
User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 1
of 163

User Generated Short Video SDK

Integration (No UI)

Product Documentation

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 2
of 163

Copyright Notice

©2013-2025 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by the Tencent corporate group, including
its parent, subsidiaries and affiliated companies, as the case may be. Trademarks of third parties referred to in this
document are owned by their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 3
of 163

Contents

Integration (No UI)
SDK Integration

SDK Integration (Xcode)
SDK Integration (Android Studio)

Capturing and Shoot
Capturing and Shoot

iOS
Android

Multi-Segment Shoot
iOS
Android

Shoot Drafts
iOS
Android

Adding Background Music
iOS
Android

Voice Changing and Reverb
iOS
Android

Preview, Clipping, and Splicing
Video Editing

iOS
Android

Video Splicing
iOS
Android

Upload and Playback
Signature Distribution
Video Upload

iOS
Android

Player SDK
iOS
Android

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 4
of 163

Tencent Effect SDK
SDK Features
SDK Integration Guide

iOS
Android

Migrating from UGSV Enterprise
Advanced Features and Special Effects

TikTok-like Special Effects
iOS
Android

Stickers and Subtitles
iOS
Android

Video Karaoke
iOS
Android

Image Transition Special Effects
iOS
Android

Customizing Video Data
iOS
Android

Video Porn Detection
Custom Themes

iOS
Android

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 5
of 163

Integration (No UI)
SDK Integration
SDK Integration (Xcode)
Last updated：2025-04-01 18:10:23

Supported Platforms

The SDK is supported on iOS 8.0 or later.

Environment Requirements

Xcode 9 or later
iOS 12.0 or later

Directions

Step 1. Link the SDK and system libraries

How to integrate a short video SDK into your app
How to run the demo
1. Select the project target and add the following system libraries:
Accelerate.framework
SystemConfiguration.framework

libc++.tbd
libsqlite3.tbd
MetalKit.framework
VideoToolbox.framework
ReplayKit.framework
GLKit.framework

OpenAL.framework
CoreServices.framework
2. Unzip the downloaded SDK package and copy it to your project directory. Select the project's Target,
navigate to Build Phases, then add the dynamic libraries (located in the SDK directory) under ​Link Binary

With Libraries:

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 6
of 163

TXFFmpeg.xcframework
TXSoundTouch.xcframework
TXLiteAVSDK_UGC.xcframework

3. Add the following frameworks in Embed Frameworks and select Code Sign On Copy.

TXFFmpeg.xcframework
TXSoundTouch.xcframework
4. Select the project's Target, search for ​bitcode in ​Build Settings, and set ​Enable Bitcode to ​NO.
1. Navigate to the ​TXLiteAVDemo(UGC)/XiaoShiPin directory in Terminal.

2. Run ​pod install.

3. Configure your iOS developer signing in Xcode.

Step 2. Configure app permissions

The app needs access to the photo album, which can be configured in Info.plist . Right-click Info.plist ,

select Open as > Source Code, and copy and modify the code below.

<key>NSAppleMusicUsageDescription</key>

<string>Video Cloud Toolkit needs to access your media library to obtain music

files. It cannot add music if you deny it access.</string>

<key>NSCameraUsageDescription</key>

<string>Video Cloud Toolkit needs to access your camera to be able to shoot

video.</string>

<key>NSMicrophoneUsageDescription</key>

<string>Video Cloud Toolkit needs to access your mic to be able to shoot videos

with audio.</string>

<key>NSPhotoLibraryAddUsageDescription</key>

<string>Video Cloud Toolkit needs to access your photo album to save edited

video files.</string>

<key>NSPhotoLibraryUsageDescription</key>

<string>Video Cloud Toolkit needs to access your photo album to edit your video

files.</string>

Step 3. Configure the license and get basic information

1. Follow the steps in License Application to apply for a license, and copy the key and license URL in the console.

https://www.tencentcloud.com/document/product/1069/55378#
https://console.tencentcloud.com/vod/license

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 7
of 163

2. Before you integrate UGSV features into your application, we recommend you set - [AppDelegate

application:didFinishLaunchingWithOptions:] as follows:

@import TXLiteAVSDK_UGC;

@implementation AppDelegate

- (BOOL)application:(UIApplication*)applicationdidFinishLaunchingWithOptions:(NSDic

 NSString * const licenceURL = @"<License URL obtained>";

 NSString * const licenceKey = @"<The key obtained>";

 [TXUGCBase setLicenceURL:licenceURL key:licenceKey];

 NSLog(@"SDK Version = %@", [TXLiveBase getSDKVersionStr]);

}

@end

Note:
If you use a license for the SDK on v4.7 and have upgraded the SDK to v4.9, you can click Switch to New

License in the console to generate a new license key and URL. A new license can be used only for the SDK on v4.9
or later and should be configured as described above.

