
Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 1
of 140

Mobile Live Video Broadcasting

Integration (No UI)

Product Documentation

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 2
of 140

Copyright Notice

©2013-2025 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by the Tencent corporate group, including
its parent, subsidiaries and affiliated companies, as the case may be. Trademarks of third parties referred to in this
document are owned by their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 3
of 140

Contents

Integration (No UI)
Running a Demo

iOS
Android

SDK Integration
iOS
Android
Flutter

Publishing
iOS

Publishing from Camera
Publishing from Screen

Android
Publishing from Camera
Publishing from Screen

Web
Flutter

Publishing from Camera
Publishing from Screen

Playback
iOS

LVB
LEB

Android
LVB
LEB

Flutter
LVB

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 4
of 140

Integration (No UI)
Running a Demo
iOS
Last updated：2024-01-13 15:49:41

This document describes how to quickly run Tencent Cloud MLVB-API-Example for iOS.

Environment Requirements

Xcode 9.0 or later
iPhone or iPad with iOS 9.0 or later

A valid developer signature for your project

Prerequisites

You have signed up for a Tencent Cloud account.

Directions

Step 1. Download the SDK and MLVB-API-Example source code

1. Download the package here as needed. Here, the Live Edition is used as an example.
2. Decompress the file after download.
Note

The source code can also be obtained from GitHub.

Step 2. Configure the license

1. Log in to the CSS console, select MLVB SDK > License Management on the left sidebar, and click Create.

https://www.tencentcloud.com/document/product/378/17985
https://www.tencentcloud.com/document/product/1071/38150
https://liteav.sdk.qcloud.com/download/latest/TXLiteAVSDK_Live_iOS_latest.zip
https://github.com/LiteAVSDK/Live_iOS/tree/main/MLVB-API-Example-OC
https://console.tencentcloud.com/live/livestat
https://console.tencentcloud.com/live/license

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 5
of 140

2. Enter the App Name , Package Name , and Bundle ID as needed, select the Live streaming feature

module (Live Push + Video Playback), and click Confirm.
Package Name: Enter the applicationId in the build.gradle file in the App directory.

Bundle ID: Enter the Bundle Identifier of the project in Xcode.
3. After the free trial license is created successfully, the page will display the information of the generated license. You
need to pass in two parameters Key and License URL during initial SDK configuration. Store the

following information properly:

4. Open the LiteAVSDK_Live_iOS_version number/MLVB-API-Example-

OC/Debug/GenerateTestUserSig.h file.

Set parameters in GenerateTestUserSig.h as follows:

LICENSEURL: Empty by default. Set it to the actual download license URL.
LICENSEURLKEY: Empty by default. Set it to the actual download license key.

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 6
of 140

Step 3. Configure stream push/playback capabilities

1. Apply for a domain name in DNSPod and get an ICP filing for it.
2. Add the stream push/playback domain name in Domain Management in the CSS console. For detailed directions,

see Adding Your Own Domain.
3. Configure the CNAME record for the domain name as instructed in Configuring CNAME.
4. After configuring the stream push/playback domain name, you can get the CNAME information on the Basic Info

page of the domain name.

https://dnspod.cloud.tencent.com/?from=qcloudProductDns
https://console.tencentcloud.com/live/domainmanage
https://www.tencentcloud.com/document/product/267/35970
https://www.tencentcloud.com/document/product/267/31057

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 7
of 140

5. Open the LiteAVSDK_Live_iOS_version number/MLVB-API-Example-

OC/Debug/GenerateTestUserSig.h file.

Set parameters in GenerateTestUserSig.h as follows:

PUSH_DOMAIN: Set it to your stream push domain name.
PLAY_DOMAIN: Set it to your playback domain name.
LIVE_URL_KEY: This parameter is optional. It is used to generate authentication information such as txSecret .

For more information on how to calculate it, see Publishing/Playback URL. You can query it in Manage > Stream

Push Configuration > Authentication Configuration on the Domain Name page.

Configuring stream push parameters

1. Find and open the LiteAVSDK_Live_iOS_version number/MLVB-API-Example-

OC/Debug/GenerateTestUserSig.h file.

2. Set parameters in the GenerateTestUserSig.h file based on the above service:
SDKAppID: 0 by default. Set it to the actual SDKAppID .

SECRETKEY: Empty by default. Set it to the actual secret key.

Stream push URL field description

You need to concatenate the specific stream push/pull URL string based on the used protocol as instructed in
Publishing/Playback URL. A string has been concatenated in the demo, and the stream can be played back after you
run the demo.

Step 5. Compile and run

Open the demo project MLVB-API-Example-OC with Xcode 9.0 or later and click Run.

https://console.tencentcloud.com/live/domainmanage
https://console.tencentcloud.com/live/domainmanage
https://www.tencentcloud.com/document/product/1071/39359
https://console.tencentcloud.com/live/domainmanage
https://github.com/LiteAVSDK/Live_iOS/tree/main/MLVB-API-Example-OC/Debug/GenerateTestUserSig.h
https://www.tencentcloud.com/document/product/1071/39359

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 8
of 140

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 9
of 140

Android
Last updated：2024-01-13 15:49:41

This document describes how to quickly run the Tencent Cloud MLVB-API-Example for Android.

Environment Requirements

Android 4.1 (SDK API level 16) or above; Android 5.0 (SDK API level 21) or above is recommended.
Android Studio 3.5 or later

Device on Android 4.1 or above for the application

Prerequisites

You have signed up for a Tencent Cloud account.

Directions

Step 1. Download the SDK and MLVB-API-Example source code

1. Download the package here as needed. Here, the Live Edition is used as an example.
2. Decompress the file after download.
Note

The source code can also be obtained from GitHub.

Step 2. Configure the license

1. Log in to the CSS console, select MLVB SDK > License Management on the left sidebar, and click Create.

2. Enter the App Name , Package Name , and Bundle ID as needed and click Confirm.

Package Name: Enter the applicationId in the build.gradle file in the App directory.

Bundle ID: Enter the Bundle Identifier of the project in Xcode.

https://www.tencentcloud.com/document/product/378/17985
https://www.tencentcloud.com/document/product/1071/38150
https://liteav.sdk.qcloud.com/download/latest/TXLiteAVSDK_Live_iOS_latest.zip
https://github.com/LiteAVSDK/Live_Android/tree/main/MLVB-API-Example
https://console.tencentcloud.com/live/livestat
https://console.tencentcloud.com/live/license

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 10
of 140

3. After the license is created successfully, the page will display the information of the generated license. You need to
pass in two parameters, Key and License URL , during initial SDK configuration. Store the following

information properly.

4. Open the LiteAVSDK_Live_Android_version number/MLVB-API-

Example/Debug/src/main/java/com/tencent/mlvb/debug/GenerateTestUserSig.java file. Set

parameters in GenerateTestUserSig.java as follows:

 LICENSEURL : A placeholder by default. Set it to the actual download license URL.

LICENSEURLKEY: A placeholder by default. Set it to the actual download license key.

Step 3. Configure stream push/playback capabilities

1. Apply for a domain name in DNSPod and get an ICP filing for it.
2. Add the stream push/playback domain name in Domain Management in the CSS console. For detailed directions,
see Adding Your Own Domain.
3. Configure the CNAME record for the domain name as instructed in Configuring CNAME.
4. After configuring the stream push/playback domain name, you can get the CNAME information on the Basic Info

page of the domain name.

https://dnspod.cloud.tencent.com/?from=qcloudProductDns
https://console.tencentcloud.com/live/domainmanage
https://www.tencentcloud.com/document/product/267/35970
https://www.tencentcloud.com/document/product/267/31057

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 11
of 140

5. Open the LiteAVSDK_Live_Android_version number/MLVB-API-

Example/Debug/src/main/java/com/tencent/mlvb/debug/GenerateTestUserSig.java file.

Set parameters in GenerateTestUserSig.java as follows:

PUSH_DOMAIN: Set it to your stream push domain name.
PLAY_DOMAIN: Set it to your playback domain name.
LIVE_URL_KEY: This parameter is optional. It is used to generate authentication information such as txSecret .

For more information on how to calculate it, see Publishing/Playback URL. You can query it in Manage > Stream
Push Configuration > Authentication Configuration on the Domain Name page.

Configuring stream push parameters

1. Find and open the LiteAVSDK_Live_Android version number/MLVB-API-

Example/Debug/src/main/java/com/tencent/mlvb/debug/GenerateTestUserSig.java file.

2. Set parameters in the GenerateTestUserSig.java file based on the above service:
SDKAPPID: A placeholder by default. Set it to the actual SDKAppID .

SECRETKEY: A placeholder by default. Set it to the actual secret key.

Stream push URL field description

You need to concatenate the specific stream push/pull URL string based on the used protocol as instructed in

Publishing/Playback URL. A string has been concatenated in the demo, and the stream can be played back after you
run the demo.

Step 5. Compile and run

Open the demo project MLVB-API-Example with Android Studio 3.5 or later and click Run.

https://console.tencentcloud.com/live/domainmanage
https://console.tencentcloud.com/live/domainmanage
https://www.tencentcloud.com/document/product/1071/39359
https://console.tencentcloud.com/live/domainmanage
https://github.com/LiteAVSDK/Live_Android/tree/main/MLVB-API-Example/Debug/src/main/java/com/tencent/mlvb/debug/GenerateTestUserSig.java
https://www.tencentcloud.com/document/product/1071/39359

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 12
of 140

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 13
of 140

SDK Integration
iOS
Last updated：2024-01-13 15:49:41

This document describes how to quickly integrate the MLVB SDK (iOS) of Tencent Video Cloud Toolkit into your
project. The directions below use the full-featured Live Edition as an example.

Environment Requirements

Xcode 9.0 or above

iPhone or iPad with iOS 9.0 or above
A valid developer signature for your project

Integrating the SDK

You can use CocoaPods to automatically load the SDK or manually download the SDK and import it into your project.

CocoaPods

1. Install CocoaPods

Enter the following command in a terminal window (you need to install Ruby on your macOS first):

sudo gem install cocoapods

2. Create a Podfile

Go to the directory of your project and enter the following command to create a Podfile in the directory.

pod init

3. Edit the Podfile

There are two ways to edit the Podfile:
Method 1: use the path of the PODSPEC file of LiteAVSDK

 platform :ios, '9.0'

 target 'App' do

https://www.tencentcloud.com/document/product/1071/38150

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 14
of 140

 pod 'TXLiteAVSDK_Live', :podspec =>

'https://liteav.sdk.qcloud.com/pod/liteavsdkspec/TXLiteAVSDK_Live.podspec'

 end

Method 2: use CocoaPod’s official source, which allows version selection

platform :ios, '9.0'

source 'https://github.com/CocoaPods/Specs.git'

target 'App' do

pod 'TXLiteAVSDK_Live'

end

4. Update the local repository and install the SDK

Enter the following command in a terminal window to update the local repository file and install LiteAVSDK:

pod install

Or, run the following command to update the local repository:

pod update

An XCWORKSPACE project file integrated with LiteAVSDK will be generated. Double-click to open the file.

Manual integration

1. Download LiveAVSDK and decompress the file.

2. Open your Xcode project, select the target you want to run, and select Build Phases.

https://www.tencentcloud.com/document/product/1071/38150

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 15
of 140

3. Expand Link Binary with Libraries and click + at the bottom to add the libraries to depend on.

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 16
of 140

4. Add the downloaded
 TXLiteAVSDK_Live.xcframework 、 TXFFmpeg.xcframework 、 TXSoundTouch.xcframework and

the libraries it depends on.

AVFoundation.framework

VideoToolbox.framework

libz.tbd

OpenGLES.framework

Accelerate.framework

libsqlite3.0.tbd

MetalKit.framework

CoreTelephony.framework

libresolv.tbd

GLKit.framework

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 17
of 140

Foundation.framework

SystemConfiguration.framework

AssetsLibrary.framework

libc++.tbd

CoreServices.framework

CoreMedia.framework

5. Click Build Settings, search for Other Linker Flags , and add -ObjC .

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 18
of 140

Granting Camera and Mic Permissions

To use the audio/video features of the SDK, you need to grant it mic and camera permissions. Add the two items
below to Info.plist of your application to display pop-up messages asking for mic and camera permissions.

Privacy - Microphone Usage Description, plus a statement specifying why mic access is needed
Privacy - Camera Usage Description, plus a statement specifying why camera access is needed

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 19
of 140

Importing the SDK

There are two ways to import the SDK in your project code.
Method 1: import the SDK module in the files that need to use the SDK’s APIs in your project

@import TXLiteAVSDK_Live;

Method 2: import a specific header file in the files that need to use the SDK’s APIs in your project

#import "TXLiteAVSDK_Live/TXLiteAVSDK.h"

Configuring License

Click Get License to obtain a trial license. You will get two strings: a license URL and a decryption key.

Before you use LiteAVSDK features in your application, complete the following configurations (preferably in -

[AppDelegate application:didFinishLaunchingWithOptions:]):

https://console.tencentcloud.com/live/license

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 20
of 140

@import TXLiteAVSDK_Live;

@implementation AppDelegate

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSD

 NSString * const licenceURL = @"<The license URL obtained>";

 NSString * const licenceKey = @"<The key obtained>";

 //V2TXLivePremier can be found in the "V2TXLivePremier.h" header file

 [V2TXLivePremier setEnvironment:@"GDPR"];

 [V2TXLivePremier setLicence:licenceURL key:licenceKey];

 [V2TXLivePremier setObserver:self];

 NSLog(@"SDK Version = %@", [V2TXLivePremier getSDKVersionStr]);

}

@end

FAQs

1. Can I run LiteAVSDK in the background?

Yes, you can. If you want the SDK to run in the background, the operation is as follows:
1. Select the current project, select Signing&Capabilities , click + in the upper left corner, as shown in the figure:

2. Select Background Modes.

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 21
of 140

3. Check Audio, AirPlay and Picture in Picture in Background Modes, as shown below:

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 22
of 140

2. How to solve the problem of symbol conflict between multiple SDKs of LiteAVSDK series
such as live SDK/real-time audio/video/player integrated in the project?

If you integrate 2 or more LiteAVSDK products (live broadcast, player, TRTC, short video), there will be a library
conflict problem when compiling, because some SDK underlying libraries have the same symbol files, it is

recommended to integrate only one full-featured version of the SDK. Live broadcast, player, TRTC, and short video
are all included in one SDK.For details, please refer to SDK Download.

https://www.tencentcloud.com/document/product/1071/38150

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 23
of 140

Android
Last updated：2024-01-13 15:49:41

This document describes how to quickly integrate Tencent Cloud LiteAVSDK for Android into your project.

Environment Requirements

Android Studio 3.5 or above
Android 4.1 (SDK API level 16) or above

Integrating the SDK (AAR)

You can use Gradle to automatically load the AAR file or manually download the AAR file and import it into your
project.

Method 1: automatic loading (AAR)

Since JCenter has been deprecated, you can configure a Maven Central repository in Gradle to automatically
download and update LiteAVSDK.

Open your project with Android Studio and modify the build.gradle file as described below to complete the

integration.

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 24
of 140

1. Open build.gradle under your application.

2. Add the LiteAVSDK dependency to dependencies .

dependencies {

 implementation 'com.tencent.liteav:LiteAVSDK_Live:latest.release'

}

Or

dependencies {

 implementation 'com.tencent.liteav:LiteAVSDK_Live:latest.release@aar'

}

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 25
of 140

3. In defaultConfig , specify the CPU architecture to be used by the application. Currently, LiteAVSDK supports

armeabi, armeabi-v7a, and arm64-v8a.

defaultConfig {

 ndk {

 abiFilters "armeabi-v7a", "arm64-v8a"

 }

}

4. Click the Sync Now button

 to sync the SDK. If you have no problem accessing Maven Central, the SDK will be downloaded and integrated into
your project automatically.

Method 2: manual download (AAR)

If you have problem accessing Maven Central, you can manually download the SDK and integrate it into your project.

1. Download LiveAVSDK and decompress the file.
2. Copy the AAR file in the SDK directory to the app/libs directory of your project.

3. Add flatDir to build.gradle under your project’s root directory to specify the local path for the repository.

https://liteav.sdk.qcloud.com/download/latest/TXLiteAVSDK_Professional_Android_latest.zip

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 26
of 140

4. Add the LiteAVSDK dependency and, in app/build.gradle , add code that references the AAR file.

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 27
of 140

implementation(name:'LiteAVSDK_Live_11.2.0.13154', ext:'aar')

5. In defaultConfig of app/build.gradle , specify the CPU architecture to be used by the application.

Currently, LiteAVSDK supports armeabi, armeabi-v7a, and arm64-v8a.

defaultConfig {

 ndk {

 abiFilters "armeabi-v7a", "arm64-v8a"

 }

}

6. Click Sync Now to complete the integration of LiteAVSDK.

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 28
of 140

Integrating the SDK (JAR)

If you do not want to import the AAR library, you can also integrate LiteAVSDK by importing JAR and SO libraries.
1. Download LiveAVSDK and decompress the file. In the SDK directory, find LiteAVSDK_Live_xxx.zip (xxx indicates
the version number of LiteAVSDK).

2. Decompress the file, and you will find a libs directory that contains a JAR file and several SO folders, as shown
below:

3. Copy the JAR file and armeabi , armeabi-v7a , and arm64-v8a folders to the app/libs directory.

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 29
of 140

4. Add code that references the JAR library in app/build.gradle .

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 30
of 140

dependencies {

 implementation fileTree(dir:'libs',include:['*.jar'])

}

5. Add flatDir to build.gradle under the project’s root directory to specify the local path for the repository.

6. In app/build.gradle , add code that references the SO libraries.

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 31
of 140

7. In defaultConfig of app/build.gradle , specify the CPU architecture to be used by the application.

Currently, LiteAVSDK supports armeabi-v7a, and arm64-v8a.

defaultConfig {

 ndk {

 abiFilters "armeabi-v7a", "arm64-v8a"

 }

}

8. Click Sync Now to complete the integration.

Setting Packaging Parameters

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 32
of 140

 packagingOptions {

 pickFirst '**/libc++_shared.so'

 doNotStrip "*/armeabi/libYTCommon.so"

 doNotStrip "*/armeabi-v7a/libYTCommon.so"

 doNotStrip "*/x86/libYTCommon.so"

 doNotStrip "*/arm64-v8a/libYTCommon.so"

 }

Configuring Permissions

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 33
of 140

Configure permissions for your application in AndroidManifest.xml . LiteAVSDK needs the following

permissions:

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />

<uses-permission android:name="android.permission.RECORD_AUDIO" />

<uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" />

<uses-permission android:name="android.permission.BLUETOOTH" />

<uses-permission android:name="android.permission.CAMERA" />

<uses-permission android:name="android.permission.READ_PHONE_STATE" />

<uses-feature android:name="android.hardware.camera.autofocus" />

Configuring License

Click Get License to obtain a trial license. You will get two strings: a license URL and a decryption key.
Before you use the features of MLVB Enterprise Edition in your application, complete the following configurations
(preferably in the application class).

public class MApplication extends Application {

 @Override

 public void onCreate() {

 super.onCreate();

 String licenceURL = ""; // your licence url

 String licenceKey = ""; // your licence key

 V2TXLivePremier.setEnvironment("GDPR"); // set environment

 V2TXLivePremier.setLicence(this, licenceURL, licenceKey);

 V2TXLivePremier.setObserver(new V2TXLivePremierObserver() {

 @Override

 public void onLicenceLoaded(int result, String reason) {

 Log.i(TAG, "onLicenceLoaded: result:" + result + ", reason:" + reas

 }

 });

 }

}

Configuring Obfuscation Rules

https://console.tencentcloud.com/live/license

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 34
of 140

In the proguard-rules.pro file, add LiteAVSDK classes to the "do not obfuscate" list.

