
Cloud Message Queue

©2013-2024 Tencent Cloud. All rights reserved. Page 1 of 17

Cloud Message Queue

Solutions and Cases

Product Documentation

Cloud Message Queue

©2013-2024 Tencent Cloud. All rights reserved. Page 2 of 17

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Cloud Message Queue

©2013-2024 Tencent Cloud. All rights reserved. Page 3 of 17

Contents

Solutions and Cases
Online Image Processing
Massive Data Processing
WeChat Red Packet During Spring Festival Gala
Comparative Analysis of Cloud CMQ and RabbitMQ
Third-Party Payment
Qidian Literary Website

Cloud Message Queue

©2013-2024 Tencent Cloud. All rights reserved. Page 4 of 17

Solutions and Cases
Online Image Processing
Last updated：2024-12-18 16:08:12

An image processing company builds an online image processing service in Tencent Cloud which enables users to
upload their images and specify operations to be performed on them, such as cropping, red eye removal, teeth
whitening, colorization, contrast adjustment, and thumbnail generation. A user can upload an image, submit a task,

wait for the image to be processed, and download the output image. The time taken for processing varies by
operation, from several seconds to several minutes, and the user may upload several, dozens of, or hundreds of
images at a time. Therefore, the total processing time is subject to the number of uploaded images, image size, and
selected operations.

After CMQ is integrated to implement the abovementioned needs, user images will be stored in Tencent Cloud
storage (such as CBS and COS), and each user operation request will be stored in the request queue as a message.

The message content is an image index composed of elements such as the image name, operation type in user
request, and image storage location index key.
The image processing service running on CVM gets a message (image index) from the request queue. The image
processing server downloads the data from the cloud and edits the image. Then, it sends the processing result to the

Cloud Message Queue

©2013-2024 Tencent Cloud. All rights reserved. Page 5 of 17

response queue and stores the output image in cloud storage. After this process is completed, the user has stored all
the original and output images in cloud storage and can download them for use at any time.
More details about scalability and high reliability:

Even if the image processing service is temporarily unavailable due to bugs or other problems, as CMQ is used, the
crash will be imperceptible to the user. In this case, on one hand, the user can still upload images, and the web server
can still send messages to the request queue where the messages will be retained and can be fetched out only after
the image processing service is back online; on the other hand, the image processing service does not need to record
the messages being processed before the crash when it is implemented, and such messages can be processed

again, as the message (including messages received sequentially and concurrently in the queue) receipt feature of
CMQ ensures that messages can remain in the queue after being received until they are explicitly deleted by the
recipient. This feature ensures decoupling of the image processing service and the image upload service.
If a single image processing service cannot meet user needs (i.e., users can upload images but cannot get the
processing results after waiting for a long time), you can use CMQ to start multiple image processing services to
satisfy ever-increasing user access needs based on the following two characteristics of CMQ:

A single CMQ queue can be accessed by multiple servers simultaneously (i.e., message sending, receipt, and
deletion can be concurrent).
A message will not be received by multiple services, which is implemented by the temporary message lock. The
message recipient can specify the time during which the message is locked and needs to proactively delete the
message after processing it. If the recipient fails to process the message, another service can get the message again

after the lock expires.
These two characteristics ensure that the number of processing servers can be dynamically adjusted by load.

Cloud Message Queue

©2013-2024 Tencent Cloud. All rights reserved. Page 6 of 17

Massive Data Processing
Last updated：2024-12-18 16:08:11

The first step in big data processing is to mine and analyze massive amounts of data in order to extract useful results
and guide future business models. For example, Dianping.com and Didi Chuxing have made in-depth practices in
Tencent Cloud services: the mobile app of Dianping.com pushes restaurants that are frequently shared by users on

WeChat and Mobile QQ to its own consumers as recommendations.
The data analysis system features can be mainly divided into the following modules: data collection, data ingestion,
stream computing, offline computing, and data persistence.
Data collection
It collects data from all nodes in real time by using open-source Flume. Data such as logs of all business servers will

flow to the CMQ pipeline in the form of a funnel.
Data ingestion
As data collection and processing may be async in speed, to ensure stability and reliability of data write and analysis,
the CMQ messaging middleware can be added as a buffer.
Stream computing and offline data analysis
Collected data is analyzed in real time with Apache Storm. Data mining is performed through offline data analysis

based on Spark.
Data output
Analysis results can be persistently stored in services such as TencentDB for MySQL.

