it is not assumed that the message time passed each time is constant.

Event Message Structure for CLS Trigger

When the specified CLS trigger receives a message, the CLS backend consumption module will consume the
message and encapsulate it to asynchronously invoke your function. In order to ensure the efficiency of data transfer in

a single triggering action, the value of the data field is a Base64-encoded Gzip document.

{

 "clslogs": {

 "data":

"ewogICAgIm1lc3NhZ2VUeXBlIjogIkRBVEFfTUVTU0FHRSIsCiAgICAib3duZXIiOiAiMTIzNDU2Nz

g5MDEyIiwKICAgICJsb2dHcm91cCI6I..."

 }

}

After being decoded and decompressed, the log data will look like the following JSON body (using decoded CLS Logs
message data as an example):

{

 "topic_id": "xxxx-xx-xx-xx-yyyyyyyy",

 "topic_name": "testname",

 "records": [{

 "timestamp": "1605578090000000",

 "content": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 }, {

 "timestamp": "1605578090000000",

 "content": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

 }]

}

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 44
of 87

The data structures are as detailed below:

Structure Description

topic_id Log topic ID

topic_name Log topic name

timestamp Log production time (timestamp at the microsecond level)

content Log content

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 45
of 87

Usage
Last updated：2024-12-02 19:58:17

This document describes how to create a CLS trigger and invoke a function.

Step 1. Create a function

Log in to the SCF console and upload and deploy your function code on the Create page. For more information,
please see Creating Functions in Console.

The following takes the CLS sample template as an example to create a function project. In the default creation
process with the template, a trigger is directly configured. In actual use cases, you can also configure a trigger after
creating the function. Here, trigger configuration after function creation is used as an example for description:

Step 2. Configure a trigger

After selecting CLS Trigger, configure the logset, log topic, and other information as prompted to create a trigger:

Step 3. Manage the trigger

After successful creation, you can see the information of the created trigger on the Trigger Management page,
where you can enable/disable the trigger.

https://console.tencentcloud.com/scf/list-create?rid=1&ns=default
https://www.tencentcloud.com/document/product/583/32742

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 46
of 87

Timer Trigger
Timer Trigger Description
Last updated：2024-12-02 19:58:17

You can write an SCF function to handle a scheduled task (which can be triggered in seconds). The timer will
automatically trigger the function at the specified time. Timer triggers have the following characteristics:
Push model: the timer directly calls the Invoke API of the function to trigger it at the specified time. The event

source mapping is retained in the SCF function.
Async invocation: a timer trigger always invokes a function asynchronously, and the result is not returned to the
invoker. For more information on invocation types, please see Invocation Types.

Timer Trigger Attributes

Timer name (required): it can contain up to 60 characters out of a-z , A-Z , 0-9 , - , and _ and must

begin with a letter and be unique under the same function.

Triggering cycle (required): this is the specified function triggering time. You can use the default value in the console or
customize a standard cron expression to decide when to trigger the function. For more information on cron
expressions, please see below.
Input parameter (optional): it can be a string of up to 4 KB, which can be obtained from the event parameter of the

entry function.

Cron Expression

When creating a timer trigger, you can customize the triggering time by using a standard cron expression. Timer

triggers can trigger functions in a matter of seconds. In order to be compatible with legacy timer triggers, cron
expressions can be written in two ways:

Cron expression syntax 1 (recommended)

A cron expression has seven required fields, separated by spaces.

First Second Third Fourth Fifth Sixth Seventh

Second Minute Hour Day Month Week Year

Each field has a corresponding value range:

https://www.tencentcloud.com/document/product/583/9694

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 47
of 87

Field Value Wildcards

Second An integer between 0 and 59 , - * /

Minute An integer between 0 and 59 , - * /

Hours An integer between 0 and 23 , - * /

Day An integer between 1 and 31 (the number of days in the month needs to
be considered)

, - * /

Month An integer between 1 and 12 or JAN, FEB, MAR, APR, MAY, JUN, JUL,
AUG, SEP, OCT, NOV, DEC

, - * /

Week An integer between 0 and 6 or SUN, MON, TUE, WED, THU, FRI, SAT;
where 0 means Sunday, 1 means Monday, and so on

, - * /

Year An integer between 1970 and 2099 , - * /

Cron expression syntax 2 (not recommended)

A cron expression has five required fields, separated by spaces.

First Second Third Fourth Fifth

Minute Hour Day Month Week

Each field has a corresponding value range:

Field Value Wildcards

Minute An integer between 0 and 59 , - * /

Hours An integer between 0 and 23 , - * /

Day An integer between 1 and 31 (the number of days in the month needs to be
considered)

, - * /

Month An integer between 1 and 12 or JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC

, - * /

Week An integer between 0 and 6 or SUN, MON, TUE, WED, THU, FRI, SAT; where 0
means Sunday, 1 means Monday, and so on

, - * /

Wildcards

Wildcard Description

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 48
of 87

,
(comma)

 It represents the union of characters separated by commas; for example, 1, 2, 3 in the "Hour" field
means 1:00, 2:00 and 3:00

-
(hyphen)

 It contains all values in the specified range; for example, in the "Day" field, 1-15 contains the 1st to
the 15th day of the specified month

*
(asterisk)

It means all values; for example, in the "Hour" field, * means every o'clock

/
(forward
slash)

It specifies the increment; for example, in the "Minute" field, you can enter 1/10 to specify repeating
every ten minutes from the first minute on (e.g., at the 11th minute, the 21st minute, the 31st minute,
and so on)

Precautions

When both the "Day" and "Week" fields in a cron expression are specified, they are in an "or" relationship, i.e., the
conditions of both are effective separately.

Sample

Below are some examples of cron expressions and their meanings:

Expression Description

 */5 * * * * * * Triggers once every 5 seconds

 0 15 10 1 * * * Triggers at 10:15 am on the 1st day of every month

 0 15 10 * * MON-FRI * Triggers every day at 10:15 am Monday through Friday

 0 0 10,14,16 * * * * Triggers every day at 10 am, 2 pm, and 4 pm

 0 */30 9-17 * * * * Triggers every half hour from 9 am to 5 pm every day

 0 0 12 * * WED * Triggers at 12:00 noon every Wednesday

Input Parameters of Timer Triggers

When a timer trigger triggers a function, the following data structures will be encapsulated in event and passed to

the function. In addition, you can specify to pass the message for a timer trigger, which is empty by default.