Step 4. Configure logs

You can enable/disable console log printing and set the log level in TXLiveBase . Below are the APIs used.

setConsoleEnabled
Sets whether to print the SDK output in the Xcode console.

setLogLevel
Sets whether to allow the SDK to print local logs. By default, the SDK writes logs to the Documents/logs folder of the
current app.
We recommend that you enable local log printing. You may need to provide log files if you run into a problem and need
technical support.
Viewing log files

To reduce the storage space taken up by log files, the UGSV SDK encrypts local logs and limits their number. You
need a log decompression tool to view the content of log files.

[TXLiveBase setConsoleEnabled:YES];

[TXLiveBase setLogLevel:LOGLEVEL_DEBUG];

Step 5. Build and run the project

If the
 above steps are performed correctly, you will be able to successfully compile the HelloSDK project. Run the app

in the debug mode, and the following SDK version information will be printed in the Xcode console:

http://dldir1.qq.com/hudongzhibo/log_tool/decode_mars_log_file.py

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 8
of 163

2017-09-26 16:16:15.767 HelloSDK[17929:7488566] SDK Version = 5.2.5541

Module Description

Read the documents below to learn more about different modules of the SDK.
Video Shooting﻿
Video Editing﻿
Video Splicing﻿
Video Uploading﻿

Video Playback﻿

https://www.tencentcloud.com/document/product/1069/38007
https://www.tencentcloud.com/document/product/1069/38013
https://www.tencentcloud.com/document/product/1069/38014
https://www.tencentcloud.com/document/product/1069/38016
https://www.tencentcloud.com/document/product/1069/38017

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 9
of 163

SDK Integration (Android Studio)
Last updated：2025-04-01 18:10:24

Android Project Configuration

System requirements

We recommend you run the SDK on Android 5.0 (API level 21) or later.

Development environment

Below are the environment requirements for SDK development. You don't need to meet the same requirements for
application development, but make sure that your application is compatible with the SDK.

Android NDK: android-ndk-r12b
Android SDK Tools: android-sdk_25.0.2
minSdkVersion: 21
targetSdkVersion: 26
Android Studio (recommended)

Step 1. Integrate the SDK

Gradle
AAR
JAR + SO
1. Project Configuration
1.1 Specify dependencies in the ​build.gradle file located in your project's ​app directory
If using version 3.x of com.android.tools.build:gradle, add the following code:

dependencies {

implementation 'com.tencent.liteav:LiteAVSDK_UGC:latest.release'

}

If using version 2.x of com.android.tools.build:gradle, add the following code:

dependencies {

 compile 'com.tencent.liteav:LiteAVSDK_UGC:latest.release'

}

1.2 In defaultConfig , specify the CPU architecture to be used by your application.

defaultConfig {

ndk {

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 10
of 163

 abiFilters "armeabi-v7a", "arm64-v8a"

}

}

Note:
Currently, the SDK supports armeabi-v7a and arm64-v8a.
2. Click ​Sync Now, wait for the SDK to download automatically, then build the project.
1. Download the latest SDK.

Download Link: SDK Download. Copy the .aar files from the downloaded SDK directory to the specified local
repository directory (the one added in ​Step 2.2 of the project configuration).

2. Project Configuration
2.1. In the ​build.gradle file under your app module, add the dependency (replace LiteAVSDK_UGC_12.2.0.15065 with
your actual SDK version):

If using version 3.x of com.android.tools.build:gradle, add the following code:

 dependencies {

 implementation(name: 'LiteAVSDK_UGC_12.2.0.15065', ext: 'aar')

 }

If using version 2.x of com.android.tools.build:gradle, add the following code:

 dependencies {

 compile(name: 'LiteAVSDK_UGC_12.2.0.15065', ext: 'aar')

 }

2.2. In the project-level build.gradle, add the flatDir configuration to specify the local repository directory (where the
SDK files are copied):

allprojects {

 repositories {

 jcenter()

 flatDir {

 dirs 'libs'

 }

 }

}

2.3. In the ​build.gradle file under your app module, add the following under defaultConfig to specify NDK-compatible

architectures:

 defaultConfig {

 ndk {

 abiFilters "armeabi-v7a", "arm64-v8a"

 }

https://www.tencentcloud.com/document/product/1069/55453

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 11
of 163

 }

3. Click ​Sync Now to synchronize the project, then build it.
1. Download the latest SDK.

1.1 Download Link: SDK Download. Unzip the ZIP file in the SDK directory.

1.2 Copy Files

If you have not specified the JNI library loading path for your project, we recommend you copy the .jar package and
the .so library for the corresponding architecture obtained in the previous step to the Demo\\app\\src\\main\\jniLibs
directory (Android Studio's default path for loading JNI libraries) and put the .jar package in the libs folder.