-keep class com.tencent.** { *;}

FAQs

1. How to solve the crash problem when using the LiteAVSDK screen recording/screen
sharing function on the Android side?

Please check the targetSdkVersion setting in the project first. If it is set to 29, then running Android 10 devices using

screen recording and sharing will trigger a flashback problem. The reason is that the Android privacy policy has
changed. The solution needs to start the foreground service and specify the type as mediaProjection. There is no need
to call startScreenCapture in the Service.

2. How to solve the problem of symbol conflict between multiple SDKs of LiteAVSDK series
such as live SDK/real-time audio/video/player integrated in the project?

If you integrate 2 or more LiteAVSDK products (live broadcast, player, TRTC, short video), there will be a library
conflict problem when compiling, because some SDK underlying libraries have the same symbol files, it is

recommended to integrate only one full-featured version of the SDK. Live broadcast, player, TRTC, and short video
are all included in one SDK.For details, please refer to SDK Download.

https://www.tencentcloud.com/document/product/1071/38150

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 35
of 140

Flutter
Last updated：2024-01-13 15:49:41

This document describes how to quickly integrate live_flutter_plugin (Tencent Cloud RT-Cube MLVB Flutter plugin)
into your project. For the demo project, visit GitHub.

Environment Requirements

Flutter 2.0 or later

Developing for Android:
Android Studio 3.5 or later
Devices with Android 4.1 or later
Developing for iOS and macOS:
Xcode 11.0 or later

OS X 10.11 or later
A valid developer signature for your project

Quickly Integrating the SDK

The SDK for Flutter has been released to the Pub repository. You can configure pubspec.yaml to download the

update automatically.
1. Add the following dependencies to pubspec.yaml of your project:

dependencies:

 live_flutter_plugin: latest version number

2. Get camera and mic permissions to enable the audio and video call features.
iOS
Android

1. Add requests for camera and mic permissions in Info.plist :

<key>NSCameraUsageDescription</key>

<string>Video calls are possible only with camera permission.</string>

<key>NSMicrophoneUsageDescription</key>

<string>You can make audio calls only if you grant the app mic permission.</string>

2. Get camera and mic permissions to enable the audio and video call features.
1. Open /android/app/src/main/AndroidManifest.xml .

https://pub.dev/packages/live_flutter_plugin
https://github.com/LiteAVSDK/Live_Flutter

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 36
of 140

2. Add xmlns:tools="http://schemas.android.com/tools" to manifest .

3. Add tools:replace="android:label" to application .

Note

Without the above steps, the "Android Manifest merge failed" error will occur and the compilation will fail.

Getting Started

1. Click Apply for License to get a trial license. You will get two strings: a license URL and a decryption key.
2. Before your application calls features of live_flutter_plugin , complete the following configuration:

import 'package:live_flutter_plugin/v2_tx_live_premier.dart';

 /// Tencent Cloud license management page (https://console.tencentcloud.com/live/l

setupLicense() {

 // The license URL of the current application

 var LICENSEURL = "";

 // The license key of the current application

 var LICENSEURLKEY = "";

 V2TXLivePremier.setLicence(LICENSEURL, LICENSEURLKEY);

}

FAQs

https://console.tencentcloud.com/live/license

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 37
of 140

For more FAQs, see Flutter.

How do I get a valid stream push URL?

Activate CSS. In the CSS console, go to Auxiliary Tools > Address Generator to generate a stream push URL.
For more information, see Publishing/Playback URL.

What should I do if videos do not show on iOS but do on Android?

Check whether io.flutter.embedded_views_preview in info.plist is YES .

What should I do if the "Manifest merge failed" error occurs in Android Studio?

1. Open /example/android/app/src/main/AndroidManifest.xml .

2. Add xmlns:tools="http://schemas.android.com/tools" to manifest .

3. Add tools:replace="android:label" to application .

https://www.tencentcloud.com/document/product/647/39242
https://console.tencentcloud.com/live/addrgenerator/addrgenerator
https://www.tencentcloud.com/document/product/1071/39359

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 38
of 140

Publishing
iOS
Publishing from Camera
Last updated：2024-01-13 15:49:41

Overview

Publishing from camera refers to the process of collecting video and audio data from the mobile phone’s camera and
mic, encoding the data, and publishing it to cloud-based live streaming platforms. Tencent Cloud’s LiteAVSDK
provides the camera publishing capability via V2TXLivePusher , the following is the relevant operation interface of

the demo camera in the simple version of LiteAVSDK:

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 39
of 140

Notes

About running projects on x86 emulators: The SDK uses a lot of audio and video APIs of the iOS system, most of
which cannot be used on the x86 emulator built into macOS. Therefore, we recommend that you test your project on a

real device.

Sample Code

Platform GitHub Address Key Class

iOS Github CameraPushViewController.m

https://github.com/tencentyun/LiteAVProfessional_iOS/blob/master/Demo/TXLiteAVDemo/LivePusherDemo/CameraPushDemo/CameraPushViewController.m

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 40
of 140

Android Github CameraPushMainActivity.java

Flutter Github live_camera_push.dart

Integration

1. Download the SDK

Download the SDK and follow the instructions in SDK Integration to integrate the SDK into your application.

2. Configure License Authorization for SDK

1. Obtain license authorization：
If you have obtained the relevant license authorization，Need to Get License URL and License Key in Cloud Live
Console﻿

If you have not yet obtained the license authorization，Please reference Adding and Renewing Licenses to make an
application.
2. Before your App calls SDK-related functions (it is recommended in the - [AppDelegate

application:didFinishLaunchingWithOptions:]), set the following settings:

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSD

 NSString * const licenceURL = @"<your licenseUrl>";

 NSString * const licenceKey = @"<your key>";

 // V2TXLivePremier is located in "V2TXLivePremier.h"

 [V2TXLivePremier setEnvironment:@"GDPR"]; // set environment

 [V2TXLivePremier setLicence:licenceURL key:licenceKey];

 [V2TXLivePremier setObserver:self];

 NSLog(@"SDK Version = %@", [V2TXLivePremier getSDKVersionStr]);

 return YES;

https://github.com/tencentyun/LiteAVProfessional_Android/blob/master/Demo/livepusherdemo/src/main/java/com/tencent/liteav/demo/livepusher/camerapush/ui/CameraPushMainActivity.java
https://github.com/LiteAVSDK/Live_Flutter
https://www.tencentcloud.com/document/product/1071/38150
https://www.tencentcloud.com/document/product/1071/38155
https://console.tencentcloud.com/live/license
https://www.tencentcloud.com/document/product/1071/38546

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 41
of 140

}

#pragma mark - V2TXLivePremierObserver

- (void)onLicenceLoaded:(int)result Reason:(NSString *)reason {

 NSLog(@"onLicenceLoaded: result:%d reason:%@", result, reason);

}

@end

Note:
The BundleId configured in the license must be the same as the application itself, otherwise the
streaming will fail.

3. Initialize the V2TXLivePusher component

Create a V2TXLivePusher object and specify V2TXLiveMode .

// Specify the corresponding live broadcast protocol as RTMP, which does not suppor

V2TXLivePusher *pusher = [[V2TXLivePusher alloc] initWithLiveMode:V2TXLiveMode_RTMP

4. Enable camera preview

Call setRenderView in V2TXLivePusher to configure a view object for displaying video images, and then call

 startCamera to enable camera preview for your mobile phone.

 // Create a view object and insert it into the UI

 UIView *_localView = [[UIView alloc] initWithFrame:self.view.bounds];

 [self.view insertSubview:_localView atIndex:0];

 _localView.center = self.view.center;

 // Enable preview for the local camera

 [_pusher setRenderView:_localView];

 [_pusher startCamera:YES];

 [_pusher startMicrophone];

Note:

To add animated effects to the view, modify its transform attribute rather than frame attribute.

[UIView animateWithDuration:0.5 animations:^{

 _localView.transform = CGAffineTransformMakeScale(0.3, 0.3); // Shrink by 1/3

}];

5. Start and stop publishing

After calling startCamera to enable camera preview, you can call the startPush API in V2TXLivePusher to

start publishing.

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__ios.html
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__ios.html#a33b38f236a439e7d848606acb68cc087

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 42
of 140

Note:
If the RTMP protocol is selected in Step 3 to push the stream, please refer to the generation of the push stream URL

RTMP URL。

//This URL does not support co-anchoring. The stream is published to a live streami

NSString* url = @"rtmp://test.com/live/streamid?txSecret=xxxxx&txTime=xxxxxxxx";

[_pusher startPush:url];

Call stopPush in V2TXLivePusher to stop publishing streams.

//Stop publishing

[_pusher stopPush];

Why is V2TXLIVE_ERROR_INVALID_LICENSE returned?If the startPush API returns

 V2TXLIVE_ERROR_INVALID_LICENSE , it means your license verification failed. Please check your configuration

against Step 2. Configure License Authorization for SDK.

6. Publish audio-only streams

If your live streaming scenarios involve audio only, you can skip Step 4 or do not call startCamera before

 startPush .

[_pusher startMicrophone];

//This URL does not support co-anchoring. The stream is published to a live streami

NSString* url = @"rtmp://test.com/live/streamid?txSecret=xxxxx&txTime=xxxxxxxx";

[_pusher startPush:url];

Note:

If you publish audio-only streams but no streams can be pulled from an RTMP, FLV, or HLS playback URL, there is a
problem with your line configuration, please submit a ticket for help.

7. Set video quality

Call setVideoQuality in V2TXLivePusher to set the quality of videos watched by audience. The encoding

parameters set determine the quality of videos presented to audience. The local video watched by the host is the
original HD version that has not been encoded or compressed, and is therefore not affected by the settings. For
details, please see Setting Video Quality.

8. Set the beauty filter style and skin brightening and rosy skin effects

Call getBeautyManager in V2TXLivePusher to get a TXBeautyManager instance to set beauty filters.

Beauty filter style

The SDK has three built-in beauty filter algorithms, each corresponding to a beauty filter style. Choose one that best
fits your product positioning. For details, please see the TXBeautyManager.h file.

https://www.tencentcloud.com/document/product/267/7977
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__ios.html#a7332411d6264bc743b0b2bae0b8a73ae
https://console.tencentcloud.com/workorder/category
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__ios.html#a0b08436c1e14a8d7d9875fae59ac6d84
https://www.tencentcloud.com/document/product/1071/41861
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__ios.html#a4fb05ae6b5face276ace62558731280a
https://liteav.sdk.qcloud.com/doc/api/en/group__TXBeautyManager__ios.html#gafbbe0e87ec0168eacfc10e57c43abad8

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 43
of 140

Beauty Filter Style Description

TXBeautyStyleSmooth The smooth style, which features more obvious skin smoothing effects and is
suitable for live showrooms

TXBeautyStyleNature The natural style, which retains more facial details and is more natural

TXBeautyStylePitu

The Pitu style, which uses the beauty filter algorithm developed by YouTu Lab. Its
effect is between the smooth style and the natural style, that is, it retains more skin
details than the smooth style and delivers more obvious skin smoothing effects than
the natural style.

You can call the setBeautyStyle API in TXBeautyManager to set the beauty filter style.

Item Configuration Description

Beauty filter strength
Via the setBeautyLevel API in
`TXBeautyManager`

Value range: 0-9. `0` means the filter is
disabled. The greater the value, the
more obvious the effect.

Skin brightening filter
strength

Via the setWhitenessLevel API in
`TXBeautyManager`

Value range: 0-9. `0` means the filter is
disabled. The greater the value, the
more obvious the effect.

Rosy skin filter strength
Via the setRuddyLevel API in
`TXBeautyManager`

Value range: 0-9. `0` means the filter is
disabled. The greater the value, the
more obvious the effect.

9. Set color filters

Call getBeautyManager in V2TXLivePusher to get a TXBeautyManager instance to set color filters.

Call the setFilter API in TXBeautyManager to set color filters. Color filters are a technology that adjusts the

color tone of sections of an image. For example, it may lighten the yellow sections of an image to achieve the effect of
skin brightening, or add warm tones to a video to give it a refreshing and soft boost.
Call the setFilterStrength API in TXBeautyManager to set the strength of a color filter. The higher the

strength, the more obvious the effect.

Based on our experience of operating Mobile QQ and Now Live, it’s not enough to use only the setBeautyStyle

API in TXBeautyManager to set the beauty filter style. The setBeautyStyle API must be used together with

 setFilter to produce richer effects. Given this, our designers have developed 17 built-in color filters for you to

choose from.

NSString * path = [[NSBundle mainBundle] pathForResource:@"FilterResource" ofType:@

path = [path stringByAppendingPathComponent:lookupFileName];

https://liteav.sdk.qcloud.com/doc/api/en/group__TXBeautyManager__ios.html#a8f2378a87c2e79fa3b978078e534ef4a
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__ios.html#a4fb05ae6b5face276ace62558731280a

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 44
of 140

UIImage *image = [UIImage imageWithContentsOfFile:path];

[[_pusher getBeautyManager] setFilter:image];

[[_pusher getBeautyManager] setFilterStrength:0.5f];

10. Manage devices

 V2TXLivePusher provides a series of APIs for the control of devices. You can call getDeviceManager to

get a TXDeviceManager instance for device management. For detailed instructions, please see

TXDeviceManager API.

11. Set the video mirroring effect for audience

Call setEncoderMirror in V2TXLivePusher to set the camera mirror mode, which affects the way video images

are presented to audience. By default, the local image seen by the host is flipped when the front camera is used.

12. Publish streams in landscape mode

In most cases, hosts stream while holding their phones vertically, and audience watch videos in portrait resolutions
(e.g., 540 × 960). However, there are also cases where hosts hold phones horizontally, and ideally, audience should
watch videos in landscape resolutions (960 × 540).

By default, V2TXLivePusher outputs videos in portrait resolutions. You can publish landscape-mode videos to

audience by modifying a parameter of the setVideoQuality API.

[_pusher setVideoQuality:videoQuality

 resolutionMode:isLandscape ? V2TXLiveVideoResolutionModeLandscape : V2

https://liteav.sdk.qcloud.com/doc/api/en/group__TXDeviceManager__ios.html#interfaceTXDeviceManager
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__ios.html#ae4464d33567ce1a31d92530e02a48dd7
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__ios.html#a0b08436c1e14a8d7d9875fae59ac6d84

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 45
of 140

13. Set audio effects

Call getAudioEffectManager in V2TXLivePusher to get a TXAudioEffectManager instance, which can be

used to mix background music and set in-ear monitoring, reverb, and other audio effects. Background music mixing
means mixing into the published stream the music played by the host’s phone so that audience can also hear the
music.
Call the enableVoiceEarMonitor API in TXAudioEffectManager to enable in-ear monitoring, which

allows hosts to hear their vocals in earphones when they sing.

Call the setVoiceReverbType API in TXAudioEffectManager to add reverb effects such as karaoke, hall,

husky, and metal. The effects are applied to the videos watched by audience.
Call the setVoiceChangerType API in TXAudioEffectManager to add voice changing effects such as

little girl and middle-aged man to enrich host-audience interaction. The effects are applied to the videos watched by
audience.

Note:
For detailed instructions, please see TXAudioEffectManager API.

14. Set watermarks

Call setWatermark in V2TXLivePusher to add a watermark to videos output by the SDK. The position of the

watermark is determined by the (x, y, scale) parameter passed in.

The watermark image must be in PNG rather than JPG format. The former carries opacity information, which allows

the SDK to better address the image aliasing issue (changing the extension of a JPG image to PNG won’t work).
The (x, y, scale) parameter specifies the normalized coordinates of the watermark relative to the resolution of

the published video. For example, if the resolution of the published video is 540 x 960, and (x, y, scale) is set

to （0.1, 0.1, 0.1） , the actual pixel coordinates of the watermark will be (540 x 0.1, 960 x 0.1). The width of

the watermark will be the video width x 0.1, and the height will be scaled automatically.

// Set a video watermark

https://liteav.sdk.qcloud.com/doc/api/en/group__TXAudioEffectManager__ios.html
https://liteav.sdk.qcloud.com/doc/api/en/group__TXAudioEffectManager__ios.html
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__ios.html#ad48aacbfad38b8f5389c159283fae859

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 46
of 140

[_pusher setWatermark:[UIImage imageNamed:@"watermark"] x:0.03 y:0.015 scale:1];

15. Inform hosts of poor network conditions

Connecting phones to Wi-Fi does not necessarily guarantee network conditions. In case of poor Wi-Fi signal or limited
bandwidth, the network speed of a Wi-Fi connected phone may be slower than that of a phone using 4G. Hosts should

be informed when their network conditions are bad and be prompted to switch to a different network.

You can capture the V2TXLIVE_WARNING_NETWORK_BUSY event using onWarning in
 V2TXLivePusherObserver . The event indicates poor network conditions for hosts, which result in stuttering for

audience. When this event occurs, you can send a UI message about poor network conditions to hosts, as shown
above.

- (void)onWarning:(V2TXLiveCode)code

 message:(NSString *)msg

 extraInfo:(NSDictionary *)extraInfo {

 dispatch_async(dispatch_get_main_queue(), ^{

 if (code == V2TXLIVE_WARNING_NETWORK_BUSY) {

 [_notification displayNotificationWithMessage:

 @"Your network conditions are poor. Please switch to a

different network." forDuration:5];

 }

 });

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLiveCode__ios.html#ga5506c2171438841ab3e99c80786c7ba0

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 47
of 140

}

16. Send SEI messages

Call the sendSeiMessage API in V2TXLivePusher to send SEI messages. SEI refers to the supplementary

enhancement information of encoded video. It is not used most of the time, but you can insert custom information into

SEI messages. The information will be forwarded to audience by live streaming CDNs. The applications for SEI
messages include:
Live quiz: The publisher can use SEI messages to send questions to the audience. SEI can ensure synchronization
among audio, video, and the questions.
Live showroom: The publisher can use SEI messages to display lyrics to the audience in real time. The effects are not

affected by reduction in video encoding quality.
Online education: The publisher can use SEI messages to display pointers and sketches on slides to the audience in
real time.
Custom data is inserted directly into video data and therefore cannot be too large in size (preferably several bytes). It’s
common to insert information such as custom timestamps.

int payloadType = 5;

NSString* msg = @"test";

[_pusher sendSeiMessage:payloadType data:[msg dataUsingEncoding:NSUTF8StringEncodin

Common open-source players or web players are incapable of parsing SEI messages. You must use

 V2TXLivePlayer , the built-in player of LiteAVSDK.

1. Configuration:

int payloadType = 5;

[_player enableReceiveSeiMessage:YES payloadType:payloadType];

2. If the video streams played by V2TXLivePlayer contain SEI messages, you will receive the messages via the

 onReceiveSeiMessage callback in V2TXLivePlayerObserver .

Event Handling

Listening for events

The SDK listens for publishing events and errors via the V2TXLivePusherObserver delegate. See V2TXLiveCode for
a detailed list of events and error codes.

Errors

An error indicates that the SDK encountered a serious problem that made it impossible for stream publishing to

continue.

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__ios.html#a106dc65c2616b80e193aad95876f7fe6
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusherObserver__ios.html
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLiveCode__ios.html

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 48
of 140

Event ID Code Description

V2TXLIVE_ERROR_FAILED -1 A common error not yet classified

V2TXLIVE_ERROR_INVALID_PARAMETER -2 An invalid parameter was passed in during
API calling.

V2TXLIVE_ERROR_REFUSED -3 The API call was rejected.

V2TXLIVE_ERROR_NOT_SUPPORTED -4 The API cannot be called.

V2TXLIVE_ERROR_INVALID_LICENSE -5 Failed to call the API due to invalid license.

V2TXLIVE_ERROR_REQUEST_TIMEOUT -6 The server request timed out.

V2TXLIVE_ERROR_SERVER_PROCESS_FAILED -7 The server could not handle your request.

Warnings

A warning indicates that the SDK encountered a problem whose severity level is warning. Warning events trigger
tentative protection or recovery logic and can often be resolved.