{

 "Type":"Timer",

 "TriggerName":"EveryDay",

 "Time":"2019-02-21T11:49:00Z",

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 49
of 87

 "Message":"user define msg body"

}

Field Description

Type Type of the trigger, whose value is Timer

TriggerName
Timer name, which can contain up to 60 characters out of a-z , A-Z , 0-9 , - ,
and _ and must begin with a letter and be unique under the same function

Time Trigger creation time, in UTC+0

Message String type

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 50
of 87

Usage
Last updated：2024-12-02 19:58:17

This document describes how to create a timer trigger and invoke a function.

Step 1. Create a function

Log in to the SCF console and upload and deploy your function code on the Create page. For more information,
please see Creating Functions in Console.

The following takes the scheduled task sample template as an example to create a function project. In the default
creation process with the template, a trigger is directly configured. In actual use cases, you can also configure a trigger
after creating the function. Here, configuration after function creation is used as an example for description:

Step 2. Configure a trigger

After selecting Timer Trigger, configure the task name, trigger period, and other information as prompted to create a
trigger:

https://console.tencentcloud.com/scf/list-create?rid=1&ns=default
https://www.tencentcloud.com/document/product/583/32742

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 51
of 87

Step 3. Manage the trigger

After successful creation, you can see the information of the created trigger on the Trigger Management page,
where you can enable/disable the trigger.

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 52
of 87

CKafka Trigger
CKafka Trigger Description
Last updated：2024-12-02 19:58:17

You can write an SCF function to process messages received in the specific CKafka instance. The SCF backend can
consume the messages in CKafka as a consumer and pass them to the function.
Characteristics of CKafka triggers:

Pull model: the backend module of SCF acts as a consumer, connects to the CKafka instance, and consumes
messages. When the backend module gets the message, it will encapsulate the message into data structures and
invoke the specified function to pass the message data to the function.
Sync invocation: a CKafka trigger always invokes a function synchronously. For more information on invocation
types, please see Invocation Types.

Note:
For execution errors (including user code errors and runtime errors), the CKafka trigger will retry according to the
configured retry times, which is 10,000 by default.
For system errors, the CKafka trigger will continue to retry in an exponential backoff manner until it succeeds.

CKafka Trigger Attributes

CKafka instance: configure the CKafka instance you want to connect to. It can only be an instance in the same
region as the function.

Topic: it can be an existing topic in the CKafka instance (only topics without ACL are supported).
Maximum messages: the maximum number of messages that can be pulled and batch delivered to the current
function at a time, which can be up to 10,000 currently. According to the message size and writing speed, the number
of messages delivered when the function is triggered each time may not always reach the maximum number; instead,
it is a variable value between 1 and the maximum number.

Start Point: the start position from which the trigger consumes messages. Valid values: latest (default), oldest,
specified time point.
Retry Attempts: the maximum number of retries when an error occurs during function execution (including user code
errors and runtime errors).

CKafka Consumption and Message Delivery

CKafka does not push messages actively. The consumer needs to pull messages and consume them. Therefore, if a

CKafka trigger is configured, the SCF backend will launch a CKafka consumption module as the consumer to create

https://www.tencentcloud.com/document/product/583/9694

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 53
of 87

an independent consumer group in CKafka for message consumption.
After consuming messages, the SCF backend consumption module will encapsulate them into event structures
according to the timeout period, accumulated messages, and maximum messages and then initiate function

invocation (sync invocation). Applicable limits are as follows:
Timeout period: the current timeout period of the consumption module on the backend of SCF is 60 seconds, which
avoids waiting for too long before consuming. For example, if the CKafka topic has very few messages written in, and
the consumption module fails to collect the configured maximum number of messages in 60 seconds, then the function
invocation will still be initiated.

Event size limit for sync invocation: 6 MB. For more information, please see Limits. If the messages in the CKafka
topic are large (for example, one single message is over 6 MB in size), then due to the 6 MB limit for sync invocation,
there will be only one message in the event structure passed to the function instead of the user-configured maximum
number of messages.
Maximum messages: this is the same as the user-defined CKafka trigger attribute, which can be up to 10,000
currently.

The consumption module on the backend of SCF will loop this process and ensure the order of message
consumption, that is, the next batch of messages will be consumed only after the previous batch is completely
consumed (sync invocation).
Note:
In this process, the number of encapsulated messages is different in each event structure, which ranges from 1 to the

maximum number. If the maximum number of messages is too high, there may be cases where the number of
messages in an event structure will never reach the maximum number.
After the event content is obtained by the function, each message can be guaranteed for processing by loop handling,
and it should not be assumed that the number of messages passed each time is constant.

Event Message Structure for CKafka Trigger

When the specified CKafka topic receives a message, the backend consumption module of SCF will consume the

message and encapsulate it into an event in JSON format like the one below, which will trigger the bound function and
pass the data content as input parameters to the function.

{

 "Records": [

 {

 "Ckafka": {

 "topic": "test-topic",

 "Partition":1,

 "offset":36,

 "msgKey": "None",

 "msgBody": "Hello from Ckafka!"

https://www.tencentcloud.com/document/product/583/11637

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 54
of 87

 }

 },

 {

 "Ckafka": {

 "topic": "test-topic",

 "Partition":1,

 "offset":37,

 "msgKey": "None",

 "msgBody": "Hello from Ckafka again!"

 }

 }

]

}

The data structures are as detailed below:

Structure Description

Records List structure. There may be multiple messages merged in the list

Ckafka Identifies the event source as CKafka

topic Message source topic

partition Partition ID of message source

offset Consumption offset number

msgKey Message key

msgBody Message content

FAQs

What should I do if a lot of CKafka messages heap up?

If a CKafka trigger is configured, the SCF backend will launch a CKafka consumption module as the consumer to
create an independent consumer group in CKafka for message consumption. In addition, the number of consumption
modules is equal to the number of partitions in the CKafka topic.

If a lot of CKafka messages heap up, you need to increase the consumption capability in the following ways:
Increase the number of partitions of the CKafka topic. The consumption capability of the function is proportional to the
number of partitions. The CKafka consumption modules on the backend of the function will automatically match the
number of CKafka topic partitions, that is, the consumption capability can be improved by adding partitions.

