
Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 1
of 79

Data Lake Compute

Practical Tutorial

Product Documentation

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 2
of 79

Copyright Notice

©2013-2025 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by the Tencent corporate group, including
its parent, subsidiaries and affiliated companies, as the case may be. Trademarks of third parties referred to in this
document are owned by their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 3
of 79

Contents

Practical Tutorial
Table Creation Practice
Using Apache Airflow to Schedule DLC Engine to Submit Tasks
Best Practices of Implementing Machine Learning with DLC + WeData
Direct Query of DLC Internal Storage with StarRocks
Spark cost optimization practice
DLC Native Table

DLC Source Table Core Capabilities
DLC Source Table Operation Configuration
DLC Source Table Lake Ingestion Practice
DLC Source Table FAQs

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 4
of 79

Practical Tutorial
Table Creation Practice
Last updated：2025-03-12 18:15:01

DLC (Data Lake Compute) supports creating native tables (Iceberg) and external tables in various scenarios. For
Table creation, refer to the following practice cases.

Create Native Table (Iceberg)

Spark ETL Scenarios

Applicable to: Periodically perform batch job operations such as insert into, insert overwrite, merge into, etc.

/**

Copy-on-write is the default mode. If it cannot be determined which one of the two

Applicable scenarios of copy-on-write: Featuring relatively higher query performanc

Applicable scenarios of merge-on-read: Featuring relatively lower query performance

/** Copy-on-write table */

CREATE TABLE dlc_db.iceberg_etl (

 id INT,

 name string,

 age INT

) TBLPROPERTIES (

 'format-version' = '2',

 'write.metadata.previous-versions-max' = '100',

 'write.metadata.delete-after-commit.enabled' = 'true');

/** merge on read table */

CREATE TABLE dlc_db.iceberg_etl (

 id INT,

 name string,

 age INT

) TBLPROPERTIES (

 'format-version' = '2',

 'write.metadata.previous-versions-max' = '100',

 'write.metadata.delete-after-commit.enabled' = 'true',

 'write.update.mode' = 'merge-on-read',

 'write.merge.mode' = 'merge-on-read',

 'write.delete.mode' = 'merge-on-read'

);

Console Creation: Copy-On-Write Mode

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 5
of 79

1. lick to create native tables.

2. Select the data table version.

Console Creation: Merge-On-Read Mode (Requires Adding Three Additional Attribute Values)

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 6
of 79

Flink Stream Writing Scenarios

Suitable for Oceanus (Flink stream writing) scenarios.

/** The Flink stream writing primary key is the ID */

CREATE TABLE dlc_db.iceberg_cdc_by_id (

 id INT,

 name string,

 age INT

) TBLPROPERTIES (

 'format-version' = '2',

 'write.metadata.previous-versions-max' = '100',

 'write.metadata.delete-after-commit.enabled' = 'true',

 'write.upsert.enabled' = 'true',

 'write.update.mode' = 'merge-on-read',

 'write.merge.mode' = 'merge-on-read',

 'write.delete.mode' = 'merge-on-read',

 'write.distribution-mode' = 'hash',

 'write.parquet.bloom-filter-enabled.column.id' = 'true',

 'dlc.ao.data.govern.sorted.keys' = 'id'

);

/** The Flink stream writing primary key is a composite primary key of ID and name

CREATE TABLE dlc_db.iceberg_cdc_by_id_and_name (

 id INT,

 name string,

 age INT

) TBLPROPERTIES (

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 7
of 79

 'format-version' = '2',

 'write.metadata.previous-versions-max' = '100',

 'write.metadata.delete-after-commit.enabled' = 'true',

 'write.upsert.enabled' = 'true',

 'write.update.mode' = 'merge-on-read',

 'write.merge.mode' = 'merge-on-read',

 'write.delete.mode' = 'merge-on-read',

 'write.distribution-mode' = 'hash',

 'write.parquet.bloom-filter-enabled.column.id' = 'true',

 'write.parquet.bloom-filter-enabled.column.name' = 'true',

 'dlc.ao.data.govern.sorted.keys' = 'id,name'

);

Create a table with the primary key of ID in the console.

Configuration Instructions

Attribute Value Description Configuration Guidance

format-version Iceberg table version. The
values include 1 and 2. The
default value is 2 for Spark
Standard-S 1.1 and SuperSQL
Spark 3.5 and 1 for other
scenarios.

It is recommended that it be set to 2.

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 8
of 79

write.upsert.enabled

Specifies whether to enable
upsert. The value is true. If it
is not specified, upsert is not
enabled.

If upsert is involved in a writing scenario, it
should be set to true.

write.update.mode Update mode

The default value is copy-on-write.
Copy-on-write is the default mode. If it cannot
be determined which one of the two modes is
used, the copy-on-write mode can be used. The
merge-on-read mode has better performance in
row-level update scenarios.
Applicable scenarios of copy-on-write:
Featuring relatively higher query performance
but relatively slower writing speed, copy-on-
write is suitable for scenarios that have
periodic ETL tasks or batch update operations
with a large data volume.
Applicable scenarios of merge-on-read:
Featuring relatively lower query performance
but relatively faster writing speed, merge-on-
read is suitable for scenarios with high write
performance requirements. It has strong row-
level update capabilities and significantly
improves the write performance for frequent
and small-scale (< 10%) merge-
into/update/delete operations or Oceanus
(Flink stream writing) scenarios.

write.merge.mode Merge mode The default value is copy-on-write.
Copy-on-write is the default mode. If it cannot
be determined which one of the two modes is
used, the copy-on-write mode can be used. The
merge-on-read mode has better performance
in row-level update scenarios.
Applicable scenarios of copy-on-write:
Featuring relatively higher query performance
but relatively slower writing speed, copy-on-
write is suitable for scenarios that have periodic
ETL tasks or batch update operations with a
large data volume.
Applicable scenarios of merge-on-read:
Featuring relatively lower query performance
but relatively faster writing speed, merge-on-
read is suitable for scenarios with high write
performance requirements. It has strong row-

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 9
of 79

level update capabilities and significantly
improves the write performance for frequent
and small-scale (< 10%) merge-
into/update/delete operations or Oceanus
(Flink stream writing) scenarios.

write.parquet.bloom-
filter-enabled.column.
{col}

Specifies whether to enable
bloom. It is only suitable for
Oceanus (Flink stream writing)
scenarios. The value true
indicates that it is enabled, and
it is not enabled by default.

For Flink stream writing scenarios, it should be
enabled and configured based on the
upstream primary key. If there are multiple
primary keys in the upstream, the first two (at
most) primary keys are used. After it is
enabled, the MOR query and small file merge
performance can be improved.

write.distribution-mode Write mode

When it is set to hash, written data is
repartitioned automatically. However, the write
performance is affected for some write
situations. It is recommended that it is not
configured by default. For Oceanus (Flink
stream writing) scenarios, it is recommended
that it be set to hash to optimize the write
performance. For other scenarios, it is
recommended that the default value be
retained, that is, it is not configured.

write.metadata.delete-
after-commit.enabled

Starts auto cleanup of
metadata files.

It is strongly recommended that it be set to
true. After it is enabled, Iceberg automatically
cleans historical metadata files when
generating snapshots, which prevents the
accumulation of a large number of metadata
files.

write.metadata.previous-
versions-max

Sets the default number of
metadata files to be retained.

The default value is 100. In some special
cases, users can appropriately adjust this
value. It needs to be used together with
write.metadata.delete-after-commit.enabled.

Create External Table

Creating a CSV Format External Table

/**

1. separatorChar: Separator, which is a comma (,) by default. It is used to specify

2. quoteChar: Quote character, which are quotation marks (") by default. If the ori

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 10
of 79

3. LOCATION: It needs to be changed to the COS storage path.

4. Table attribute skip.header.line.count in TBLPROPERTIES: The default value is 0.

*/

CREATE EXTERNAL TABLE IF NOT EXISTS dlc_db.`csv_tb`(

 `id` int,

 `name` string)

ROW FORMAT SERDE

 'org.apache.hadoop.hive.serde2.OpenCSVSerde'

WITH SERDEPROPERTIES (

 'quoteChar'='"',

 'separatorChar'=',')

STORED AS INPUTFORMAT

 'org.apache.hadoop.mapred.TextInputFormat'

OUTPUTFORMAT

 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'

LOCATION

 'cosn://your_cos_location'

TBLPROPERTIES (

 'skip.header.line.count'='1');

Creating a Json Format External Table

/**

 LOCATION： Refers to the COS storage path.

Others remain unchanged.

*/

CREATE EXTERNAL TABLE IF NOT EXISTS dlc_db.json_demo

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 11
of 79

(`id` bigint, `name` string)

ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe'

STORED AS TEXTFILE

LOCATION 'cosn://your_cos_location'

Example of JSON file content. Each line is an independent JSON string:

{"id":1,"name":"tom"}

{"id":2,"name":"tony"}

Creating an External Table in Parquet Format

The SQL statements for table creation are as follows:

/**

 LOCATION： Refers to the COS storage path.

Others remain unchanged.

*/

CREATE EXTERNAL TABLE IF NOT EXISTS dlc_db.parquet_demo

 (`id` int, `name` string)

 PARTITIONED BY (`dt` string)

 STORED AS PARQUET LOCATION 'cosn://your_cos_location';

Creating an ORC Format External Table

/**

 LOCATION： Refers to the COS storage path.

Others remain unchanged.

*/

CREATE EXTERNAL TABLE IF NOT EXISTS dlc_db.orc_demo

(`id` int,`name` string)

 PARTITIONED BY (`dt` string)

 STORED AS ORC LOCATION 'cosn://your_cos_location'

Creating an External Table in AVRO Format

/**

 LOCATION： Refers to the COS storage path.

Others remain unchanged.

*/

CREATE EXTERNAL TABLE IF NOT EXISTS dlc_db.avro_demo

(`id` int,`name` string)

 PARTITIONED BY (`dt` string)

 STORED AS ORC LOCATION 'cosn://your_cos_location'

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 12
of 79

Supplementary Description

Column Types and Partition Field Types

For details, see the Parameter section in CREATE TABLE.
Note:
When a SELECT query statement is executed to query binary fields, the following error may occur because the engine

writes the result set to a CSV file by default, which does not support binary data.

Solution (engine or task-level configuration are all supported):
1. Change the results file format for saving: kyuubi.operation.result.saveToFile.format=parquet (Set the format of the
stored file, Parquet or ORC.)
2. Change the configuration to save the results to another place other than COS:

kyuubi.operation.result.saveToFile.enabled=false

Complex Column Types

/**

LOCATION： Refers to the COS storage path.

Others remain unchanged.

*/

CREATE EXTERNAL TABLE dlc_db.orc_demo_with_complex_type(

 col_bigint bigint COMMENT 'id number',

 col_int int,

 col_struct struct<x: double, y: double>,

 col_array array<struct<x: double, y: double>>,

 col_map map<struct<x: int>, struct<a: int>>,

 col_decimal DECIMAL(10,2),

 col_float FLOAT,

 col_double DOUBLE,

 col_string STRING,

 col_boolean BOOLEAN,

 col_date DATE,

 col_timestamp TIMESTAMP

)

PARTITIONED BY (`dt` string)

STORED AS ORC LOCATION 'cosn://your_cos_location';

Note：
1. AVRO data sources do not support nested struct fields to map or array fields.
2. The key of map fields in an AVRO data source can only be string type.

https://www.tencentcloud.com/document/product/1155/61910#.E5.8F.82.E6.95.B02

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 13
of 79

3. When struct, array, or map fields are used in a CSV data source, the following error may occur because the engine
performs strong verification on the data format.
Disable strong verification settings of the engine and set the static parameter of the engine with

spark.sql.storeAssignmentPolicy=legacy.

Complex Partition Field Types

1. LOCATION: It needs to be changed to the COS storage path.
2. Supported partition field types include TINYINT, SMALLINT, INT, BIGINT, DECIMAL, FLOAT (not recommended,
and DECIMAL is recommended), DOUBLE (not recommended, and DECIMAL is recommended), STRING,
BOOLEAN, DATE, and TIMESTAMP.

CREATE EXTERNAL TABLE dlc_db.orc_demo_with_complex_partition(

 col_int int

)

PARTITIONED BY (

 pt_tinyint TINYINT,

 pt_smallint SMALLINT,

 pt_decimal DECIMAL(10,2),

 pt_string STRING,

 pt_date DATE,

 pt_timestamp TIMESTAMP)

STORED AS ORC LOCATION 'cosn://lcl-bucket-1305424723/dlc/orc_demo_with_complex_part

Note：
The sum of Hive table partition names cannot exceed 767 characters.

Case-insensitive Metadata

Table names and column names in metadata are case-insensitive when they are used. However, the original case
format during creation is retained on the Data Management page.

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 14
of 79

Using Apache Airflow to Schedule DLC
Engine to Submit Tasks
Last updated：2025-05-22 15:45:02

This document introduces DLC's support for the Apache Airflow scheduling tool and provides examples
demonstrating how to use Apache Airflow to run different types of DLC engine tasks.

Overview

Apache Airflow is an open-source scheduling tool developed by Airbnb, written in Python. It defines and schedules a

set of interdependent tasks using Directed Acyclic Graphs (DAGs). Apache Airflow supports sub-tasks written in
Python and offers various operators to execute tasks, such as Bash commands, Python functions, SQL queries, and
Spark jobs, providing high flexibility and scalability. Widely used in fields like data engineering, data processing, and
workflow automation, Apache Airflow allows users to easily monitor and manage the state and execution of workflows
through its rich features and visual interface. For more information about Apache Airflow, see Apache Airflow.

Prerequisites

1. Prepare the Apache Airflow environment.
2. Install and start Apache Airflow. For detailed steps on installation and startup, see Quick Start.
3. Install the jaydebeapi dependency package, pip install jaydebeapi.
4. Prepare the DLC environment.
5. Enable the DLC engine service.
6. If using the standard Spark engine, prepare the Hive JDBC driver. Click to download hive-jdbc-3.1.2-standalone.jar.

7. If using the standard Presto engine, prepare the Presto JDBC driver. Click to download presto-jdbc-0.284.jar.
8. If using the SuperSQL engine, prepare the DLC JDBC driver. Click to download the JDBC driver.