Event ID Code Description

V2TXLIVE_WARNING_NETWORK_BUSY 1101
Bad network connection: data
upload blocked due to limited
upstream bandwidth.

V2TXLIVE_WARNING_VIDEO_BLOCK 2105 Latency during video
playback.

V2TXLIVE_WARNING_CAMERA_START_FAILED -1301 Failed to turn the camera on.

V2TXLIVE_WARNING_CAMERA_OCCUPIED -1316 The camera is occupied. Try a
different camera.

V2TXLIVE_WARNING_CAMERA_NO_PERMISSION -1314

No access to the camera.
This usually occurs on mobile
devices and may be because
the user denied the access.

V2TXLIVE_WARNING_MICROPHONE_START_FAILED -1302 Failed to turn the mic on.

V2TXLIVE_WARNING_MICROPHONE_OCCUPIED -1319

The mic is occupied. This
occurs when, for example, the
user is having a call on the
mobile device.

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 49
of 140

V2TXLIVE_WARNING_MICROPHONE_NO_PERMISSION -1317 No access to the mic. This
usually occurs on mobile
devices and may be because
the user denied the access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_NOT_SUPPORTED -1309 The system does not support
screen sharing.

V2TXLIVE_WARNING_SCREEN_CAPTURE_START_FAILED -1308

Failed to start screen
recording. If this occurs on a
mobile device, it may be
because the user denied the
access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_INTERRUPTED -7001 Screen recording was
stopped by the system.

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 50
of 140

Publishing from Screen
Last updated：2024-01-13 15:49:41

Overview

Screen recording allows a host to live stream the image on their phone screen. It can be combined with local camera
preview and is used in scenarios such as game streaming and mobile app demos. The Tencent Cloud LiteAV SDK
offers screen recording capabilities via V2TXLivePusher . The UIs for screen recording operations in the SDK

API-Example project are as shown below:

Restrictions

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 51
of 140

The screen recording feature is available only on iOS 11.0 or later. This document describes how to use ReplayKit 2
on iOS 11 to push streams from the screen. The parts about the use of the SDK also apply to other custom stream
push scenarios. For more information, see the code sample in the TXReplayKit_Screen folder of the demo.

Screen recording is a new feature on iOS 10. In addition to using ReplayKit to record video from the screen, which is
possible on iOS 9, with iOS 10, users can also stream live video from the screen. For more information, see Go Live
with ReplayKit. On iOS 11, Apple made ReplayKit more usable and more universally applicable and launched
ReplayKit 2, going from supporting ReplayKit alone to allowing the recording of the entire screen. Therefore, we
recommend you use ReplayKit 2 on iOS 11 to enable the screen recording feature. Screen recording relies on

extensions, which operate as independent processes. However, to ensure system smoothness, iOS allocates limited
resources to extensions and may kill extensions with high memory usage. Given this, Tencent Cloud has further
reduced the memory usage of the LiteAV SDK while retaining its high streaming quality and low latency to ensure the
stability of extensions.

Sample Code

Tencent Cloud offers an easy-to-understand API example project to help you quickly learn how to use different APIs.

Platform GitHub Address

iOS LivePushScreenViewController.m

Android LivePushScreenActivity.java

Flutter live_screen_push.dart

Xcode

Xcode 9 or above is required, and your iPhone must be updated to iOS 11 or above. Screen recording is not

supported on emulators.

Create a broadcast upload extension

Open your project with Xcode and select New > Target... > Broadcast Upload Extension, as shown below.

https://github.com/LiteAVSDK/Live_iOS/tree/main/MLVB-API-Example-OC/Basic/LivePushScreen
https://developer.apple.com/videos/play/wwdc2016/601/
https://developer.apple.com/videos/play/wwdc2017/606/
https://github.com/LiteAVSDK/Live_iOS/blob/main/MLVB-API-Example-OC/Basic/LivePushScreen/LivePushScreenViewController.m
https://github.com/LiteAVSDK/Live_Android/blob/main/MLVB-API-Example/Basic/LivePushScreen/src/main/java/com/tencent/mlvb/livepushscreen/LivePushScreenActivity.java
https://github.com/LiteAVSDK/Live_Flutter/blob/main/Live-API-Example/lib/page/push/live_screen_push.dart

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 52
of 140

Enter a product name and click Finish. A new directory with the product name entered will appear in your project.
Under the directory, there is an automatically generated SampleHandler class, which is responsible for screen

recording operations.

SDK Integration

1. Download the SDK

Download the SDK and follow the instructions in [SDK Integration]
(https://www.tencentcloud.com/document/product/1071/38155 to integrate the SDK into your application.

2. Configure a license for the SDK

1. Get the license:
If you have the required license, get the license URL and key in the CSS console.

https://www.tencentcloud.com/document/product/1071/38150
https://console.tencentcloud.com/live/license

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 53
of 140

If you don't have the required license, apply for a license as instructed in New License and Renewal.
2. Before your application calls features of LiteAVSDK, complete the following configuration (preferably in -

[AppDelegate application:didFinishLaunchingWithOptions:]):

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSD

 NSString * const licenceURL = @"<The license URL obtained>";

 NSString * const licenceKey = @"<The key obtained>";

 // `V2TXLivePremier` is in the `V2TXLivePremier.h` header file.

 [V2TXLivePremier setLicence:licenceURL key:licenceKey];

 [V2TXLivePremier setObserver:self];

 NSLog(@"SDK Version = %@", [V2TXLivePremier getSDKVersionStr]);

 return YES;

}

#pragma mark - V2TXLivePremierObserver

- (void)onLicenceLoaded:(int)result Reason:(NSString *)reason {

 NSLog(@"onLicenceLoaded: result:%d reason:%@", result, reason);

}

Note:
 BundleId configured in the license must be the same as that of the application; otherwise, stream

push will fail.

3. Initialize the V2TXLivePusher component

Create a V2TXLivePusher object and specify V2TXLiveMode .

// Set the live streaming protocol to RTMP, which doesn't support mic connect.

V2TXLivePusher *pusher = [[V2TXLivePusher alloc] initWithLiveMode:V2TXLiveMode_RTMP

4. Configure RPBroadcastSampleHandler

https://www.tencentcloud.com/document/product/1071/38546

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 54
of 140

To use screen recording, you need to use a subclass of the system API RPBroadcastSampleHandler to get the

screen audio/video data. Here, add the following code to the custom subclass SampleHandler.m to implement screen
recording:

#import "SampleHandler.h"

@import TXLiteAVSDK_ReplayKitExt;

@implementation SampleHandler

- (void)broadcastStartedWithSetupInfo:(NSDictionary<NSString *,NSObject *> *)setupI

 // The application group ID. The ID must match `startScreenCapture` of `V2TXLiv

 [[TXReplayKitExt sharedInstance] setupWithAppGroup:APPGROUP delegate:self];

}

- (void)broadcastPaused {

 // User has requested to pause the broadcast. Samples will stop being delivered

 [[TXReplayKitExt sharedInstance] broadcastPaused];

}

- (void)broadcastResumed {

 // User has requested to resume the broadcast. Samples delivery will resume.

 [[TXReplayKitExt sharedInstance] broadcastResumed];

}

- (void)broadcastFinished {

 // User has requested to finish the broadcast.

 [[TXReplayKitExt sharedInstance] broadcastFinished];

}

- (void)processSampleBuffer:(CMSampleBufferRef)sampleBuffer withType:(RPSampleBuffe

 [[TXReplayKitExt sharedInstance] sendSampleBuffer:sampleBuffer withType:sampleB

}

#pragma mark - TXReplayKitExtDelegate

- (void)broadcastFinished:(TXReplayKitExt *)broadcast reason:(TXReplayKitExtReason)

{

 NSString *tip = @"";

 switch (reason) {

 case TXReplayKitExtReasonRequestedByMain:

 tip = NSLocalizedString(@"MLVB-API-Example.liveStop", "");

 break;

 case TXReplayKitExtReasonDisconnected:

 tip = NSLocalizedString(@"MLVB-API-Example.appReset", "");

 break;

 case TXReplayKitExtReasonVersionMismatch:

 tip = NSLocalizedString(@"MLVB-API-Example.sdkError", "");

 break;

https://github.com/LiteAVSDK/Live_iOS/blob/main/MLVB-API-Example-OC/Basic/LivePushScreen/TXReplayKit_Screen/SampleHandler.m

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 55
of 140

 }

 NSError *error = [NSError errorWithDomain:NSStringFromClass(self.class)

 code:0

 userInfo:@{

 NSLocalizedFailureReasonErrorKey:tip

 }];

 [self finishBroadcastWithError:error];

}

@end

In the implementation class of RPBroadcastSampleHandler , you need to call the corresponding method

in TXReplayKitExt to set the screen recording information and handle screen recording events.

The broadcastFinished callback can be used to get the reason that screen recording is stopped and can be used to
prompt the user to take action.
For details about communication between the extension and host app, see Communication and Data Transfer
Between Extensions and Host Apps.

5. Enable screen recording and stream push

Call startScreenCapture to start screen recording and then call the startPush API in V2TXLivePusher to start

pushing the stream.
Note:
If you select the RTMP protocol for stream push in step 3, you can generate a stream push address as instructed in

Quick URL Generation.

// The application group ID for data sharing between the host application and Broad

[livePusher startScreenCapture:@"group.com.xxx"];

[livePusher startMicrophone];

// Pass in the corresponding URL based on the stream push protocol to start stream

NSString * const url = @"rtmp://test.com/live/streamid?txSecret=xxxxx&txTime=xxxxxx

V2TXLiveCode code = [livePusher startPush:url];

if (code != V2TXLIVE_OK) {

 // Check the error code

}

Why is `V2TXLIVE_ERROR_INVALID_LICENSE` returned?
If the startPush API returns V2TXLIVE_ERROR_INVALID_LICENSE, it means your license verification failed. Check

the error code and error message in the onLicenceLoaded callback in Step 2. Configure a license for the SDK.
On iOS 11 or later, you can enable screen recording only by pulling down the status bar and pressing and holding the
screen recording button.

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLivePusher__ios.html#a9db6d67c2e8dc94c6d9d658366b2dbb2
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLivePusher__ios.html#a33b38f236a439e7d848606acb68cc087
https://www.tencentcloud.com/document/product/267/7977
https://www.tencentcloud.com/document/product/1071/41878?lang=en#step2

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 56
of 140

On iOS 12 or later, you can use `RPSystemBroadcastPickerView` to pop up the screen recording selection page as
instructed in TRTCBroadcastExtensionLauncher.m.

6. Set landscape stream push and the resolution

Call setVideoQuality to set the resolution (you can select from a number of resolutions) and orientation for stream

publishing. Below is an example:

 BOOL landScape; // `YES`: Landscape; `NO`: Portrait.

 V2TXLiveVideoEncoderParam *videoParam = [[V2TXLiveVideoEncoderParam alloc] init

 videoParam.videoResolution = V2TXLiveVideoResolution960x540;

 videoParam.videoResolutionMode = landScape ? V2TXLiveVideoResolutionModeLandsca

 [livePusher setVideoQuality:videoParam];

7. Set the logo watermark

Call setWatermark in V2TXLivePusher to add a watermark to videos output by the SDK. The position of the

watermark is determined by the (x, y, scale) parameter passed in.

The watermark image must be in PNG rather than JPG format. The former carries opacity information, which allows
the SDK to better address the image aliasing issue (changing the extension of a JPG image to PNG won't work).
The (x, y, scale) parameter specifies the normalized coordinates of the watermark relative to the resolution of

the published video. For example, if the resolution of the published video is 540 x 960, and (x, y, scale) is set

to (0.1, 0.1, 0.1) , the actual pixel coordinates of the watermark will be (540 x 0.1, 960 x 0.1). The width of

the watermark will be the video width x 0.1, and the height will be scaled automatically.

// Set the video watermark

[livePusher setWatermark:image x:0 y:0 scale:1];

8. Stop stream push

As there can be only one V2TXLivePusher object running at a time, make sure that you release all the resources

when stopping publishing.

// Stop stream push

[livePusher stopScreenCapture];

[livePusher stopPush];

Event Handling

1. Listening for events

https://github.com/LiteAVSDK/Live_iOS/blob/main/MLVB-API-Example-OC/Basic/LivePushScreen/TRTCBroadcastExtensionLauncher.m
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLivePusher__ios.html#a0b08436c1e14a8d7d9875fae59ac6d84
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLivePusher__ios.html#ad48aacbfad38b8f5389c159283fae859

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 57
of 140

The SDK listens for publishing events and errors via the V2TXLivePusherObserver delegate. See V2TXLiveCode for
a detailed list of events and error codes.

2. Errors

An error indicates that the SDK encountered a serious problem that made it impossible for stream publishing to

continue.

Event ID Code Description

V2TXLIVE_ERROR_FAILED -1 A common unclassified error occurred.

V2TXLIVE_ERROR_INVALID_PARAMETER -2 An invalid parameter was passed in during
API calling.

V2TXLIVE_ERROR_REFUSED -3 The API call was rejected.

V2TXLIVE_ERROR_NOT_SUPPORTED -4 The API cannot be called.

V2TXLIVE_ERROR_INVALID_LICENSE -5 Failed to call the API due to invalid license.

V2TXLIVE_ERROR_REQUEST_TIMEOUT -6 The server request timed out.

V2TXLIVE_ERROR_SERVER_PROCESS_FAILED -7 The server could not handle your request.

3. Warnings

A warning indicates that the SDK encountered a problem whose severity level is warning. Warning events trigger
tentative protection or recovery logic and can often be resolved.

Event ID Code Description

V2TXLIVE_WARNING_NETWORK_BUSY 1101
Bad network connection: Data
upload blocked due to limited
upstream bandwidth.

V2TXLIVE_WARNING_VIDEO_BLOCK 2105 Stuttering during video
playback.

V2TXLIVE_WARNING_CAMERA_START_FAILED -1301 Failed to turn the camera on.

V2TXLIVE_WARNING_CAMERA_OCCUPIED -1316 The camera is occupied. Try a
different camera.

V2TXLIVE_WARNING_CAMERA_NO_PERMISSION -1314

No access to the camera.
This usually occurs on mobile
devices and may be because
the user denied the access.

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLivePusherObserver__ios.html
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLiveCode__ios.html

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 58
of 140

V2TXLIVE_WARNING_MICROPHONE_START_FAILED -1302 Failed to turn the mic on.

V2TXLIVE_WARNING_MICROPHONE_OCCUPIED -1319

The mic is occupied. This
occurs when, for example, the
user is currently having a call
on the mobile device.

V2TXLIVE_WARNING_MICROPHONE_NO_PERMISSION -1317

No access to the mic. This
usually occurs on mobile
devices and may be because
the user denied the access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_NOT_SUPPORTED -1309 The system does not support
screen sharing.

V2TXLIVE_WARNING_SCREEN_CAPTURE_START_FAILED -1308

Failed to start screen
recording. If this occurs on a
mobile device, it may be
because the user denied the
access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_INTERRUPTED -7001 Screen recording was
stopped by the system

Appendix: Communication and Data Transfer Between Extensions
and Host Applications

ReplayKit2 invokes only the broadcast upload extension during screen sharing. The extension does not support UI
operations and cannot implement complicated business logic. Therefore, the host app is often responsible for

implementing business logic such as authentication, while the extension focuses on recording the screen and
publishing the audio and video data captured. This makes it necessary to communicate and transfer data between the
extension and host app.

1. Sending local notifications

Users should be informed of the status of the extension. For example, in cases where the host app is not started, you
can send a local notification asking users to interact with the host app. Below is an example of sending a notification to
users when the broadcast upload extension is started.

- (void)broadcastStartedWithSetupInfo:(NSDictionary<NSString *,NSObject *> *)setupI

 [self sendLocalNotificationToHostAppWithTitle:@"Tencent Cloud Screen Sharing" m

}

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 59
of 140

- (void)sendLocalNotificationToHostAppWithTitle:(NSString*)title msg:(NSString*)msg

{

 UNUserNotificationCenter* center = [UNUserNotificationCenter currentNotificatio

 UNMutableNotificationContent* content = [[UNMutableNotificationContent alloc] i

 content.title = [NSString localizedUserNotificationStringForKey:title arguments

 content.body = [NSString localizedUserNotificationStringForKey:msg arguments:n

 content.sound = [UNNotificationSound defaultSound];

 content.userInfo = userInfo;

 // Schedule a local notification to be sent at the specified time

 UNTimeIntervalNotificationTrigger* trigger = [UNTimeIntervalNotificationTrigger

 triggerWithTimeInterval:0.1f repe

 UNNotificationRequest* request = [UNNotificationRequest requestWithIdentifier:@

 content:c

 // Add operation after the notification is sent

 [center addNotificationRequest:request withCompletionHandler:^(NSError * _Nulla

 }];

}

You can use this notification to ask the user to return to the host app to configure publishing information and start
stream publishing.

2. Sending notifications between processes via CFNotificationCenter

The extension and host app may also need to interact with each other in real time, which cannot be achieved through
local notifications because with local notifications, code is triggered only after users tap the banner. Neither can it be
implemented via NSNotificationCenter because NSNotificationCenter does not allow communication between
processes. To send notifications between processes, you will need CFNotificationCenter, but instead of using the

 userInfo field for data transfer, you must configure an app group and use NSUserDefault for data transfer.

For example, after getting the publishing URL, the host app can notify the broadcast upload extension via
CFNotificationCenter that stream publishing can start. You may also use the clipboard, but delayed rendering is
needed as the clipboard sometimes fails to transfer data between processes in real time.

CFNotificationCenterPostNotification(CFNotificationCenterGetDarwinNotifyCenter(),

 kDarvinNotificationNamePushStart,

 NULL,

 nil,

 YES);

The extension can start publishing streams after receiving this notification. As the notification is at the CF layer, to
facilitate operations, it needs to be sent to the Cocoa layer via NSNotificationCenter.

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 60
of 140

 CFNotificationCenterAddObserver(CFNotificationCenterGetDarwinNotifyCenter(),

 (__bridge const void *)(self),

 onDarwinReplayKit2PushStart,

 kDarvinNotificationNamePushStart,

 NULL,

 CFNotificationSuspensionBehaviorDeliverImmediat

 [[NSNotificationCenter defaultCenter] addObserver:self selector:@selector(handl

static void onDarwinReplayKit2PushStart(CFNotificationCenterRef center,

 void *observer, CFStringRef name,

 const void *object, CFDictionaryRef

 userInfo)

{

// Send to the Cocoa layer

 [[NSNotificationCenter defaultCenter] postNotificationName:@"Cocoa_ReplayKit2_P

}

- (void)handleReplayKit2PushStartNotification:(NSNotification*)noti

{

// Get the data to be transferred by the host app via NSUserDefault or the clipboar

// NSUserDefaults *defaults = [[NSUserDefaults alloc] initWithSuiteName:kReplayK

 UIPasteboard* pb = [UIPasteboard generalPasteboard];

 NSDictionary* defaults = [self jsonData2Dictionary:pb.string];

 s_rtmpUrl = [defaults objectForKey:kReplayKit2PushUrlKey];

 s_resolution = [defaults objectForKey:kReplayKit2ResolutionKey];

 if (s_resolution.length < 1) {

 s_resolution = kResolutionHD;

 }

 NSString* rotate = [defaults objectForKey:kReplayKit2RotateKey];

 if ([rotate isEqualToString:kReplayKit2Portrait]) {

 s_landScape = NO;

 }

 else {

 s_landScape = YES;

 }

 [self start];

}

FAQs

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 61
of 140

ReplayKit2 is a new framework introduced by Apple in iOS 11, for which relatively few official documents have been
released. The framework is still being improved, and problems have been found. See below for some common
questions you may have when using ReplayKit2.