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 55
of 87

Optimize the execution duration of the function. The shorter the duration, the higher the consumption capability. If the
duration becomes longer (for example, the database in the function needs to be written but the response of the
database becomes slower), the consumption speed will decrease.

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 56
of 87

Usage
Last updated：2024-12-02 19:58:17

This document describes how to create a CKafka trigger and invoke a function.

Step 1. Create a function

1. Log in to the SCF console.
2. On the function creation page, select Template, search for CKafka , and select	

CkafkaSCFCOS as shown below:

3. Click Next.

Step 2. Configure a trigger

On the Function configuration page, set the basic configurations of the function.
1. In Trigger configurations, select Custom to create a trigger as shown below:

https://console.tencentcloud.com/scf/list-create?rid=1&ns=default

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 57
of 87

Select CKafka trigger and configure the name, topic, and other information of the CKafka instance as the message
source as prompted. You can also choose to create a CKafka instance.

Note:
Make sure that your function and CKafka instance are in the same VPC.
2. Click Complete.

Step 3. Manage the trigger

After the function is created, go to the function details page, and you can see the created trigger in Trigger
management. You can also turn triggers on or off there.

https://console.tencentcloud.com/ckafka/index?rid=1

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 58
of 87

Apache Kafka Trigger
Apache Kafka Trigger Description
Last updated：2024-12-25 10:34:04

Serverless Cloud Function (SCF) now supports Apache Kafka as the event trigger source, enabling batch
consumption and processing of Kafka messages.

Apache Kafka Overview

Apache Kafka is an open-source event streaming platform designed for workloads such as data pipelines and stream

processing. SCF enables integration of business functions with self-built Apache Kafka clusters. Supported Kafka
clusters include cross-region CKafka clusters, Kafka clusters hosted on other cloud providers, or Kafka-like clusters
managed through solutions such as Confluent Cloud, including Azure EventHub.
SCF supports event sources based on the Kafka protocol framework, enabling batch consumption. Batch processing
behavior can be controlled using parameters such as the maximum number of messages per batch, maximum waiting

time, and retry attempts.

Features of Self-Built Apache Kafka Triggers

Self-built Apache Kafka triggers have the following features:
Pull model: The SCF backend module acts as a consumer, connecting to the Kafka instance to consume messages.
Once the backend module retrieves messages, it encapsulates them into a data structure and calls the specified
function, passing the message data to the SCF.
Synchronous call: Self-built Apache Kafka triggers use the synchronous call type to call functions. For more

information on call types, see Call Types.
Note:
For execution errors, including user code and runtime environment errors, self-built Apache Kafka triggers will retry
based on the configured retry attempts, with a default of 10,000 retries.
For system errors, self-built Apache Kafka triggers use an exponential backoff strategy to continuously retry until the

operation succeeds.

Attributes of Self-Built Apache Kafka Triggers

https://www.tencentcloud.com/document/product/583/9694#call-types

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 59
of 87

Trigger name: It should contain 2 to 60 characters, consisting of a-z , A-Z , 0-9 , - , and _ . It should

start with a letter and end with a letter or number. Multiple triggers with the same name are not allowed for one
function.

Bootstrap Servers: It configures the connection addresses for the self-built Apache Kafka instances to be
consumed. Multiple bootstrap servers are supported in the format of either IP+port or Domain Name+port .

Topic: Enter the topic of the existing Apache Kafka instance.
Consumer Group: Select the consumer group of the existing Apache Kafka instance. If the specified consumer
group does not exist, one will be automatically created. It is recommended to use a dedicated consumer group,

separate from existing businesses, to avoid interfering with ongoing message consumption.
Security protocol: The security protocol used by the Apache Kafka instance. Currently supported protocols include
 PLAINTEXT , SASL_SSL , and SASL_PLAINTEXT .

Identity verification mechanism: The authentication mechanism used by the Apache Kafka instance. Currently
supported options include None , PLAIN , SCRAM-SHA-256 , and SCRAM-SHA-512 . If your instance does

not require authentication, select None .

Username and Password: If an authentication mechanism is selected, you should provide the username and
password authorized to access the instance.
Maximum messages: The maximum number of messages to be pulled and delivered to SCF in a single batch, with a
current maximum configuration of 10,000. Due to factors such as message size and write speed, the actual number of
messages delivered during each trigger may not always reach the maximum value, but will vary between 1 and the

specified maximum batch size.
Consumption start point: The starting point for message consumption by the trigger. Currently, it supports
consuming messages from the latest position.
Retry attempts: The maximum number of retries when the function encounters execution errors (including user code
errors and runtime errors).

Max waiting time: The longest waiting time for one trigger. For example, if the user configures the maximum batch
size as 1,000 messages and the maximum waiting time as 60 seconds, the function will be triggered if 1,000
messages are collected within 10 seconds. If only 50 messages are collected after 60 seconds, the function will still be
triggered.
Note:
Currently, for existing self-built Apache Kafka triggers, only the following three configuration items can be edited:

Maximum messages, Retry attempts, and Max waiting time.

Self-Built Apache Kafka Consumption and Message Delivery

Since self-built Apache Kafka messages do not have push capabilities, the consumer should pull the messages for
consumption. Therefore, after the self-built Apache Kafka trigger is configured, the SCF backend will activate the self-

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 60
of 87

built Apache Kafka consumer module to act as the consumer. It will also create an independent consumer group
within the self-built Apache Kafka for message consumption.
After the SCF backend consumer module consumes the messages, it will combine information such as the Timeout,

Accumulated message size, and Maximum messages to form an event structure and initiate a function call
(synchronous call). The related limitations are as follows:
Timeout: The current timeout for the SCF backend consumer module is 60 seconds, to avoid delays before
consumption. For example, if there are few messages written to the topic and the consumer module does not
accumulate enough messages to reach the maximum batch size within 60 seconds, it will still initiate the function call.

Event Size Limit for Synchronous Calls: 6 MB. For details, see Quota Limits. If the messages in the topic are
large, for example, if a message already reaches 6 MB, due to the 6 MB limit for synchronous calls, the event structure
passed to the SCF will contain only one message instead of the maximum number of messages configured by the
user.
Maximum Batch Size: This attribute is the same as the one in the self-built Apache Kafka trigger and is set by the
user. The current maximum supported configuration is 10,000.