Key Steps

Creating Connection and Scheduling Tasks

In the Apache Airflow working directory, create a dags directory. Inside the dags directory, create a scheduling script
and save it as a .py file. For example, in this document, the scheduling script is created as /root/airflow/dags/airflow-
dlc-test.py as shown below:

https://airflow.apache.org/
https://airflow.apache.org/docs/apache-airflow/1.10.7/start.html
https://repo1.maven.org/maven2/org/apache/hive/hive-jdbc/3.1.2/hive-jdbc-3.1.2-standalone.jar
https://repo1.maven.org/maven2/com/facebook/presto/presto-jdbc/0.284/presto-jdbc-0.284.jar
https://dlc-jdbc-1304028854.cos.ap-beijing.myqcloud.com/dlc-jdbc-2.5.3-jar-with-dependencies.jar

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 15
of 79

import time

from datetime import datetime, timedelta

import jaydebeapi

from airflow import DAG

from airflow.operators.python_operator import PythonOperator

jdbc_url='jdbc:dlc:dlc.tencentcloudapi.com?task_type=SparkSQLTask&database_name={da

user = 'xxx'

pwd = 'xxx'

dirver = 'com.tencent.cloud.dlc.jdbc.DlcDriver'

jar_file = '/root/airflow/jars/dlc-jdbc-2.5.3-jar-with-dependencies.jar'

def createTable():

 sqlStr = 'create table if not exists db.tb1 (c1 int, c2 string)'

 conn = jaydebeapi.connect(dirver, jdbc_url, [user, pwd], jar_file)

 curs = conn.cursor()

 curs.execute(sqlStr)

 rows = curs.rowcount.real

 if rows != 0:

 result = curs.fetchall()

 print(result)

 curs.close()

 conn.close()

def insertValues():

 sqlStr = "insert into db.tb1 values (111, 'this is test')"

 conn = jaydebeapi.connect(dirver,jdbc_url, [user, pwd], jar_file)

 curs = conn.cursor()

 curs.execute(sqlStr)

 rows = curs.rowcount.real

 if rows != 0:

 result = curs.fetchall()

 print(result)

 curs.close()

 conn.close()

def selectColums():

 sqlStr = 'select * from db.tb1'

 conn = jaydebeapi.connect(dirver, jdbc_url, [user, pwd], jar_file)

 curs = conn.cursor()

 curs.execute(sqlStr)

 rows = curs.rowcount.real

 if rows != 0:

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 16
of 79

 result = curs.fetchall()

 print(result)

 curs.close()

 conn.close()

def get_time():

 print('Current time is:', datetime.now().strftime('%Y-%m-%d %H:%M:%S'))

 return time.time()

default_args = {

 'owner': 'tencent', # owner's name

 'start_date': datetime(2024, 11, 1), # the first execution start time, in UTC

 'retries': 2, # number of retry attempts on failure

 'retry_delay': timedelta(minutes=1), # retry interval on failure

}

dag = DAG(

 dag_id='airflow_dlc_test', # DAG ID, should consist only of letters, numbers,

 default_args=default_args, # externally defined parameters in dic format

 schedule_interval=timedelta(minutes=1), # defines the frequency at which the D

 catchup=False # when executing the DAG, all tasks scheduled from the start tim

)

t1 = PythonOperator(

 task_id='create_table',

 python_callable=createTable,

 dag=dag)

t2 = PythonOperator(

 task_id='insert_values',

 python_callable=insertValues,

 dag=dag)

t3 = PythonOperator(

 task_id='select_values',

 python_callable=selectColums,

 dag=dag)

t4 = PythonOperator(

 task_id='print_time',

 python_callable=get_time,

 dag=dag)

t1 >> t2 >> [t3, t4]

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 17
of 79

Parameter description:

Parameters Description

jdbc_url JDBC connection address and configuration parameters. For more details, see Hive JDBC
Access, Presto JDBC Access, and DLC JDBC Access.

user SecretId

pwd SecretKey

dirver Load the JDBC driver. For more details, see Hive JDBC Access, Presto JDBC Access, and
DLC JDBC Access.

jar_file
The storage path of the driver JAR package. Replace it with the absolute path where the
corresponding engine's JDBC driver JAR package is stored. For more details, see Hive JDBC
Access, Presto JDBC Access, and DLC JDBC Access.

Running Scheduled Tasks

You can access the Web interface, navigate to the DAGs tab, locate the submitted scheduling workflow, and start the
scheduling.

Viewing Task Execution Results

https://www.tencentcloud.com/document/product/1155/63354#
https://www.tencentcloud.com/document/product/1155/63355#
https://www.tencentcloud.com/document/product/1155/62021#
https://www.tencentcloud.com/document/product/1155/63354#
https://www.tencentcloud.com/document/product/1155/63355#
https://www.tencentcloud.com/document/product/1155/62021#
https://www.tencentcloud.com/document/product/1155/63354#
https://www.tencentcloud.com/document/product/1155/63355#
https://www.tencentcloud.com/document/product/1155/62021#

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 18
of 79

Best Practices of Implementing Machine
Learning with DLC + WeData
Last updated：2025-06-25 16:03:18

Data Lake Compute (DLC) supports creating machine learning resource groups via Spark engines, assisting users in
machine learning scenarios, including model training.
Through this document, you can experience the practice of model training within the scikit-learn framework based on

our provided demo dataset and example code.
Note:
Resource group: As a secondary queue division of the computing resources within a Spark Standard Engine,
resource groups belong to the parent Standard Engine. Resource groups under the same engine share resources with
each other.

The computing units (CUs) of the DLC Spark Standard Engine can be allocated into multiple resource groups as
needed. You can configure the minimum and maximum usable CU limits of each resource group, start and stop
policies, concurrency quantity, dynamic or static parameters, and other items to efficiently manage computing
resources isolation and workload in complex scenarios, including multi-tenant and multi-tasking. This feature ensures
resource isolation between different types of tasks and prevents resources from being preempted for extended
periods by a few large queries.

Currently, the DLC machine learning resource group, WeData Notebook exploration, and machine learning are all
allowlisted features. If needed, submit a ticket to contact the DLC and WeData teams to enable the machine
learning resource group, Notebook, and MLflow services.

Activating Accounts and Products

Activating Accounts and Products

The DLC account and product activation features need to be enabled with the Tencent Cloud root account. Once the
root account completes the operations, all sub-accounts under the default root account can use these features.

Adjustments can be made using the CAM feature if needed. For specific operation guides, see the Complete Process
for New User Activation.
For WeData account and product activation, see Preparations and Data Lake Compute (DLC).
The feature and MLflow service activation are performed at the root account granularity. Once the operations are
completed with the root account, all sub-accounts under the root account can use these features.

You need to provide the customer regional information, APPID, root account UIN, VPC ID, and subnet ID. The VPC
and subnet information are used for the network interconnection operation of the MLflow service.
Note:

https://console.tencentcloud.com/workorder/category
https://www.tencentcloud.com/document/product/1155/61986
https://www.tencentcloud.com/document/product/1174/60639
https://www.tencentcloud.com/document/product/1174/65192

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 19
of 79

Since multiple features on the product require network access operations, to ensure network connectivity, it is
recommended that subsequent operations (including purchasing execution resource groups and
creating Notebook workspaces) be performed within this VPC and subnet.

Configuring Data Access Policies

A data access policy (CAM role arn) allows users to configure data access permissions in Cloud Access Management
(CAM) to ensure the security of data sources and Cloud Object Storage (COS) during data job execution.
When configuring a data job in DLC, you need to specify the corresponding data access policy to ensure data security.
For the configuration methods, see Configuring Data Access Policies.

Purchasing Computing Resources on DLC

After the product service activation is completed, you can first purchase computing resources through DLC. If you

need to use the machine learning feature, confirm that the purchased engine type is Standard Engine-spark,
and the kernel version is Standard-S 1.1.
1. Go to the Data Lake Compute (DLC) > Standard Engine page.
2. Select "Creating Resources".
3. Purchase Standard Engine-spark, and select the kernel version: Standard-S 1.1.
Note:

1. Purchase should be made with the root account or an account having financial permission.
2. You can select the billing mode according to your business scenarios.
3. It is recommended to select cluster specifications with 64 CUs or more.
4. The initial launch may require several minutes of waiting time after purchase. If the startup cannot be completed for
a long time, submit a ticket.

Creating Machine Learning Resource Groups

After purchasing the Standard Engine, return to the Engine Management page. You need to create a machine learning
resource group under this engine to start performing machine learning-related features.
Note:
Once the resource group is created, it cannot be edited or modified. You can manage it by deleting and recreating
the resource group.

1. Click Manage Resource Group.

https://www.tencentcloud.com/document/product/1155/49494
https://console.tencentcloud.com/dlc/standard-engine
https://console.tencentcloud.com/workorder/category
https://console.tencentcloud.com/dlc/standard-engine

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 20
of 79

2. After going to the resource group page, click the Create Resource Group button in the upper-left corner.
3. Create a resource group for machine learning.
Note:

DLC AI resource groups currently support machine learning through the following frameworks: scikit-learn (1.6.0),
TensorFlow (2.18.0), PyTorch (2.5.1), Python (3), and Spark MLlib (3.5).
Business scenario selection: Machine learning.
Framework type: You can select a suitable framework to create based on actual business scenarios.
If you need to experience the features through the demo, select an ML open-source framework. For the image

package, select: scikit-learn-v1.6.0.
Resource configuration: Select resources as needed.
After the configuration is completed, click Confirm to return to the resource group list page. After several minutes, you
can click the Refresh button at the top of the list page for confirmation.

Uploading Machine Learning Datasets to COS

If you need to perform machine learning via DLC and WeData, use Cloud Object Storage (COS) in combination,
because only interaction with cloud data is supported currently.

Note:
Currently, only direct reading of COS data via Spark is supported.
If you have requirements for other frameworks, try the following workaround: first, upload the data to COS, then
download it to a local device to generate a local file, and proceed with the learning operation. This workaround may
result in relatively long upload and download times.

We are currently developing this feature to optimize the support.
1. Activate the COS product service and create a bucket. For activation methods, see the console quick start.
2. Log in to COS, select a bucket, and upload the dataset.
3. After the upload is completed, go to Metadata Management, click Create Data Catalog, or use an existing data
catalog to upload an external table.

4. Go to the DLC console > Metadata Management and click on the Database tab.
5. Click to create a database named: database_testnotebook.
6. Go to the created database and click to create an external table.
Note:
Check the database table name of the uploaded external table. The Notebook will use select to call the database and
table names.

7. Select the COS bucket path and find the demo dataset.

8. Select the data format as CSV and configure related options.

https://console.tencentcloud.com/cos
https://www.tencentcloud.com/document/product/436/32955
https://console.tencentcloud.com/cos/bucket
https://console.tencentcloud.com/dlc/data-manage-library
https://console.tencentcloud.com/dlc/data-manage-library

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 21
of 79

9. Create a table named: demo_test_sklearn.
10. After the creation is completed, click Confirm to return.
You can also perform creation via SQL. For details, see Table Creation Practice > Creating External Tables in

CSV Format.

CREATE TABLE database_testnotebook.demo_test_sklearn (

 at STRING COMMENT 'from deserializer',

 v STRING COMMENT 'from deserializer',

 ap STRING COMMENT 'from deserializer',

 rh STRING COMMENT 'from deserializer',

 pe STRING COMMENT 'from deserializer')

USING csv

LOCATION 'cosn://your cos location'

Going to the WeData-Notebook Feature for Demo Practice

After the resource group and demo dataset are created, go to WeData to practice model training using Notebook and
MLflow.

Creating WeData Projects and Associating Them with DLC Engines

1. Create a project or select an existing project. For details, see Project List.
2. Select the required DLC engine in the configuration of the storage and computing engine.

Purchasing Execution Resource Groups and Associating Them with Projects

If you need to schedule Notebook tasks periodically in the orchestration space, purchase a scheduling resource group
and associate it with a designated project. For details, see Scheduling Resource Group Configuration.
Directions:
1. Go to "Execution Resource Group > Scheduling Resource Group > Standard Scheduling Resource Group" and

click Create.
2. Configure the resource group.
Region: The region where the scheduling resource group is located should be consistent with the region where the
storage and computing engine is located. For example, if you purchase a DLC engine in the Singapore region of the
international site, you need to purchase a scheduling resource group in the same region.

VPC and subnet: It is recommended to select the VPC and subnet in Standard-S 1.1. If other VPCs and subnets are
selected, you need to ensure that the selected VPCs and subnets are interconnected with the VPCs and subnets in
Standard-S 1.1.
Specifications: Select specifications according to the task volume.

https://www.tencentcloud.com/document/product/1155/68451
https://www.tencentcloud.com/document/product/1174/65081
https://www.tencentcloud.com/document/product/1174/65084

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 22
of 79

3. After the creation is completed, click "Associate Project" in the operation column of the resource group list to
associate this scheduling resource group with the desired project.

Creating Notebook Workspaces

1. In the project, select the data governance feature, click the Notebook feature, and create or use an existing

workspace.

2. When creating a workspace, select to purchase a Standard Spark Engine, and the version is Standard-S 1.1.
Select the machine learning and MLflow service options.

Basic
Information

Attribute
Item Name

Attribute Item Configuration

Engines Select a DLC engine that you need to use for accessing a Notebook task.
The DLC engine bound in the current project management.

DLC Data
Engine

Select a DLC data engine that you need to use for accessing a Notebook task.

Machine
Learning

If the DLC data engine you select contains a "machine learning" type resource
group, this option will appear and be selected by default.

Network
It is recommended to select the VPC and subnet in Standard-S 1.1. If other
VPCs and subnets are selected, you need to ensure that the selected VPCs
and subnets are interconnected with the VPCs and subnets in Standard-S 1.1.

RoleArn
RoleArn is the data access policy (CAM role arn) for the DLC engine to access
Cloud Object Storage (COS). For details, see Configuring Data Access
Policies.

Advanced
Configuration

MLflow
Service

Use MLflow to manage experiments and models, which is not selected by
default.
After selecting, the creation of experiments and machine learning using
MLflow functions in Notebook tasks will be reported to the MLflow service
deployed in Standard-S 1.1. You can later view them in Machine Learning >
Experiment Management and Model Management.

Creating Notebook Files

In the resource explorer on the left, you can create folders and Notebook files. Note: Notebook files need to end with
(.ipynb.) The resource explorer includes 3 preset Big Data series tutorials for out-of-the-box use.

https://www.tencentcloud.com/document/product/1155/49494

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 23
of 79

Selecting Kernels

1. Click Select Kernel.

2. Select "DLC resource group" in the pop-up dropdown option.
3. Select the scikit-learn resource group you created in the DLC data engine from the next-level options.