2. Project Configuration
2.1 In the build.gradle file under your app module, add the following to reference the JAR and SO libraries:

If using version 3.x of com.android.tools.build:gradle, add the following code:

dependencies {

 compile fileTree(dir: 'libs', include: ['*.jar'])

 // Import the JAR file of the UGSV SDK

 compile fileTree(dir: 'src/main/jniLibs', includes: ['*.jar'])

 ...

}

If using version 2.x of com.android.tools.build:gradle, add the following code:

dependencies {

 compile fileTree(dir: 'libs', include: ['*.jar'])

 // Import the JAR file of the UGSV SDK

 compile fileTree(dir: 'src/main/jniLibs', includes: ['*.jar'])

 ...

}

2.2 In the same build.gradle file, under defaultConfig, specify NDK-compatible architectures:

defaultConfig {

 ndk {

 abiFilters "armeabi-v7a", "arm64-v8a"

 }

}

3. Click ​Sync Now to synchronize the project, then build it.

https://www.tencentcloud.com/document/product/1069/55453

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 12
of 163

Step 2. Configure app permissions

Configure application permissions in AndroidManifest.xml . Audio/Video applications generally need the

following permissions:

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>

<uses-permission android:name="android.permission.RECORD_AUDIO" />

<uses-permission android:name="android.permission.CAMERA" />

<uses-feature android:name="android.hardware.Camera"/>

<uses-feature android:name="android.hardware.camera.autofocus" />

Step 3. Configure the license

1. After successfully obtaining a license, copy the license key and URL in the VOD console as shown below:

2. Before you use UGSV features in your application, we recommend that you complete the following configuration in
 - Application onCreate() :

public class DemoApplication extends Application {

 String ugcLicenceUrl = ""; // Enter the license URL obtained from the console.

 String ugcKey = ""; // Enter the license key obtained from the console.

 @Override

 public void onCreate() {

 super.onCreate();

 TXUGCBase.getInstance().setLicence(instance, ugcLicenceUrl, ugcKey);

 }

}

3. The latest SDK version includes ​short video license verification. If verification fails, you can use the following API to
retrieve specific details from the license:

TXUGCBase.getInstance().getLicenceInfo(Context context);

Note:
If you use a license for the SDK on v4.7 and have upgraded the SDK to v4.9, you can click Switch to New License
in the console to generate a new license key and URL. A new license can be used only for the SDK on v4.9 or later
and should be configured as described above.

https://console.tencentcloud.com/vod/license/video

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 13
of 163

Step 4. Print logs

You can enable/disable console log printing and set the log level in TXLiveBase . See the sample code below.

setConsoleEnabled
Sets whether to print the SDK logs in the Android Studio console.
setLogLevel
It is used to set whether the SDK can print local logs. The SDK will write logs into the Android/data/application
package name/files/log/tencent/liteav folder on the SD card by default. If you need technical support from Tencent

Cloud, we recommend you enable this feature and provide the log file after reproducing the problem.

TXLiveBase.setConsoleEnabled(true);

TXLiveBase.setLogLevel(TXLiveConstants.LOG_LEVEL_DEBUG);

Troubleshooting

After importing the UGSV SDK, when you build and run your project, if the following error occurs:

Caused by: android.view.InflateException:

Binary XML file #14:Error inflating class com.tencent.rtmp.ui.TXCloudVideoView

Follow the steps below to troubleshoot the problem:
1. Check whether you have copied the JAR and SO files to the jniLibs directory.