The SCF backend consumer module will loop through this process and ensure the order of message consumption.
This means that the next batch of messages will not be consumed until the previous batch has been fully processed
(synchronous call).
Note:
During this process, the number of messages in each batch may vary, meaning the number of messages in each

event structure will be between 1 and the configured maximum batch size. If the configured maximum batch size
is set too high, it is possible that the number of messages in the event structure will never reach the maximum batch
size.
After receiving the event content in SCF, you can choose to process the messages in a loop to ensure that each
message is handled. You should not assume that the number of messages passed in each event is constant.

SCF will use the standard Kafka protocol to retrieve the number of partitions for the specified topic. The backend
consumer module will automatically create the same number of consumers. If the partition count cannot be obtained,
20 consumers will be created by default.

FAQs

How to Handle a Large Accumulation of Messages in a Self-Built Apache Kafka Instance?

After you configure the self-built Apache Kafka trigger, the SCF backend will activate the consumer module as the
consumer, creating an independent consumer group in the self-built Apache Kafka for message consumption. The
number of consumer modules will equal the number of partitions in the topic. If there is a large accumulation of

messages, the consumption capacity needs to be increased. The following methods can be used to enhance
consumption capacity:

https://www.tencentcloud.com/document/product/583/11637

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 61
of 87

Optimize the execution time of the SCF. The shorter the execution time of the SCF, the higher the consumption
capacity. If the execution time increases (for example, if the SCF needs to write to a database and the database
response slows down), the consumption speed will decrease.

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 62
of 87

Usage
Last updated：2024-12-25 10:34:25

This document provides a guide on creating a self-built Apache Kafka trigger and calling the function, using the
example of cross-region consumption of a CKafka cluster.

Prerequisites

The function has been created.

The Kafka cluster and topic have been created.

Directions

Step 1: Creating an Apache Kafka Trigger

1. Log in to the Serverless Console and click Function Service in the left sidebar.
2. At the top of the main interface, select the region and namespace where the function is located. Then, click the
function name in the list to access the function details page.
3. In the left sidebar, choose Trigger Management and click Create trigger.

4. In the Create Trigger panel, select Apache Kafka Trigger and fill in the relevant trigger information, as shown
below:

https://console.tencentcloud.com/scf

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 63
of 87

Configuration Item Operation Example in this
Document

Trigger
version/alias

The default value is Default, but it can also be switched to an
alias or other versions of the published function.

Default

Trigger method Apache Kafka trigger. Apache Kafka trigger

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 64
of 87

Trigger name Enter a custom trigger name. scf-kafka-
1728981649432

Bootstrap Servers Enter the host and port addresses of the Kafka instance to be
accessed. Multiple entries are allowed.

11.135.x.x:7661

Topic Select the topic of the existing Kafka instance. test1015

Consumer Group
The desired consumer group name. If the consumer group
already exists under the topic, it will continue consuming from
that group; otherwise, a consumer group will be created.

A new consumer
group, test1015, is
used here.

Security protocol

The security protocol applied by the Kafka instance. The
available values are as follows:
PLAINTEXT
SASL_SSL
SASL_PLAINTEXT

SASL_PLAINTEXT

Identity verification
mechanism

The authentication mechanism used by the Kafka instance. The
available values are as follows:
None
PLAIN
SCRAM-SHA-256
SCRAM-SHA-512

PLAIN

Username
When authentication in the mechanism requires verification
through username and password information, you need to
configure the Apache Kafka username for authentication.

admin

Password
When the authentication mechanism requires username and
password verification, the Apache Kafka username should be
configured for authentication.

Maximum
messages

The maximum number of messages to be pulled and delivered
to SCF in a single batch, with a current maximum configuration
of 10,000. Due to factors such as message size and write
speed, the actual number of messages delivered during each
trigger may not always reach the maximum value, but will vary
between 1 and the specified maximum batch size.

1

Consumption start
point

Select the consumption offset for messages. Currently, it
supports consuming from the latest position.

Latest position

Retry attempts
The maximum number of retries when the function encounters
execution errors (including user code errors and execution
errors). The maximum supported configuration is 10,000.

1

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 65
of 87

Max waiting time The longest waiting time for one trigger. For example, if the user
configures the maximum batch size as 1,000 messages and the
maximum waiting time as 60 seconds, the function will be
triggered if 1,000 messages are collected within 10 seconds. If
only 50 messages are collected after 60 seconds, the function
will still be triggered.

1

Trigger status
Indicates whether the trigger is enabled immediately after
creation. By default, the trigger is enabled, meaning it will be
activated as soon as it is created.

Enable the trigger

5. Click Submit.

Step 2: Checking the Trigger Status

After the trigger is successfully created, go to the Trigger Management page to check the trigger status, as shown
below:

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 66
of 87

The system will automatically create a consumer group and bind the subscription relationship. As shown below:

Step 3: Kafka Message Consumption and Testing

1. Deliver messages to Kafka, as shown below:

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 67
of 87

2. On the function details page, select the Log Query tab and search for the function execution records. You will then
be able to see that the function has been successfully consumed and triggered.

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 68
of 87

MQTT Trigger
Last updated：2025-06-18 15:14:55

Users can write cloud functions to handle messages received in MQTT. The backend module of the cloud function
can serve as a consumer to consume messages in MQTT and deliver the messages to the cloud function.
MQTT Trigger has the following features:

Pull model: The backend module of the SCF acts as a consumer, connects to the MQTT instance, and consumes
messages. After the backend module receives the messages, it encapsulates the messages into a data structure and
calls the designated function to pass the message data to the SCF.
Sync call: The MQTT trigger uses the sync invocation type to invoke a function. For more information about the
invocation type, see Invocation Type.

Notes:
Since the current Tencent Cloud Message Queue MQTT is only launched in partial regions, the openness of functions
to MQTT triggers varies in different regions. Whether a region supports the creation of MQTT triggers is subject to
what is actually shown in the console.

MQTT Trigger Properties

Trigger name: Supports a maximum of 60 characters. Supports a-z , A-Z , 0-9 , - , and _ . Must start

with a letter, and does not support multiple MQTT triggers with the same name under one function.