1. When does screen recording stop automatically?

Screen recording stops automatically when the screen locks or there is an incoming call. At such times, the
 broadcastFinished function in SampleHandler will be invoked, and you can send a notification to users

about the interruption.
2. Why does screen recording stop sometimes during screen sharing?

The problem usually occurs after landscape/portrait mode switch if the resolution for stream publishing is set high. The
broadcast upload extension is allocated a memory of only 50 MB and will be killed if its memory usage exceeds the
limit. Given this, we recommend that you set the resolution to 720p or lower.
3. Why are images streamed from the screen of iPhone X distorted?

iPhone X has a notch at the top of the screen, so video captured from the screen is not in the aspect ratio of 16:9. If
you set the output resolution for stream publishing to 16:9, for example, to HD (960 × 540), the images published will

be slightly distorted because their original aspect ratio is not 16:9. We recommend that you set the resolution
according to your screen size. Besides, if you play video streamed from the screen of iPhone X in aspect fit mode, the
video may have black bars, and if you play it in aspect fill mode, the video may be cropped.

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 62
of 140

Android
Publishing from Camera
Last updated：2024-01-13 15:49:41

Overview

Publishing from camera refers to the process of collecting video and audio data from the mobile phone’s camera and
mic, encoding the data, and publishing it to cloud-based live streaming platforms. Tencent Cloud’s LiteAVSDK
provides the camera publishing capability via V2TXLivePusher .The following is the relevant GUI that

demonstrating camera push stream in the SDK API-Example project:

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 63
of 140

Notes

Testing on real devices: The SDK uses a lot of audio and video APIs of the Android system, most of which cannot
be used on emulators. Therefore, we recommend that you test your project on a real device.

Sample Code

Platform GitHub Address Key Class

iOS Github LivePushCameraViewController.m

Android Github LivePushCameraActivity.java

Flutter Github live_camera_push.dart

Integration

1. Download the SDK

Download the SDK and follow the instructions in SDK Integration to integrate the SDK into your application.

2. Configure License Authorization for SDK

1. Obtain license authorization：
If you have obtained the relevant license authorization, need to Get License URL and License Key in Cloud Live
Console﻿

If you have not yet obtained the license authorization, please reference Adding and Renewing Licenses to make an
application.

https://github.com/LiteAVSDK/Live_iOS/blob/main/MLVB-API-Example-OC/Basic/LivePushCamera/LivePushCameraViewController.m
https://github.com/LiteAVSDK/Live_Android/blob/main/MLVB-API-Example/Basic/LivePushCamera/src/main/java/com/tencent/mlvb/livepushcamera/LivePushCameraActivity.java
https://github.com/LiteAVSDK/Live_Flutter/blob/main/Live-API-Example/lib/page/push/live_camera_push.dart
https://www.tencentcloud.com/document/product/1071/38150
https://www.tencentcloud.com/document/product/1071/38156
https://console.tencentcloud.com/live/license
https://www.tencentcloud.com/document/product/1071/38546

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 64
of 140

2. Before your App calls SDK-related functions (it is recommended in the Application class), set the following settings:

public class MApplication extends Application {

@Override

public void onCreate() {

super.onCreate();

String licenceURL = ""; // your licence url

String licenceKey = ""; // your licence key

V2TXLivePremier.setEnvironment("GDPR"); // set your environment

V2TXLivePremier.setLicence(this, licenceURL, licenceKey);

V2TXLivePremier.setObserver(new V2TXLivePremierObserver() {

 @Override

 public void onLicenceLoaded(int result, String reason) {

 Log.i(TAG, "onLicenceLoaded: result:" + result + ", reason:" + reason);

 }

 });

}

3. Initialize the V2TXLivePusher component

Create a V2TXLivePusher object, which will be responsible for publishing operations.

// Specify the corresponding live broadcast protocol as RTMP, which does not suppor

V2TXLivePusher mLivePusher = new V2TXLivePusherImpl(this, V2TXLiveDef.V2TXLiveMode.

4. Enable camera preview

Before enabling camera preview, you must first provide the SDK with a TXCloudVideoView object to display

video images. Given that TXCloudVideoView is inherited from FrameLayout in Android, you can:

1. Add a video rendering control in the XML file:

<com.tencent.rtmp.ui.TXCloudVideoView

 android:id="@+id/pusher_tx_cloud_view"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

2. Call startCamera in V2TXLivePusher to enable camera preview for your mobile phone.

// Enable preview for the local camera

TXCloudVideoView mPusherView = (TXCloudVideoView) findViewById(R.id.pusher_tx_cloud

mLivePusher.setRenderView(mPusherView);

mLivePusher.startCamera(true);

mLivePusher.startMicrophone();

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 65
of 140

5. Start and stop publishing

1. After calling startCamera to enable camera preview, you can call the startPush API in V2TXLivePusher

to start publishing.
Note

if you choose RTMP protocol to push in Step3，the generate of the push URL, please refer to RTMP URL.

//This URL does not support co-anchoring. The stream is published to a live streami

String url = "rtmp://test.com/live/streamid?txSecret=xxxxx&txTime=xxxxxxxx";

int ret = mLivePusher.startPush(url);

if (ret == V2TXLIVE_ERROR_INVALID_LICENSE) {

 Log.i(TAG, "startRTMPPush: license verification failed");

}

Note
Reason for returning V2TXLIVE_ERROR_INVALID_LICENSE?
If the startPush interface returns V2TXLIVE_ERROR_INVALID_LICENSE, it means that your license verification
failed, please check the url and key set in Step 2: Configure the SDK for license authorization.
2. Call stopPush in V2TXLivePusher to stop publishing streams

//Stop publishing

mLivePusher.stopPush();

6. Publish audio-only streams

If your live streaming scenarios involve audio only, you can skip Step 4 or call stopCamera before startPush .

mLivePusher.startMicrophone();

// The push stream can be started by passing in the corresponding URL according to

String url = "rtmp://test.com/live/streamid?txSecret=xxxxx&txTime=xxxxxxxx";

int ret = mLivePusher.startPush(url);

Note

If you publish audio-only streams but no streams can be pulled from an RTMP, FLV, or HLS playback URL, there is a
problem with your line configuration, please submit a ticket for help.

7. Set video quality

Call setVideoQuality in V2TXLivePusher to set the quality of videos watched by audience. The encoding

parameters set determine the quality of videos presented to audience. The local video watched by the host is the
original HD version that has not been encoded or compressed, and is therefore not affected by the settings. For

details, please see Setting Video Quality.

8. Set the beauty filter style and skin brightening and rosy skin effects

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__android.html#ab4f8adaa0616d54d6ed920e49377a08a
https://www.tencentcloud.com/document/product/1071/39359
https://write.woa.com/document/133487155812577280#step2
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__android.html#af07c1dcff91b43a2309665b8663ed530
https://console.tencentcloud.com/workorder/category
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__android.html#a2695806cb6c74ccce4b378d306ef0a02
https://www.tencentcloud.com/document/product/1071/41861

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 66
of 140

Call getBeautyManager in V2TXLivePusher to get a TXBeautyManager instance to set beauty filters.

Beauty filter style

The SDK has three built-in beauty filter algorithms, each corresponding to a beauty filter style. Choose one that best
fits your product positioning. For the definitions, see TXLiveConstants.java .

Beauty Filter Style Description

BEAUTY_STYLE_SMOOTH The smooth style, which features more obvious skin smoothing effects and
is suitable for live showrooms

BEAUTY_STYLE_NATURE The natural style, which retains more facial details and is more natural

BEAUTY_STYLE_PITU

The Pitu style, which uses the beauty filter algorithm developed by YouTu
Lab. Its effect is between the smooth style and the natural style, that is, it
retains more skin details than the smooth style and delivers more obvious
skin smoothing effects than the natural style.

You can call the setBeautyStyle API of TXBeautyManager to set the beauty filter style.

Item Configuration Description

Beauty filter strength
Via the setBeautyLevel API in
`TXBeautyManager`

Value range: 0-9. `0` means the filter is
disabled. The greater the value, the more
obvious the effect.

Skin brightening filter
strength

Via the setWhitenessLevel API
in `TXBeautyManager`

Value range: 0-9. `0` means the filter is
disabled. The greater the value, the more
obvious the effect.

Rosy skin filter strength
Via the setRuddyLevel API in
`TXBeautyManager`

Value range: 0-9. `0` means the filter is
disabled. The greater the value, the more
obvious the effect.

9. Set color filters

Call getBeautyManager in V2TXLivePusher to get a TXBeautyManager instance to set color filters.

Call the setFilter API in TXBeautyManager to set color filters. Color filters are a technology that adjusts the

color tone of sections of an image. For example, it may lighten the yellow sections of an image to achieve the effect of
skin brightening, or add warm tones to a video to give it a refreshing and soft boost.

Call the setFilterStrength API in TXBeautyManager to set the strength of a color filter. The higher the

strength, the more obvious the effect.
Based on our experience of operating Mobile QQ and Now Live, it’s not enough to use only the setBeautyStyle

API in TXBeautyManager to set the beauty filter style. The setBeautyStyle API must be used together with

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__android.html#a3fdfeb3204581c27bbf1c8b5598714fb
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__android.html#a3fdfeb3204581c27bbf1c8b5598714fb
https://liteav.sdk.qcloud.com/doc/api/en/group__TXBeautyManager__android.html

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 67
of 140

 setFilter to produce richer effects. Given this, our designers have developed 17 built-in color filters for you to

choose from.

// Select the desired color filter file. The filter file can be obtained from the r

Bitmap filterBmp = decodeResource(getResources(), R.drawable.tuibeauty_filter_biaoz

mLivePusher.getBeautyManager().setFilter(filterBmp);

mLivePusher.getBeautyManager().setFilterStrength(0.5f);

10. Manage devices

 V2TXLivePusher provides a series of APIs for the control of devices. You can call getDeviceManager to

get a TXDeviceManager instance for device management. For detailed instructions, please see

TXDeviceManager API.

11. Set the video mirroring effect for audience

Call setEncoderMirror in V2TXLivePusher to set the camera mirror mode, which affects the way video images

are presented to audience. By default, the local video watched by the host is flipped when the front camera is used,

which creates the same effect as a mirror does. The video watched by audience is the same as that watched by the
host, as shown below.

12. Publish streams in landscape mode

In most cases, hosts stream while holding their phones vertically, and audience watch videos in portrait resolutions
(e.g., 540 × 960). However, there are also cases where hosts hold phones horizontally, and ideally, audience should

https://liteav.sdk.qcloud.com/doc/api/en/group__TXDeviceManager__android.html
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__android.html#ae025945b6f2633d8e3b879a6fe24dd99

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 68
of 140

watch videos in landscape resolutions (960 × 540).
By default, V2TXLivePusher outputs videos in portrait resolutions. You can publish landscape-mode videos to

audience by modifying a parameter of the setVideoQuality API.

V2TXLiveDef.V2TXLiveVideoEncoderParam param = new V2TXLiveDef.V2TXLiveVideoEncoderP

param.videoResolutionMode = isLandscape ? V2TXLiveVideoResolutionModeLandscape : V2

mLivePusher.setVideoQuality(param);

13. Set audio effects

Call getAudioEffectManager in V2TXLivePusher to get a TXAudioEffectManager instance, which

can be used to mix background music and set in-ear monitoring, reverb, and other audio effects. Background music
mixing means mixing into the published stream the music played by the host’s phone so that audience can also hear
the music.
Call the enableVoiceEarMonitor API in TXAudioEffectManager to enable in-ear monitoring, which allows

hosts to hear their vocals in earphones when they sing.

Call the setVoiceReverbType API in TXAudioEffectManager to add reverb effects such as karaoke, hall,

husky, and metal. The effects are applied to the videos watched by audience.
Call the setVoiceChangerType API in TXAudioEffectManager to add voice changing effects such as

little girl and middle-aged man to enrich host-audience interaction. The effects are applied to the videos watched by
audience.

https://liteav.sdk.qcloud.com/doc/api/en/group__TXAudioEffectManager__android.html

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 69
of 140

Note
For detailed instructions, please see TXAudioEffectManager API.

14. Set watermarks

Call setWatermark in V2TXLivePusher to add a watermark to videos output by the SDK. The position of the

watermark is determined by the (x, y, scale) parameter passed in.

The watermark image must be in PNG rather than JPG format. The former carries opacity information, which allows
the SDK to better address the image aliasing issue (changing the extension of a JPG image to PNG won’t work).
The (x, y, scale) parameter specifies the normalized coordinates of the watermark relative to the resolution of

the published video. For example, if the resolution of the published video is 540 x 960, and (x, y, scale) is set

to （0.1, 0.1, 0.1） , the actual pixel coordinates of the watermark will be (540 x 0.1, 960 x 0.1). The width of

the watermark image will be the video width x 0.1, and the height will be scaled automatically.

// Set a video watermark

mLivePusher.setWatermark(BitmapFactory.decodeResource(getResources(),R.drawable.wat

15. Inform hosts of poor network conditions

Hosts should be informed when their network conditions are bad and be prompted to check their network.

https://liteav.sdk.qcloud.com/doc/api/en/group__TXDeviceManager__android.html
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__android.html#a4f56a5a937d87e5b1ae6f77c5bab2335

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 70
of 140

You can capture the V2TXLIVE_WARNING_NETWORK_BUSY event using onWarning in
 V2TXLivePusherObserver . The event indicates poor network conditions for hosts, which result in stuttering for

audience. When this event occurs, you can send a UI message about poor network conditions to hosts.

@Override

public void onWarning(int code, String msg, Bundle extraInfo) {

 if (code == V2TXLiveCode.V2TXLIVE_WARNING_NETWORK_BUSY) {

 showNetBusyTips(); // Show network tips

 }

}

16. Send SEI messages

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusherObserver__android.html#abd54414cbd5d52c096f9cc090cfe1fec

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 71
of 140

Call the sendSeiMessage API in V2TXLivePusher to send SEI messages. SEI refers to the supplementary

enhancement information of encoded video. It is not used most of the time, but you can insert custom information into
SEI messages. The information will be forwarded to audience by live streaming CDNs. The applications for SEI

messages include:
Live quiz: The publisher can use SEI messages to send questions to the audience. SEI can ensure synchronization
among audio, video, and the questions.
Live showroom: The publisher can use SEI messages to display lyrics to the audience in real time. The effects are not
affected by reduction in video encoding quality.

Online education: The publisher can use SEI messages to display pointers and sketches on slides to the audience in
real time.
Custom data is inserted directly into video data and therefore cannot be too large in size (preferably several bytes). It’s
common to insert information such as custom timestamps.

//Sample code for Android

int payloadType = 5;

String msg = "test";

mTXLivePusher.sendSeiMessage(payloadType, msg.getBytes("UTF-8"));

Common open-source players or web players are incapable of parsing SEI messages. You must use

 V2TXLivePlayer , the built-in player of LiteAVSDK.

1. Configuration:

int payloadType = 5;

mTXLivePlayer.enableReceiveSeiMessage(true, payloadType)

2. If the video streams played by V2TXLivePlayer contain SEI messages, you will receive the messages via the

 onReceiveSeiMessage callback in V2TXLivePlayerObserver .

Event Handling

Listening for events

The SDK listens for publishing events and errors via the V2TXLivePusherObserver delegate. See V2TXLiveCode for
a detailed list of events and error codes.

Errors

An error indicates that the SDK encountered a serious problem that made it impossible for stream publishing to

continue.

Event ID Code Description

V2TXLIVE_ERROR_FAILED -1 A common error not yet classified

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__android.html#a5ba3762815f11bf5005f151e06ae0b38
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusherObserver__android.html
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLiveCode__android.html

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 72
of 140

V2TXLIVE_ERROR_INVALID_PARAMETER -2 An invalid parameter was passed in during
API calling.

V2TXLIVE_ERROR_REFUSED -3 The API call was rejected.

V2TXLIVE_ERROR_NOT_SUPPORTED -4 The API cannot be called.

V2TXLIVE_ERROR_INVALID_LICENSE -5 Failed to call the API due to invalid license.

V2TXLIVE_ERROR_REQUEST_TIMEOUT -6 The server request timed out.

V2TXLIVE_ERROR_SERVER_PROCESS_FAILED -7 The server could not handle your request.

Warnings

A warning indicates that the SDK encountered a problem whose severity level is warning. Warning events trigger
tentative protection or recovery logic and can often be resolved.

Event ID Code Description

V2TXLIVE_WARNING_NETWORK_BUSY 1101
Bad network connection: data
upload blocked due to limited
upstream bandwidth.

V2TXLIVE_WARNING_VIDEO_BLOCK 2105 Stuttering during video
playback.

V2TXLIVE_WARNING_CAMERA_START_FAILED -1301 Failed to turn the camera on.

V2TXLIVE_WARNING_CAMERA_OCCUPIED -1316 The camera is occupied. Try a
different camera.

V2TXLIVE_WARNING_CAMERA_NO_PERMISSION -1314

No access to the camera.
This usually occurs on mobile
devices and may be because
the user denied the access.

V2TXLIVE_WARNING_MICROPHONE_START_FAILED -1302 Failed to turn the mic on.

V2TXLIVE_WARNING_MICROPHONE_OCCUPIED -1319

The mic is occupied. This
occurs when, for example, the
user is having a call on the
mobile device.

V2TXLIVE_WARNING_MICROPHONE_NO_PERMISSION -1317 No access to the mic. This
usually occurs on mobile

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 73
of 140

devices and may be because
the user denied the access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_NOT_SUPPORTED -1309 The system does not support
screen sharing.

V2TXLIVE_WARNING_SCREEN_CAPTURE_START_FAILED -1308

Failed to start screen
recording. If this occurs on a
mobile device, it may be
because the user denied the
access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_INTERRUPTED -7001 Screen recording was
stopped by the system.

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 74
of 140

Publishing from Screen
Last updated：2024-01-13 15:49:41

Overview

Publishing from screen means using hosts’ phones as the source for live streaming. It may be combined with local
camera preview and is used in scenarios such as game streaming and mobile application demonstration. Tencent
Cloud’s LiteAVSDK offers the screen sharing capability via V2TXLivePusher .

Note:
By adding a floating window to display the image of the local camera, you can include camera preview into the
streams published from the screen.

Restrictions

Screen recording is supported in Android 5.0 and above.
Floating windows need to be enabled manually on some mobile phones and systems.

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 75
of 140

Sample Code

Platform GitHub Address

iOS LivePushScreenViewController.m

Android LivePushScreenActivity.java

Flutter live_screen_push.dart

Integration

Step 1. Download SDK development kit

Download the SDK and follow the instructions in SDK Integration to integrate the SDK into your application.

Step 2. Configure License Authorization for SDK

1. Obtain license authorization：
If you have obtained the relevant license authorization，Need to Get License URL and License Key in Cloud Live

Console﻿

If you have not yet obtained the license authorization，Please reference Adding and Renewing Licenses to make an
application.
2. Before your App calls SDK-related functions (it is recommended in the Application class), set the following settings:

public class MApplication extends Application {

@Override

public void onCreate() {

super.onCreate();

https://github.com/LiteAVSDK/Live_iOS/blob/main/MLVB-API-Example-OC/Basic/LivePushScreen/LivePushScreenViewController.m
https://github.com/LiteAVSDK/Live_Android/blob/main/MLVB-API-Example/Basic/LivePushScreen/src/main/java/com/tencent/mlvb/livepushscreen/LivePushScreenActivity.java
https://github.com/LiteAVSDK/Live_Flutter/blob/main/Live-API-Example/lib/page/push/live_screen_push.dart
https://www.tencentcloud.com/document/product/1071/38150
https://www.tencentcloud.com/document/product/1071/38156
https://console.tencentcloud.com/live/license
https://www.tencentcloud.com/document/product/1071/38546

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 76
of 140

String licenceURL = ""; // your licence url

String licenceKey = ""; // your licence key

V2TXLivePremier.setEnvironment("GDPR"); // set your environment

V2TXLivePremier.setLicence(this, licenceURL, licenceKey);

V2TXLivePremier.setObserver(new V2TXLivePremierObserver() {

 @Override

 public void onLicenceLoaded(int result, String reason) {

 Log.i(TAG, "onLicenceLoaded: result:" + result + ", reason:" + reason);

 }

 });

}

Note:
The packageName configured in the license must be the same as the application itself, otherwise the

push stream will fail.