Running Notebook Files

1. Confirm the initialization configuration.

2. Execute best practices: Use the public Iris dataset for demonstration, implement a logistic regression model to
classify different types of flowers, and visualize the classification results.
Note:
Before running the model, you need to install the required tencentcloud-dlc-connector and complete

the corresponding configurations.

#Install the driver.

!pip install tencentcloud-dlc-connector

!pip install --upgrade 'sqlalchemy<2.0'

#Installation version.

!pip install --upgrade pandas==2.2.3

!pip install numpy

!pip install matplotlib

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.colors import ListedColormap

import tdlc_connector

from tdlc_connector import constants

import mlflow

mlflow.sklearn.autolog()

#Use tdlc-connector to access in table mode.

conn = tdlc_connector.connect(region="ap-***", #Fill in the correct address, for ex

 secret_id="*******",

 secret_key="*******",

 engine="your engine", #Fill in the purchased engine name.

 resource_group=None,

 engine_type=constants.EngineType.AUTO,

 result_style=constants.ResultStyles.LIST,

 download=True

)

query = """

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 24
of 79

SELECT sepal.length, sepal.width,petal.length,petal.width,species FROM at_database_

"""

#Read data.

iris = pd.read_sql(query, conn)

iris.head()

#Divide the dataset.

X = iris[['petal.length', 'petal.width']].values

category_map = {

 'setosa': 0,

 'versicolor': 1,

 'virginica': 2

}

y= iris['species'].replace(category_map)

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(

 X, y, test_size=0.3, random_state=1, stratify=y)

print('Labels count in y:', np.bincount(y))

print('Labels count in y_train:', np.bincount(y_train))

print('Labels count in y_test:', np.bincount(y_test))

#Data normalization.

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

sc.fit(X_train)

X_train_std = sc.transform(X_train)

X_test_std = sc.transform(X_test)

X_combined_std = np.vstack((X_train_std, X_test_std))

y_combined = np.hstack((y_train, y_test))

#Perform logistic regression classification, and visualize the classification resul

from sklearn.linear_model import LogisticRegression

lr = LogisticRegression(C=100.0, random_state=1, solver='lbfgs', multi_class='ovr')

lr.fit(X_train_std, y_train)

plot_decision_regions(X_combined_std, y_combined,

 classifier=lr, test_idx=range(105, 150))

plt.xlabel('petal length [standardized]')

plt.ylabel('petal width [standardized]')

plt.legend(loc='upper left')

plt.tight_layout()

plt.show()

#View model accuracy.

y_pred = lr.predict(X_test_std)

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 25
of 79

print(accuracy_score(y_test, y_pred))

Going to MLflow to View Training Results and Registered Models

1. Select the machine learning feature.

2. View the experiment records and select the best training result to register as a model.

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 26
of 79

Direct Query of DLC Internal Storage with
StarRocks
Last updated：2024-10-31 11:13:10

Introduction of StarRocks

StarRocks is a new-generation, high-performance, and all-scene MPP database. It leverages the best research
outcomes of relational OLAP databases and distributed storage systems in the era of big data. Building on industry
practices, StarRocks optimizes and upgrades its architecture, and introduces numerous new features, resulting in a

cutting-edge enterprise-level product. StarRocks is committed to delivering a fast and unified analysis experience,
meeting enterprises' various data analysis needs. It supports multiple data models (detailed, aggregate, and update
models) and diverse data import methods (batch and real-time). StarRocks can handle data of up to 10,000 columns
and integrate with various existing systems such as Spark, Flink, Hive, and ElasticSearch.
In Tencent Cloud EMR, we offer a fully out-of-the-box StarRocks service. For more details, see StarRocks

Introduction.

StarRocks + DLC Lakehouse Unified Query Acceleration

Tencent Cloud Data Lake Compute (DLC) supports a lakehouse unified query acceleration mode based on EMR
StarRocks. This allows you to seamlessly analyze DLC data sources and perform complex SQL queries without the
need to import DLC data into StarRocks or create external tables of DLC in StarRocks. Leveraging StarRocks' MPP
vectorized query capabilities improves data analysis efficiency while reducing ops complexity and costs.
Next, this document will guide you through how to enable the DLC + (EMR) StarRocks lakehouse unified query

acceleration.

Prerequisites

1. You have purchased an EMR StarRocks cluster.
2. You have enabled the DLC service.
Note:
1. Currently, cross-region federated DLC is not supported. Plan your environment accordingly to ensure that EMR

StarRocks and DLC are in the same region.
2. Queries on DLC native tables created before June 12, 2024, are not supported (these tables have storage paths in
the format of lakefs://, which is currently incompatible). However, DLC native tables created after June 12,

https://www.tencentcloud.com/document/product/1026/46453?lang=en

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 27
of 79

2024 (with storage paths in the format of cosn://) and all DLC external tables are supported.
3. StarRocks only supports querying DLC data; it does not support writing to or deleting DLC data.
To enable query acceleration of DLC + StarRocks lakehouse unification, you first need to enable DLC external

access, allowing the StarRocks cluster to access data stored in DLC's internal managed storage. Then, create a DLC
External Catalog in the StarRocks cluster, allowing you to use the StarRocks compute engine to directly analyze
data stored in DLC.

Enabling DLC External Access

Go to the DLC console, click the Storage Configuration menu, and select Enable External Access.
Step 1: Click "enable external access to managed storage". Once it is enabled, the EMR StarRocks cluster

under the same Tencent Cloud account will be able to access DLC's internal managed storage. Subsequently, you
can use this switch to enable or disable external access to DLC's internal managed storage.

The account enabling the external access should have DLC management permissions. Use the root account (or a
sub-account with DLC administrator permissions) to perform this operation.
Note:
1. If you already have DLC administrator permissions, you can skip this step.

https://console.tencentcloud.com/dlc

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 28
of 79

2. If you're using a sub-account without DLC administrator permissions, see Sub-account Permission Management to
request authorization from an account with DLC administrator permissions.
Step 2: To ensure that your EMR StarRocks cluster can correctly access the DLC metadata Catalog

service, you need to bind the VPC of the EMR StarRocks cluster to the DLC network.
1. Click Bind VPC, select EMR StarRocks as the type in the dialog box, and select the EMR StarRocks cluster
instance ID you want to bind from the EMR instance dropdown list.
2. The VPC of the StarRocks cluster will be automatically filled. You can enter a recognizable alias in the remarks field
for easier identification.

Step 3: After completing the VPC binding, you can connect to the DLC metadata service from the
StarRocks cluster using the URI connection string displayed in the Catalog access address. For example:
Example of URI Connection String:
Catalog access address: thrift://172.17.1.18:7004
At this point, your EMR StarRocks cluster is ready to directly analyze internal managed data of DLC. Before you start

the analysis, you need to create a DLC External Catalog in StarRocks.

Creating DLC External Catalog

Log in to StarRocks and create a DLC Catalog in StarRocks. For more details about External Catalogs, see CREATE
EXTERNAL CATALOG | Overview.

Syntax

CREATE EXTERNAL CATALOG dlc_iceberg_cos_catalog

PROPERTIES

(

 "type" = "iceberg",

	 "iceberg.catalog.type" = "hive",

 "iceberg.catalog.hive.metastore.uris" = "thrift://169.254.0.171:8007",

 "aws.s3.endpoint" = "cos.ap-chongqing.myqcloud.com",

 "aws.s3.access_key" = "Tencent Cloud secret id",

 "aws.s3.secret_key" = "Tencent Cloud secret_key"

);

Parameter Description

Parameter Description

type The type of data source, which is set to Iceberg by default.

iceberg.catalog.type The type of metadata service used by the Iceberg cluster, which is set to

https://www.tencentcloud.com/document/product/1155/48667
https://docs.mirrorship.cn/docs/data_source/catalog/catalog_overview/

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 29
of 79

hive.

iceberg.catalog.hive.metastore.uris The URI for the DLC metadata.

aws.s3.endpoint
The endpoint for accessing S3-compatible object storage. For Tencent
Cloud COS, the format is cos.<region>.myqcloud.com, where <region>
can be ap-beijing, ap-shanghai, ap-guangzhou, etc.

aws.s3.access_key The SecretID from the Tencent Cloud account keys.

aws.s3.secret_key The SecretKey from the Tencent Cloud account keys.

Note:
1. For security reasons, you need to use the SecretID and SecretKey of the root account in the above configuration to

properly access the DLC internal storage. You can obtain the SecretID and SecretKey by logging into Tencent Cloud
with the root account and navigating to the CAM Control Console > log in to - Tencent Cloud page.
2. If you need to use the SecretID and SecretKey of a sub-account to access DLC internal managed storage, see the
final section of this document Using Sub-account SecretID/SecretKey.

Example

The following example demonstrates how to create a DLC Catalog named DLC_catalog:

CREATE EXTERNAL CATALOG dlc_hive_cos_catalog

PROPERTIES

(

 "type" = "Iceberg",

 "iceberg.catalog.type" = "hive",

 "hive.metastore.uris" = "thrift://169.254.0.171:8007",

 "aws.s3.endpoint" = "cos.ap-chongqing.myqcloud.com",

	 "aws.s3.access_key" = "************************************",

 "aws.s3.secret_key" = "********************************"

)

If you need to query Hive tables stored in DLC managed storage directly through StarRocks, you will need to create a

separate DLC Hive catalog, setting the type to hive. An example is provided below:

CREATE EXTERNAL CATALOG dlc_hive_cos_catalog

PROPERTIES

(

 "type" = "hive",

 "iceberg.catalog.type" = "hive",

 "hive.metastore.uris" = "thrift://169.254.0.171:8007",

 "aws.s3.endpoint" = "cos.ap-chongqing.myqcloud.com",

	 "aws.s3.access_key" = "************************************",

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 30
of 79

 "aws.s3.secret_key" = "*******************************"

)

Querying DLC Data

Preparing Tables and Data in DLC

Here is an example of creating an Iceberg table:

CREATE TABLE test_sr_ofs.`customer`(

 `c_custkey` bigint,

 `c_name` string,

 `c_address` string,

 `c_nationkey` int,

 `c_phone` string,

 `c_acctbal` double,

 `c_mktsegment` string,

 `c_comment` string) using iceberg;

)

Querying Data in StarRocks

Log in to the StarRocks Node.

mysql -h 172.30.0.xxx -P9030 -u root -p

#Specify the Iceberg Catalog.

set catalog dlc_iceberg_cos_catalog;

#Specify the Database.

use test_sr_ofs;

#Query the customer table data.

select * from customer limit 5;

The query results are as follows:

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 31
of 79

Using Sub-account SecretID/SecretKey for Access (Optional)

For data security reasons, after DLC external access is enabled, it is required by default to use the root account's
SecretID and SecretKey to access DLC internal storage from EMR StarRocks. However, if your business scene
requires the use of a sub-account's SecretID and SecretKey, you will need to use the root account to create a

custom policy in CAM and bind it to the corresponding sub-account.

Explanation of the Principle

After you follow the instructions in this document to enable DLC external access, the system essentially grants your
root account permissions to access DLC's internal managed storage. However, for data security reasons, sub-
accounts under your root account do not have this access by default. To grant a sub-account access to DLC's
internal managed storage, you need to create a custom policy in CAM by Tencent Cloud and bind it to the sub-

account. The specific steps are as follows:

Step 1: Generating a Custom Policy

Log in to Tencent Cloud using the root account and go to the DLC console, click the Storage Configuration menu
and select Enable External Access. In the Sub-account Authorization section, click "Click to Handle". In the
pop-up dialog box, click Copy to obtain the custom CAM policy that you need to create.

https://console.tencentcloud.com/dlc

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 32
of 79

Step 2: Creating a Custom Policy to Allow Sub-account Access to DLC Internal Storage

1. Log in to the Policy page of the CAM console using the root account.
2. Select Create Your Own Definition Policy , create it based on the policy syntax, select the blank template and
click Next to proceed.

Note:
To grant sub-accounts data access permissions, the root account can only do so via custom policies. Predefined
policies do not support this authorization.
3. Fill out the form as follows:
Policy name: Create a unique and meaningful policy name, such as cos-child-account.

Remarks: Optional, you can write your own description.
Policy content: Paste the custom policy copied from Step 1. For example:

{

 "statement": [

https://console.tencentcloud.com/cam/policy

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 33
of 79

 {

 "action": [

 "cos:*"

],

 "effect": "allow",

 "resource": [

 "qcs::cos:ap-shanghai:uid/1305424723:dlc03ff-100018379117-1647867281-100017

 "qcs::cos:ap-shanghai:uid/1305424723:dlc0a65-100018379117-1680005779-100017

]

 }

],

 "version": "2.0"

}

Note:
The above policy grants the sub-account permissions to operate the DLC managed storage for which the root account
has operation permissions. In this example, uid/1305424723 refers to the APPID of the root account (A), and dlc0a65-
100018379117-1680005779-100017307912-1304028854/* represents the DLC internal managed storage that you

are authorized to operate.
4. Click Complete to finish the creation of the policy.

Step 3: Authorizing the Sub-account to Access DLC Internal Storage

1. In the Policy list, find the policy you just created and click Associate User/Group/Role on the right.
2. In the pop-up window, select the sub-account that needs access to the DLC internal managed storage, and click
OK.

3. Once the authorization is completed, the sub-account will be able to access the DLC internal managed storage
using its SecretID and SecretKey.

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 34
of 79

Spark cost optimization practice
Last updated：2025-06-26 11:25:06

Cost optimization is a continuous process. Due to the dynamic and ever-changing characteristics of big data,
enterprise users should continuously perform cost optimization activities. This topic introduces related practices on
how to perform cost optimization in Data Lake Compute (DLC) based on Spark computing resources. You can refer to

the provided usage scenarios and apply optimization as needed.

How to Choose a Suitable Payment Method for Computing
Resources?

DLC supports purchasing engines in pay-as-you-go and monthly subscription billing modes.

Resource
Description

Pay-as-You-Go Computing
Resources

Monthly Subscription
Computing Resources

Elastic Computing
Resources

Fee Standard

0.35 USD/CU x Hour
Using 1 CU of resources for 1
hour is charged at 0.35 USD.
Charges are calculated based
on the actual CU usage.

150 USD/CU x Month
Using 1 CU of resources
for 1 month is charged
at 150 USD.

0.35 USD/CU x Hour
Using 1 CU of
resources for 1 hour is
charged at 0.35 USD.
Charges are calculated
based on the actual CU
usage.