Cloud Message Queue

©2013-2024 Tencent Cloud. All rights reserved. Page 7 of 17

In data processing scenarios, the input of massive amounts of log data is the message producer, and the Storm
cluster for online analysis is the message consumer. Practical experience shows that the message processing
business logic of Storm as the message consumer may be complicated (which involves real-time computing, data

stream processing, and topology data processing). Moreover, faults occur at a relatively high probability on Storm,
which results in temporary consumption failures or instability. In summary, the efficiency of the message producer is
much higher than that of the message consumer.
In the push model, the server cannot know the current status of the consumer, so it will continuously push the
generated data. The consumer may have a heavier load and even crash if the push model is used when the Storm

cluster is under high load, unless it has an appropriate mechanism that can inform the server of its status. In the pull
model, this problem becomes much simpler. As the consumer actively pulls data from the server, it only needs to
reduce its access frequency.
CMQ will launch the topic model with the pull and push data acquisition modes in the future. As a buffer between
producer data and consumer data, CMQ enables data to be read only when the consumer is available and ready,
which alleviates the out-of-sync issues between message producer and consumer.

Cloud Message Queue

©2013-2024 Tencent Cloud. All rights reserved. Page 8 of 17

WeChat Red Packet During Spring Festival
Gala
Last updated：2024-12-18 16:08:11

The Spring Festival Gala red packet campaign involves interactions between four major systems, namely, WeChat,
WeChat Pay, red packet system, and Tenpay, which are described in detail below:
Red packet system: it allows users to send, grab, and open personal red packets and view related lists.

Tenpay: it supports payment of orders, high-performance storage of asynchronously credited transactions, and real-
time display of user account balance and bills.
WeChat: it ensures the quality of WeChat user access over the internet.
WeChat Pay: it is the entry to online transactions.

Distributed transaction processing similar to the red packet system is the key focus. For example, user A sends a
red packet of 10 CNY to user B with the following steps involved:
1. Read the balance of user A's account

Cloud Message Queue

©2013-2024 Tencent Cloud. All rights reserved. Page 9 of 17

2. Deduct 10 CNY from user A's account (debit)
3. Write the result to user A's account (ACK)
4. Read the balance of user B's account

5. Open the red packet sent by user A to user B and read the amount
6. Add 10 CNY to user B's account (credit)
7. Write the result to user B's account
To ensure data consistency, the steps above have only two results: all steps either succeed or fail and then get rolled
back. In this process, the distributed lock mechanism needs to be applied to the accounts of both user A and user B to

avoid dirty data. In the WeChat red packet system, which is a huge distributed cluster, this issue may become
extremely complicated.
Fortunately, the WeChat red packet system utilizes Tencent Cloud CMQ to avoid excessive overheads caused by
distributed transactions. In the same scenario where user A sends a 10 CNY red packet to user B with CMQ used,
things are much simpler as follows:
In step 7 above, user B opens the red packet and finds 10 CNY in it. However, the final crediting may fail due to high

concurrency pressure on that day.
The red packet system forwards all the requests with crediting failures to CMQ. When the account balance fails to be
updated for user B, the client on the mobile phone will display the waiting state. Then, the account system will
continuously pull messages from CMQ to retry updating. CMQ ensures that the 10 CNY crediting message will never
be lost until it is fetched out.

On Chinese New Year's Eve, user actions of sending and opening red packets and crediting are all converted into
billions of requests. If a traditional transaction method is used, the concurrency pressure will be aggravated and crash
the system.
CMQ ensures reliable storage and transfer of red packet messages and can write three copies in real time to avoid
data loss. When fund crediting fails, the operation can be retried multiple times so as to avoid disadvantages of

traditional methods such as rollback upon failure and frequent database polling.

Cloud Message Queue

©2013-2024 Tencent Cloud. All rights reserved. Page 10 of 17

Comparative Analysis of Cloud CMQ and
RabbitMQ
Last updated：2024-12-18 16:08:12

RabbitMQ is a typical open-source messaging middleware program. It is popular among enterprise systems and
suitable for scenarios with high requirements for data consistency, stability, and reliability.
   

Based on the high reliability of RabbitMQ/AMQP and by leveraging the Raft protocol in redesign and
reimplementation, Tencent Cloud CMQ greatly improves the reliability, throughput, and performance.
This document describes RabbitMQ's reliability principle, improvement made by CMQ, and performance comparison
between them.