Step 3. Add Activity

Paste the following activity in the manifest file (no need to add it if it exists in the project code).

<activity

 android:name="com.tencent.rtmp.video.TXScreenCapture$TXScreenCaptureAssistantAc

 android:theme="@android:style/Theme.Translucent"/>

Step 4. Create a stream publishing object

Create a V2TXLivePusher object, which will be responsible for publishing operations.

// Specify the corresponding live broadcast protocol as RTMP, which does not suppor

V2TXLivePusher mLivePusher = new V2TXLivePusherImpl(this, V2TXLiveDef.V2TXLiveMode.

Step 5. Start stream publishing

Use startScreenCapture to start screen recording，and use V2TXLivePusher::startPush to pushing
Note:
 if you choose RTMP protocol to push in Step4，The generate of the push URL, please refer to RTMP URL。

// The push stream can be started according to the push stream protocol. RTMP canno

String url = "rtmp://test.com/live/streamid?txSecret=xxxxx&txTime=xxxxxxxx";

mLivePusher.startMicrophone();

mLivePusher.startScreenCapture();

int ret = mLivePusher.startPush(url);

if (ret == V2TXLIVE_ERROR_INVALID_LICENSE) {

 Log.i(TAG, "startRTMPPush: license verification failed");

}

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__android.html#acd14289e3bbf2708f23e61348136d9f9
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__android.html#ab4f8adaa0616d54d6ed920e49377a08a
https://www.tencentcloud.com/document/product/267/7977

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 77
of 140

Note:
Reason for returning V2TXLIVE_ERROR_INVALID_LICENSE?

If the startPush interface returns V2TXLIVE_ERROR_INVALID_LICENSE , it means that your license

verification failed, please check the url and key set in Step 2: Configure the SDK for license authorization.

startScreenCapture is used to start screen recording, which is a built-in feature of the Android system. For security
reasons, before screen recording starts, Android will pop up a window asking users whether to start screen recording,
and you should agree.

Step 6. Set watermarks

Call setWatermark in V2TXLivePusher to add a watermark to videos output by the SDK. The position of the

watermark is determined by the (x, y, scale) parameter passed in.

The watermark image must be in PNG rather than JPG format. The former carries opacity information, which allows
the SDK to better address the image aliasing issue (changing the extension of a JPG image to PNG won’t work).
The (x, y, scale) parameter specifies the normalized coordinates of the watermark relative to the resolution of

the published video. For example, if the resolution of the published video is 540 x 960, and (x, y, scale) is set

to （0.1, 0.1, 0.1） , the actual pixel coordinates of the watermark will be (540 x 0.1, 960 x 0.1). The width of

the watermark will be the video width x 0.1, and the height will be scaled automatically.

// Set a video watermark

mLivePusher.setWatermark(BitmapFactory.decodeResource(getResources(),R.drawable.wat

Step 7. Set video quality

Call setVideoQuality in V2TXLivePusher to set the quality of videos watched by audience. The encoding

parameters set determine the quality of videos presented to audience. The local video watched by the host is the
original HD version that has not been encoded or compressed, and is therefore not affected by the settings. For
details, please see Setting Video Quality.

Step 8. Inform hosts of poor network conditions

Connecting phones to Wi-Fi does not necessarily guarantee network conditions. In case of poor Wi-Fi signal or limited
bandwidth, the network speed of a Wi-Fi connected phone may be slower than that of a phone using 4G. Hosts should
be informed when their network conditions are bad and be prompted to switch to a different network.

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusher__android.html#a4f56a5a937d87e5b1ae6f77c5bab2335
https://www.tencentcloud.com/document/product/1071/41861

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 78
of 140

You can capture the V2TXLIVE_WARNING_NETWORK_BUSY event using onWarning in
 V2TXLivePusherObserver . The event indicates poor network conditions for hosts, which result in stuttering for

audience. When this event occurs, you can send a UI message about poor network conditions to hosts, as shown
above.

@Override

public void onWarning(int code, String msg, Bundle extraInfo) {

 if (code == V2TXLiveCode.V2TXLIVE_WARNING_NETWORK_BUSY) {

 showNetBusyTips(); // Show a “network busy” message

 }

}

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLiveCode__android.html

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 79
of 140

Step 9. Set the orientation

In most cases, hosts stream while holding their phones vertically, and audience watch videos in portrait resolutions
(e.g., 540 × 960). However, there are also cases where hosts hold phones horizontally, and ideally, audience should
watch videos in landscape resolutions (960 × 540), as shown below:

By default, V2TXLivePusher outputs videos in portrait resolutions. You can output landscape-mode videos to

audience by modifying a parameter of the setVideoQuality API.

mLivePusher.setVideoQuality(mVideoResolution, isLandscape ? V2TXLiveVideoResolution

Step 10. Stop publishing streams

As there can be only one V2TXLivePusher object running at a time, make sure that you release all the resources

when stopping publishing.

// Stop screen sharing and release the resources

public void stopPublish() {

 mLivePusher.stopScreenCapture();

 mLivePusher.setObserver(null);

 mLivePusher.stopPush();

}

Event Handling

Listening for events

The SDK listens for publishing events and errors via the V2TXLivePusherObserver delegate. See V2TXLiveCode for

a detailed list of events and error codes.

Errors

An error indicates that the SDK encountered a serious problem that made it impossible for stream publishing to
continue.

Event ID Code Description

V2TXLIVE_ERROR_FAILED -1 A common error not yet classified

V2TXLIVE_ERROR_INVALID_PARAMETER -2 An invalid parameter was passed in during
API calling.

V2TXLIVE_ERROR_REFUSED -3 The API call was rejected.

V2TXLIVE_ERROR_NOT_SUPPORTED -4 The API cannot be called.

https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLivePusher__android.html#a2695806cb6c74ccce4b378d306ef0a02
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusherObserver__android.html
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLiveCode__android.html

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 80
of 140

V2TXLIVE_ERROR_INVALID_LICENSE -5 Failed to call the API due to invalid license.

V2TXLIVE_ERROR_REQUEST_TIMEOUT -6 The server request timed out.

V2TXLIVE_ERROR_SERVER_PROCESS_FAILED -7 The server could not handle your request.

Warnings

A warning indicates that the SDK encountered a problem whose severity level is warning. Warning events trigger
tentative protection or recovery logic and can often be resolved.

Event ID Code Description

V2TXLIVE_WARNING_NETWORK_BUSY 1101
Bad network connection: data
upload blocked due to limited
upstream bandwidth.

V2TXLIVE_WARNING_VIDEO_BLOCK 2105 Stuttering during video
playback.

V2TXLIVE_WARNING_CAMERA_START_FAILED -1301 Failed to turn the camera on.

V2TXLIVE_WARNING_CAMERA_OCCUPIED -1316 The camera is occupied. Try a
different camera.

V2TXLIVE_WARNING_CAMERA_NO_PERMISSION -1314

No access to the camera.
This usually occurs on mobile
devices and may be because
the user denied the access.

V2TXLIVE_WARNING_MICROPHONE_START_FAILED -1302 Failed to turn the mic on.

V2TXLIVE_WARNING_MICROPHONE_OCCUPIED -1319

The mic is occupied. This
occurs when, for example, the
user is having a call on the
mobile device.

V2TXLIVE_WARNING_MICROPHONE_NO_PERMISSION -1317

No access to the mic. This
usually occurs on mobile
devices and may be because
the user denied the access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_NOT_SUPPORTED -1309 The system does not support
screen sharing.

V2TXLIVE_WARNING_SCREEN_CAPTURE_START_FAILED -1308 Failed to start screen
recording. If this occurs on a
mobile device, it may be

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 81
of 140

because the user denied the
access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_INTERRUPTED -7001 Screen recording was
stopped by the system.

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 82
of 140

Web
Last updated：2024-01-13 15:49:41

The TXLivePusher SDK is mainly used to publish streams for LEB (ultra-low latency streaming). It can publish audio
and video the browser captures from the camera, screen, or a local media file to live streaming servers via WebRTC.
Note：

With WebRTC, each domain name can be used for the publishing of up to concurrent 100 streams by default. If you
want to publish more streams, please submit a ticket.

Basics

Below are some basics you need to know before integrating the SDK.

Splicing publishing URLs

To use Tencent Cloud live streaming services, you need to splice publishing URLs in the format required by Tencent
Cloud, which consists of four parts.

An authentication key is not required. You can enable publishing authentication if you need hotlink protection. For
details, please see Splicing CSS URLs.

Browser support

Publishing for LEB relies on WebRTC and therefore can only be used on OS and browsers that support WebRTC.
The audio/video capturing feature is poorly supported on mobile browsers. For example, mobile browsers do not

support screen recording, and only iOS 14.3 and above allow requesting camera access. Therefore, the publishing
SDK is mainly used on desktop browsers. The latest version of Chrome, Firefox, and Safari all support publishing for
LEB.
To publish streams on mobile browsers, use the MLVB SDK.

https://console.tencentcloud.com/workorder/category
https://www.tencentcloud.com/document/product/267/38393
https://www.tencentcloud.com/document/product/1071/38157

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 83
of 140

SDK Integration

Step 1. Prepare the page

Add an initialization script to the (desktop) page from which streams are to be published.

<script src="https://video.sdk.qcloudecdn.com/web/TXLivePusher-2.1.0.min.js" charse

Note：

The script needs to be imported into the body part of the HTML code. If it is imported into the head part, an

error will be reported.

Step 2. Add a container to the HTML page

Add a player container to the section of the page where local video is to be played. This is achieved by adding a div
and giving it a name, for example, id_local_video . Local video will be rendered in the container. To adjust the

size of the container, style the div using CSS.

<div id="id_local_video" style="width:100%;height:500px;display:flex;align-items:ce

Step 3. Publish streams

1. Generate an instance of the publishing SDK:

Generate an instance of the global object TXLivePusher . All subsequent operations will be performed via the

instance.

var livePusher = new TXLivePusher();

2. Specify the local video player container:

Specify the div for the local video player container, which is where audio and video captured by the browser will be
rendered.

livePusher.setRenderView('id_local_video');

Note：
The video element generated via setRenderView is unmuted by default. To mute video, obtain the video element

using the code below.

document.getElementById('id_local_video').getElementsByTagName('video')[0].muted =

3. Set audio/video quality:

Audio/video quality should be set before capturing. You can specify quality parameters if the default settings do not
meet your requirements.

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 84
of 140

// Set video quality

livePusher.setVideoQuality('720p');

// Set audio quality

livePusher.setAudioQuality('standard');

// Set the frame rate

livePusher.setProperty('setVideoFPS', 25);

4. Capture streams:

You can capture streams from the camera, mic, screen and local media files. If capturing is successful, the player
container will start playing the audio/video captured.

// Turn the camera on

livePusher.startCamera();

// Turn the mic on

livePusher.startMicrophone();

5. Publish streams:

Pass in the LEB publishing URL to start publishing streams. For the format of publishing URLs, please see Splicing
CSS URLs. You need to replace the prefix rtmp:// with webrtc:// .

livePusher.startPush('webrtc://domain/AppName/StreamName?txSecret=xxx&txTime=xxx');

Note：

Before publishing, make sure that audio/video streams are captured successfully, or you will fail to call the publishing
API. You can use the code below to publish streams automatically after audio/video is captured, that is, after the
callback for capturing the first audio or video frame is received. If both audio and video are captured, publishing starts
only after both the callback for capturing the first audio frame and that for the first video frame are received.

var hasVideo = false;

var hasAudio = false;

var isPush = false;

livePusher.setObserver({

onCaptureFirstAudioFrame: function() {

 hasAudio = true;

 if (hasVideo && !isPush) {

isPush = true;

livePusher.startPush('webrtc://domain/AppName/StreamName?txSecret=xxx&txTime=xxx');

 }

},

onCaptureFirstVideoFrame: function() {

 hasVideo = true;

 if (hasAudio && !isPush) {

isPush = true;

livePusher.startPush('webrtc://domain/AppName/StreamName?txSecret=xxx&txTime=xxx');

 }

https://www.tencentcloud.com/document/product/267/38393

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 85
of 140

}

});

6. Stop publishing:

livePusher.stopPush();

7. Stop capturing audio and video:

// Turn the camera off

livePusher.stopCamera();

// Turn the mic off

livePusher.stopMicrophone();

Advanced Features

Compatibility

The SDK provides a static method to check whether a browser supports WebRTC.

TXLivePusher.checkSupport().then(function(data) {

 // Whether WebRTC is supported

 if (data.isWebRTCSupported) {

 console.log('WebRTC Support');

 } else {

 console.log('WebRTC Not Support');

 }

 // Whether H.264 is supported

 if (data.isH264EncodeSupported) {

 console.log('H264 Encode Support');

 } else {

 console.log('H264 Encode Not Support');

 }

});

Event callbacks

The SDK supports callback event notifications. You can set an observer to receive callbacks of the SDK’s status and
WebRTC-related statistics. For details, see TXLivePusherObserver.

livePusher.setObserver({

 // Warnings for publishing

 onWarning: function(code, msg) {

 console.log(code, msg);

https://www.tencentcloud.com/document/product/1071/42709

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 86
of 140

 },

 // Publishing status

 onPushStatusUpdate: function(status, msg) {

 console.log(status, msg);

 },

 // Publishing statistics

 onStatisticsUpdate: function(data) {

 console.log('video fps is ' + data.video.framesPerSecond);

 }

});

Device management

You can use a device management instance to get the device list, switch devices, and perform other device-related
operations.

var deviceManager = livePusher.getDeviceManager();

// Get the device list

deviceManager.getDevicesList().then(function(data) {

 data.forEach(function(device) {

 console.log(device.deviceId, device.deviceName);

 });

});

// Switch cameras

deviceManager.switchCamera('camera_device_id');

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 87
of 140

Flutter
Publishing from Camera
Last updated：2024-01-13 15:49:41

Feature Overview

Publishing from the camera refers to the process of collecting video and audio data from the mobile phone's camera
and mic, encoding the data, and pushing it to cloud-based live streaming platforms. Tencent Cloud live_flutter_plugin
provides the camera push capabilities via the v2_tx_live_pusher APIs.

Notes

About running projects on x86 emulators: The SDK uses many audio and video APIs of the iOS system, most of
which cannot be used on the x86 emulator built into macOS. Therefore, we recommend that you test your project on a
real device.

Sample Code

Platform GitHub Address Key Class

iOS GitHub CameraPushViewController.m

Android GitHub CameraPushMainActivity.java

Flutter GitHub live_camera_push.dart

Note:
 In addition to the above sample code, regarding frequently asked questions among developers, Tencent Cloud offers

an easy-to-understand API example project, which you can use to quickly learn how to use different APIs.
iOS: MLVB-API-Example
Android: MLVB-API-Example
Flutter: Live-API-Example

Getting Started

https://pub.dev/packages/live_flutter_plugin
https://github.com/tencentyun/LiteAVProfessional_iOS/blob/master/Demo/TXLiteAVDemo/LivePusherDemo/CameraPushDemo/CameraPushViewController.m
https://github.com/tencentyun/LiteAVProfessional_Android/blob/master/Demo/livepusherdemo/src/main/java/com/tencent/liteav/demo/livepusher/camerapush/ui/CameraPushMainActivity.java
https://github.com/LiteAVSDK/Live_Flutter
https://github.com/LiteAVSDK/Live_iOS/tree/main/MLVB-API-Example-OC
https://github.com/LiteAVSDK/Live_Android/tree/main/MLVB-API-Example
https://github.com/LiteAVSDK/Live_Flutter/tree/main/Live-API-Example

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 88
of 140

1. Set dependencies

Integrate live_flutter_plugin into your application as instructed in SDK Integration Guide.

dependencies:

 live_flutter_plugin: latest version number

2. Configure a license for the SDK

1. Get the license:
If you have the required license, get the license URL and key in the CSS console.

If you don't have the required license, apply for a license as instructed in New License and Renewal.
2. Before your application calls features of live_flutter_plugin , complete the following configuration:

import 'package:live_flutter_plugin/v2_tx_live_premier.dart';

 /// Tencent Cloud license management page (https://console.tencentcloud.com/live/l

setupLicense() {

 // The license URL of the current application

 var LICENSEURL = "";

 // The license key of the current application

 var LICENSEURLKEY = "";

 V2TXLivePremier.setLicence(LICENSEURL, LICENSEURLKEY);

}

Note:
The packageName/BundleId configured in the license must be the same as that of the application;

otherwise, stream push will fail.

3. Initialize the V2TXLivePusher component

https://www.tencentcloud.com/document/product/1071/50582
https://console.tencentcloud.com/live/license
https://www.tencentcloud.com/document/product/1071/38546

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 89
of 140

Create a V2TXLivePusher object and specify V2TXLiveMode .

import 'package:live_flutter_plugin/v2_tx_live_pusher.dart';

/// Initialize `V2TXLivePusher`

initPusher() {

 _livePusher = V2TXLivePusher(V2TXLiveMode.v2TXLiveModeRTC);

}

4. Set the video rendering view

import 'package:live_flutter_plugin/widget/v2_tx_live_video_widget.dart';

/// The video rendering view widget

Widget renderView() {

 return V2TXLiveVideoWidget(

 onViewCreated: (viewId) async {

 /// Set the video rendering view

 _livePusher.setRenderViewID(_renderViewId);

 /// Enable camera preview

 _livePusher.startCamera(true);

 },

);

}

5. Start and stop publishing

After calling startCamera to enable camera preview, you can call the startPush API in V2TXLivePusher to

start publishing. You can use TRTC's URL or an RTMP URL for publishing. The former uses UDP. It offers better

streaming quality and supports co-anchoring.

/// Start stream push

startPush() async {

 // Generate a stream push address of RTMP/TRTC

 var url = "";

 // Start stream push

 await _livePusher.startPush(url);

 // Turn the mic on

 await _livePusher.startMicrophone();

}

After stream push ends, you can call the stopPush API in V2TXLivePusher to stop stream push.

/// Stop stream push

https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_pusher/V2TXLivePusher/startPush.html
https://www.tencentcloud.com/document/product/1071/39359
https://www.tencentcloud.com/document/product/1071/39359#.E8.87.AA.E4.B8.BB.E6.8B.BC.E8.A3.85.E6.8E.A8.E6.B5.81-url
https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_pusher/V2TXLivePusher/stopPush.html

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 90
of 140

stopPush() async {

 // Turn the camera off

 await _livePusher.stopCamera();

 // Turn the mic off

 await _livePusher.stopMicrophone();

 // Stop stream push

 await _livePusher.stopPush();

}

Note:

If you have enabled camera preview, please disable it when you stop publishing streams.
How do I get a valid stream push URL?

Activate CSS. In the CSS console, go to Auxiliary Tools > Address Generator to generate a stream push URL.
For more information, see Publishing/Playback URL.

Why is V2TXLIVE_ERROR_INVALID_LICENSE returned?If the startPush API returns

 V2TXLIVE_ERROR_INVALID_LICENSE , it means your license verification failed. Please check your configuration

against Step 2. Configure a license for the SDK.

6. Publish audio-only streams

If your live streaming scenarios involve audio only, you can skip Step 4 or do not call startCamera before

 startPush .