MQTT instance: Configure the connection of MQTT instances. Only instances in the same region are supported for
selection.
Subscribe to Topic: Provide two methods, manually selecting a Topic and customizing a Topic Filter, to declare the
MQTT topics to be subscribed to.
Manually select Topic and sub-Topic: Select the created Topic information under the selected instance. Only self-

built Topics are supported, and it is unable to subscribe to the built-in Topics of the MQTT message queue.
Custom Topic Filter: Supports subscribing to self-built topics and built-in topics of the MQTT message queue. The
"+" and "#" wildcard characters can be used to express more semantics.
Consumption method: Sequential consumption or non-sequential consumption. Currently only supports non-
sequential consumption.

Encrypted information: In the MQTT side, for the ACL policy created for this instance, it refers to the account and
password that are configured with access privileges.
Enable Base64 Standard Encoding: Automatically performs Base64 encoding processing on your message
content.
Maximum number of batch messages: The maximum number of messages when pulling and batch delivering to
the current SCF. The default value is 1, and the highest configuration is 10000. Factors such as message size and

https://www.tencentcloud.com/document/product/583/9694

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 69
of 87

write speed influence it. Each time the SCF is triggered and messages are delivered, the number of messages may
not reach the maximum value but is a changeable value between 1 and the maximum number of messages.
Retry count: The maximum number of retries when a function encounters an execution error (including user code

errors and Runtime errors). The default is 3.
Maximum wait time for a single trigger. For example: If the user configures the maximum number of messages as
1000 and the maximum wait time as 60 seconds. Suppose after 10 seconds, the SCF has collected 1000 messages,
then it will directly trigger function execution; suppose after 60 seconds, the SCF has only collected 50 messages, it
will also trigger function execution.

MQTT Consumption and Messaging

Since MQTT messages lack proactive push capability, consumers need to pull messages via polling, then consume
them. Therefore, after configuring an MQTT trigger, the SCF backend will initiate the MQTT consumption module to
act as a consumer and create a consumption client in MQTT for consumption.
After consuming a message, the SCF backend's consumption module combines it into an event structure and initiates
a function call (synchronous call) based on certain criteria such as cumulative message quantity size and
maximum number of batch messages. Relevant restrictions are explained as follows:

Event size limit for sync invocation: 6 MB. For details, see restriction description. If the message in a Topic is
large, for example, a single message has already reached 6 MB, then due to the 6 MB limit of sync invocation, there
will be only one message in the event structure passed to the cloud function, rather than the maximum number of
messages configured by the user.
Maximum number of batch messages: Configured by the user. Currently supports a highest configuration of

10,000.

https://www.tencentcloud.com/document/product/583/11637

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 70
of 87

Trigger Configuration Description
Last updated：2024-12-02 19:58:17

When you call the trigger API CreateTrigger, the corresponding TriggerDesc parameter will be the trigger

description, which can be used as instructed in this document.

Timer Trigger

Please directly enter a cron expression for this parameter. For more information, please see Timer Trigger

Description.

Sample TriggerDesc

Triggered once every five minutes:

0 */5 * * * * *

API Gateway Trigger

Name Type Required Description

api ApigwApi No API configuration of the created API gateway

service ApigwService No Service configuration of the created API gateway

release ApigwRelease No Release environment for the created API gateway

ApigwApi

Name Type Required Description

authRequired String No
Whether authentication is required. Valid
values: TRUE, FALSE. Default value:
FALSE

requestConfig ApigwApiRequestConfig﻿ No Configuration of request backend API

isIntegratedResponse String No
Whether to use integrated response.
Valid values: TRUE, FALSE. Default
value: FALSE

https://www.tencentcloud.com/document/product/583/18589
https://www.tencentcloud.com/document/product/583/9708

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 71
of 87

IsBase64Encoded String No Whether to enable Base64-encoding.
Valid values: TRUE, FALSE. Default
value: FALSE

ApigwApiRequestConfig

Name Type Required Description

method String No
Method configuration of request backend API. Valid values: ANY ,
 GET , HEAD , POST , PUT , DELETE

ApigwService

Name Type Required Description

serviceId String No Apigw Service ID (if this parameter is not passed in, a new service will be
created)

ApigwRelease

Name Type Required Description

environmentName String Yes
Release environment. Valid values: release , test ,
 prepub . If this parameter is left empty, release will be
used by default

Sample TriggerDesc

{

 "api":{

 "authRequired":"FALSE",

 "requestConfig":{

 "method":"ANY"

 },

 "isIntegratedResponse":"FALSE"

 },

 "service":{

 "serviceName":"SCF_API_SERVICE"

 },

 "release":{

 "environmentName":"release"

 }

}

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 72
of 87

CKafka Trigger

Name Type Required Description

maxMsgNum String Yes
A function invocation will be triggered once every time
 maxMsgNum CKafka messages are aggregated within 5
seconds

offset String Yes

 offset is the position where consumption of CKafka
messages starts. Currently, three values are supported:
 latest , earliest , and millisecond-level
timestamp

retry String Yes Maximum number of retries when the function reports an error

Sample TriggerDesc

{"maxMsgNum":100,"offset":"latest","retry":10000}

{"maxMsgNum":999,"offset":"1595927203000","retry":10}

API request description

To create a CKafka trigger by using an API request, the TriggerName field needs to be defined as the

 instanceId and topicName of the target CKafka instance in the following format:

 [instanceId]-[topicName] . Below is a sample request:

TriggerName: "ckafka-8tfxzia3-test"

COS Trigger

Name Type Required Description

event String Yes COS event type

filter CosFilter Yes COS filename filter

CosFilter

Name Type Required Description

https://www.tencentcloud.com/document/product/583/9707

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 73
of 87

Prefix String No Prefix rule of file filter

Suffix String No Suffix rule of file filter, which must begin with .

COS event conflict rules

Core concept: an event can trigger a function invocation at most once. If an event is bound to another product, it

cannot be bound to a function.
Set at most one prefix filter and one suffix filter.
If the cos:ObjectCreated:* event is set but no prefix/suffix is set, subsequent binding to any event that starts

with cos:ObjectCreated will fail.

The filter will be valid only if both the prefix and suffix are matched, and if there are conflicts with both the prefix and

suffix, subsequent binding will fail.

Sample TriggerDesc

{"event":"cos:ObjectCreated:*","filter":{"Prefix":"","Suffix":""}}

Note:
When TriggerDesc is used as a trigger description, the JSON string must be continuous with no spaces

contained.