2. If you use the full edition integrated with the .aar file, check whether the .so libraries for the x64 architecture are

filtered out in defaultConfig in build.gradle in the project directory.

defaultConfig {

 ...

 ndk {

 abiFilters "armeabi-v7a", "arm64-v8a"

 }

}

3. Check if the package name of the SDK has been added to the "do not obfuscate" list.

-keep class com.tencent.** { *;}

4. ﻿Configure packaging options for your application.

https://www.tencentcloud.com/document/product/1069/37914

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 14
of 163

Detailed description

See the documents below for a detailed description of different UGSV modules.
Video Shooting﻿

Video Editing﻿
Video Splicing﻿
Video Upload﻿
Video Playback﻿

https://www.tencentcloud.com/document/product/1069/38019
https://www.tencentcloud.com/document/product/1069/38024
https://www.tencentcloud.com/document/product/1069/38025
https://www.tencentcloud.com/document/product/1069/38026
https://www.tencentcloud.com/document/product/1069/38027

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 15
of 163

Capturing and Shoot
Capturing and Shoot
iOS
Last updated：2025-04-01 17:14:08

You can implement video shooting features including speed change, beautification, filters, audio effects, and
background music.

Overview of Relevant Classes

API File Description

 TXUGCRecord.h Shooting videos

 TXUGCRecordListener.h Shooting callbacks

 TXUGCRecordEventDef.h Shooting events

 TXUGCRecordTypeDef.h Definitions of basic parameters

 TXUGCPartsManager.h
Video segment management class, which is used for multi-segment shooting
and segment deletion

Basic Workflow

1. Configure shooting parameters.

2. Enable preview.
3. Set shooting effects.
4. End shooting.
Basic code example for starting preview/recording(The following snippet demonstrates the core logic; implement the
full code as needed):

- (void)viewDidLoad {

 // Create a view to display camera preview

 _videoRecordView = [[UIView alloc] initWithFrame:self.view.bounds];

 [self.view addSubview:_videoRecordView];

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 16
of 163

 // 1. Configure recording parameters

 TXUGCSimpleConfig * param = [[TXUGCSimpleConfig alloc] init];

 param.videoQuality = VIDEO_QUALITY_MEDIUM;

 // 2. Start preview, set parameters and specify the view for preview

 [[TXUGCRecord shareInstance] startCameraSimple:param preview:_videoRecordView];

 // 3. Set recording effects (example: add beauty filter)

 TXBeautyManager *manager = [[TXUGCRecord shareInstance] getBeautyManager];

 [manager setBeautyStyle:TXBeautyStyleSmooth];

 [manager setBeautyLevel:5];

 // Set the delegate for video recording to receive progress and completion notif

 [TXUGCRecord shareInstance].recordDelegate = self;

 // Start recording

 [[TXUGCRecord shareInstance] startRecord];

 。。。。。。

 // Stop recording

 [[TXUGCRecord shareInstance] stopRecord];

}

// Recording completion callback

-(void) onRecordComplete:(TXUGCRecordResult*)result

{

 if (result.retCode == UGC_RECORD_RESULT_OK) {

 // Recording succeeded. Video file is at result.videoPath

 } else {

 // Error handling. For error codes, refer to TXUGCRecordResultCode in TXUGCRe

 }

}

@end

Preview

 TXUGCRecord in TXUGCRecord.h is used to implement video shooting. The first step of shooting videos is

using startCameraSimplePreview to enable preview. Because mic and camera permissions are required for

preview, you need to configure pop-up windows to request the permissions.

1. Start Preview

[TXUGCRecord shareInstance].recordDelegate = self; // Set recording callback (refer

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 17
of 163

// Configure camera and start preview

TXUGCSimpleConfig *param = [[TXUGCSimpleConfig alloc] init];

param.videoQuality = TXRecordCommon.VIDEO_QUALITY_HIGH; // 720p

param.frontCamera = YES; // Use front camera

param.minDuration = 5; // Minimum recording duration: 5s

param.maxDuration = 60; // Maximum recording duration: 60s

param.touchFocus = NO; // NO: autofocus; YES: manual focus

// Display camera preview in self.previewView

[[TXUGCRecord shareInstance] startCameraSimple:param preview:self.previewView];

// Stop camera preview

[[TXUGCRecord shareInstance] stopCameraPreview];

2. Modify Preview Parameters

To modify preview parameters after the camera is turned on, refer to the code below:

// Switch video recording resolution to 540p (540x960)

[[TXUGCRecord shareInstance] setVideoResolution: VIDEO_RESOLUTION_540_960];

// Switch video bitrate to 6500 Kbps

[[TXUGCRecord shareInstance] setVideoBitrate: 6500];

// Set zoom level to 3.