/// Start stream push

startPush() async {

 // Initialize `V2TXLivePusher`

 _livePusher = V2TXLivePusher(V2TXLiveMode.v2TXLiveModeRTC);

 // Generate a stream push address of RTMP/TRTC

 var url = "";

 // Start stream push

 await _livePusher.startPush(url);

https://console.tencentcloud.com/live/addrgenerator/addrgenerator
https://www.tencentcloud.com/document/product/1071/39359

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 91
of 140

 // Turn the mic on

 await _livePusher.startMicrophone();

}

Note:
If you publish audio-only streams but no streams can be pulled from an RTMP, FLV, or HLS playback URL, there is a
problem with your line configuration. Please submit a ticket for help.

7. Set video quality

You can call the setVideoQuality API in V2TXLivePusher to set image definition on the viewer end. The video

image watched by the host is the source video without encoding or compression and is not subject to settings.
However, viewers can perceive the encoding quality of the video encoder set in setVideoQuality . For more

information, see Setting Video Quality.

8. Set the beauty filter style and skin brightening and rosy skin effects

You can call the getBeautyManager API in V2TXLivePusher to get the TXBeautyManager instance so as to

further set the beauty filter effect.

Beauty filter style

The SDK has three built-in skin smoothing algorithms, each of which corresponds to a beauty filter style. You can
select the one most suitable for your product needs. For more information, see the TXBeautyManager.h file.

Beauty Filter Style Description

TXBeautyStyleSmooth The smooth style, which features more obvious skin smoothing effects and is suitable
for live showrooms.

TXBeautyStyleNature The natural style, which retains more facial details and is more natural.

TXBeautyStylePitu

The Pitu style, which uses the beauty filter algorithm developed by YouTu Lab. Its
effect combines the smooth style and the natural style, that is, it retains more skin
details than the smooth style and delivers more obvious skin smoothing effects than
the natural style.

You can call the setBeautyStyle API in TXBeautyManager to set the beauty filter style.

Item Configuration Description

Beauty filter strength
Via the setBeautyLevel API in
`TXBeautyManager`

Value range: 0-9. `0` means the filter is
disabled. The greater the value, the
more obvious the effect.

Skin brightening filter
strength

Via the setWhitenessLevel API in
`TXBeautyManager`

Value range: 0-9. `0` means the filter is
disabled. The greater the value, the

https://console.tencentcloud.com/workorder/category
https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_pusher/V2TXLivePusher/setVideoQuality.html
https://www.tencentcloud.com/document/product/1071/41861
https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_pusher/V2TXLivePusher/getBeautyManager.html
https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/manager_tx_beauty_manager/TXBeautyManager-class.html
https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/manager_tx_beauty_manager/TXBeautyManager/setBeautyStyle.html

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 92
of 140

more obvious the effect.

Rosy skin filter
strength

Via the setRuddyLevel API in
`TXBeautyManager`

Value range: 0-9. `0` means the filter is
disabled. The greater the value, the
more obvious the effect.

9. Manage devices

 V2TXLivePusher offers a set of APIs for device control. You can use getDeviceManager to get the

 TXDeviceManager instance for device management. For detailed directions, see TXDeviceManager API.

10. Set the mirror effect on the audience side

You can call setRenderMirror of V2TXLivePusher to change the camera mirroring mode, so as to change the

mirroring effect of the video image seen by viewers. If the host uses the front camera for live streaming, the image will
be reversed by the SDK by default.

11. Publish streams in landscape mode

In most cases, hosts stream while holding their phones vertically, and audience watch videos in portrait resolutions
(e.g., 540 × 960). However, there are also cases where hosts hold phones horizontally, and ideally, audience should

https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_pusher/V2TXLivePusher/getDeviceManager.html
https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_pusher/V2TXLivePusher/setRenderMirror.html

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 93
of 140

watch videos in landscape resolutions (960 × 540).

 V2TXLivePusher pushes video images in portrait mode by default. To push video images in landscape mode,

you can modify the parameters in the setVideoQuality API to set the image orientation on viewers' devices.

// Video encoding parameters

var param = V2TXLiveVideoEncoderParam();

param.videoResolutionMode = isLandscape ? V2TXLiveVideoResolutionMode.v2TXLiveVideo

_livePusher.setVideoQuality(param);

12. Set audio effects

Call getAudioEffectManager in V2TXLivePusher to get a TXAudioEffectManager instance, which can be

used to mix background music and set in-ear monitoring, reverb, and other audio effects. Background music mixing

https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_pusher/V2TXLivePusher/setVideoQuality.html
https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_pusher/V2TXLivePusher/getAudioEffectManager.html

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 94
of 140

means mixing into the published stream the music played by the host's phone so that the audience can also hear the
music.
Call the enableVoiceEarMonitor API in TXAudioEffectManager to enable in-ear monitoring, which

allows hosts to hear their vocals in earphones when they sing.
Call the setVoiceReverbType API in TXAudioEffectManager to add reverb effects such as karaoke, hall,

husky, and metal. The effects are applied to the videos watched by the audience.
Call the setVoiceChangerType API in TXAudioEffectManager to add voice changing effects such as

little girl and middle-aged man to enrich host-audience interaction. The effects are applied to the videos watched by

the audience.

Note:
For detailed directions, see TXAudioEffectManager API.

Event Handling

Listening for events

The SDK listens on push events and errors via the V2TXLivePusherObserver delegate. See v2_tx_live_code library
for a detailed list of events and error codes.

Errors

https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/manager_tx_audio_effect_manager/TXAudioEffectManager-class.html
https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_pusher_observer/v2_tx_live_pusher_observer-library.html
https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_code/v2_tx_live_code-library.html

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 95
of 140

An error indicates that the SDK encountered a serious problem that made it impossible for stream publishing to
continue.

Event ID Code Description

V2TXLIVE_ERROR_FAILED -1 A common unclassified error occurred.

V2TXLIVE_ERROR_INVALID_PARAMETER -2 An invalid parameter was passed in during
API calling.

V2TXLIVE_ERROR_REFUSED -3 The API call was rejected.

V2TXLIVE_ERROR_NOT_SUPPORTED -4 The API cannot be called.

V2TXLIVE_ERROR_INVALID_LICENSE -5 Failed to call the API due to invalid license.

V2TXLIVE_ERROR_REQUEST_TIMEOUT -6 The server request timed out.

V2TXLIVE_ERROR_SERVER_PROCESS_FAILED -7 The server could not handle your request.

Warnings

A warning indicates that the SDK encountered a problem whose severity level is warning. Warning events trigger

tentative protection or recovery logic and can often be resolved.

Event ID Code Description

V2TXLIVE_WARNING_NETWORK_BUSY 1101
Bad network connection: data
upload blocked due to limited
upstream bandwidth.

V2TXLIVE_WARNING_VIDEO_BLOCK 2105 Latency during video
playback.

V2TXLIVE_WARNING_CAMERA_START_FAILED -1301 Failed to turn the camera on.

V2TXLIVE_WARNING_CAMERA_OCCUPIED -1316 The camera is occupied. Try a
different camera.

V2TXLIVE_WARNING_CAMERA_NO_PERMISSION -1314

No access to the camera.
This usually occurs on mobile
devices and may be because
the user denied the access.

V2TXLIVE_WARNING_MICROPHONE_START_FAILED -1302 Failed to turn the mic on.

V2TXLIVE_WARNING_MICROPHONE_OCCUPIED -1319 The mic is occupied. This
occurs when, for example, the

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 96
of 140

user is having a call on the
mobile device.

V2TXLIVE_WARNING_MICROPHONE_NO_PERMISSION -1317

No access to the mic. This
usually occurs on mobile
devices and may be because
the user denied the access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_NOT_SUPPORTED -1309 The system does not support
screen sharing.

V2TXLIVE_WARNING_SCREEN_CAPTURE_START_FAILED -1308

Failed to start screen
recording. If this occurs on a
mobile device, it may be
because the user denied the
access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_INTERRUPTED -7001 Screen recording was
stopped by the system.

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 97
of 140

Publishing from Screen
Last updated：2024-01-13 15:49:41

Overview

Publishing from the camera refers to the process of collecting video and audio data from the mobile phone's camera
and mic, encoding the data, and pushing it to cloud-based live streaming platforms. Tencent Cloud
 live_flutter_plugin provides the camera push capabilities via V2TXLivePusher APIs.

Sample Code

Tencent Cloud offers an easy-to-understand API example project to help you quickly learn how to use different APIs.

Platform GitHub Address

iOS GitHub

Android GitHub

Flutter GitHub

Environment Requirements

Android

Screen recording is supported in Android 5.0 and above.
Floating windows need to be enabled manually on some mobile phones and systems.

iOS

Screen recording is a new feature in iOS 10. In addition to using ReplayKit to record video from the screen, which is
possible in iOS 9, with iOS 10, users can also stream live video from the screen. For details, see Go Live with

ReplayKit. In iOS 11, Apple made ReplayKit more usable and more universally applicable and launched ReplayKit2,
going from supporting ReplayKit alone to allowing the recording of the entire screen. Therefore, we recommend using
ReplayKit2 in iOS 11 to enable the screen sharing feature. Screen sharing relies on extensions, which operate as
independent processes. However, to ensure system smoothness, iOS allocates limited resources to extensions and
may kill extensions with high memory usage. Given this, Tencent Cloud has further reduced the memory usage of
LiteAVSDK while retaining its high streaming quality and low latency to ensure the stability of extensions.

https://github.com/LiteAVSDK/Live_iOS/tree/main/MLVB-API-Example-OC
https://github.com/LiteAVSDK/Live_Android/tree/main/MLVB-API-Example
https://github.com/LiteAVSDK/Live_Flutter/blob/main/Live-API-Example/lib/page/push/live_screen_push.dart
https://developer.apple.com/videos/play/wwdc2016/601/
https://developer.apple.com/videos/play/wwdc2017/606/

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 98
of 140

Note:
This document describes how to use ReplayKit 2 on iOS 11 to push streams from the screen. The parts about the use
of the SDK also apply to other custom stream push scenarios. For more information, see the code sample in the

 Live Demo Screen folder of the demo.

1. Create the live streaming extension

Open your project with Xcode and select New > Target... > Broadcast Upload Extension, as shown below.

Enter a product name and click Finish. A new directory with the product name entered will appear in your project.

Under the directory, there is an automatically generated SampleHandler class, which is responsible for screen

recording operations.
Note:
Xcode 9 or later is required, and your iPhone must be updated to iOS 11 or later. Screen recording is not supported on
emulators.
2. Import TXLiteAVSDK_ReplayKitExt.framework

Import TXLiteAVSDK_ReplayKitExt.framework into the live streaming extension the same way you import a

https://github.com/LiteAVSDK/Live_Flutter/tree/main/Live-API-Example

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 99
of 140

framework into the host application. The system libraries the SDK depends on are also the same. For more
information, see iOS.

Getting Started

1. Set dependencies

Integrate live_flutter_plugin into your application as instructed in SDK Integration Guide.

dependencies:

 live_flutter_plugin: latest version number

2. Configure a license for the SDK

1. Get the license:
If you have the required license, get the license URL and key in the CSS console.

If you don't have the required license, apply for a license as instructed in New License and Renewal.
2. Before your application calls features of live_flutter_plugin , complete the following configuration:

import 'package:live_flutter_plugin/v2_tx_live_premier.dart';

 /// Tencent Cloud license management page (https://console.tencentcloud.com/live/l

setupLicense() {

 // The license URL of the current application

 var LICENSEURL = "";

 // The license key of the current application

 var LICENSEURLKEY = "";

 V2TXLivePremier.setLicence(LICENSEURL, LICENSEURLKEY);

https://www.tencentcloud.com/document/product/1071/38155
https://www.tencentcloud.com/document/product/1071/50582
https://console.tencentcloud.com/live/license
https://www.tencentcloud.com/document/product/1071/38546

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 100
of 140

}

Note:
The packageName/BundleId configured in the license must be the same as that of the application;

otherwise, stream push will fail.

3. Create a pusher object

Create a V2TXLivePusher object, which will be responsible for publishing operations.

V2TXLivePusher livePusher = V2TXLivePusher(V2TXLiveMode.v2TXLiveModeRTMP);

4. Start stream push

After completing Step 1, you can use the code below to start publishing streams:

String rtmpUrl = "rtmp://2157.livepush.myqcloud.com/live/xxxxxx";

livePusher.startMicrophone();

livePusher.startScreenCapture();

livePusher.startPush(rtmpUrl);

How can I obtain a valid publishing URL?

Activate CSS. In the CSS console, go to Auxiliary Tools > Address Generator to generate a stream push URL.
For more information, see Publishing/Playback URL.

Why is V2TXLIVE_ERROR_INVALID_LICENSE returned?If the startPush API returns

 V2TXLIVE_ERROR_INVALID_LICENSE , it means your license verification failed. Please check your configuration

against Step 2. Configure a license for the SDK.

5. Stop stream push

https://console.tencentcloud.com/live/addrgenerator/addrgenerator
https://www.tencentcloud.com/document/product/1071/39359

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 101
of 140

As there can be only one V2TXLivePusher object running at a time, make sure that you release all the resources

when stopping publishing.

// Stop screen sharing and release the resources

void stopPush() {

 livePusher.stopMicrophone();

 livePusher.stopScreenCapture();

 livePusher.stopPush();

}

Event Handling

Listening for events

The SDK listens on push events and errors via the V2TXLivePusherObserver delegate. See v2_tx_live_code library
for a detailed list of events and error codes.

Errors

An error indicates that the SDK encountered a serious problem that made it impossible for stream publishing to
continue.

Event ID Code Description

V2TXLIVE_ERROR_FAILED -1 A common unclassified error occurred.

V2TXLIVE_ERROR_INVALID_PARAMETER -2 An invalid parameter was passed in during
API calling.

V2TXLIVE_ERROR_REFUSED -3 The API call was rejected.

V2TXLIVE_ERROR_NOT_SUPPORTED -4 The API cannot be called.

V2TXLIVE_ERROR_INVALID_LICENSE -5 Failed to call the API due to invalid license.

V2TXLIVE_ERROR_REQUEST_TIMEOUT -6 The server request timed out.

V2TXLIVE_ERROR_SERVER_PROCESS_FAILED -7 The server could not handle your request.

Warnings

A warning indicates that the SDK encountered a problem whose severity level is warning. Warning events trigger
tentative protection or recovery logic and can often be resolved.

Event ID Code Description

https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_pusher_observer/v2_tx_live_pusher_observer-library.html
https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_code/v2_tx_live_code-library.html

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 102
of 140

V2TXLIVE_WARNING_NETWORK_BUSY 1101 Bad network connection: data
upload blocked due to limited
upstream bandwidth.

V2TXLIVE_WARNING_VIDEO_BLOCK 2105 Stuttering during video
playback.

V2TXLIVE_WARNING_CAMERA_START_FAILED -1301 Failed to turn the camera on.

V2TXLIVE_WARNING_CAMERA_OCCUPIED -1316 The camera is occupied. Try a
different camera.

V2TXLIVE_WARNING_CAMERA_NO_PERMISSION -1314

No access to the camera.
This usually occurs on mobile
devices and may be because
the user denied the access.

V2TXLIVE_WARNING_MICROPHONE_START_FAILED -1302 Failed to turn the mic on.

V2TXLIVE_WARNING_MICROPHONE_OCCUPIED -1319

The mic is occupied. This
occurs when, for example, the
user is having a call on the
mobile device.

V2TXLIVE_WARNING_MICROPHONE_NO_PERMISSION -1317

No access to the mic. This
usually occurs on mobile
devices and may be because
the user denied the access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_NOT_SUPPORTED -1309 The system does not support
screen sharing.

V2TXLIVE_WARNING_SCREEN_CAPTURE_START_FAILED -1308

Failed to start screen
recording. If this occurs on a
mobile device, it may be
because the user denied the
access.

V2TXLIVE_WARNING_SCREEN_CAPTURE_INTERRUPTED -7001 Screen recording was
stopped by the system.

FAQs

ReplayKit2 is a new framework introduced by Apple in iOS 11, for which relatively few official documents have been
released. The framework is still being improved, and problems have been found. See below for some common

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 103
of 140

questions you may have when using ReplayKit2.
1. When does screen recording stop automatically?

Screen recording stops automatically when the screen locks or there is an incoming call. At such times, the

 broadcastFinished function in SampleHandler will be invoked, and you can send a notification to users

about the interruption.
2. Why does screen recording stop sometimes during screen sharing?

The problem usually occurs after landscape/portrait mode switch if the resolution for stream publishing is set high. The
broadcast upload extension is allocated a memory of only 50 MB and will be killed if its memory usage exceeds the

limit. Given this, we recommend that you set the resolution to 720p or lower.
3. Why are images streamed from the screen of iPhone X distorted?

iPhone X has a notch at the top of the screen, so video captured from the screen is not in the aspect ratio of 16:9. If
you set the output resolution for stream publishing to 16:9, for example, to HD (960 × 540), the images published will
be slightly distorted because their original aspect ratio is not 16:9. We recommend that you set the resolution
according to your screen size. Besides, if you play video streamed from the screen of iPhone X in aspect fit mode, the

video may have black bars, and if you play it in aspect fill mode, the video may be cropped.

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 104
of 140

Playback
iOS
LVB
Last updated：2024-01-13 15:49:41

Basics

This document introduces the live playback feature of the Video Cloud SDK.

Live streaming and video on demand

In live streaming, the video streams published by hosts in real time are the source of streaming. When hosts stop
publishing streams, the video played stops. Since video is streamed in real time, players do not have progress bars

when they play live streaming URLs.
In video on demand (VOD), video files in the cloud are the source of streaming. Videos can be played at any time as
long as they are not deleted from the cloud, and the playback progress can be adjusted using the progress bar. Video
streaming websites such as Tencent Video and Youku Tudou are typical applications of VOD.

Supported protocols

The table below lists the common protocols used for live streaming. We recommend FLV URLs (which start with

 http and end with flv) for LVB and WebRTC for LEB. For more information, please see LEB.

Protocol Pro Con Playback
Latency

HLS Mature, well adapted to high-
concurrency scenarios

SDK integration is required. 3s - 5s

FLV Mature, well adapted to high-
concurrency scenarios

SDK integration is required 2s - 3s

RTMP Relatively low latency Poor performance in high-
concurrency scenarios

1s - 3s

WebRTC Lowest latency SDK integration is required < 1s

Note:
LVB and LEB are priced differently. For details, please see LVB Billing Overview and LEB Billing Overview.

https://www.tencentcloud.com/document/product/1071/41875
https://www.tencentcloud.com/document/product/267/2818
https://www.tencentcloud.com/document/product/267/39969

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 105
of 140

Notes

The Video Cloud SDK does not impose any limit on the sources of playback URLs, which means you can use it
to play both Tencent Cloud and non-Tencent Cloud URLs. However, the player of the SDK supports only live
streaming URLs in FLV, RTMP, HLS (M3U8), and WebRTC formats and VOD URLs in MP4, HLS (M3U8), and FLV

formats.

Sample Code

Regarding frequently asked questions among developers, Tencent Cloud offers a straightforward API example
project, which you can use to quickly learn how to use different APIs.

Platform GitHub Address

iOS Github

Android Github

Flutter Github

Integration

Step 1. Download the SDK

Download the SDK and follow the instructions in SDK Integration to integrate the SDK into your application.

Step 2. Configure License Authorization for SDK

1. Obtain license authorization：

If you have obtained the relevant license authorization，need to Get License URL and License Key in Cloud Live
Console﻿

https://github.com/LiteAVSDK/Live_iOS/tree/main/MLVB-API-Example-OC
https://github.com/LiteAVSDK/Live_Android/tree/main/MLVB-API-Example
https://github.com/LiteAVSDK/Live_Flutter
https://www.tencentcloud.com/document/product/1071/38150
https://www.tencentcloud.com/document/product/1071/38156
https://console.tencentcloud.com/live/license

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 106
of 140

If you have not yet obtained the license authorization，Please reference Adding and Renewing Licenses to make an
application.
2. Before your App calls SDK-related functions (it is recommended in the Application class), set the following settings:

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSD

 NSString * const licenceURL = @"<your licenseUrl>";

 NSString * const licenceKey = @"<your key>";

 [V2TXLivePremier setEnvironment:@"GDPR"];// set your environment

 // V2TXLivePremier located in "V2TXLivePremier.h"

 [V2TXLivePremier setLicence:licenceURL key:licenceKey];

 [V2TXLivePremier setObserver:self];

 NSLog(@"SDK Version = %@", [V2TXLivePremier getSDKVersionStr]);

 return YES;

}

#pragma mark - V2TXLivePremierObserver

- (void)onLicenceLoaded:(int)result Reason:(NSString *)reason {

 NSLog(@"onLicenceLoaded: result:%d reason:%@", result, reason);

}

@end

Note:
The packageName configured in the license must be the same as the application itself, otherwise the play
stream will fail.