Payment
Method

Postpaid Prepaid Postpaid

Features 1. Users can flexibly choose
when to use resources. When
users do not use pay-as-you-
go resources, they can choose
to suspend (release) the
resources. No charges will be
incurred after suspension.
2. Pay-as-you-go resources
are allocated to a user only
when the user starts a cluster
to run tasks. Once these
resources are allocated, they
are exclusively available to the
current user. However, due
to limitations in the

1. Resources are allocated
to users for exclusive use
upon purchase.
Therefore, there will be a
situation where resources
are unavailable for
allocation.
2. Resources are available
at any time. Meanwhile,
additional elastic
resources can be
purchased, and they are
charged based on the
actual usage.

1. Elastic computing
resources are additional
pay-as-you-go
resources activated on
the foundation of
having purchased a
monthly
subscription Spark
cluster.
2. Elastic resources can
accelerate
task execution and
reduce the entire
system load when
necessary. At the same

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 35
of 79

resource pool, there may be
a situation where resources
are insufficient and no pay-
as-you-go resources are
available for allocation.

time, when there are
few tasks, elastic
resources are
automatically released
and no charges are
incurred, effectively
reducing costs.

Recommended
Scenarios

1. POC testing phase
2. The usage duration per
month does not exceed 18
days.

1. Official production
environment
2. Data computing
scenarios with a large and
stable workload
3. If the usage duration
exceeds 60% of the total
duration in 1 month, using
the monthly subscription is
more cost-effective.

1. Official production
environment
2. Purchased monthly
subscription computing
resources run tasks, but
the completion time of
the tasks does not meet
expectations.

Whether
Payment
Method
Switchover is
Supported

Yes No No

Scenario: Task Completion Time Fails to Meet Expectations Due to Insufficient Monthly
Subscription Computing Resources

An e-commerce platform has purchased 128 CUs of monthly subscription computing resources to ensure the
completion and result returns of 600 analysis tasks on the promotion day.
With the arrival of the major e-commerce promotion, the data volume surged. It was found that the time efficiency of

task completion could not be guaranteed during this period. Through analysis, it was concluded that the currently
purchased resources could not meet the data processing requirements during the major promotion period, leading to
task queuing and thus delaying progress. To address this issue, the enterprise is seeking a solution that can
guarantee the timely completion of tasks in the short term while keeping costs within a reasonable range.

Recommended Solution:

During the major promotion period, an additional 128 CUs of elastic computing resources are purchased on top of the
existing 128 CUs of monthly subscription computing resources. According to the task load situation, when all the 128

CUs of monthly subscription computing resources are in use, the elastic resources are triggered to enhance the
operation efficiency. After the major promotion ends, the elastic feature is disabled to effectively control the cost
investment.

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 36
of 79

Low workload: Pay-as-you-go elastic resources are automatically released, and no charges are incurred, effectively
reducing costs.
High workload: Pay-as-you-go elastic resources can speed up task execution when necessary. You pay for what you

use.

Activation Steps:

1. Enter the SuperSQL Engine page and find the monthly subscription engine that needs to be configured with elastic
computing resources.
2. Click Spec configuration in the operation column.
3. Enable the elastic computing resources switch and select the elastic configuration specifications.

Note:
The elastic computing specification cannot exceed the monthly subscription specifications.
4. After the major promotion ends, normal task operations are resumed. You can click Spec configuration to disable
the elastic cluster feature.

How to Reasonably Plan the Allocation of Computing Resources?

Method 1: Allocating Computing Resources Through Multiple Engines

Multiple computing resources are purchased and allocated to different user groups or feature scenarios. Each
computing resource runs tasks independently.

Strengths
Resources are completely isolated among different engines, and the resources of each engine are
exclusively available to the current user group. The configurations, management, tasks, and
failures of different user groups do not affect each other.

Applicable
Scenarios

1. Multiple departments need to use the platform, but there is no business overlap among them.
These mostly occur in independent business analysis scenarios.
2. Enterprises have relatively high requirements for cost auditing and security Ops.

Limitations

Resources may experience idle periods, making it unable to maximize utilization. As shown in the
figure, User Group 01 primarily conducts SQL analysis and uses resources between 9 am and 5
pm, leaving resources idle at other times.
Solution: Switch the computing resources to pay-as-you-go resources and adjust the resource
allocation method.

Method 2: Allocating Resources Through Resource Groups with an Engine

In this method, all user groups or feature scenarios share the same engine, but each user group uses resource groups
with different configurations to allocate resources.

https://console.tencentcloud.com/dlc/computed

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 37
of 79

Strengths Computing resource utilization can be maximized.

Applicable
Scenarios

1. There are relatively high requirements for cost control.
2. A small number of resource groups need to be configured, and most of the tasks are linear
startup tasks, while a few are concurrent tasks.
3. The running times of tasks do not overlap significantly, and the computing workload consumed
by overlapping tasks does not exceed the total resource amount.

Limitations

Resource competition may occur among different resource groups. As shown in the figure, when
all 3 user groups are using resources, if User Group 01 occupies 256 CUs of resources and
User Group 02 also occupies 256 CUs of resources, it means that all resources in the engine are
occupied at this point. In this case, no resources can be allocated to User Group 03. As a
result, User Group 03 cannot run tasks.
Solution: Add computing resources and adjust the resource group configurations and allocation
method.

Scenario: Reasonably Plan Time-Sharing Running of Tasks to Maximize Resource Utilization

An enterprise currently needs to purchase computing resources and allocate them to 3 departments for interactive
SQL analysis and batch Spark job tasks. With relatively high requirements for cost control, the enterprise hopes the
sales team can recommend a reasonable purchase solution. This solution needs to ensure that resources are

reasonably allocated to the 3 departments for use and no task failures occur, on the basis of maximizing resource
utilization.

Recommended Solution:

1. For interactive SQL tasks, the running time, minimum number of resources, and elasticity of interactive resource
groups need to be assessed based on the number and complexity of tasks to be run per day.
After analysis, the department concludes that interactive SQL tasks need to run from 9 am to 5 pm daily. Based on the

maximum concurrency quantity and resource requirements of SQL tasks, it is determined that the resource group
needs the maximum specifications of 128 CUs. Resource usage can be configured from 4 CUs to 128 CUs, where 4
CUs is the minimum resource usage of the resource group.
2. For job tasks, the required resources need to be assessed based on the time efficiency of task execution.
For example, in this enterprise, Department B has a scheduled task that runs once per hour. If this task needs to be
completed within the current hour, at least 128 CUs of resources are required to ensure timely completion. In this

case, the resources for the job can be configured from 4 CUs to 128 CUs.
Department C also has a task that runs once a day. If this task only needs to run in the early hours and should be
completed before 8 am, it requires 256 CUs of resources.
Here, we find:
The task running times of Department A and Department B overlap. Thus, you need to configure the maximum amount

of resources available for the engine. The formula is as follows: 128 + 128 = 256 CUs.

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 38
of 79

The task running times of Department B and Department C also overlap. To ensure the tasks are completed on time,
you need to configure the maximum amount of resources. The formula is as follows: 128 + 256 = 384 CUs.
Based on the daily running time and usage, the sales team provides the resource purchase suggestion "128 CUs

of monthly subscription + 128 CUs of elastic billing".

How to Perform Cost Tracking?

Method 1: Achieving Cost Tracking Through Cost Allocation

DLC supports cost allocation by tag in the engine dimension. By tagging engines, you can view cost allocation by
tag in the Billing Center.
As shown in the figure, after different tags are assigned to engines, you can view the cost statistics of Engine 1 and 2
with Tag A, Engine 3 with Tag B, and Engine 2 and 3 with Tag C.

Note:
For details on how to tag an engine, see Associating Tag with Private Engine Resource.
For details on how to achieve cost allocation by tag, see Cost Allocation Tags.

Method 2: Achieving Cost Tracking Through the Task Insight Feature

Enter the Historical Task Instances page of DLC and find the completed task. Click the task name/ID, then you can
view the consumed CUs x hours of the task.
Note:

1. Consumed CUs x Hours: Specifies the sum of the CPU execution duration of each core of the Spark executor used
in computing. The unit is CU x hour.
2. The resource consumption is the actual consumption generated by the resources occupied by this task. It does not
include the statistics such as the resource startup time and idle time of the resource group. Therefore, the
consumption value will be much smaller than the total consumption of the resource group and cannot

be entirely consistent with the data on the billing side. This consumption value is recommended for analyzing the
actual amount of resources used by a single task, for optimizing a single task, or for conducting cost analysis, such as
analyzing the usage amount.

How to Perform Task Governance, Enhance the Time Efficiency
of Task Completion, and Achieve Cost Optimization?

https://console.tencentcloud.com/expense
https://www.tencentcloud.com/document/product/1155/48685?lang=en&pg=
https://www.tencentcloud.com/document/product/555/32276?lang=en&pg=
https://console.tencentcloud.com/dlc/tasks

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 39
of 79

DLC Insight Management provides a visual and intuitive interface to help you quickly understand the current query
performance and potential factors affecting performance, and obtain performance optimization suggestions. For
details, see Task Insights.

Applicable
Scenarios

1. Insight analysis of the overall running condition of the Spark engine. For example, the
resource preemption situation of each task running under the engine, the resource usage
situation in the engine, the engine execution duration, the data scan size, and the data shuffle
size are all intuitively displayed and analyzed.
2. Self-service troubleshooting and analysis of task running conditions. For example,
numerous tasks can be filtered and sorted by time consumption to quickly find problematic
large tasks and identify the reasons for slow or failed Spark task execution, including
resource preemption, shuffle anomalies, and insufficient disk space, with clear positioning.

Key Metrics

1. Engine execution time: Reflects the time the first task was executed on the Spark engine
(namely, the time when the task first preempted the CPU for execution).
2. Execution time within the engine: Reflects the time actually required for computing, namely,
the time taken from the start of the first task execution in a Spark job to the completion of
the Spark job.
3. Queuing time: Reflects the time taken from a job submission to the start of execution of the
first Spark job. The time taken may include the cold startup duration of the first execution of
the engine, the queueing time caused by the concurrent limit of the configuration task, the
time spent waiting for executor resources due to full resources within the engine, and the
queuing time caused by a lack of available resources for allocation to the resource group.
4. Consumed CUs * Hours: Specifies the sum of the CPU execution duration of each core of
the Spark executor used in computing. The unit is CU x hour.

Scenario 1: Automatically Analyzing Task Issues to Quickly Locate the Issues and Enhance
the Time Efficiency of Task Execution

Inconsistent task quality levels make it difficult to operate and maintain numerous tasks, resulting in low utilization of
cluster resources.
Slow task execution mainly results from factors including data skew, insufficient shuffle concurrency, and long-tail
tasks that slow down the overall execution time. The DLC Task Insights feature supports analyzing some issues
encountered during task execution and providing optimization solutions. When time is limited, prioritize finding the top

large tasks for better optimization results.
1. For example, sort by engine execution time (or sort by consumed CUs x hours) and then filter out problematic tasks.
2. For example, since the Spark shuffle phase is a critical factor affecting task execution speed and overall cluster
stability, targeted optimization for tasks with large shuffle data volumes can yield good results. Specific operations
include sorting tasks by shuffle size, filtering out tasks with shuffle anomalies (even successful tasks may have shuffle
retry situations internally), or conducting targeted optimization for top large tasks with large shuffle data volumes. All of

these can benefit the overall cluster consumption performance.
Pay close attention to the following metrics:

https://console.tencentcloud.com/dlc/insight
https://www.tencentcloud.com/document/product/1155/67949?lang=en
https://console.tencentcloud.com/dlc/insight

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 40
of 79

Insight Type Algorithm Description (Continuously Improving and Adding Algorithms)

Resource
Preemption

The delay time of an SQL execution task is greater than 1 minute after a stage submission, or
the delay exceeds 20% of the total runtime (the threshold formula is dynamically adjusted
based on task runtime and data volume).

Shuffle
Anomaly

Shuffle-related error stack information occurs during stage execution.

Slow Task
The task duration in a stage is greater than twice the average duration of other tasks in the
same stage (the threshold formula is dynamically adjusted based on task runtime and data
volume).

Data Skew Task shuffle data is greater than twice the average shuffle data size of other tasks (the
threshold formula is dynamically adjusted based on task runtime and data volume).

Disk or
Memory
Insufficiency

Error stack information during stage execution includes OOM, insufficient disk space, or
bandwidth limitation errors of Cloud Object Storage (COS).

Excessive
Small File
Output

(The collection of this insight type requires upgrading the Spark engine kernel to a
version after November 16, 2024)
See the metric "Number of Output Small Files" in the list. The presence of excessive small file
output is determined if one of the following conditions is met:
1. Partitioned tables: The number of small files written out by a partition exceeds 200.
2. Non-partitioned tables: The total number of output small files exceeds 1000.
3. Partitioned or non-partitioned tables: The total number of files written out exceeds 3000,
and the average file size is less than 4 MB.

Scenario 2: Analyze Resource Preemption Situations Rapidly Through Engine Insights,
Reasonably Arrange the Number of Running Tasks, and Enhance the Time Efficiency of Task
Execution

Slow execution does not necessarily mean slow computation. When cluster resources are limited, resource
preemption is likely to occur among tasks. By using the Insight Management feature and considering the 2 metrics of
execution time and queuing time in the engine, you can identify tasks that affect each other and reasonably adjust the

task queuing plan.
As shown in the figure below, submitting a job does not necessarily mean the engine will start execution immediately.
The time taken from a job submission to the start of execution of the first Spark job may include the cold startup
duration of the first execution of the engine, the queuing time caused by the concurrent limit of the configuration task,
the time spent waiting for executor resources due to full resources within the engine, and the time taken to generate

and optimize the Spark execution plan.
When cluster resources are insufficient, the time spent waiting for resources at the preliminary stage is more obvious.

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 41
of 79

The Task Insights feature also supports automatic identification of resource preemption. Meanwhile, it allows for
checking whether other concurrent tasks are preempting resources.

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 42
of 79

DLC Native Table
DLC Source Table Core Capabilities
Last updated：2024-07-31 17:34:28

Overview

The DLC Native Table (Iceberg) is a user-friendly table format with high performance based on the Iceberg lake
format. It simplifies operations, making it easy for users to perform comprehensive data exploration and build
applications like Lakehouse. When using DLC Native Table (Iceberg) for the first time, users should follow these five

main steps:
1. Enable DLC managed storage.
2. Purchase the engine.
3. Create the database and table. Choose to create either an append or upsert table based on your use case, and
include optimization parameters.