Reliable Message Delivery of RabbitMQ

ACK mechanism

A business may lose messages due to various issues such as network, server, or program exceptions. The message

ACK mechanism can solve the problem of message loss. If a message is successfully acknowledged, it means that
the message has been verified and correctly processed.

Cloud Message Queue

©2013-2024 Tencent Cloud. All rights reserved. Page 11 of 17

RabbitMQ uses the mechanism of produced and consumed message ACK to ensure reliable delivery.
Produced message ACK: after the producer sends a message to the message queue, it will wait for the return of an
ACK of success; otherwise, the producer will resend the message to the message queue. This process can be async,

that is, the producer continuously sends messages, and the message queue can return ACKs after processing them in
batches. The producer can identify the message IDs in the returned ACKs to determine which messages have been
successfully processed.
Consumed message ACK: after the message queue delivers a message to the consumer, it will wait for the return of
an ACK of success; otherwise, the message queue will resend the message to the consumer. This process can also

be async, that is, the message queue continuously delivers messages, and the consumer can return ACKs after
processing them in batches.
You can see that RabbitMQ/AMQP provides "at-least-once delivery". When exceptions occur, messages will be
repeatedly delivered or consumed.

Message storage

To improve message reliability and ensure that received messages can be persistently written into the disk when the
service is unavailable during RabbitMQ restart, RabbitMQ will write received messages to a file and store it in the disk

when the number of written messages reaches a certain value or after a certain period of time.
Produced message ACK is performed after message storage, and the message queue will return the ID of the stored
message to the producer.

Comparison Between CMQ and RabbitMQ

CMQ has a lot of similarities with RabbitMQ in underlying principles and implementation methods; however, it is
greatly upgraded and improved compared with RabbitMQ:

Feature upgrade

In addition to produced and consumed message ACK mechanisms, CMQ provides the message rewind feature.
You can specify the number of days during which CMQ stores produced messages. Then, the messages can be
rewound back to a time point in this period for consumption again starting from the time point. The message rewind
feature is very useful in business restoration when the business logic is exceptional.

Performance optimization

Performance
Metric

Description

Network IO
CMQ can produce/consume messages in batches, while RabbitMQ does not support batch
production. In scenarios where there are high numbers of small-sized messages, CMQ can
process them with fewer requests at a smaller average latency.

Cloud Message Queue

©2013-2024 Tencent Cloud. All rights reserved. Page 12 of 17

File IO CMQ writes single messages in sequence during message production/consumption and
regularly stores them in the disk, making full use of the file system for caching. In the persistent
message mechanism of RabbitMQ, messages are sent to the in-memory queue for status
conversion, then written into log cache, and finally written into message and index files (the
index file is written sequentially, while the message file is written randomly), which involves three
IO operations and has relatively low performance.

CPU
performance

Computing for RabbitMQ log caching and status conversion is complicated and needs a lot of
CPU resources, therefore compromising the performance.

Improved availability

Both CMQ and RabbitMQ support hot backup with multiple servers to improve availability. CMQ implements this

feature based on the Raft algorithm which is simple and easy to maintain, while RabbitMQ uses its proprietary
Guaranteed Multicast (GM) algorithm which is difficult to learn.
In the Raft protocol, logs can be replicated as long as most nodes return a success to the leader, and the leader can
implement the request and return a success to the client.

   

In GM, all nodes in the cluster are organized as a ring. A log replication request will be sent to subsequent nodes one
by one after the leader. The leader will send an ACK message to the ring after it receives the request again. Only after
the ACK is received by the leader again can the log be fully synced among all nodes in the ring.

Cloud Message Queue

©2013-2024 Tencent Cloud. All rights reserved. Page 13 of 17

The GM algorithm requires that success be returned only after logs have been synced among all nodes in the cluster,
while the Raft algorithm requires sync only among most nodes, which reduces the waiting time in sync route by almost

a half.

Performance comparison between CMQ and RabbitMQ

The testing scenario is as follows: three servers with the same configuration form a cluster, CMQ and RabbitMQ are
both configured as image queues, and all data is synced on the three servers. CMQ and RabbitMQ both have the
produced and consumed message ACK mechanisms enabled, and the size of produced messages is about 1 KB
each.