// Value 1: farthest view (normal lens); Value 5: closest view (zoomed-in lens)

[[TXUGCRecord shareInstance] setZoom: 3];

// Switch camera: YES for front camera, NO for rear camera

[[TXUGCRecord shareInstance] switchCamera: NO];

// Toggle flash: YES to turn on, NO to turn off

[[TXUGCRecord shareInstance] toggleTorch: YES];

// Set custom video processing callback delegate

[TXUGCRecord shareInstance].videoProcessDelegate = delegate;

Photo Capture

After starting the camera preview, you can use the photo capture functionality.

// Take a photo. Before calling this API, you must start the recording preview

// by calling either `startCameraSimplePreview` or `startCameraCustomPreview`

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 18
of 163

[[TXUGCRecord shareInstance] snapshot:^(UIImage *image) {

 // Process the captured image here

 }];

Shooting Control

The shoot can be started, paused, and resumed as follows:

// Start recording.

// This method does not specify the recording file path; the file path will be retu

[[TXUGCRecord shareInstance] startRecord];

// Start recording with a specified output video file path and cover image path

[[TXUGCRecord shareInstance] startRecord:videoFilePath coverPath:coverPath];

// Start recording with a specified output video file path, video segments folder p

[[TXUGCRecord shareInstance] startRecord:videoFilePath videoPartsFolder:videoPartFo

// Pause recording

[[TXUGCRecord shareInstance] pauseRecord];

// Resume recording

[[TXUGCRecord shareInstance] resumeRecord];

// Stop recording

[[TXUGCRecord shareInstance] stopRecord];

The shooting progress and result callbacks are implemented by TXUGCRecordListener (defined in

 TXUGCRecordListener.h).

 onRecordProgress is the shooting progress callback. The millisecond parameter indicates the recorded

duration in milliseconds.

@optional

 (void)onRecordProgress:(NSInteger)milliSecond;

 onRecordComplete is the shooting result callback. The retCode and descMsg fields in

 TXRecordResult indicate the error code and error message respectively. videoPath indicates the path of

the video, and coverImage is the first frame of the video, which is used as the thumbnail.

@optional

 (void)onRecordComplete:(TXUGCRecordResult*)result;

 onRecordEvent is the callback reserved for the shooting event and is not used currently.

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 19
of 163

@optional

 (void)onRecordEvent:(NSDictionary*)evt;

Shooting Settings

1. Video Image

// Set orientation for preview

// The valid values for `rotation` are 0, 90, 180, and 270, which indicate the cloc

// You must set the rotation before you call `startRecord` for the setting to take

[[TXUGCRecord shareInstance] setRenderRotation:rotation];

// Set the aspect ratio

// VIDEO_ASPECT_RATIO_9_16: 9:16

// VIDEO_ASPECT_RATIO_3_4: 3:4

// VIDEO_ASPECT_RATIO_1_1: 1:1

// You must set the rotation before you call `startRecord` for the setting to take

[[TXUGCRecord shareInstance] setAspectRatio:VIDEO_ASPECT_RATIO_9_16];

2. Speed

// Set the shooting speed

// VIDEO_RECORD_SPEED_SLOWEST: Very slow

// VIDEO_RECORD_SPEED_SLOW: Slow

// VIDEO_RECORD_SPEED_NOMAL: Original

// VIDEO_RECORD_SPEED_FAST: Fast

// VIDEO_RECORD_SPEED_FASTEST: Very fast

[[TXUGCRecord shareInstance] setRecordSpeed:VIDEO_RECORD_SPEED_NOMAL];

3. Audio

// Set the mic volume. This is used to control the volume of the mic when backgroun

// Volume. The normal volume is 1. We recommend 0-2, but you can set it to a larger

[[TXUGCRecord shareInstance] setMicVolume:volume];

// Mute/Unmute. The `isMute` parameter specifies whether to mute audio. Audio is un

[[TXUGCRecord shareInstance] setMute:isMute];

Effects

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 20
of 163

You can add various effects to your video during shooting.

1. Watermarks

// Add a global watermark

// normalizationFrame: The normalized position of the watermark in relation to the

// Suppose the video dimensions are 540 x 960, and `frame` is set to `(0.1，0.1，0.1

// The actual coordinates of the watermark would be:

// (540*0.1, 960*0.1, 540*0.1, 540*0.1*waterMarkImage.size.height / waterMarkImage.

[[TXUGCRecord shareInstance] setWaterMark:waterMarkImage normalizationFrame:frame)

2. Filters

// Set the filter style

// Set the color filter: Romantic, refreshing, elegant, pink, retro, and more

// filterImage: The color lookup table, which must be in PNG format.