4. Configure data optimization. Select a dedicated optimization engine and configure optimization options based on
the table type.
5. Import data into the DLC Native Table. DLC supports various data writing methods, such as insert into, merge into,
and upsert, as well as multiple import methods, including Spark, Presto, Flink, InLong, and Oceanus.

Iceberg Principle Parsing

The DLC Native Table (Iceberg) uses the Iceberg table format for its underlying storage. In addition to being
compatible with the open-source Iceberg capabilities, it enhances performance through separation of storage and

computation and improves usability.
 The Iceberg table format manages user data by dividing it into data files and metadata files.
Data layer: It consists of a series of data files that store user table data. These data files support Parquet, Avro, and
ORC formats, with Parquet being the default format in DLC.
Due to Iceberg's snapshot mechanism, data is not immediately deleted from storage when a user deletes it. Instead, a

new delete file is written to record the deleted data. Depending on the use case, delete files are categorized into
position delete files and equality delete files.
Position delete files record the information of specific rows that have been deleted within a data file.
Equality delete files record the deletion of specific key values and are typically used in upsert scenarios. Delete file is
also a type of data file.

Metadata layer: It consists of a series of manifest files, manifest lists, and metadata files. Manifest files contain
metadata for a series of data files, such as file paths, write times, min-max values, and statistics.
A manifest list is composed of manifest files, typically containing the manifest files for a single snapshot.

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 43
of 79

Metadata files are in JSON format and contain information about a series of manifest list files as well as table
metadata, such as table schema, partitions, and all snapshots. Whenever the table status changes, a new metadata
file is generated to replace the existing one, with the Iceberg kernel ensuring atomicity for this process.

Use Cases for Native Tables

DLC Native Table (Iceberg) is the recommended format for DLC Lakehouse. It supports two main use cases: Append
tables and Upsert tables. Append tables use the V1 format, while Upsert tables use the V2 format.
Append tables: These tables support only Append, Overwrite, and Merge Into write modes.
Upsert tables: Compared to Append tables, these tables also support the Upsert write mode.
The use cases and characteristics of native tables are described in the table below.

Table Type Use Cases and Recommendations Characteristics

Native Table
(Iceberg)

1. Users have needs for scenarios requiring real-
time data writing, including append, merge into,
and upsert operations. It is not limited to real-time
writing using InLong, Oceanus, or self-managed
Flink setups.
2. Storage-related Ops that users do not want to
manage directly can be left to DLC managed
storage.
3. When users prefer do not want to handle the Ops
of the Iceberg table format themselves, they can let
DLC manage optimization and Ops.
4. Users who want to leverage DLC's automatic
data optimization capabilities can continuously
optimize data.

1. Iceberg table format.
2. Managed storage must be
enabled before use.
3. Data is stored in DLC's
managed storage.
4. There is no need to specify
external or location information.
5. Enabling DLC intelligent data
optimization is supported.

 For better management and use of DLC Native Table (Iceberg), certain attributes need to be specified when you
create this type of table. The attributes are as follows. Users can specify these attribute values when creating a table
or modify the table's attribute values later. For detailed instructions, see DLC Native Table Operational Configuration.

Attribute Values Meaning Configuration Guide

format-version

 Iceberg table
version: Valid
values are 1 and
2, with a default of
1.

 If the user's write scenario includes upsert, this value
must be set to 2.

write.upsert.enabled Whether to enable
upsert: The value
is true; if not set, it

If the user's write scenario includes upsert, this must be
set to true.

https://www.tencentcloud.com/document/product/1155/62029

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 44
of 79

will not be
enabled.

write.update.mode Update Mode Set to merge-on-read (MOR) for MOR tables; the
default is copy-on-write (COW).

write.merge.mode Merge Mode Set to merge-on-read (MOR) for MOR tables; the
default is copy-on-write (COW).

write.parquet.bloom-filter-
enabled.column.{col}

Enable bloom: Set
to true to enable
it; it is disabled by
default.

In upsert scenarios, this must be enabled and
configured according to the primary keys from the
upstream data. If there are multiple primary keys in the
upstream, use up to the first two. Enabling this can
improve MOR query performance and small file
merging efficiency.

write.distribution-mode Write Mode

The recommended value is hash. When the value is
hash, data will be automatically repartitioned upon
writing. However, the drawback is that this may impact
write performance.

write.metadata.delete-after-
commit.enabled

Enable automatic
metadata file
cleanup.

It is strongly recommended to set this to true. With this
setting enabled, old metadata files will be automatically
cleaned up during snapshot creation to prevent the
buildup of excess metadata files.

write.metadata.previous-
versions-max

Set the default
quantity of
retained metadata
files.

The default value is 100. In certain special cases, users
can adjust this value as needed. This setting should be
used with write.metadata.delete-after-commit.enabled.

write.metadata.metrics.default Set the column
metrics mode.

The value must be set to full.

Core Capabilities of Native Tables

Managed Storage

DLC Native Table (Iceberg) uses a managed data storage mode. When using native tables (Iceberg), users must first
enable managed storage and import data into the storage space managed by DLC. By using DLC managed storage,
users will gain the following benefits.

Enhanced Data Security: Iceberg table data is divided into metadata and data files. If any of these files are damaged,
it can cause exceptions for querying the entire table (unlike Hive, where only the corrupted file's data may be

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 45
of 79

inaccessible). Storing data in DLC can help prevent users from accidentally damaging files due to a lack of
understanding of Iceberg.
Performance: DLC managed storage uses CHDFS by default and offers significantly better performance compared to

standard COS.
Reduced Storage Ops: By using managed storage, users no longer need to set up and maintain Cloud Object Storage
themselves, and this can reduce the Ops burden associated with storage.
Data Optimization: With the managed storage mode of DLC Native Table (Iceberg), DLC provides continuous
optimization for the native tables.

ACID Transactions

Writing of Iceberg allows deleting and inserting within a single operation and is not partially visible to users so that it
can offer atomic write operations.
Iceberg uses optimistic concurrency control to ensure that data writes do not cause inconsistencies. Users can only
see data that has been successfully committed in the read view.
Iceberg uses snapshot mechanisms and serializable isolation levels to ensure that reads and writes are isolated.
Iceberg ensures that transactions are durable; once a transaction is successfully committed, it is permanent.

Writing

The writing process follows optimistic concurrency control. Writers assume that the current table version will not
change before they commit their updates. They update, delete, or add data and create a new version of the metadata
file. When the current version is replaced with the new version, Iceberg verifies that the updates are based on the
current snapshot.
If not, it indicates a write conflict, meaning that another writer has already updated the current metadata. In this case,

the write operation must be updated again based on the current metadata version. The entire submission and
replacement process is ensured to be atomic by the metadata lock.

Reading

Reading and writing of Iceberg are independent processes. Readers can only see snapshots that have been
successfully committed. By accessing the version's metadata file, readers obtain snapshot information to read the
current table data. Since metadata files are not updated until write operations are complete, this ensures that data is

always read from completed operations and never from ongoing write operations.

Conflict Parameter Configuration

When write concurrency increases, DLC managed tables (Iceberg) may encounter write conflicts. To reduce the
frequency of conflicts, users can make reasonable adjustments to their businesses in the following ways.
Go to the setting of the table structure for merging, such as partitioning, to reasonably plan the write scope of jobs.
This reduces the write time of tasks and, to some extent, lowers the probability of concurrent conflicts.
Merge jobs to a certain extent to reduce the level of write concurrency.

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 46
of 79

DLC also supports a series of conflict retry parameters and increases the success rate of retry operations to some
extent, thereby reducing the impact on business operations. The meanings of parameters and configuration guidance
are as follows.

Attribute values Default System
values

Meanings Configuration guide

commit.retry.num-
retries 4

Number of retries after a
submission failure

When retries occur, you can try
increasing the number of
attempts.

commit.retry.min-wait-
ms 100

Minimum time for waiting
before retrying, in
milliseconds

If conflicts are very frequent and
persist even after waiting for a
while, you can try to adjust this
value to increase the interval
between retries.

commit.retry.max-
wait-ms

60000（1
min）

Maximum time for waiting
before retrying, in
milliseconds

Adjust this value with
commit.retry.min-wait-ms.

commit.retry.total-
timeout-ms

1800000（30
min）

Timeout for the process of
submitting the entire retry

 -

Hidden Partitioning

DLC Native Table (Iceberg) hidden partitioning hides the partition information. Developers only need to specify the
partition policy when creating the table. Iceberg maintains the logical relationship between table fields and data files
according to this policy. During writing and querying, there is no need to be concerned about the partition layout.
Iceberg finds the partition information based on the partitioning policy and records it in the metadata during data
writing. When querying, it uses the metadata to filter out files that do not need to be scanned. The partition policies

provided by DLC Native Table (Iceberg) are shown in the table below.

Transformation
policy

Description Types of original fields Types after
transformation

identity No
transformation

All types

Being
consistent
with the
original type

bucket[N, col] Hash
bucketing

int, long, decimal, date, time, timestamp, timestamptz,
string, uuid, fixed, binary

int

truncate[col] Fixed-length
truncation

int, long, decimal, string Being
consistent

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 47
of 79

with the
original type

year
Extract year
information
from fields

date, timestamp, timestamptz int

month
Extract month
information
from fields

date, timestamp, timestamptz int

day
Extract day
information
from fields

date, timestamp, timestamptz int

hour
Extract hour
information
from fields

timestamp, timestamptz int

Process of Querying and Storing Metadata

DLC Native Table (Iceberg) allows you to call stored procedure statements to query information about various types of
tables, such as file merges and snapshot expiration. The table below provides some common query methods.

Scenes CALL statements Execution engine

Querying
history

select * from DataLakeCatalog . db . sample$history
DLC spark SQL
engine, presto
engine

Querying
snapshot

select * from DataLakeCatalog . db . sample$snapshots
DLC spark SQL
engine, presto
engine

Querying
data files

select * from DataLakeCatalog . db . sample$files
DLC spark SQL
engine, presto
engine

Querying
manifests

select * from DataLakeCatalog . db . sample$manifests
DLC spark SQL
engine, presto
engine

Querying
partitions

select * from DataLakeCatalog . db . sample$partitions
DLC spark SQL
engine, presto
engine

Rollback of CALL DataLakeCatalog. system .rollback_to_snapshot('db.sample', DLC spark SQL

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 48
of 79

the specific
snapshot

1) engine

Rolling back
to a specific
point in time

CALL DataLakeCatalog. system .rollback_to_timestamp('db.sample',
TIMESTAMP '2021-06-30 00:00:00.000')

DLC spark SQL
engine

Setting the
current
snapshot

CALL DataLakeCatalog. system .set_current_snapshot('db.sample',
1)

DLC spark SQL
engine

Merging files
CALL DataLakeCatalog. system .rewrite_data_files(table =>
'db.sample', strategy => 'sort', sort_order => 'id DESC NULLS
LAST,name ASC NULLS FIRST')

DLC spark SQL
engine

Expiration of
snapshots

CALL DataLakeCatalog. system .expire_snapshots('db.sample',
TIMESTAMP '2021-06-30 00:00:00.000', 100)

DLC spark SQL
engine

Removing
orphan files

CALL DataLakeCatalog. system .remove_orphan_files(table =>
'db.sample', dry_run => true)

DLC spark SQL
engine

Ewriting
metadata

CALL DataLakeCatalog. system .rewrite_manifests('db.sample') DLC spark SQL
engine

Data Optimization

Optimization Policies

DLC Native Table (Iceberg) provides optimization policies with inheritance capabilities, allowing users to configure
these policies on the data management, database, and data table. For detailed configuration instructions, see Enable
Data Optimization.

Policy for Optimizing the Configuration of the Data Management: All native tables (Iceberg) in all databases under this
data management will by default inherit and use the policy for optimizing the configuration of the data management.
Policy for Optimizing the Configuration of the Database: All native tables (Iceberg) within this database will by default
inherit and use the policy for optimizing the configuration of the database.
Policy for Optimizing the Configuration of the Data Table: This configuration only applies to the specified native table

(Iceberg).
 By using the above combination of configurations, users can implement customized optimization policies for specific
databases and tables or policies for disabling certain tables.
DLC also provides advanced parameter configurations for optimization policies. If users are familiar with Iceberg, they
can customize advanced parameters based on their specific scenarios, as shown in the figure below.

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 49
of 79

DLC has set default values for advanced parameters. DLC will try to merge files to a size of 128 MB. The snapshot
expiration time is 2 days. Five expired snapshots will be saved, and the snapshot expiration and orphan file cleanup
tasks run every 600 minutes and 1440 minutes respectively.

For upsert write scenarios, DLC also provides default merge thresholds. These parameters are managed by DLC, and
small file merging is triggered if new data written within a span of over 5 minutes meets any of the specified conditions,
as shown in the table.

Parameter Meaning Value

AddDataFileSize Number of newly written data files 20

AddDeleteFileSize Amount of newly written Delete file data 20

AddPositionDeletes Number of newly written Position Delete
records

1000

AddEqualityDeletes Number of newly written Equality Delete
records

1000

Optimization Engine

DLC data optimization is performed by executing stored procedures, so a data engine is required to run these
procedures. Currently, DLC supports using the Spark SQL engine as the optimization engine. When it is being used,

please note the following points:
The Spark SQL engine for data optimization should be used separately from the business engine, and this can
prevent data optimization tasks and business tasks from competing for resources and leading to significant queuing
and business disruptions.
For production scenarios, it is recommended to allocate at least 64 CU for optimization resources. For special tables
with fewer than 10 tables and individual table data exceeding 2 GB, it is advised to enable auto scaling of resources to

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 50
of 79

handle sudden traffic spikes. Additionally, using a monthly subscription cluster is recommended to prevent
optimization task failures due to unavailability of clusters when tasks are submitted.

Parameter Definitions

Settings for optimizing parameters for databases and tables are on their database and table attributes. Users can

specify these data optimization parameters when creating databases and tables (DLC Native Table provides a visual
interface for configuring data optimization during creation). Additionally, users can modify data optimization
parameters using the ALTER DATABASE/TABLE commands. For detailed instructions, see DLC Native Table
Operation Configuration..