API request description

To create a COS trigger by using an API request, the TriggerName field needs to be defined as the XML API

access domain name of the target COS bucket. Below is an example:

TriggerName: "xxx.cos.ap-guangzhou.myqcloud.com"

Note:
The access domain name can be viewed in Bucket List > Basic Configuration > Basic Information in the COS

console.

CMQ Trigger

Name Type Required Description

filterType String No Message filter type. 1: tag; 2: route match

filterKey String No
When filterType is 1 , it indicates the message filter tag;
when filterType is 2 , it indicates the Binding Key

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 74
of 87

Sample TriggerDesc

{"filterType":1,"filterKey":["test"]}

{"filterType":2,"filterKey":["#test"]}

API request description

To create a CMQ trigger by using an API request, the TriggerName field needs to be defined as CMQ Topic .

Below is an example:

TriggerName: "Tabortest"

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 75
of 87

MPS Trigger
Last updated：2024-12-02 19:58:17

Media Processing Service (MPS) is an on-cloud transcoding and audio/video processing service for massive amounts
of multimedia data. You can write functions to process the callback information in MPS and dump, publish, and
process relevant events and subsequent content in video tasks by receiving relevant callbacks.

Characteristics of MPS triggers:
Push model: an MPS trigger listens on the callback information of video processing and pushes the event data to the
SCF function through one single triggering action.
Async invocation: an MPS trigger always invokes a function asynchronously, and the result is not returned to the
invoker. For more information on invocation types, please see Invocation Types.

MPS Trigger Attributes

Event type: an MPS trigger pushes events in the account-level event type. Currently, two event types are supported:
workflow task (WorkflowTask) and video editing task (EditMediaTask).

Event processing: an MPS trigger uses events generated at the service level as the event source, regardless of
attributes such as region and resources. Each account can only create one MPS trigger in all regions. If you need
multiple functions to handle a task, please see SDK for Node.js.

Event Structure for MPS Trigger

When a specified MPS trigger receives a message, the event structure and fields will be as shown below (with the

 WorkflowTask task as an example):

{

 "EventType":"WorkflowTask",

 "WorkflowTaskEvent":{

 "TaskId":"245****654-WorkflowTask-f46dac7fe2436c47******d71946986t0",

 "Status":"FINISH",

 "ErrCode":0,

 "Message":"",

 "InputInfo":{

 "Type":"COS",

 "CosInputInfo":{

 "Bucket":"macgzptest-125****654",

 "Region":"ap-guangzhou",

 "Object":"/dianping2.mp4"

https://www.tencentcloud.com/document/product/1041
https://www.tencentcloud.com/document/product/583/9694
https://www.tencentcloud.com/zh/document/product/583/32747

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 76
of 87

 }

 },

 "MetaData":{

 "AudioDuration":11.261677742004395,

 "AudioStreamSet":[

 {

 "Bitrate":127771,

 "Codec":"aac",

 "SamplingRate":44100

 }

],

 "Bitrate":2681468,

 "Container":"mov,mp4,m4a,3gp,3g2,mj2",

 "Duration":11.261677742004395,

 "Height":720,

 "Rotate":90,

 "Size":3539987,

 "VideoDuration":10.510889053344727,

 "VideoStreamSet":[

 {

 "Bitrate":2553697,

 "Codec":"h264",

 "Fps":29,

 "Height":720,

 "Width":1280

 }

],

 "Width":1280

 },

 "MediaProcessResultSet":[

 {

 "Type":"Transcode",

 "TranscodeTask":{

 "Status":"SUCCESS",

 "ErrCode":0,

 "Message":"SUCCESS",

 "Input":{

 "Definition":10,

 "WatermarkSet":[

 {

 "Definition":515247,

 "TextContent":"",

 "SvgContent":""

 }

],

 "OutputStorage":{

 "Type":"COS",

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 77
of 87

 "CosOutputStorage":{

 "Bucket":"gztest-125****654",

 "Region":"ap-guangzhou"

 }

 },

 "OutputObjectPath":"/dasda/dianping2_transcode_10",

"SegmentObjectName":"/dasda/dianping2_transcode_10_{number}",

 "ObjectNumberFormat":{

 "InitialValue":0,

 "Increment":1,

 "MinLength":1,

 "PlaceHolder":"0"

 }

 },

 "Output":{

 "OutputStorage":{

 "Type":"COS",

 "CosOutputStorage":{

 "Bucket":"gztest-125****654",

 "Region":"ap-guangzhou"

 }

 },

 "Path":"/dasda/dianping2_transcode_10.mp4",

 "Definition":10,

 "Bitrate":293022,

 "Height":320,

 "Width":180,

 "Size":401637,

 "Duration":11.26200008392334,

 "Container":"mov,mp4,m4a,3gp,3g2,mj2",

 "Md5":"31dcf904c03d0cd78346a12c25c0acc9",

 "VideoStreamSet":[

 {

 "Bitrate":244608,

 "Codec":"h264",

 "Fps":24,

 "Height":320,

 "Width":180

 }

],

 "AudioStreamSet":[

 {

 "Bitrate":48414,

 "Codec":"aac",

 "SamplingRate":44100

 }

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 78
of 87

]

 }

 },

 "AnimatedGraphicTask":null,

 "SnapshotByTimeOffsetTask":null,

 "SampleSnapshotTask":null,

 "ImageSpriteTask":null

 },

 {

 "Type":"AnimatedGraphics",

 "TranscodeTask":null,

 "AnimatedGraphicTask":{

 "Status":"FAIL",

 "ErrCode":30010,

 "Message":"TencentVodPlatErr Or Unkown",

 "Input":{

 "Definition":20000,

 "StartTimeOffset":0,

 "EndTimeOffset":600,

 "OutputStorage":{

 "Type":"COS",

 "CosOutputStorage":{

 "Bucket":"gztest-125****654",

 "Region":"ap-guangzhou"

 }

 },

"OutputObjectPath":"/dasda/dianping2_animatedGraphic_20000"