// The color lookup table used in the demo is in `FilterResource.bundle`.

[[TXUGCRecord shareInstance] setFilter:filterImage];

 // Set the strength of filters. Value range: 0-1. Default: 0.5. The greater the va

[[TXUGCRecord shareInstance] setSpecialRatio:ratio];

// Set a filter combination

// mLeftBitmap: The left filter

// leftIntensity: The strength of the left filter

// mRightBitmap: The right filter

// rightIntensity: The strength of the right filter

// leftRatio: The ratio of the width of the left picture to the video width

// You can use this API to implement "swipe to change filter".

[[TXUGCRecord shareInstance] setFilter:leftFilterImgage leftIntensity:leftIntensity

3. Beauty

// Access Beauty Configuration Interface

TXBeautyManager *manager = [[TXUGCRecord shareInstance] getBeautyManager];

// Set beauty style: （TXBeautyStyleSmooth: Smooth; TXBeautyStyleNature: Natural; T

[manager setBeautyStyle:TXBeautyStyleSmooth];

// Set beauty level (0-9)

[manager setBeautyLevel:5];

// Set whitening level (0-9)

[manager setWhitenessLevel:5];

// Set rosy level (0-9)

[manager setRuddyLevel:5];

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 21
of 163

Advanced Features

Multi-segment shooting﻿
Drafts﻿
Adding background music﻿

Voice changing and reverb﻿
Customizing video data﻿

https://www.tencentcloud.com/document/product/1069/38008
https://www.tencentcloud.com/document/product/1069/38009
https://www.tencentcloud.com/document/product/1069/38010
https://www.tencentcloud.com/document/product/1069/38011
https://www.tencentcloud.com/document/product/1069/38038

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 22
of 163

Android
Last updated：2025-04-01 17:14:08

Video shoot includes features such as adjustable-speed shoot, beauty filters, filters, sound effects, and background
music configuration.

Overview of Relevant Classes

Class Feature

TXUGCRecord Video shoot implementation

TXUGCPartsManager Video segment management class, which is used to shoot multiple video segments
and delete existing segments

ITXVideoRecordListener Shoot callback

TXRecordCommon Basic parameter definition, including video shoot callback and release callback
APIs

Basic Workflow

1. Configure the shoot parameters.

2. Start video image preview.
3. Set the shoot effects.
4. Complete shoot.
Basic code example for starting preview/recording(The following snippet demonstrates the core logic; implement the
full code as needed):

TXUGCRecord mTXUGCRecord = TXUGCRecord.getInstance(context);

// Create a TXCloudVideoView for camera preview

mVideoView = (TXCloudVideoView) findViewById(R.id.video_view);

// 1. Configure recording parameters (using recommended TXUGCSimpleConfig)

TXRecordCommon.TXUGCSimpleConfig param = new TXRecordCommon.TXUGCSimpleConfig();

param.videoQuality = TXRecordCommon.VIDEO_QUALITY_MEDIUM;

// 2. Start camera preview

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 23
of 163

mTXUGCRecord.startCameraSimplePreview(param, mVideoView);

// 3. Set recording effects (example: add beauty filter)

mTXUGCRecord.getBeautyManager().setBeautyStyle(TXBeautyManager.TXBeautyStyleSmooth)

mTXUGCRecord.getBeautyManager().setBeautyLevel(5);

// 4. Set recording event callback listener

mTXUGCRecord.setVideoRecordListener(new ITXVideoRecordListener() {

 @Override

 public void onRecordEvent(int eventId, Bundle bundle) {}

 @Override

 public void onRecordProgress(long millisecond) {}

 @Override

 public void onRecordComplete(TXRecordResult result) {}

});

// Start recording

int result = mTXUGCRecord.startRecord();

// Stop recording

mTXUGCRecord.stopRecord();

Previewing Video Image

 TXUGCRecord (in TXUGCRecord.java) is used for short video shoot. The preview feature needs to be

implemented first, where the startCameraSimplePreview function is used to start preview. As camera and mic

need to be enabled before the preview can be started, prompt windows for permission application may pop up at this
point.