Test Environment Description

CPU 24-core Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40 GHz

Memory 64 GB

Disk 12 * 2 TB SATAs RAID 0 of 12 SATAs

ENI 10-Gigabit

Linux version 2.6.32.43

RabbitMQ version 3.6.2

Erlang version 18.3

Cloud Message Queue

©2013-2024 Tencent Cloud. All rights reserved. Page 14 of 17

The testing data is as follows:

QPS
Comparison

Production Only Consumption Only Simultaneous Production/Consumption

CMQ
Production: 68,000
messages/sec

Consumption:
90,000
messages/sec

Production: 36,000
messages/sec
Consumption: 36,000
messages/sec

RabbitMQ
Production: 12,500
messages/sec

Consumption:
26,000
messages/sec

Production: 8,500
messages/sec
Consumption: 8,500
messages/sec

In high-reliability scenarios, the throughput of CMQ is four times higher than that of RabbitMQ.

Cloud Message Queue

©2013-2024 Tencent Cloud. All rights reserved. Page 15 of 17

Third-Party Payment
Last updated：2024-12-18 16:08:11

The close collaboration between leading third-party mobile finance payment solution providers such as SwiftPass and
WeChat Pay promotes the use of WeChat Pay among brick-and-mortar stores in various industries, which helps
reduce the need of cash payments and improve the payment efficiency. The main architecture of the payment system

is as follows:
1. When a user submits a payment request at a convenience store (such as 7-Eleven) to WeChat Pay, WeChat Pay
will return an ACK after confirming the request.
2. After the returned ACK is confirmed, WeChat Pay will deliver a successful order payment message to
SwiftPass, describing the account information, time, amount, and device information of that transaction.

3. SwiftPass writes the message details to CMQ for temporary storage. The successful order payment message
will be used as an important credential for settlement between SwiftPass and the merchant (i.e., the convenience
store); therefore, it must be reliably delivered with guaranteed arrival.
4. The order payment message in CMQ will be returned to the server of the merchant (i.e., the convenience store),
which can be async since it does not need to be in real time. Specifically, it will be written to a queue, pulled by an
HTTP proxy, and then sent to the merchant after being fetched out.

5. Before CMQ is connected, if SwiftPass fails to notify the merchant, it will initiate a new request to WeChat Pay
which then will deliver the same order payment message to SwiftPass. After CMQ is connected, from WeChat's
perspective, the success rate of SwiftPass' system is greatly improved, and its rating (reliability and credibility) in
WeChat system will be increased.
6. Finally, all order payment messages will be continuously delivered by another topic to the risk management,

campaign management, and promotion campaign systems. For example, the risk management system will
continuously analyze the order payment conditions in each message delivered by the topic. If the transaction amount
of merchant A soars in a short period of time (suspiciously fake orders), the callback API will be used to prohibit
subsequent transactions for merchant A.
Please see the following figure:

Cloud Message Queue

©2013-2024 Tencent Cloud. All rights reserved. Page 16 of 17

Cloud Message Queue

©2013-2024 Tencent Cloud. All rights reserved. Page 17 of 17

Qidian Literary Website
Last updated：2024-12-18 16:08:11

CMQ meets the three key needs of Qidian.com operated by China Literature:
1. In the Zhangyishucai operation system, consumer crediting in the feature of grabbing red packet monthly tickets is
async. The credit information will be first written to a message queue and then pulled by the consumer. After the

consumer confirms that the message is successfully consumed, the callback API will delete the message from the
queue.
2. In another scenario, major systems of Qidian.com such as OPS, alarming, and operations generate massive
volumes of logs. The logs will be first aggregated into CMQ, and the backend big data analysis clusters will
continuously pull them out of CMQ and analyze them based on the processing capabilities. CMQ can theoretically

retain an unlimited number of messages, bringing you complete peace of mind when using it.
3. A feature similar to message rewind in Kafka is provided. After business consumption is successfully completed
and the messages are deleted, message rewind can be used to consume the deleted messages again. The offset
position can be specified for flexible adjustment. This feature facilitates Qidian.com in reconciliation and business
system retry.
The overall business of Qidian.com presents high pressure on CMQ, as the API request QPS exceeds 100,000, and

the total number of daily requests exceeds 1 billion. CMQ can easily support Qidian.com with high stability under such
huge business pressure.
The CMQ backend cluster is imperceptible to users, and the CMQ controller server can schedule and relocate queues
in real time based on the load of the cluster. If the request volume of a queue exceeds the service threshold of the
current cluster, the controller server can distribute the queue routes to multiple clusters to increase the number of

processable concurrent requests. In theory, CMQ can achieve unlimited message retention and extremely high QPS.