Attribute value Meaning Default value Value Description

smart-optimizer.inherit

Whether to
inherit the
upper level
policy

default none: Do not inherit it; default: Inherit
it

smart-optimizer.written.enable
Whether to
enable write
optimization

disable
disable: No; enable: Yes. It is not
enabled by default.

smart-
optimizer.written.advance.compact-
enable

(Optional)
Advanced
write
optimization
parameter:
whether to
enable
small file
merging

enable disable: No; enable: Yes.

smart-
optimizer.written.advance.delete-
enable

(Optional)
Advanced
write
optimization
parameter:
whether to
enable data
cleanup

enable disable: No; enable: Yes.

smart-
optimizer.written.advance.min-
input-files

(Optional)
Minimum
number of
files for
merging

5 When the number of files under a
table or partition exceeds this
minimum number, the platform will
automatically check them and start
file optimization merging. File

https://www.tencentcloud.com/document/product/1155/62029

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 51
of 79

optimization merge can significantly
improve analysis and query
performance. A larger minimum file
number increases resource load,
while a smaller one allows for more
flexible execution and more frequent
tasks. A value of 5 is recommended.

smart-
optimizer.written.advance.target-
file-size-bytes

(Optional)
Target size
after
merging

134217728
(128 MB)

 During file optimization merging, files
will be merged to this target size as
much as possible. The
recommended value is 128 MB.

smart-
optimizer.written.advance.before-
days

(Optional)
Snapshot
expiration
time (in
days)

2

When the existence time of a
snapshot exceeds this value, the
platform will mark the snapshot as
expired. The longer the snapshot
expiration time, the slower the
snapshot cleanup and more storage
space will be occupied.

smart-
optimizer.written.advance.retain-
last

(Optional)
Quantity of
expired
snapshots
to retain

5

If the number of expired snapshots is
bigger than that of those to be saved,
the redundant expired snapshots will
be cleaned up. The more expired
snapshots are saved, the more
storage space is used. A value of 5 is
recommended.

smart-
optimizer.written.advance.expired-
snapshots-interval-min

(Optional)
Snapshot
expiration
execution
cycle

600（10
hours）

The platform periodically scans and
expires snapshots. A shorter
execution cycle makes snapshot
expiration more responsive but may
consume more resources.

smart-
optimizer.written.advance.remove-
orphan-interval-min

(Optional)
Execution
cycle for
removing
orphan files

1440（24
hours）

The platform periodically scans and
cleans up orphan files. A shorter
execution cycle makes orphan file
cleanup more responsive but may
consume more resources.

Optimization Types

Currently, DLC provides two types of optimization: write optimization and data cleanup. Write optimization merges

small files written by users into larger files to improve query efficiency. Data cleanup removes storage space occupied
by historical expired snapshots, saving storage costs.

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 52
of 79

Write Optimization
Small File Merging: Merges small files written from the business side into larger files to improve file query efficiency;
processes and merges deleted files and data files to enhance MOR query efficiency.

Data cleanup
Snapshot expiration: Delete expired snapshot information to free up storage space occupied by historical data.
Remove orphan files: Delete orphan files to free up storage space occupied by invalid files.
Depending on the user's usage scenario, there are certain differences among optimization types, as shown below.

Optimization
types

Recommended scenes for enabling

Write
optimization

Upsert write scenarios: It must be enabled.
Merge into write scenarios: It must be enabled.
Append write scenarios: It can be enabled as needed.

Data
cleanup

Upsert write scenarios: It must be enabled.
Merge into write scenarios: It must be enabled.
Append write scenarios: It is recommended to enable it and configure a reasonable time for
deletion upon expiration based on advanced parameters and the need for rolling back historical
data.

DLC's write optimization not only merges small files but also allows for manual index creation. Users need to provide

the fields and rules for the index, after which DLC will generate the corresponding stored procedure execution
statements to complete the index creation. This can be done concurrently with small file merging in upsert scenarios,
so that index creation is completed when small file merging is done, greatly improving index creation efficiency.
This feature is currently in the testing phase. If you need to use it, please Contact Us for configuration.

Optimization Tasks

DLC optimization tasks are triggered in two ways: by time and by events.

Time Triggering

Time triggers are based on the execution schedule of advanced optimization parameters. They periodically check if

optimization is needed, and if the conditions for the corresponding governance item are met, a governance task is
generated. The current minimum cycle for time triggers is 60 minutes, typically used for snapshot cleanup and orphan
file removal.
Time triggers are still effective for tasks of optimizing small file merging, with a default trigger cycle of 60 minutes.
For V1 tables (requires activation of the backend), small file merging is triggered every 60 minutes.

 For V2 tables; to prevent slow table writes and not meeting EventTriggering conditions for a long time, the V2 time
trigger will start merging small files providing that it is more than 1 hour later since the last merging of small files.
If snapshot expiration or orphan file removal tasks fail or time out, they will be re-executed in the next check cycle
which will start every 60 minutes.

https://console.tencentcloud.com/workorder/category

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 53
of 79

EventTriggering

EventTriggering occurs in the scenarios where table upsert is written. The DLC data optimization service backend
monitors the upsert writes to user tables, and when certain conditions are met, it triggers governance tasks.
EventTriggering is used in small file merging scenarios, especially for real-time Flink upsert writes, as fast data writes

frequently generate small file merge tasks.
For example, if the data file threshold is 20 and the deletes file threshold is 20, 20 files or 20 deletes files will be
written. Meanwhile, if the minimum interval between the same task types is 5 minutes (by default), the merging of
small files will be triggered.

Lifecycle

The lifecycle of a DLC Native Table refers to the time from the last update of the table (partition) data. If there is no

change after the specified time, the table (partition) will be automatically possessed. When the lifecycle of a DLC
metadata table is executed, it only generates new snapshots to overwrite expired data instead of immediately
removing the data from storage. The actual removal of data from storage depends on metadata table data cleanup
(snapshot expiration and orphan file removal). Therefore, the lifecycle needs to be used in conjunction with data
cleanup.
Note:

The lifecycle feature is offering test invitations. If you need activate it, please Contact Us.
 When a partition is removed by the lifecycle, it is logically removed from the current snapshot. However, the removed
files are not immediately deleted from the storage system. They will only be deleted from the storage system when the
snapshot expires.

Parameter Definitions

Database and table lifecycle parameters are set on their database and table attributes. Users can carry lifecycle

parameters when creating databases and tables (DLC Native Table provides a visual interface for configuring
lifecycle). Users can also modify lifecycle parameters using the ALTER DATABASE/TABLE command. For detailed
instructions, see DLC Native Table Operation Configuration.

Attribute Values Meaning Default
Values

Value description

smart-
optimizer.lifecycle.enable

Enable Lifecycle disable disable: No; enable: Yes. It is not enabled by
default.

smart-
optimizer.lifecycle.expiration

Lifecycle execution
cycle, unit: day 30

It can take effect when smart-
optimizer.lifecycle.enable is set to enable,
and it must be greater than 1.

Integrating WeData to Manage Native Table Lifecycle

https://console.tencentcloud.com/workorder/category

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 54
of 79

 If user partition tables are partitioned by day, such as partition values yyyy-MM-dd or yyyyMMdd, WeData can be
used to manage the data lifecycle.

Data Import

DLC Native Table (Iceberg) supports multiple data import methods. According to different data sources, see the

following methods for importing data.

Data location Import recommendation

Data on the user's own COS bucket Establish an external table in DLC, then import data using Insert
into/overwrite.

Data is on user's local system (or
other executors).

Users need to upload data to their own COS buckets, then establish an
external table in DLC and import data using insert into/overwrite.

Data is on user's MySQL.
Users can import data using Flink/InLong/Oceanus. For detailed data
lake operations, see DLC native tables (Iceberg) Lake Ingestion
Practice.

Data is on user's self-built hive. Users establish a Land Bond Hive data management, then import data
using insert into/overwrite.

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 55
of 79

DLC Source Table Operation Configuration
Last updated：2024-07-31 17:34:44

Overview

When using DLC Native Table (Iceberg), users can follow the process below to create native tables and complete the
necessary configurations.

Step I: Enabling Managed Storage

Note:
Managed storage must be enabled by a DLC administrator.
Enabling managed storage requires operations in the console. For details, see Managed Storage Configuration. If you

use a metadata acceleration bucket, pay attention to permission configurations. For details, see Binding of Metadata
Acceleration Bucket. Note that shared engines cannot access metadata acceleration buckets.

Step II: Creating the DLC Native Table

There are two ways to create native tables.
1. Create a visual table through the console interface.
2. Create a table using SQL.
Note:

 A database must be created before a DLC Native Table is created.

Creating Tables through the Console Interface

DLC provides a data management module for table creation. For detailed operations, see Data Management.

https://www.tencentcloud.com/document/product/1155/62006
https://www.tencentcloud.com/document/product/1155/62007
https://www.tencentcloud.com/document/product/1155/61990

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 56
of 79

Creating Tables through SQL

When creating tables through SQL, users write their own CREATE TABLE SQL statements. For DLC Native Table
(Iceberg) creation, table descriptions, locations, and table formats do not need to be specified. However, some
advanced parameters need to be included depending on the use case, and those parameters are added through

TBLPROPERTIES.
If parameters were not included when you created the table or if certain attributes need to be modified, use the alter
table set tblproperties command. After the alter table command is executed, restart the upstream import tasks to
complete the attribute modification or addition.
Typical table creation statements for Append and Upsert scenarios are shown as follows. Users can adjust these

statements based on their actual needs.

Append Scenario Table Creation

 CREATE TABLE IF NOT EXISTS `DataLakeCatalog`.`axitest`.`append_case` (`id` int, `n

 PARTITIONED BY (`pt`)

 TBLPROPERTIES (

 'format-version' = '1',

 'write.upsert.enabled' = 'false',

 'write.distribution-mode' = 'hash',

 'write.metadata.delete-after-commit.enabled' = 'true',

 'write.metadata.previous-versions-max' = '100',

 'write.metadata.metrics.default' = 'full',

 'smart-optimizer.inherit' = 'default'

);

Upsert Scenario Table Creation

For Upsert scenario table creation, specify the version as 2, and set the write.upsert.enabled attribute to true, and
configure bloom filters according to upsert key-values. If users have multiple primary keys, generally use the first two
key-values for bloom filter configuration. If the upsert table is not partitioned and updates frequently with large data

volumes, consider doing bucketing by primary key for distribution.
Examples for both partitioned and non-partitioned tables are provided as follows.

// Partitioned table

CREATE TABLE IF NOT EXISTS `DataLakeCatalog`.`axitest`.`upsert_case` (`id` int, `na

PARTITIONED BY (bucket(4, `id`))

TBLPROPERTIES (

 'format-version' = '2',

 'write.upsert.enabled' = 'true',

 'write.update.mode' = 'merge-on-read',

 'write.merge.mode' = 'merge-on-read',

 'write.parquet.bloom-filter-enabled.column.id' = 'true',

 'dlc.ao.data.govern.sorted.keys' = 'id',

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 57
of 79

 'write.distribution-mode' = 'hash',

 'write.metadata.delete-after-commit.enabled' = 'true',

 'write.metadata.previous-versions-max' = '100',

 'write.metadata.metrics.default' = 'full',

 'smart-optimizer.inherit' = 'default'

);

// Non-partitioned table

CREATE TABLE IF NOT EXISTS `DataLakeCatalog`.`axitest`.`upsert_case` (`id` int, `na

TBLPROPERTIES (

 'format-version' = '2',

 'write.upsert.enabled' = 'true',

 'write.update.mode' = 'merge-on-read',

 'write.merge.mode' = 'merge-on-read',

 'write.parquet.bloom-filter-enabled.column.id' = 'true',

 'dlc.ao.data.govern.sorted.keys' = 'id',

 'write.distribution-mode' = 'hash',

 'write.metadata.delete-after-commit.enabled' = 'true',

 'write.metadata.previous-versions-max' = '100',

 'write.metadata.metrics.default' = 'full',

 'smart-optimizer.inherit' = 'default'

);

Modifying Table Attributes

If related attribute values were not included when the user created the table, use the alter table to modify, add, or
remove attribute values, as shown below. Any changes to table attribute values can be made this way. Note that the

Iceberg format-version field cannot be modified. Additionally, if the table already has real-time imports from
InLong/Oceanus/Flink, you need to restart the upstream import businesses after modifications.

// Modify conflict retry attempts to 10

ALTER TABLE `DataLakeCatalog`.`axitest`.`upsert_case` SET TBLPROPERTIES('commit.ret

// Cancel bloom filter setting for the name field

ALTER TABLE `DataLakeCatalog`.`axitest`.`upsert_case` UNSET TBLPROPERTIES('write.pa

Step III: Data Optimization and Lifecycle Configuration

Data optimization and lifecycle configuration can be done in two ways.
1. Through the console interface for visual configuration

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 58
of 79

2. Through SQL for configuration

Through the Console Interface for Configuration

DLC provides a data management module for configuration. For detailed operations, see Enable data optimization.

Through SQL for Configuration

DLC defines detailed attributes for managing data optimization and lifecycle. You can flexibly configure data

management and lifecycle based on business characteristics. For detailed data optimization and lifecycle
configuration values, see Enable data optimization.

Configuring the Database

The data optimization and lifecycle of the database can be adjusted through DBPROPERTIES, as shown below.

// Enable write optimization for the my_database table and do not inherit the data

ALTER DATABASE DataLakeCatalog.my_database SET DBPROPERTIES ('smart-optimizer.inhe

// Set my_database to inherit the data management policy.

ALTER DATABASE DataLakeCatalog.my_database SET DBPROPERTIES ('smart-optimizer.inhe

// Disable lifecycle for the my_database table and do not inherit the data manageme

ALTER DATABASE DataLakeCatalog.my_database SET DBPROPERTIES ('smart-optimizer.inhe

Configuring the Data Table

Data optimization and lifecycle for data tables are configured through TBLPROPERTIES, as shown below.

// Disable write optimization for the upsert_cast table and do not inherit the data

ALTER TABLE `DataLakeCatalog`.`axitest`.`upsert_case` SET TBLPROPERTIES('smart-opti

// Set the upsert_cast table to inherit the database policy.

ALTER TABLE `DataLakeCatalog`.`axitest`.`upsert_case` SET TBLPROPERTIES('smart-opti

// Enable lifecycle for the upsert_cast table, set the lifecycle duration to 7 days

ALTER TABLE `DataLakeCatalog`.`axitest`.`upsert_case` SET TBLPROPERTIES('smart-opti

https://www.tencentcloud.com/document/product/1155/61988
https://www.tencentcloud.com/document/product/1155/61988

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 59
of 79

Step IV: Data Ingestion into Native Table

DLC Native Table supports multiple data ingestion methods. Depending on your data source, see DLC Native Table
Lake Ingestion Practice.