 },

 "Output":null

 },

 "SnapshotByTimeOffsetTask":null,

 "SampleSnapshotTask":null,

 "ImageSpriteTask":null

 },

 {

 "Type":"SnapshotByTimeOffset",

 "TranscodeTask":null,

 "AnimatedGraphicTask":null,

 "SnapshotByTimeOffsetTask":{

 "Status":"SUCCESS",

 "ErrCode":0,

 "Message":"SUCCESS",

 "Input":{

 "Definition":10,

 "TimeOffsetSet":[

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 79
of 87

],

 "WatermarkSet":[

 {

 "Definition":515247,

 "TextContent":"",

 "SvgContent":""

 }

],

 "OutputStorage":{

 "Type":"COS",

 "CosOutputStorage":{

 "Bucket":"gztest-125****654",

 "Region":"ap-guangzhou"

 }

 },

"OutputObjectPath":"/dasda/dianping2_snapshotByOffset_10_{number}",

 "ObjectNumberFormat":{

 "InitialValue":0,

 "Increment":1,

 "MinLength":1,

 "PlaceHolder":"0"

 }

 },

 "Output":{

 "Storage":{

 "Type":"COS",

 "CosOutputStorage":{

 "Bucket":"gztest-125****654",

 "Region":"ap-guangzhou"

 }

 },

 "Definition":0,

 "PicInfoSet":[

 {

 "TimeOffset":0,

"Path":"/dasda/dianping2_snapshotByOffset_10_0.jpg",

 "WaterMarkDefinition":[

 515247

]

 }

]

 }

 },

 "SampleSnapshotTask":null,

 "ImageSpriteTask":null

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 80
of 87

 },

 {

 "Type":"ImageSprites",

 "TranscodeTask":null,

 "AnimatedGraphicTask":null,

 "SnapshotByTimeOffsetTask":null,

 "SampleSnapshotTask":null,

 "ImageSpriteTask":{

 "Status":"SUCCESS",

 "ErrCode":0,

 "Message":"SUCCESS",

 "Input":{

 "Definition":10,

 "OutputStorage":{

 "Type":"COS",

 "CosOutputStorage":{

 "Bucket":"gztest-125****654",

 "Region":"ap-guangzhou"

 }

 },

"OutputObjectPath":"/dasda/dianping2_imageSprite_10_{number}",

 "WebVttObjectName":"/dasda/dianping2_imageSprite_10",

 "ObjectNumberFormat":{

 "InitialValue":0,

 "Increment":1,

 "MinLength":1,

 "PlaceHolder":"0"

 }

 },

 "Output":{

 "Storage":{

 "Type":"COS",

 "CosOutputStorage":{

 "Bucket":"gztest-125****654",

 "Region":"ap-guangzhou"

 }

 },

 "Definition":10,

 "Height":80,

 "Width":142,

 "TotalCount":2,

 "ImagePathSet":[

 "/dasda/imageSprite/dianping2_imageSprite_10_0.jpg"

],

"WebVttPath":"/dasda/imageSprite/dianping2_imageSprite_10.vtt"

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 81
of 87

 }

 }

 }

]

 }

}

WorkflowTask event

The detailed fields of a WorkflowTask event message body are as follows:

{

 "EventType":"WorkflowTask",

 "WorkflowTaskEvent":{

 // WorkflowTaskEvent field

 }

}

The data structure and fields of WorkflowTask are as detailed below:

Name Type Description

TaskId String ID of video processing task.

Status String
Task flow status. Valid values:
PROCESSING: processing.
FINISH: finished.

ErrCode Integer
Disused. Please use ErrCode of each
specific task.

Message String
Disused. Please use Message of each
specific task.

InputInfo MediaInputInfo

Information of the target file of video
processing. Note: this field may return null,
indicating that no valid values can be
obtained.

MetaData MediaMetaData
Source video metadata. Note: this field may
return null, indicating that no valid values can
be obtained.

MediaProcessResultSet Array
of MediaProcessTaskResult

Execution status and result of video
processing task.

AiContentReviewResultSet Array
of AiContentReviewResult

Execution status and result of video content
moderation task.

https://www.tencentcloud.com/document/product/1041/33690#MediaInputInfo
https://www.tencentcloud.com/document/product/1041/33690#MediaMetaData
https://www.tencentcloud.com/document/product/1041/33690#MediaProcessTaskResult
https://www.tencentcloud.com/document/product/1041/33690#AiContentReviewResult

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 82
of 87

AiAnalysisResultSet Array of AiAnalysisResult Execution status and result of video content
analysis task.

AiRecognitionResultSet Array of AiRecognitionResult Execution status and result of video content
recognition task.

EditMediaTask event

The detailed fields of an EditMediaTask event message body are as follows:

{

 "EventType":"EditMediaTask",

 "EditMediaTaskEvent":{

 // EditMediaTask field

 }

}

The data structure and fields of EditMediaTask are as detailed below:

Name Type Description

TaskId String Task ID.

Status String
Task status. Valid values:
PROCESSING: processing.
FINISH: finished.

ErrCode Integer Error code. 0: success; other values: failure.

Message String Error message.

Input EditMediaTaskInput Input of video editing task.

Output EditMediaTaskOutput Output of video editing task. Note: this field may return null, indicating
that no valid values can be obtained.

https://www.tencentcloud.com/document/product/1041/33690#AiAnalysisResult
https://www.tencentcloud.com/document/product/1041/33690#AiRecognitionResult
https://www.tencentcloud.com/document/product/1041/33690#EditMediaTaskInput
https://www.tencentcloud.com/document/product/1041/33690#EditMediaTaskOutput

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 83
of 87

CLB Trigger Description
Last updated：2024-12-02 19:58:17

You can implement backend web services by writing SCF functions and providing services through CLB, which will
pass the request content as parameters to the function and return the result from the function back to the requester as
the response.

Characteristics of CLB triggers:
Push model

After a CLB trigger receives a request from CLB, if CLB is configured to connect with a function on the backend, the
function will be triggered for execution, and CLB will send the information of the request as event input parameters

to the triggered function, including the specific method how the request is received as well as the path ,

 header , and query of the request.

Sync invocation

A CLB trigger invokes functions synchronously. For more information on invocation types, please see Invocation
Types.
Note:
CLB accounts are divided into standard accounts and traditional accounts. Traditional accounts cannot be bound to

SCF. We recommend you upgrade them to standard accounts.