1. Start Preview

// Get the singleton instance of the recorder

TXUGCRecord mTXUGCRecord = TXUGCRecord.getInstance(this.getApplicationContext());

// Configure basic recording parameters

TXRecordCommon.TXUGCSimpleConfig param = new TXRecordCommon.TXUGCSimpleConfig();

param.videoQuality = TXRecordCommon.VIDEO_QUALITY_HIGH; // 720p

param.isFront = true; // Whether to use the front camera

param.minDuration = 5000; // Minimum recording duration (ms)

param.maxDuration = 60000; // Maximum recording duration (ms)

param.touchFocus = false; // false: auto-focus; true: manual focus

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 24
of 163

// Video preview view

mVideoView = (TXCloudVideoView) findViewById(R.id.video_view);

// Start preview

mTXUGCRecord.startCameraSimplePreview(param, mVideoView);

// Stop camera preview

mTXUGCRecord.stopCameraPreview();

2. Modify Preview Parameters

After starting the camera, you can adjust the preview parameters as follows:

// Switch video recording resolution to 540p (540x960)

mTXUGCRecord.setVideoResolution(TXRecordCommon.VIDEO_RESOLUTION_540_960);

// Switch video recording bitrate to 6500 Kbps

mTXUGCRecord.setVideoBitrate(6500);

// Get the maximum zoom level supported by the camera

mTXUGCRecord.getMaxZoom();

// Set zoom level to 3. Valid range: 0 ~ getMaxZoom()

mTXUGCRecord.setZoom(3);

// Switch camera: true for front camera, false for rear camera

mTXUGCRecord.switchCamera(false);

// Toggle flash: true to turn on, false to turn off

mTXUGCRecord.toggleTorch(false);

// When param.touchFocus is true (manual focus mode), use this API to set focus pos

mTXUGCRecord.setFocusPosition(eventX, eventY);

// Set custom video processing callback

mTXUGCRecord.setVideoProcessListener(this);

Photo Capture

After enabling the camera preview, you can use the photo capturing feature.

// Take a photo. Before calling this API, you must start the recording preview by c

mTXUGCRecord.snapshot(new TXRecordCommon.ITXSnapshotListener() {

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 25
of 163

 @Override

 public void onSnapshot(Bitmap bmp) {

 // Save or display the captured image

 }

});

Shooting Control

The shoot can be started, paused, and resumed as follows:

// Start recording

// This method does not specify the recording file path. The path will be returned

mTXUGCRecord.startRecord();

// Start recording with specified output video file path and cover image path

mTXUGCRecord.startRecord(videoFilePath, coverPath);

// Start recording with specified output video file path, video segments folder pat

mTXUGCRecord.startRecord(videoFilePath, videoPartFolder, coverPath);

// Pause recording

mTXUGCRecord.pauseRecord();

// Resume recording

mTXUGCRecord.resumeRecord();

// Stop recording

mTXUGCRecord.stopRecord();

The shoot process and result will be returned through the TXRecordCommon.ITXVideoRecordListener API

(defined in TXRecordCommon.java):

 onRecordProgress returns the shoot progress, and the millisecond parameter indicates the shoot

duration in milliseconds.

@optional

void onRecordProgress(long milliSecond);

 onRecordComplete returns the shoot result, the retCode and descMsg fields of TXRecordResult

indicate the error code and error message, respectively, videoPath indicates the path of the shot short video file,

and coverImage indicates the short video's first-frame image that is automatically captured and will be used in

video release.

@optional

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 26
of 163

void onRecordComplete(TXRecordResult result);

 onRecordEvent is the shoot event callback, which contains the event ID and event-related parameters in the

format of (key,value).

@optional

void onRecordEvent(final int event, final Bundle param);

Shooting Settings

1. Video Image

// Set orientation for preview

// The valid values for `rotation` are 0, 90, 180, and 270, which indicate the cloc

// You must set the rotation before you call `startRecord` for the setting to take

mTXUGCRecord.setRenderRotation(TXLiveConstants.RENDER_ROTATION_PORTRAIT);

// Set the aspect ratio

// VIDEO_ASPECT_RATIO_9_16: 9:16

// VIDEO_ASPECT_RATIO_3_4: 3:4

// VIDEO_ASPECT_RATIO_1_1: 1:1

// You must set the rotation before you call `startRecord` for the setting to take

mTXUGCRecord.setAspectRatio(TXRecordCommon.VIDEO_ASPECT_RATIO_9_16);

2. Speed

// Set the video shoot speed

// TXRecordCommon.RECORD_SPEED_SLOWEST (ultra-slow)

// TXRecordCommon.RECORD_SPEED_SLOW (slow)

// TXRecordCommon.RECORD_SPEED_NORMAL (standard)

// TXRecordCommon.RECORD_SPEED_FAST (fast)

// TXRecordCommon.RECORD_SPEED_FASTEST (ultra-fast)

mTXUGCRecord.setRecordSpeed(TXRecordCommon.VIDEO_RECORD_SPEED_NORMAL);

3. Audio

// Set the mic volume. This is used to control the volume of the mic when backgroun

// Volume. The normal volume is 1. We recommend 0-2, but you can set it to a larger

mTXUGCRecord.setMicVolume(volume);

// Mute/Unmute. The `isMute` parameter specifies whether to mute audio. Audio is un

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 27
of 163

mTXUGCRecord.setMute(isMute);

Effects

You can add various effects to your video during shooting.