Step V: Viewing Data Optimization Tasks

You can view data governance tasks in the DLC console under the Data Operation and Maintenance menu by

navigating to the Historical Tasks page. You can query tasks using keywords such as CALL, Auto, database name,
and table name.
Note:
To view system data optimization tasks, users need the permissions of DLC administrators.
Tasks with IDs starting with "Auto" are automatically generated data optimization tasks. As shown in the table below.

https://www.tencentcloud.com/document/product/1155/62030

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 60
of 79

You can also click View Details to check the basic information and results of running the tasks.

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 61
of 79

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 62
of 79

DLC Source Table Lake Ingestion Practice
Last updated：2024-07-31 17:34:58

Use Cases

CDC (Change Data Capture) is an abbreviation for change data capture. It allows incremental changes in the source
database to be synchronized in near real-time to other databases or applications. DLC supports using CDC
technology to synchronize incremental changes from the source database to native DLC tables, completing the data

lake ingestion.

Prerequisites

DLC must be properly enabled, user permissions configured, and managed storage activated.
DLC database must be correctly created.
DLC database data optimization must be properly configured. For detailed configuration, see Enable data
optimization.

Ingesting Data into the Lake with InLong

DataInLong can be used to synchronize source data to DLC.

Ingesting Stream Computing Data into the Lake with Oceanus

Source data can be synchronized to DLC via Oceanus.

Ingesting Data into the Lake with Self-Managed Flink

Flink can be used to synchronize source data to DLC. This example demonstrates how to synchronize data from a
source Kafka to DLC, completing the data lake ingestion.

Environment Preparation

Required clusters: Kafka 2.4.x, Flink 1.15.x, and Hadoop 3.x.
It is recommended to purchase EMR clusters for Kafka and Flink.

https://www.tencentcloud.com/document/product/1155/61988#

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 63
of 79

Overall Operation Process

For detailed steps, see the diagram below:

Step 1: Upload Required Jars: Upload the necessary Kafka, DLC connector Jar files, and Hadoop dependency Jars
for synchronization.
Step 2: Create Kafka Topic: Create a Kafka topic for production and consumption.
Step 3: Create Target Table in DLC: Create a new target table in DLC data management.

Step 4: Submit Task: Submit the synchronization task in the Flink cluster.
Step 5: Send Message Data and Check Sync Results: Send message data through the Kafka cluster and check the
synchronization results on the DLC.

Step 1: Uploading Required Jars

1. Download required Jars.
 It is recommended to upload the required Jars that match the version of Flink you are using. For example, if you are
using Flink 1.15.x, download the flink-sql-connect-kafka-1.15.x.jar. See the attachments for the relevant files.

 Kafka-related dependencies: flink-sql-connect-kafka-1.15.4.jar
 DLC-related dependencies: sort-connector-iceberg-dlc-1.6.0.jar
 Hadoop 3.x related dependencies: api-util-1.0.0-M20.jar, guava-27.0-jre.jar, hadoop-mapreduce-client-core-
3.2.2.jar.
2. Log in to the Flink cluster and upload the prepared Jar files to the flink/ib directory.

Step 2: Creating a Kafka Topic

 Log in to Kafka Manager, click on default cluster, then click on Topic > Create.
Topic name: For this example, enter kafka_dlc
Number of partitions: 1
Number of replicas: 1

https://download-1304028854.cos.ap-beijing.myqcloud.com/upsertdemo-v1.0/flink-sql-connector-kafka-1.15.4.jar
https://download-1304028854.cos.ap-beijing.myqcloud.com/upsertdemo-v1.0/sort-connector-iceberg-dlc-1.6.0.jar
https://download-1304028854.cos.ap-beijing.myqcloud.com/upsertdemo-v1.0/api-util-1.0.0-M20.5.jar
https://download-1304028854.cos.ap-beijing.myqcloud.com/upsertdemo-v1.0/guava-27.0-jre.2.jar
https://download-1304028854.cos.ap-beijing.myqcloud.com/upsertdemo-v1.0/hadoop-mapreduce-client-core-3.2.2.4.jar

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 64
of 79

Alternatively, log in to the Kafka cluster instance and use the following command in the kafka/bin directory to create
the Topic.

./kafka-topics.sh --bootstrap-server ip:port --create --topic kafka-dlc

Step 3: Creating a New Target Table in DLC

For details on creating a new target table, see DLC Native Table Operation Configuration.

Step 4: Submitting the Task

There are two ways to synchronize data, i.e. using Flink: Flink SQL Write Mode and Flink Stream API. Both
synchronization methods will be introduced below.
Before submitting the task, you need to create a directory to save checkpoint data. Use the following command to
create the data management.

Create the hdfs /flink/checkpoints directory:

hadoop fs -mkdir /flink

hadoop fs -mkdir /flink/checkpoints

Flink SQL Synchronization Mode

1. Create a new Maven project named "flink-demo" in IntelliJ IDEA.

2. Add the necessary dependencies in pom. For details on the dependencies, see Complete Sample Code Reference
> Example 1.

https://www.tencentcloud.com/document/product/1155/62029#
https://www.tencentcloud.com/document/product/1155/62030#Example1

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 65
of 79

3. Java synchronization code: The core code is shown in the steps below. For detailed code, see Complete Sample
Code Reference > Example 2.
Create execution environment and configure checkpoint:

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment

env.setParallelism(1);

env.enableCheckpointing(60000);

env.getCheckpointConfig().setCheckpointStorage("hdfs:///flink/checkpoints");

env.getCheckpointConfig().setCheckpointTimeout(60000);

env.getCheckpointConfig().setTolerableCheckpointFailureNumber(5);

env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.Externaliz

 Execute Source SQL:

 tEnv.executeSql(sourceSql);

Execute Synchronization SQL:

 tEnv.executeSql(sql)

4. Use IntelliJ IDEA to compile and package the flink-demo project. The JAR file flink-demo-1.0-SNAPSHOT.jar will
be generated in the project's target folder.
5. Log in to one of the instances in the Flink cluster and upload flink-demo-1.0-SNAPSHOT.jar to the /data/jars/
directory (create the directory if it does not exist).
6. Log in to one of the instances in the Flink cluster and execute the following command in the flink/bin directory to

submit the synchronization task.

./flink run --class com.tencent.dlc.iceberg.flink.AppendIceberg

/data/jars/flink-demo-1.0-SNAPSHOT.jar

Flink Stream API Synchronization Mode

1. Create a new Maven project named "flink-demo" in IntelliJ IDEA.

2. Add the necessary dependencies in pom: Complete sample code reference > Example 3.
3. Java synchronization code: The core code is shown in the steps below. For detailed code, see Complete sample
code reference > Example 4.
 Create the execution environment StreamTableEnvironment and configure checkpoint:

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment

env.setParallelism(1);

env.enableCheckpointing(60000);

env.getCheckpointConfig().setCheckpointStorage("hdfs:///data/checkpoints");

env.getCheckpointConfig().setCheckpointTimeout(60000);

env.getCheckpointConfig().setTolerableCheckpointFailureNumber(5);

env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.Externaliz

https://www.tencentcloud.com/document/product/1155/62030#Example2
https://www.tencentcloud.com/document/product/1155/62030#Example3
https://www.tencentcloud.com/document/product/1155/62030#Example4

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 66
of 79

Get the Kafka input stream:

KafkaToDLC dlcSink = new KafkaToDLC();

DataStream<RowData> dataStreamSource = dlcSink.buildInputStream(env);

 Configure Sink:

FlinkSink.forRowData(dataStreamSource)

 .table(table)

 .tableLoader(tableLoader)

 .equalityFieldColumns(equalityColumns)

 .metric(params.get(INLONG_METRIC.key()), params.get(INLONG_AUDIT.key()))

 .action(actionsProvider)

 .tableOptions(Configuration.fromMap(options))

 // It is false by default, which appends data. If it is set to be true, t

 .overwrite(false)

 .append();

 Execute Synchronization SQL:

env.execute("DataStream Api Write Data To Iceberg");

4. Use IntelliJ IDEA to compile and package the flink-demo project. The JAR packet, flink-demo-1.0-SNAPSHOT.jar,
will be generated in the project's target folder.
5. Log in to one of the instances in the Flink cluster and upload flink-demo-1.0-SNAPSHOT.jar to the /data/jars/
directory (create the directory if it does not exist).

6. Log in to one of the instances in the Flink cluster and execute the following command in the flink/bin directory to
submit the task.

./flink run --class com.tencent.dlc.iceberg.flink.AppendIceberg

/data/jars/flink-demo-1.0-SNAPSHOT.jar

Step 5: Send Message Data and Query Synchronization Results

1. Log in to the Kafka cluster instance, navigate to the kafka/bin directory, and use the following command to send

message data.

./kafka-console-producer.sh --broker-list 122.152.227.141:9092 --topic kafka-

dlc

The data information is as follows:

{"id":1,"name":"Zhangsan","age":18}

{"id":2,"name":"Lisi","age":19}

{"id":3,"name":"Wangwu","age":20}

{"id":4,"name":"Lily","age":21}

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 67
of 79

{"id":5,"name":"Lucy","age":22}

{"id":6,"name":"Huahua","age":23}

{"id":7,"name":"Wawa","age":24}

{"id":8,"name":"Mei","age":25}

{"id":9,"name":"Joi","age":26}

{"id":10,"name":"Qi","age":27}

{"id":11,"name":"Ky","age":28}

{"id":12,"name":"Mark","age":29}

2. Query synchronization results

Open the Flink Dashboard, and click on Running Job > Run Job > Checkpoint > Overview to view the Job
synchronization results.

3. Log in to the DLC Console, click on Data Exploration to query the target table data.

https://console.tencentcloud.com/dlc

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 68
of 79

Complete Sample Code Reference Example

Note:
Data marked with “****” in the examples should be replaced with actual data used during development.

Example 1

 <properties>

 <flink.version>1.15.4</flink.version>

 <cos.lakefs.plugin.version>1.0</cos.lakefs.plugin.version>

 </properties>

 <dependencies>

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 69
of 79

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.11</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-java</artifactId>

 <version>${flink.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-clients</artifactId>

 <version>${flink.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-streaming-java</artifactId>

 <version>${flink.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-connector-kafka</artifactId>

 <version>${flink.version}</version>

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-table-planner_2.12</artifactId>

 <version>${flink.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-json</artifactId>

 <version>${flink.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 70
of 79

 <groupId>com.qcloud.cos</groupId>

 <artifactId>lakefs-cloud-plugin</artifactId>

 <version>${cos.lakefs.plugin.version}</version>

 <exclusions>

 <exclusion>

 <groupId>com.tencentcloudapi</groupId>

 <artifactId>tencentcloud-sdk-java</artifactId>

 </exclusion>

 </exclusions>

 </dependency>

 </dependencies>

Example 2

public class AppendIceberg {

 public static void main(String[] args) {

 // Create execution environment and configure the checkpoint

 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnv

 env.setParallelism(1);

 env.enableCheckpointing(60000);

 env.getCheckpointConfig().setCheckpointStorage("hdfs:///flink/checkpoints")

 env.getCheckpointConfig().setCheckpointTimeout(60000);

 env.getCheckpointConfig().setTolerableCheckpointFailureNumber(5);

 env.getCheckpointConfig()

 .enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpo

 EnvironmentSettings settings = EnvironmentSettings

 .newInstance()

 .inStreamingMode()

 .build();

 StreamTableEnvironment tEnv = StreamTableEnvironment.create(env, settings);

 // Create the input table

 String sourceSql = "CREATE TABLE tb_kafka_sr (\\n"

 + " id INT, \\n"

 + " name STRING, \\n"

 + " age INT \\n"

 + ") WITH (\\n"

 + " 'connector' = 'kafka', \\n"

 + " 'topic' = 'kafka_dlc', \\n"

 + " 'properties.bootstrap.servers' = '10.0.126.***:9092', \\n" //

 + " 'properties.group.id' = 'test-group', \\n"

 + " 'scan.startup.mode' = 'earliest-offset', \\n" // start from t

 + " 'format' = 'json' \\n"

 + ");";

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 71
of 79

 tEnv.executeSql(sourceSql);

 // Create the output table

 String sinkSql = "CREATE TABLE tb_dlc_sk (\\n"

 + " id INT PRIMARY KEY NOT ENFORCED, \\n"

 + " name STRING,\\n"

 + " age INT\\n"

 + ") WITH (\\n"

 + " 'qcloud.dlc.managed.account.uid' = '1000***79117',\\n" //User

 + " 'qcloud.dlc.secret-id' = 'AKIDwjQvBHCsKYXL3***pMdkeMsBH8lAJEt'

 + " 'qcloud.dlc.region' = 'ap-***',\\n" // Database and table regi

 + " 'qcloud.dlc.user.appid' = 'AKIDwjQvBHCsKYXL3***pMdkeMsBH8lAJEt

 + " 'qcloud.dlc.secret-key' = 'kFWYQ5WklaCYgbLtD***cyAD7sUyNiVP',\

 + " 'connector' = 'iceberg-inlong', \\n"

 + " 'catalog-database' = 'test_***', \\n" // Target database

 + " 'catalog-table' = 'kafka_dlc', \\n" // Target data table

 + " 'default-database' = 'test_***', \\n" //Default database

 + " 'catalog-name' = 'HYBRIS', \\n"

 + " 'catalog-impl' = 'org.apache.inlong.sort.iceberg.catalog.hybri

 + " 'uri' = 'dlc.tencentcloudapi.com', \\n"

 + " 'fs.cosn.credentials.provider' = 'org.apache.hadoop.fs.auth.Dl

 + " 'qcloud.dlc.endpoint' = 'dlc.tencentcloudapi.com', \\n"

 + " 'fs.lakefs.impl' = 'org.apache.hadoop.fs.CosFileSystem', \\n"

 + " 'fs.cosn.impl' = 'org.apache.hadoop.fs.CosFileSystem', \\n"

 + " 'fs.cosn.userinfo.region' = 'ap-guangzhou', \\n" // Region inf

 + " 'fs.cosn.userinfo.secretId' = 'AKIDwjQvBHCsKYXL3***pMdkeMsBH8l

 + " 'fs.cosn.userinfo.secretKey' = 'kFWYQ5WklaCYgbLtD***cyAD7sUyNi

 + " 'service.endpoint' = 'dlc.tencentcloudapi.com', \\n"