Step 3. Create Player

The V2TXLivePlayer module in Tencent Cloud SDK is responsible for implementing the live broadcast function.

V2TXLivePlayer *_txLivePlayer = [[V2TXLivePlayer alloc] init];

https://www.tencentcloud.com/document/product/1071/38546

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 107
of 140

Step 4. Create a rendering view

In iOS, a view is used as the basic UI rendering unit. Therefore, you need to configure a view, whose size and position
you can adjust, for the player to display video images on.

// Use setRenderView to bind a rendering view to the player

[_txLivePlayer setRenderView:_myView];

Technically, the player does not render video images directly on the view (_myView in the sample code) you

provide. Instead, it creates a subview for OpenGL rendering over the view.
You can adjust the size of video images by changing the size and position of the view. The SDK will make changes to
the video images accordingly.

How can I animate views?

You are allowed great flexibility in view animation, but note that you need to modify the transform rather than

 frame attribute of the view.

[UIView animateWithDuration:0.5 animations:^{

 _myView.transform = CGAffineTransformMakeScale(0.3, 0.3); // Shrink by 1/3

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 108
of 140

}];

Step 5. Start playback

NSString* url = @"http://2157.liveplay.myqcloud.com/live/2157_xxxx.flv";

[_txLivePlayer startPlay:url];

Step 6. Change the fill mode

setRenderFillMode: aspect fill or aspect fit

Value Description

V2TXLiveFillModeFill Images are scaled to fill the entire screen, and the excess parts are cropped. There are
no black bars in this mode, but images may not be displayed in whole.

V2TXLiveFillModeFit Images are scaled as large as the longer side can go. Neither side exceeds the screen
after scaling. Images are centered, and there may be black bars.

setRenderRotation: clockwise rotation of video

Value Description

V2TXLiveRotation0 Original

V2TXLiveRotation90 Rotate 90 degrees clockwise

V2TXLiveRotation180 Rotate 180 degrees clockwise

V2TXLiveRotation270 Rotate 270 degrees clockwise

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 109
of 140

Step 7. Pause playback

Technically speaking, you cannot pause a live playback. In this document, by pausing playback, we mean freezing
video and disabling audio. In the meantime, new video streams continue to be sent to the cloud. When you resume

playback, it starts from the time of resumption. This is in contrast to VOD. With VOD, when you pause and resume
playback, the player behaves the same way as it does when you pause and resume a local video file.

// Pause playback

[_txLivePlayer pauseAudio];

[_txLivePlayer pauseVideo];

// Resume playback

[_txLivePlayer resumeAudio];

[_txLivePlayer resumeVideo];

Step 8. Stop playback

// Stop playback

[_txLivePlayer stopPlay];

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 110
of 140

Step 9. Take a screenshot

Call snapshot to take a screenshot of the live video streamed. You can get the screenshot taken in the
onSnapshotComplete callback of V2TXLivePlayerObserver . This method captures a frame of the streamed

video. To capture the UI, use the corresponding API of the iOS system.

...

[_txLivePlayer setObserver:self];

[_txLivePlayer snapshot];

...

- (void)onSnapshotComplete:(id<V2TXLivePlayer>)player image:(TXImage *)image {

 if (image != nil) {

 dispatch_async(dispatch_get_main_queue(), ^{

 [self handle:image];

 });

 }

}

Latency Control

The live playback feature of the SDK is not based on FFmpeg, but Tencent Cloud’s proprietary playback engine,

which is why the SDK offers better latency control than open-source players do. We provide three latency control
modes, which can be used for showrooms, game streaming, and hybrid scenarios.
Comparison of the three modes

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePlayerObserver__ios.html#a5754eb816b91fd0d0ac1559dd7884dad

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 111
of 140

Mode Stutter Average
Latency

Scenario Remarks

Speedy
More likely than the
speedy mode 2-3s

Live showroom
(Chongding
Dahui)

The mode delivers low latency and is
suitable for latency-sensitive
scenarios.

Smooth Least likely of the
three

>= 5s

Game
streaming
(Penguin
Esports)

Playback is least likely to stutter in
this mode, which makes it suitable for
ultra-high-bitrate streaming of games
such as PUBG.

Auto Self-adaptive to
network conditions

2-8s Hybrid The better network conditions at the
audience end, the lower the latency.

Code to integrate the three modes

// Auto mode

[_txLivePlayer setCacheParams:1 maxTime:5];

// Speedy mode

[_txLivePlayer setCacheParams:1 maxTime:1];

// Smooth mode

[_txLivePlayer setCacheParams:5 maxTime:5];

// Start playback after configuration

Note:
For more information on stuttering and latency control, see Video Stutter.

Listening for SDK Events

You can bind a V2TXLivePlayerObserver to your V2TXLivePlayer object to receive callback notifications about

the player status, playback volume, first audio/video frame, statistics, warning and error messages, etc.

Periodically triggered notifications

The onStatisticsUpdate callback notification is triggered every 2 seconds to update you on the player’s status in real

time. Like a car’s dashboard, the callback gives you information about the SDK, such as network conditions and video
information.

Parameter Description

appCpu CPU usage (%) of the application

https://www.tencentcloud.com/document/product/1071/41876
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePlayerObserver__ios.html
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePusherObserver__ios.html#ae93683da9240a752e7b6d70d8e940cbc

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 112
of 140

systemCpu CPU usage (%) of the system

width Video width

height Video height

fps Frame rate (fps)

audioBitrate Audio bitrate (Kbps)

videoBitrate Video bitrate (Kbps)

The onPlayoutVolumeUpdate callback, which notifies you of the player’s volume, works only after you call
enableVolumeEvaluation to enable the volume reminder. You can set the interval of the callback by specifying the
 intervalMs parameter of enableVolumeEvaluation .

Event-triggered notifications

Other callbacks are triggered when specific events occur.

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePlayerObserver__ios.html#a5439ba0397be3943c6ebfb6083c27664
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLivePlayer__ios.html#aeed74080dd72e52b15475a54ca5fd86b

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 113
of 140

LEB
Last updated：2024-01-13 15:49:41

LEB Overview

Live Event Broadcasting (LEB) is the ultra-low-latency version of LVB. It features lower latency than traditional
streaming protocols and delivers superior playback experience with millisecond latency. It is suitable for scenarios
with high requirements on latency, such as online education, sports streaming, and online quizzes.

Note:
The figure above (made using scrcpy) is a comparison of LEB and standard CDN live streaming. The images on the
left and in the middle show the playback end of standard CDN live streaming and LEB, and the image on the right
shows the publishing end.
LVB and LEB are priced differently. For details, please see LVB Billing Overview and LEB Billing Overview.

Strengths

Strength Description

Playback with millisecond
latency

The latency is kept within 1s thanks to the use of UDP, as opposed to 3-5s in
traditional live streaming. This, along with excellent instant streaming
performance and low stuttering rate, guarantees a superior streaming
experience.

Diverse features and smooth
migration

LEB integrates a wide range of features including stream publishing,
transcoding, recording, screenshot, porn detection, and playback. It allows
smooth migration from standard live streaming.

Easy-to-use, secure, and
reliable

The use of a standard protocol makes integration easy. You can play live
video on Chrome and Safari without installing any plugins. In addition, the
playback protocol encrypts video by default for improved security and
reliability.

Use cases

Scenario Description

Sports event
LEB offers ultra-low-latency streaming for sports events. It brings sports
content to audience at low latency, allowing audience to learn what’s
happening in real time.

E-commerce streaming Some e-commerce streaming scenarios, for example, online auctions and

https://github.com/Genymobile/scrcpy
https://www.tencentcloud.com/document/product/267/2818
https://www.tencentcloud.com/document/product/267/39969

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 114
of 140

sales promotion, require extremely low latency. LEB’s ability to stream at
ultra-low latency ensures that hosts and audience get real-time feedback from
each other, improving online shopping experience.

Online classes
LEB can be used for online classes. Its ability to stream at ultra-low latency
allows teachers and students to interact with each other as they do in offline
classes.

Online quizzes

Due to latency, some online quizzes have to insert extra frames at the
audience end to ensure that the host and audience are in sync with each
other. This is not necessary if you use LEB, whose ultra-low-latency streaming
capability makes sure that the two sides are in sync. It helps you implement
online quizzes more easily and deliver smoother experience.

Showrooms LEB can significantly improve the experience of latency-sensitive interactions
such as gift giving in live showrooms.

Tryout

Video Cloud Toolkit is a comprehensive audio-video solution developed by Tencent Cloud that allows you to try out
the features of the TRTC, MLVB and UGC SDKs, including the LEB Player.
Note:
The demonstration and directions in this document use the demo app for Android as an example. The UI of the app for
iOS is slightly different.

Source code and demonstration

Source
Code

Demo Publishing Demonstration (Android) Playback Demonstr

Android

 iOS

https://github.com/tencentyun/LiteAVProfessional_Android
https://github.com/tencentyun/LiteAVProfessional_iOS

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 115
of 140

Note:

In addition to the above sample code, regarding frequently asked questions among developers, Tencent Cloud offers
a straightforward API example project, which you can use to quickly learn how to use different APIs.
iOS：MLVB-API-Example
Android：MLVB-API-Example
Flutter：Live-API-Example

Publishing

LEB is compatible with LVB, which means you can publish streams using an ordinary publisher and play the streams
using LEB.
1. Download and install Video Cloud Toolkit, log in, and go to MLVB > Push (Camera).
2. Allow the permissions asked, and tap Auto-generate to start publishing streams.
3. If publishing is successful, tap the QR code icon in the top right and select LEB to get the playback URL for LEB.

4. During publishing, you can tap the menu icon in the bottom right to apply filters, add background music, switch
cameras, etc.

Playback

1. Download and install Video Cloud Toolkit, log in, and go to Live Broadcast > LEB Player.
2. Allow the permissions asked, tap the scan button, and scan the LEB playback URL obtained earlier.
3. Playback starts automatically once the QR code is read. During playback, you can tap the menu icon in the bottom
right to mute playback or change other settings.

https://github.com/LiteAVSDK/Live_iOS/tree/main/MLVB-API-Example-OC
https://github.com/LiteAVSDK/Live_Android/tree/main/MLVB-API-Example
https://github.com/LiteAVSDK/Live_Flutter/tree/main/Live-API-Example
https://www.tencentcloud.com/document/product/1071/38147
https://www.tencentcloud.com/document/product/1071/38147

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 116
of 140

Integration

In the new version of the MLVB SDK, you can use V2TXLivePlayer for LEB and V2TXLivePusher for publishing.

LEB supports WebRTC protocols and uses the standard extension method. All URLs in LEB start with
 webrtc:// .

Step 1. Download the SDK

Download LiteAV_All or Professional at SDK Download.

Step 2. Configure License Authorization for SDK

1. Obtain license authorization：
If you have obtained the relevant license authorization，Need to Get License URL and License Key in Cloud Live
Console﻿

If you have not yet obtained the license authorization，Please reference Adding and Renewing Licenses to make an

application.
2. Before your App calls SDK-related functions (it is recommended in the Application class), set the following settings:

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSD

 NSString * const licenceURL = @"<your licenseUrl>";

 NSString * const licenceKey = @"<your key>";

 // V2TXLivePremier located in "V2TXLivePremier.h"

 [V2TXLivePremier setEnvironment:@"GDPR"];// set your environment

 [V2TXLivePremier setLicence:licenceURL key:licenceKey];

 [V2TXLivePremier setObserver:self];

 NSLog(@"SDK Version = %@", [V2TXLivePremier getSDKVersionStr]);

 return YES;

}

#pragma mark - V2TXLivePremierObserver

https://www.tencentcloud.com/document/product/1071/41273
https://www.tencentcloud.com/document/product/1071/38150
https://console.tencentcloud.com/live/license
https://www.tencentcloud.com/document/product/1071/38546

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 117
of 140

- (void)onLicenceLoaded:(int)result Reason:(NSString *)reason {

 NSLog(@"onLicenceLoaded: result:%d reason:%@", result, reason);

}

@end

Step 3. Get a playback URL

In live streaming, URLs are needed for both publishing and playback. For instructions on how to get URLs for LEB,

please see Live Event Broadcasting (LEB) > Get Playback URL.

All LEB URLs start with webrtc:// , as in:

webrtc://{Domain}/{AppName}/{StreamName}

The table below lists the key fields in an LEB URL and their meanings.

Field Description

webrtc:// Prefix

Domain Domain name

AppName
Application name, which is live by default. It specifies the storage path of a live
streaming file.

StreamName Stream name, which is the unique identifier of a stream

Note:
To publish streams, please see Publishing from Camera or Publishing from Screen.

Step 4. Start LEB

You can use a V2TXLivePlayer object for LEB. For details, see the code below (make sure that you pass in the

correct URL).

Sample code

Android
iOS

// Create a V2TXLivePlayer object

V2TXLivePlayer player = new V2TXLivePlayerImpl(mContext);

player.setObserver(new MyPlayerObserver(playerView));

player.setRenderView(mSurfaceView);

// Pass in the low-latency playback URL to start playback

player.startPlay("webrtc://{Domain}/{AppName}/{StreamName}");

https://www.tencentcloud.com/document/product/267/41030#step4
https://www.tencentcloud.com/document/product/1071/38157
https://www.tencentcloud.com/document/product/1071/41878

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 118
of 140

V2TXLivePlayer *player = [[V2TXLivePlayer alloc] init];

[player setObserver:self];

[player setRenderView:videoView];

[player startPlay:@"webrtc://{Domain}/{AppName}/{StreamName}"];

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 119
of 140

Android
LVB
Last updated：2024-11-18 20:26:09

Basics

This document introduces the live playback feature of the Video Cloud SDK.

Live streaming and video on demand

In live streaming, the video streams published by hosts in real time are the source of streaming. When hosts stop
publishing streams, the video played stops. Since video is streamed in real time, players do not have progress bars

when they play live streaming URLs.
In video on demand (VOD), video files in the cloud are the source of streaming. Videos can be played at any time as
long as they are not deleted from the cloud, and the playback progress can be adjusted using the progress bar. Video
streaming websites such as Tencent Video and Youku Tudou are typical applications of VOD.

Supported protocols

The table below lists the common protocols used for live streaming. We recommend FLV URLs (which start with

 http and end with flv) for LVB and WebRTC for LEB. For more information, please see LEB.

Protocol Pro Con Playback
Latency

HLS Mature, well adapted to high-
concurrency scenarios

SDK integration is required. 3s - 5s

FLV Mature, well adapted to high-
concurrency scenarios

SDK integration is required 2s - 3s

RTMP Relatively low latency Poor performance in high-
concurrency scenarios

1s - 3s

WebRTC Lowest latency SDK integration is required < 1s

Note:
LVB and LEB are priced differently. For details, please see LVB Billing Overview and LEB Billing Overview.

https://www.tencentcloud.com/document/product/1071/41875
https://www.tencentcloud.com/document/product/267/2818
https://www.tencentcloud.com/document/product/267/39969

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 120
of 140

Notes

The Video Cloud SDK does not impose any limit on the sources of playback URLs, which means you can use it
to play both Tencent Cloud and non-Tencent Cloud URLs. However, the player of the SDK supports only live
streaming URLs in FLV, RTMP, HLS (M3U8), and WebRTC formats and VOD URLs in MP4, HLS (M3U8), and FLV

formats.

Sample Code

Regarding frequently asked questions among developers, Tencent Cloud offers a straightforward API example
project, which you can use to quickly learn how to use different APIs.

Platform GitHub Address

iOS Github

Android Github

Flutter Github

Integration

Step 1. Download the SDK

Download the SDK and follow the instructions in SDK Integration to integrate the SDK into your application.

Step 2. Configure License Authorization for SDK

1. Obtain license authorization：

If you have obtained the relevant license authorization，need to Get License URL and License Key in Cloud Live
Console.

https://github.com/LiteAVSDK/Live_iOS/tree/main/MLVB-API-Example-OC
https://github.com/LiteAVSDK/Live_Android/tree/main/MLVB-API-Example
https://github.com/LiteAVSDK/Live_Flutter
https://www.tencentcloud.com/document/product/1071/38150
https://www.tencentcloud.com/document/product/1071/38156
https://console.tencentcloud.com/live/license

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 121
of 140

If you have not yet obtained the license authorization，Please reference Adding and Renewing Licenses to make an
application.

2. Before your App calls SDK-related functions (it is recommended in the Application class), set the following settings:

public class MyApplication extends Application {

@Override

public void onCreate() {

super.onCreate();

String licenceURL = ""; // your licence url

String licenceKey = ""; // your licence key

V2TXLivePremier.setEnvironment("GDPR"); // set your environment

V2TXLivePremier.setLicence(this, licenceURL, licenceKey);

V2TXLivePremier.setObserver(new V2TXLivePremierObserver() {

 @Override

 public void onLicenceLoaded(int result, String reason) {

 Log.i(TAG, "onLicenceLoaded: result:" + result + ", reason:" + reason);

 }

 });

}

Note:
The packageName configured in the license must be the same as the application itself, otherwise the play
stream will fail.

Step 3. Create a rendering view

For the player to display video images, you need to add a rendering view in the layout XML file:

<com.tencent.rtmp.ui.TXCloudVideoView

 android:id="@+id/video_view"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_centerInParent="true"

https://www.tencentcloud.com/document/product/1071/38546

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 122
of 140

 android:visibility="visible"/>

Step 4. Create a player object

The V2TXLivePlayer module in the Video Cloud SDK offers live playback capabilities. Use the setRenderView API
to associate the module with the video_view control added to the UI in Step 3.

// mPlayerView is the view added in step 1

TXCloudVideoView mView = (TXCloudVideoView) view.findViewById(R.id.video_view);

// Create a player object

V2TXLivePlayer mLivePlayer = new V2TXLivePlayerImpl(mContext);

// Associate the player object with the view

mLivePlayer.setRenderView(mView);

Step 5. Start playback

String flvUrl = "http://2157.liveplay.myqcloud.com/live/2157_xxxx.flv";

mLivePlayer.startPlay(flvUrl);

Step 6. Change the fill mode

view: size and position

You can modify the size and position of video images by adjusting the size and position of the video_view control

added in Step3.

setRenderFillMode: aspect fill or aspect fit

Value Description

V2TXLiveFillModeFill Images are scaled to fill the entire screen, and the excess parts are cropped. There
are no black bars in this mode, but images may not be displayed in whole.

V2TXLiveFillModeFit Images are scaled as large as the longer side can go. Neither side exceeds the screen
after scaling. Images are centered, and there may be black bars.

setRenderRotation: clockwise rotation of video

Value Description

V2TXLiveRotation0 Original

V2TXLiveRotation90 Rotate 90 degrees clockwise

V2TXLiveRotation180 Rotate 180 degrees clockwise

V2TXLiveRotation270 Rotate 270 degrees clockwise

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 123
of 140

// Set the fill mode

mLivePlayer.setRenderFillMode(V2TXLiveFillModeFit);

// Set the rotation of video

mLivePlayer.setRenderRotation(V2TXLiveRotation0);

Step 7. Pause playback

Technically speaking, you cannot pause a live playback. In this document, by pausing playback, we mean freezing
video and disabling audio. In the meantime, new video streams continue to be sent to the cloud. When you resume
playback, it starts from the time of resumption. This is in contrast to VOD. With VOD, when you pause and resume
playback, the player behaves the same way as it does when you pause and resume a local video file.