CLB Trigger Configuration

CLB triggers can be configured in either the SCF or CLB console.
SCF console
CLB console
In the Serverless console, you can add CLB triggers in trigger method, select existing CLB instances, create routing

rules, and configure URL request paths.
When configuring routing rules in the CLB console, you can choose Cloud Function as the backend and select
functions in the same region as the CLB instance. In the CLB console, you can also configure and manage advanced
CLB capabilities, such as WAF protection, SNI multi-domain certificate, and ENI.

CLB Trigger Binding Limits

One CLB path rule can be bound to only one function, but one function can be bound to multiple CLB rules as the

backend. Rules with the same path, listener, and host are regarded as the same rule and cannot be bound repeatedly.

https://www.tencentcloud.com/document/product/583/9694
https://console.tencentcloud.com/scf/index
https://console.tencentcloud.com/clb/index
https://www.tencentcloud.com/document/product/583/31441

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 84
of 87

Currently, CLB triggers can only be bound to functions in the same region; for example, a function created in the
Guangzhou region can only be bound to and triggered by CLB rules created in the Guangzhou region.

Request and Response

Request method refers to the method to process request sent from CLB to SCF, and response method refers to the

method to process the returned value sent from SCF to CLB. Both request and response methods are automatically
processed by the CLB trigger. When it triggers the function, data structures must be returned in the request method.
Note:
 X-Vip , X-Vport , X-Uri , X-Method , and X-Real-Port fields must be customized in the CLB

console before they can be transferred. For custom configurations, see Layer-7 Custom Configuration.

Event message structure of integration request for CLB trigger

When a CLB trigger receives a request, event data will be sent to the bound function in JSON format as shown below.
Note:
In the CLB trigger scenario, all requests and responses need to be transferred in JSON. For images, files, and other
data, as directly passing in JSON content will cause invisible characters to be lost, Base64 encoding is required as
detailed below:
If the Content-type is text/* , application/json , application/javascript , or

 application/xml , CLB will not transcode the body content.

For all other types, CLB will Base64-encode them first and then forward them.

{

 "headers": {

 "Content-type": "application/json",

 "Host": "test.clb-scf.com",

 "User-Agent": "Chrome",

 "X-Stgw-Time": "1591692977.774",

 "X-Client-Proto": "http",

 "X-Forwarded-Proto": "http",

 "X-Client-Proto-Ver": "HTTP/1.1",

 "X-Real-IP": "9.43.175.219",

 "X-Forwarded-For": "9.43.175.xx"

 "X-Vip": "121.23.21.xx",

 "X-Vport": "xx",

 "X-Uri": "/scf_location",

 "X-Method": "POST"

 "X-Real-Port": "44347",

 },

https://www.tencentcloud.com/document/product/214/32427

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 85
of 87

 "payload": {

 "key1": "123",

 "key2": "abc"

 },

}

The data structures are as detailed below:

Structure Description

X-Stgw-Time Request start timestamp

X-Forwarded-Proto scheme structure of the request

X-Client-Proto-Ver Protocol type

X-Real-IP Client IP address

X-Forward-For Passed proxy IP address

X-Real-Port
Records the Path parameters configured in CLB and their actual values (optional
custom configuration of CLB)

X-Vip CLB VIP address (optional custom configuration of CLB)

X-Vport CLB Vport (optional custom configuration of CLB)

X-Url CLB request path (optional custom configuration of CLB)

X-Method CLB request method (optional custom configuration of CLB)

Note:
The content may be increased significantly during CLB iteration. At present, it is guaranteed that the content of the
data structure will only be increased but not reduced, so that the existing structure will not be compromised.
Parameters in real requests may appear in multiple locations and can be selected based on your business needs.

Integration response

Integration response means that CLB parses the returned content of the function and constructs an HTTP response

based on the parsed content. With the aid of integration response, you can control the status code, headers, and body
content of the response by using code and implement response to content in custom formats, such as XML, HTML,
JSON, and even JS. When using integration response, data structures need to be returned in the returned data
structures of integration response for CLB trigger before they can be successfully parsed; otherwise, the error
message {"errno":403,"error":"Analyse scf response failed."} will appear.

Returned data structures of integration response for CLB trigger

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 86
of 87

If integration response is set for CLB, data needs to be returned in the following structures:

{

 "isBase64Encoded": false,

 "statusCode": 200,

 "headers": {"Content-Type":"text/html"},

 "body": "<html><body><h1>Heading</h1><p>Paragraph.</p></body></html>"

}

The data structures are as detailed below:

Structure Description

isBase64Encoded
This indicates whether the content in the body is Base64-encoded binary. It should
be true or false in JSON format.

statusCode HTTP return code, which should be an integer value.

headers
HTTP return header, which should contain multiple key-value or key:
[value,value] objects. Both key and value should be strings.

body HTTP return body.

If you need to return multiple headers with the same key, you can use a string array to describe different values; for
example:

{

 "isBase64Encoded": false,

 "statusCode": 200,

 "headers": {"Content-Type":"text/html","Key":["value1","value2","value3"]},

 "body": "<html><body><h1>Heading</h1><p>Paragraph.</p></body></html>"

}

Serverless Cloud Function

©2013-2025 Tencent Cloud International Pte. Ltd. Page 87
of 87

TencentCloud API Trigger
Last updated：2024-12-02 19:58:17

Overview

You can write SCF functions to handle your own business logic and trigger the functions through the management
APIs exposed by SCF. The management APIs are collectively referred to as TencentCloud API in Tencent Cloud. By
using the Invoke API of SCF, you can trigger and invoke functions as needed.

The detailed TencentCloud API call method can be found in Invoke. TencentCloud API triggers have the following
characteristics:
Invocation method: the sync or async triggering method can be defined according to the InvocationType

parameter.
Custom event: the event or data content that triggers the function can be defined according to the

 ClientContext parameter, and the content has to be encoded in JSON format.

TencentCloud API Call

To trigger a function through TencentCloud API, you need to:
1. Authenticate the API;
2. Enter the common parameters;
3. Parse the returned result.
In addition, if you do not want to construct or parse the request content on your own, you can directly use the

TencentCloud API SDK for Python, PHP, Java, Go, .NET, or Node.js to trigger functions. For more information on how
to use the SDK, please see SDK.

https://www.tencentcloud.com/document/product/583/17243
https://www.tencentcloud.com/document/product/583/17239
https://www.tencentcloud.com/document/product/583/17238
https://www.tencentcloud.com/document/product/583/17240
https://www.tencentcloud.com/document/product/494