 + " 'service.secret.id' = 'AKIDwjQvBHCsKYXL3***pMdkeMsBH8lAJEt', \

 + " 'service.secret.key' = 'kFWYQ5WklaCYgbLtD***cyAD7sUyNiVP', \\n

 + " 'service.region' = 'ap-***', \\n" // Database and table regio

 + " 'user.appid' = '1305424723', \\n"

 + " 'request.identity.token' = '1000***79117', \\n"

 + " 'qcloud.dlc.jdbc.url'='jdbc:dlc:dlc.internal.tencentcloudapi.c

 + ");";

 tEnv.executeSql(sinkSql);

 // Execute computation and output results

 String sql = "insert into tb_dlc_sk select * from tb_kafka_sr";

 tEnv.executeSql(sql);

 }

}

Example 3

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 72
of 79

 <properties>

 <flink.version>1.15.4</flink.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>com.alibaba</groupId>

 <artifactId>fastjson</artifactId>

 <version>2.0.22</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-java</artifactId>

 <version>${flink.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-clients</artifactId>

 <version>${flink.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-streaming-java</artifactId>

 <version>${flink.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-connector-kafka</artifactId>

 <version>${flink.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-table-planner_2.12</artifactId>

 <version>${flink.version}</version>

 <scope>provided</scope>

 </dependency>

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 73
of 79

 <dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-json</artifactId>

 <version>${flink.version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.inlong</groupId>

 <artifactId>sort-connector-iceberg-dlc</artifactId>

 <version>1.6.0</version>

 <scope>system</scope>

 <systemPath>${project.basedir}/lib/sort-connector-iceberg-dlc-1.6.0.jar</syst

 </dependency>

 <dependency>

 <groupId>org.apache.kafka</groupId>

 <artifactId>kafka-clients</artifactId>

 <version>${kafka-version}</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-log4j12</artifactId>

 <version>1.7.25</version>

 </dependency>

 <dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-api</artifactId>

 <version>1.7.25</version>

 </dependency>

 </dependencies>

Example 4

public class KafkaToDLC {

 public static void main(String[] args) throws Exception {

 final MultipleParameterTool params = MultipleParameterTool.fromArgs(args);

 final Map<String, String> options = setOptions();

 //1. Create the execution environment StreamTableEnvironment and configure

 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnv

 env.setParallelism(1);

 env.enableCheckpointing(60000);

 env.getCheckpointConfig().setCheckpointStorage("hdfs:///data/checkpoints");

 env.getCheckpointConfig().setCheckpointTimeout(60000);

 env.getCheckpointConfig().setTolerableCheckpointFailureNumber(5);

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 74
of 79

 env.getCheckpointConfig()

 .enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpo

 env.getConfig().setGlobalJobParameters(params);

 //2. Get input stream

 KafkaToDLC dlcSink = new KafkaToDLC();

 DataStream<RowData> dataStreamSource = dlcSink.buildInputStream(env);

 //3. Create Hadoop configuration and Catalog configuration

 CatalogLoader catalogLoader = FlinkDynamicTableFactory.createCatalogLoader(

 TableLoader tableLoader = TableLoader.fromCatalog(catalogLoader,

 TableIdentifier.of(params.get(CATALOG_DATABASE.key()), params.get(C

 tableLoader.open();

 Table table = tableLoader.loadTable();

 ActionsProvider actionsProvider = FlinkDynamicTableFactory.createActionLoad

 Thread.currentThread().getContextClassLoader(), options);

 //4. Create Schema

 Schema schema = Schema.newBuilder()

 .column("id", DataTypeUtils.toInternalDataType(new IntType(false)))

 .column("name", DataTypeUtils.toInternalDataType(new VarCharType())

 .column("age", DataTypeUtils.toInternalDataType(new DateType(false)

 .primaryKey("id")

 .build();

 List<String> equalityColumns = schema.getPrimaryKey().get().getColumnNames(

 //5. Configure Slink

 FlinkSink.forRowData(dataStreamSource)

 //This .table can be omitted; just specify the corresponding path f

 .table(table)

 .tableLoader(tableLoader)

 .equalityFieldColumns(equalityColumns)

 .metric(params.get(INLONG_METRIC.key()), params.get(INLONG_AUDIT.ke

 .action(actionsProvider)

 .tableOptions(Configuration.fromMap(options))

 //It is false by default, which appends data. If it is set to be tr

 .overwrite(false)

 .append();

 //6. Execute synchronization

 env.execute("DataStream Api Write Data To Iceberg");

 }

 private static Map<String, String> setOptions() {

 Map<String, String> options = new HashMap<>();

 options.put("qcloud.dlc.managed.account.uid", "1000***79117"); //User Uid

 options.put("qcloud.dlc.secret-id", "AKIDwjQvBHCsKYXL3***pMdkeMsBH8lAJEt");

 options.put("qcloud.dlc.region", "ap-***"); // Database and table region in

 options.put("qcloud.dlc.user.appid", "AKIDwjQvBHCsKYXL3***pMdkeMsBH8lAJEt")

 options.put("qcloud.dlc.secret-key", "kFWYQ5WklaCYgbLtD***cyAD7sUyNiVP"); /

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 75
of 79

 options.put("connector", "iceberg-inlong");

 options.put("catalog-database", "test_***"); // Target database

 options.put("catalog-table", "kafka_dlc"); // Target data table

> options.put("default-database", "test_***"); //Default database

 options.put("catalog-name", "HYBRIS");

 options.put("catalog-impl", "org.apache.inlong.sort.iceberg.catalog.hybris.

 options.put("uri", "dlc.tencentcloudapi.com");

 options.put("fs.cosn.credentials.provider", "org.apache.hadoop.fs.auth.DlcC

 options.put("qcloud.dlc.endpoint", "dlc.tencentcloudapi.com");

 options.put("fs.lakefs.impl", "org.apache.hadoop.fs.CosFileSystem");

 options.put("fs.cosn.impl", "org.apache.hadoop.fs.CosFileSystem");

 options.put("fs.cosn.userinfo.region", "ap-guangzhou"); // Region informati

 options.put("fs.cosn.userinfo.secretId", "AKIDwjQvBHCsKYXL3***pMdkeMsBH8lAJ

 options.put("fs.cosn.userinfo.secretKey", "kFWYQ5WklaCYgbLtD***cyAD7sUyNiVP

 options.put("service.endpoint", "dlc.tencentcloudapi.com");

 options.put("service.secret.id", "AKIDwjQvBHCsKYXL3***pMdkeMsBH8lAJEt"); //

 options.put("service.secret.key", "kFWYQ5WklaCYgbLtD***cyAD7sUyNiVP"); // U

 options.put("service.region", "ap-***"); // Database and table region info

 options.put("user.appid", "1305***23");

 options.put("request.identity.token", "1000***79117");

 options.put("qcloud.dlc.jdbc.url",

 "jdbc:dlc:dlc.internal.tencentcloudapi.com?task_type,SparkSQLTask&d

 return options;

 }

 /**

 * Create the input stream

 *

 * @param env

 * @return

 */

 private DataStream<RowData> buildInputStream(StreamExecutionEnvironment env) {

 //1. Configure the execution environment

 EnvironmentSettings settings = EnvironmentSettings

 .newInstance()

 .inStreamingMode()

 .build();

 StreamTableEnvironment sTableEnv = StreamTableEnvironment.create(env, setti

 org.apache.flink.table.api.Table table = null;

 //2. Execute SQL to get the data input stream

 try {

 sTableEnv.executeSql(createTableSql()).print();

 table = sTableEnv.sqlQuery(transformSql());

 DataStream<Row> rowStream = sTableEnv.toChangelogStream(table);

 DataStream<RowData> rowDataDataStream = rowStream.map(new MapFunction<R

 @Override

 public RowData map(Row rows) throws Exception {

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 76
of 79

 GenericRowData rowData = new GenericRowData(3);

 rowData.setField(0, rows.getField(0));

 rowData.setField(1, (String) rows.getField(1));

 rowData.setField(2, rows.getField(2));

 return rowData;

 }

 });

 return rowDataDataStream;

 } catch (Exception e) {

 throw new RuntimeException("kafka to dlc transform sql execute error.",

 }

 }

 private String createTableSql() {

 String tableSql = "CREATE TABLE tb_kafka_sr (\\n"

 + " id INT, \\n"

 + " name STRING, \\n"

 + " age INT \\n"

 + ") WITH (\\n"

 + " 'connector' = 'kafka', \\n"

 + " 'topic' = 'kafka_dlc', \\n"

 + " 'properties.bootstrap.servers' = '10.0.126.30:9092', \\n"

 + " 'properties.group.id' = 'test-group-10001', \\n"

 + " 'scan.startup.mode' = 'earliest-offset', \\n"

 + " 'format' = 'json' \\n"

 + ");";

 return tableSql;

 }

 private String transformSql() {

 String transformSQL = "select * from tb_kafka_sr";

 return transformSQL;

 }

}

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 77
of 79

DLC Source Table FAQs
Last updated：2024-07-31 17:35:14

Why Must Data Optimization Be Enabled for Upsert Write Scenarios in DLC Native Table
(Iceberg)?

1. DLC Native Table (Iceberg) uses the MOR (Merge On Read) table format. When Upsert writes occur upstream,
updates write a delete file marking a record as deleted and then add a new data file to the new modification record.
2. Without committing and merging, the job engine needs to merge the original data it has read, the delete file, and the

new data file when reading data to get the latest data. This will lead the job engine to consume significant resources
and time. Small file merging in data optimization reads and merges these files in advance, writing them into new data
files so that the job engine can directly read the latest files without needing to merge data files.
3. DLC metadata (Iceberg) uses a snapshot mechanism, and even if new snapshots are generated during the write,
historical snapshots are not cleaned up. The snapshot expiration capability of the data optimization can remove old

snapshots, freeing up storage space and preventing unused historical data from occupying storage space.

How to Handle Timeout in Data Optimization Tasks?

The system sets a default timeout for running data optimization tasks (2 hours by default) to prevent a task from
occupying resources for too long and hindering other tasks. When the timeout expires, the system cancels the
optimization task. According to different types of tasks, see the following handling procedures.
1. If small file merge tasks frequently time out, it indicates data accumulation and that current resources are insufficient
for merging. Temporarily expanding resources (or setting the table to use dedicated optimization resources) can

address the accumulated data, and then revert the settings.
2. If small file merge tasks occasionally time out, it may indicate insufficient optimization resources. Consider scaling-
out data resources to some extent and monitoring if there are timeouts in subsequent governance tasks of multiple
cycles. Occasional small file merge timeouts will not immediately impact query performance but may lead to
continuous timeouts and eventually affect query performance if the issue is not addressed timely. DLC enables

segmented submissions for small file merges by default, so parts of the finished task can still be submitted
successfully and are still effective.
3. If a snapshot expiration task times out, it occurs in two stages. In the first stage, the snapshot is removed from the
metadata, and this process usually does not time out. In the second stage, the data files associated with the removed
snapshot are deleted from storage. This stage requires individually comparing files to be deleted. There might be

timeouts if there are many files to be deleted. Timeouts for this type of task can be ignored. Files that were not deleted
due to the timeout will be treated as orphan files and will be cleaned up in subsequent orphaned file removal
processes.
4. If orphan file removal tasks time out, the handling of orphan files is similar to removing orphan files. As long as the
deleted files are still valid when scanned, the system will continue to scan and execute in subsequent cycles, as
orphan file removal is a periodic task. If a task times out, it will be retried in the next cycle.

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 78
of 79

Why Does Iceberg Occasionally Read an Old Snapshot Shortly after Inserting Data?

1. Iceberg provides a default caching capability for the catalog, with a default duration of 30 seconds. In extreme
cases, if two queries for the same table occur very close together in time and are not executed in the same session,
there is a very low probability that the query will access the previous snapshot before the cache expires and updates

are fetched.
2. The Iceberg community recommends enabling this parameter. DLC also enabled it by default in earlier versions to
speed up task execution and reduce visits to metadata during queries. However, if two tasks have very close read and
write intervals, the described situation may occur in extreme cases.
3. In the latest versions of the DLC engine, this parameter is disabled by default. When it comes to the scenes users

may encounter, if users who purchased the engine before January 2024 need to ensure strong data consistency in
queries, they can manually disable this parameter by following the configuration method below to modify the engine
parameters:

"spark.sql.catalog.DataLakeCatalog.cache-enabled": "false"

"spark.sql.catalog.DataLakeCatalog.cache.expiration-interval-ms": "0"

Why Should DLC Native Table (Iceberg) Be Partitioned?

1. Data optimization jobs are first divided by partitions. If the native table (Iceberg) has no partitions, most small file
merges that involve modifying tables will only have a single job operate. Therefore, the merges cannot be parallel, and
this significantly reduces merge efficiency.
2. If the Table Has No Upstream Partition Fields, How Can It Be Partitioned? In this case, consider using Iceberg's
bucket partitioning. For detailed description, see DLC Native Table Core Capabilities.

How to Handle Write Conflicts in DLC Native Table (Iceberg)?

1. To ensure ACID compliance, Iceberg checks the current view for changes during commits. If changes are detected,
a conflict is assumed. Then, the commit operation is rolled back. The current view is merged, and the commit is
retried.
2. The system provides default retry counts and intervals for conflicts. If multiple commit attempts still result in
conflicts, the write operation fails. For default conflict parameters, see DLC Native Table Core Capabilities.

3. If conflicts occur, users can adjust the number and interval of retries. The following example sets the number of
conflict retries to 10. For more details on parameter meanings, see DLC Native Table Core Capabilities.

// Set conflict retry count to 10

ALTER TABLE `DataLakeCatalog`.`axitest`.`upsert_case` SET TBLPROPERTIES('commit.ret

The DLC Native Table (Iceberg) has Been Deleted, But Why Is The Storage Space Capacity
Not Released?

https://www.tencentcloud.com/document/product/1155/62028
https://www.tencentcloud.com/document/product/1155/62028
https://www.tencentcloud.com/document/product/1155/62028

Data Lake Compute

©2013-2025 Tencent Cloud International Pte. Ltd. Page 79
of 79

When the DLC native table (Iceberg) is dropped, the metadata is deleted immediately, and the data is deleted
asynchronously. The data is first moved to the recycle bin directory, and the data is removed from the storage one day
later.