// Pause playback

mLivePlayer.pauseAudio();

mLivePlayer.pauseVideo();

// Resume playback

mLivePlayer.resumeAudio();

mLivePlayer.resumeVideo();

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 124
of 140

Step 8. Stop playback

Call stopPlay to stop playback.

mLivePlayer.stopPlay();

Step 9. Take a screenshot

Call snapshot to take a screenshot of the live video streamed. This method captures a frame of the streamed video.

To capture the UI, use the corresponding API of the Android system.

mLivePlayer.setObserver(new MyPlayerObserver());

mLivePlayer.snapshot();

// Get the screenshot taken in the onSnapshotComplete callback of MyPlayerObserver

private class MyPlayerObserver extends V2TXLivePlayerObserver {

 ...

 @Override

 public void onSnapshotComplete(V2TXLivePlayer v2TXLivePlayer, Bitmap bitmap) {

 }

 ...

}

Latency Control

The live playback feature of the SDK is not based on FFmpeg, but Tencent Cloud’s proprietary playback engine,
which is why the SDK offers better latency control than open-source players do. We provide three latency control
modes, which can be used for showrooms, game streaming, and hybrid scenarios.

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 125
of 140

Comparison of the three modes

Mode Stutter Average
Latency

Scenario Remarks

Speedy More likely than the speedy
mode

2 - 3s

Live
showroom
(Chongding
Dahui)

The mode delivers low
latency and is suitable for
latency-sensitive scenarios.

Smooth Least likely of the three ≥ 5s

Game
streaming
(Penguin
Esports)

Playback is least likely to
stutter in this mode, which
makes it suitable for ultra-
high-bitrate streaming of
games such as PUBG.

Auto
Self-adaptive to network
conditions 2 - 8s Hybrid

The better network
conditions at the audience
end, the lower the latency.

Code to integrate the three modes

// Auto mode

mLivePlayer.setCacheParams(1.0f, 5.0f);

// Speedy mode

mLivePlayer.setCacheParams(1.0f, 1.0f);

// Smooth mode

mLivePlayer.setCacheParams(5.0f, 5.0f);

// Start playback after configuration

Note:

For more information on stuttering and latency control, see Video Stutter.

Listening for SDK Events

You can bind a V2TXLivePlayerObserver to your V2TXLivePlayer object to receive callback notifications about

the player status, playback volume, first audio/video frame, statistics, warning and error messages, etc.

Periodically triggered notification

The onStatisticsUpdate callback notification is triggered every 2 seconds to update you on the player’s status in real
time. Like a car’s dashboard, the callback gives you information about the SDK, such as network conditions and video

information.

Parameter Description

https://www.tencentcloud.com/document/product/1071/41876
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePlayerObserver__android.html
https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePlayerObserver__android.html#ab10e1f4e22e9bb73e3cea4ae15c36465

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 126
of 140

appCpu CPU usage (%) of the application

systemCpu CPU usage (%) of the system

width Video width

height Video height

fps Frame rate (fps)

audioBitrate Audio bitrate (Kbps)

videoBitrate Video bitrate (Kbps)

The onPlayoutVolumeUpdate callback, which notifies you of the player’s volume, works only after you call
enableVolumeEvaluation to enable the volume reminder. You can set the interval of the callback by specifying the
 intervalMs parameter of enableVolumeEvaluation .

Event-triggered notifications

Other callbacks are triggered when specific events occur.

https://liteav.sdk.qcloud.com/doc/api/en/group__V2TXLivePlayerObserver__android.html#a57fc000bf5e935f7253fa94e1750359e
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__V2TXLivePlayer__android.html#aaa893a96eff34a7ba660441f7597d6d8

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 127
of 140

LEB
Last updated：2024-01-13 15:49:41

LEB Overview

Live Event Broadcasting (LEB) is the ultra-low-latency version of LVB. It features lower latency than traditional
streaming protocols and delivers superior playback experience with millisecond latency. It is suitable for scenarios
with high requirements on latency, such as online education, sports streaming, and online quizzes.

Note:
The figure above (made using scrcpy) is a comparison of LEB and standard CDN live streaming. The images on the
left and in the middle show the playback end of standard CDN live streaming and LEB, and the image on the right
shows the publishing end.
LVB and LEB are priced differently. For details, please see LVB Billing Overview and LEB Billing Overview.

Strengths

Strength Description

Playback with millisecond
latency

The latency is kept within 1s thanks to the use of UDP, as opposed to 3-5s in
traditional live streaming. This, along with excellent instant streaming
performance and low stuttering rate, guarantees a superior streaming
experience.

Diverse features and smooth
migration

LEB integrates a wide range of features including stream publishing,
transcoding, recording, screenshot, porn detection, and playback. It allows
smooth migration from standard live streaming.

Easy-to-use, secure, and
reliable

The use of a standard protocol makes integration easy. You can play live
video on Chrome and Safari without installing any plugins. In addition, the
playback protocol encrypts video by default for improved security and
reliability.

Use cases

Scenario Description

Sports event
LEB offers ultra-low-latency streaming for sports events. It brings sports
content to audience at low latency, allowing audience to learn what’s
happening in real time.

E-commerce streaming Some e-commerce streaming scenarios, for example, online auctions and

https://github.com/Genymobile/scrcpy
https://www.tencentcloud.com/document/product/267/2818
https://www.tencentcloud.com/document/product/267/39969

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 128
of 140

sales promotion, require extremely low latency. LEB’s ability to stream at
ultra-low latency ensures that hosts and audience get real-time feedback from
each other, improving online shopping experience.

Online classes
LEB can be used for online classes. Its ability to stream at ultra-low latency
allows teachers and students to interact with each other as they do in offline
classes.

Online quizzes

Due to latency, some online quizzes have to insert extra frames at the
audience end to ensure that the host and audience are in sync with each
other. This is not necessary if you use LEB, whose ultra-low-latency streaming
capability makes sure that the two sides are in sync. It helps you implement
online quizzes more easily and deliver smoother experience.

Showrooms LEB can significantly improve the experience of latency-sensitive interactions
such as gift giving in live showrooms.

Tryout

Video Cloud Toolkit is a comprehensive audio-video solution developed by Tencent Cloud that allows you to try out
the features of the TRTC, MLVB and UGC SDKs, including the LEB Player.
Note:
The demonstration and directions in this document use the demo app for Android as an example. The UI of the app for
iOS is slightly different.

Source code and demonstration

Source
Code

Demo Publishing Demonstration (Android) P

Android

https://github.com/tencentyun/LiteAVProfessional_Android

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 129
of 140

 iOS

Note:

In addition to the above sample code, regarding frequently asked questions among developers, Tencent Cloud offers
a straightforward API example project, which you can use to quickly learn how to use different APIs.
iOS：MLVB-API-Example
Android：MLVB-API-Example
Flutter：Live-API-Example

Publishing

LEB is compatible with LVB, which means you can publish streams using an ordinary publisher and play the streams
using LEB.
1. Download and install Video Cloud Toolkit, log in, and go to MLVB > Push (Camera).
2. Allow the permissions asked, and tap Auto-generate to start publishing streams.
3. If publishing is successful, tap the QR code icon in the top right and select LEB to get the playback URL for LEB.

4. During publishing, you can tap the menu icon in the bottom right to apply filters, add background music, switch
cameras, etc.

Playback

https://github.com/tencentyun/LiteAVProfessional_iOS
https://github.com/LiteAVSDK/Live_iOS/tree/main/MLVB-API-Example-OC
https://github.com/LiteAVSDK/Live_Android/tree/main/MLVB-API-Example
https://github.com/LiteAVSDK/Live_Flutter/tree/main/Live-API-Example
https://www.tencentcloud.com/document/product/1071/38147

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 130
of 140

1. Download and install Video Cloud Toolkit, log in, and go to Live Broadcast > LEB Player.
2. Allow the permissions asked, tap the scan button, and scan the LEB playback URL obtained earlier.
3. Playback starts automatically once the QR code is read. During playback, you can tap the menu icon in the bottom

right to mute playback or change other settings.

Integration

In the new version of the MLVB SDK, you can use V2TXLivePlayer for LEB and V2TXLivePusher for publishing.

LEB supports WebRTC protocols and uses the standard extension method. All URLs in LEB start with
 webrtc:// .

Step 1. Download the SDK

Download LiteAV_All or Professional at SDK Download.

Step 2. Configure License Authorization for SDK

1. Obtain license authorization：
If you have obtained the relevant license authorization，need to Get License URL and License Key in Cloud Live
Console﻿

If you have not yet obtained the license authorization，Please reference Adding and Renewing Licenses to make an
application.
2. Before your App calls SDK-related functions (it is recommended in the Application class), set the following settings:

public class MApplication extends Application {

@Override

https://www.tencentcloud.com/document/product/1071/38147
https://www.tencentcloud.com/document/product/1071/41273
https://www.tencentcloud.com/document/product/1071/38150
https://console.tencentcloud.com/live/license
https://www.tencentcloud.com/document/product/1071/38546

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 131
of 140

public void onCreate() {

 super.onCreate();

 String licenceURL = ""; // your licence url

 String licenceKey = ""; // your licence key

 V2TXLivePremier.setEnvironment("GDPR"); // set your environment

 V2TXLivePremier.setLicence(this, licenceURL, licenceKey);

 V2TXLivePremier.setObserver(new V2TXLivePremierObserver() {

 @Override

 public void onLicenceLoaded(int result, String reason) {

 Log.i(TAG, "onLicenceLoaded: result:" + result + ", reason:" + reas

 }

 });

}

Step 3. Get a playback URL

In live streaming, URLs are needed for both publishing and playback. For instructions on how to get URLs for LEB,
please see Live Event Broadcasting (LEB) > Get Playback URL.

All LEB URLs start with webrtc:// , as in:

webrtc://{Domain}/{AppName}/{StreamName}

The table below lists the key fields in an LEB URL and their meanings.

Field Description

webrtc:// Prefix

Domain Domain name

AppName
Application name, which is live by default. It specifies the storage path of a live streaming
file.

StreamName Stream name, which is the unique identifier of a stream

Note:
To publish streams, please see Publishing from Camera or Publishing from Screen.

Step 4. Start LEB

You can use a V2TXLivePlayer object for LEB. For details, see the code below (make sure that you pass in the

correct URL).

Sample code

https://www.tencentcloud.com/document/product/267/41030#step4
https://www.tencentcloud.com/document/product/1071/38158
https://www.tencentcloud.com/document/product/1071/41879

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 132
of 140

Android
iOS

// Create a V2TXLivePlayer object

V2TXLivePlayer player = new V2TXLivePlayerImpl(mContext);

player.setObserver(new MyPlayerObserver(playerView));

player.setRenderView(mSurfaceView);

// Pass in the low-latency playback URL to start playback

player.startPlay("webrtc://{Domain}/{AppName}/{StreamName}");

V2TXLivePlayer *player = [[V2TXLivePlayer alloc] init];

[player setObserver:self];

[player setRenderView:videoView];

[player startPlay:@"webrtc://{Domain}/{AppName}/{StreamName}"];

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 133
of 140

Flutter
LVB
Last updated：2024-01-13 15:49:41

Basics

This document describes the live playback feature of Live Flutter Plugin.

Live streaming overview

In live streaming, the video source is pushed by the host in real time. When the host stops pushing the source, the
player will also stop playing the video. Because the live stream is played back in real time, no progress bar will be

displayed in the player during the playback.

Supported protocols

Common live streaming protocols are as listed below. We recommend you use an FLV-based live streaming URL that
starts with http and ends with .flv for LVB. For LEB, we recommend you use the WebRTC protocol. For

more information, see LEB.

Protocol Advantage Disadvantage Playback
Latency

HLS Mature, well adapted to high-
concurrency scenarios

SDK integration is required 3–5 seconds

FLV Mature, well adapted to high-
concurrency scenarios

SDK integration is required. 2-3 seconds

RTMP Relatively low latency Poor performance in high-
concurrency scenarios

1-3 seconds

WebRTC Lowest latency SDK integration is required < 1 second

Note:

LVB and LEB are priced differently. For details, see LVB Billing Overview and LEB Billing Overview.

Notes

https://www.tencentcloud.com/document/product/1071/41875
https://www.tencentcloud.com/document/product/267/2818
https://www.tencentcloud.com/document/product/267/39969

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 134
of 140

The SDK does not impose any restrictions on the sources of playback URLs, which means you can use it to
play both Tencent Cloud and non-Tencent Cloud URLs. However, the player of the SDK supports only live streaming
URLs in FLV, RTMP, HLS (M3U8), and WebRTC formats and VOD URLs in MP4, HLS (M3U8), and FLV formats.

Sample Code

Tencent Cloud offers an easy-to-understand API example project to help you quickly learn how to use different APIs.

Platform GitHub Address

iOS GitHub

Android GitHub

Flutter live_flutter_plugin

Getting Started

1. Set dependencies

Integrate live_flutter_plugin into your application as instructed in SDK Integration Guide.

dependencies:

 live_flutter_plugin: latest version number

2. Configure a license for the SDK

1. Get the license:
If you have the required license, get the license URL and key in the CSS console.

https://github.com/LiteAVSDK/Live_iOS/tree/main/MLVB-API-Example-OC
https://github.com/LiteAVSDK/Live_Android/tree/main/MLVB-API-Example
https://github.com/LiteAVSDK/Live_Flutter
https://www.tencentcloud.com/document/product/1071/50582
https://console.tencentcloud.com/live/license

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 135
of 140

If you don't have the required license, apply for a license as instructed in New License and Renewal.
2. Before your application calls features of live_flutter_plugin , complete the following configuration:

import 'package:live_flutter_plugin/v2_tx_live_premier.dart';

 /// Tencent Cloud license management page (https://console.tencentcloud.com/live/l

setupLicense() {

 // The license URL of the current application

 var LICENSEURL = "";

 // The license key of the current application

 var LICENSEURLKEY = "";

 V2TXLivePremier.setLicence(LICENSEURL, LICENSEURLKEY);

}

Note:

The packageName/BundleId configured in the license must be the same as that of the application;

otherwise, playback will fail.

3. Create the player

The V2TXLivePlayer module in the SDK offers live playback capabilities.

import 'package:live_flutter_plugin/v2_tx_live_player.dart';

/// Initialize `V2TXLivePlayer`

initPlayer() {

 _livePlayer = V2TXLivePlayer();

 _livePlayer.addListener(onPlayerObserver);

}

4. Render the view

https://www.tencentcloud.com/document/product/1071/38546

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 136
of 140

In Flutter, you need to depend on v2_tx_live_video_widget to create a video rendering view for the player to

display video images on.

import 'package:live_flutter_plugin/widget/v2_tx_live_video_widget.dart';

/// The video rendering view widget

Widget renderView() {

 return V2TXLiveVideoWidget(

 onViewCreated: (viewId) async {

 // Set the video rendering view

 _livePlayer.setRenderViewID(_renderViewId);

 },

);

}

5. Start playback

/// Start pulling the stream

startPlay() async {

 // Generate the `url` (RTMP/TRTC/LEB)

 var url = ""

 // Start pulling the stream

 await _livePlayer?.startPlay(url);

}

How do I get a valid stream push URL?

Activate CSS. In the CSS console, go to Auxiliary Tools > Address Generator to generate a stream push URL.
For more information, see Publishing/Playback URL.

Why is V2TXLIVE_ERROR_INVALID_LICENSE returned?If the startPush API returns

 V2TXLIVE_ERROR_INVALID_LICENSE , it means your license verification failed. Please check your configuration

https://console.tencentcloud.com/live/addrgenerator/addrgenerator
https://www.tencentcloud.com/document/product/1071/39359

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 137
of 140

against Step 2. Configure a license for the SDK.

6. Adjust the image

setRenderFillMode: Fill or fit

Value Description

V2TXLiveFillModeFill Images are scaled to fill the entire screen, and the excess parts are cropped. There are
no black bars in this mode, but images may not be displayed entirely.

V2TXLiveFillModeFit
Images are scaled so that the long side of the video fits the screen. Neither side
exceeds the screen after scaling. Images are centered, and there may be black bars
visible.

setRenderRotation: Clockwise rotation of video

Value Description

V2TXLiveRotation0 No rotation

V2TXLiveRotation90 Rotate 90 degrees clockwise

V2TXLiveRotation180 Rotate 180 degrees

V2TXLiveRotation270 Rotate 270 degrees clockwise

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 138
of 140

7. Pause playback

Technically speaking, you cannot pause a live playback. In this document, pausing live playback refers to freezing
the video and disabling the audio. While the video is frozen, new video streams continue to be sent to the cloud.

When you resume playback, it resumes playing the current latest stream. This is different from pausing and resuming
playback in VOD, in which the player behaves the same way as it does when you pause and resume a local video file.

// Pause playback

_livePlayer.pauseAudio();

_livePlayer.pauseVideo();

// Resume playback

_livePlayer.resumeAudio();

_livePlayer.resumeVideo();

8. Stop playback

// Stop playback

_livePlayer.stopPlay();

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 139
of 140

Latency Control

The live playback feature of the SDK is not based on FFmpeg, but Tencent Cloud's proprietary playback engine,
which is why the SDK offers better latency control than open-source players do. We provide three latency control
modes, which can be used for live showrooms, game streaming, and hybrid scenarios.

Comparison of control modes

Mode Stutter Average
Latency

Scenario Remarks

Speedy Relatively high 2-3s
Live
showroom

Has better latency control and is
suitable for scenarios that require a
low latency.

Smooth Low >= 5s Game
streaming

Suitable for game live streaming
scenarios with a high bitrate.

Auto
Adapts to network
conditions 2-8s Hybrid

The better the network conditions
at the audience end, the lower the
latency.

Code to integrate the three modes

// Auto mode

_txLivePlayer.setCacheParams(1, 5);

// Speedy mode

_txLivePlayer.setCacheParams(1, 1);

// Smooth mode

_txLivePlayer.setCacheParams(5, 5);

// Start playback after configuration

Note:

For more information on stutter and latency control, see Video Stutter.

Listening for SDK Events

You can bind a V2TXLivePlayerObserver to V2TXLivePlayer . Then, all internal SDK status information, such as

player status, playback volume level, reception of the first audio/video frame, statistical data, warnings, and errors, will
be notified to you through corresponding callbacks.

Periodically triggered notification

https://www.tencentcloud.com/document/product/1071/41876
https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_player_observer/v2_tx_live_player_observer-library.html

Mobile Live Video Broadcasting

©2013-2025 Tencent Cloud International Pte. Ltd. Page 140
of 140

The onStatisticsUpdate notification is triggered once every 2 seconds to provide real-time feedback on the current
player status. It can act as a dashboard to inform you of what is happening inside the SDK so you can better
understand the current network conditions and video information.

Parameter Description

appCpu CPU usage (%) of the application

systemCpu CPU usage (%) of the system

width Video width

height Video height

fps Frame rate (fps)

audioBitrate Audio bitrate (Kbps)

videoBitrate Video bitrate (Kbps)

onPlayoutVolumeUpdate is the callback for the player volume level. It will be returned only when you call
enableVolumeEvaluation to enable the prompt for the player volume level. The callback interval is the same as that
specified by the intervalMs parameter in enableVolumeEvaluation .

Event-triggered notifications

Other callbacks are triggered when specific events occur.

https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_player_observer/v2_tx_live_player_observer-library.html
https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_player_observer/v2_tx_live_player_observer-library.html
https://pub.flutter-io.cn/documentation/live_flutter_plugin/latest/v2_tx_live_player_observer/v2_tx_live_player_observer-library.html