1. Watermark

// Add a global watermark

// normalizationFrame: The normalized position of the watermark in relation to the

// Suppose the video dimensions are 540 x 960, and `frame` is set to `(0.1，0.1，0.1

// The actual coordinates of the watermark would be:

// (540*0.1, 960*0.1, 540*0.1, 540*0.1*waterMarkImage.size.height / waterMarkImage.

mTXUGCRecord.setWatermark(watermarkBitmap, txRect)

2. Filter

// Set the filter style

// Set the color filter: Romantic, refreshing, elegant, pink, retro, and more

// filterImage: The color lookup table, which must be in PNG format.

// The color lookup table used in the demo is in `FilterResource.bundle`.

mTXUGCRecord.setFilter(filterBitmap);

 // Set the strength of filters. Value range: 0-1. Default: 0.5. The greater the va

mTXUGCRecord.setSpecialRatio(0.5);

// Set a filter combination

// mLeftBitmap: The left filter

// leftIntensity: The strength of the left filter

// mRightBitmap: The right filter

// rightIntensity: The strength of the right filter

// leftRatio: The ratio of the width of the left picture to the video width

// You can use this API to implement "swipe to change filter".

mTXUGCRecord.setFilter(mLeftBitmap, leftIntensity, mRightBitmap, rightIntensity, le

3. Beauty

// Access Beauty Configuration Interface

TXBeautyManager mTXBeautyManager = mTXCameraRecord.getBeautyManager();

// Set beauty style: （TXBeautyStyleSmooth: Smooth; TXBeautyStyleNature: Natural; T

mTXBeautyManager.setBeautyStyle(TXBeautyManager.TXBeautyStyleSmooth);

// Set beauty level (0-9)

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 28
of 163

mTXBeautyManager.setBeautyLevel(5);

// Set whitening level (0-9)

mTXBeautyManager.setWhitenessLevel(5);

// Set rosy level (0-9)

mTXBeautyManager.setRuddyLevel(5);

Advanced Features

Multi-segment shoot﻿

Shoot drafts﻿
Adding background music﻿
Voice changing and reverb﻿
Customizing video data﻿

https://www.tencentcloud.com/document/product/1069/38020
https://www.tencentcloud.com/document/product/1069/38021
https://www.tencentcloud.com/document/product/1069/38022
https://www.tencentcloud.com/document/product/1069/38023
https://www.tencentcloud.com/document/product/1069/38039

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 29
of 163

Multi-Segment Shoot
iOS
Last updated：2025-04-01 17:14:08

Basic Workflow for Multi-Segment Video Recording:
1. Start preview.
2. Begin recording.

3. Pause recording.
4. Resume recording.
5. Stop recording.
Each pause generates a video segment. Use TXUGCPartsManager to manage recorded segments, and finally merge
them.

// Start custom preview

recorder = [TXUGCRecord shareInstance];

[recorder startCameraCustom:param preview:preview];

// Start recording

[recorder startRecord];

// Pausing recording generates a segment, accessible via TXUGCPartsManager

[recorder pauseRecord];

// Get the video segment manager

TXUGCPartsManager *partsManager = recorder.partsManager;

// Delete the last recorded segment

[partsManager deleteLastPart];

// Resume recording

[recorder resumeRecord];

// Stop recording and merge all segments into a single video

[recorder stopRecord];

// Get total duration of all segments

[partsManager getDuration];

// Get paths of all segments

[partsManager getVideoPathList];

// Delete the last segment

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 30
of 163

[partsManager deleteLastPart];

// Delete a specific segment (e.g., index 1)

[partsManager deletePart:1];

// Delete all segments

[partsManager deleteAllParts];

// Insert an external video (non-recorded) into the segment list

[partsManager insertPart:videoPath atIndex:0];

// Merge all segments into a final video (also triggered automatically on stopRecor

[partsManager joinAllParts:videoOutputPath complete:complete];

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 31
of 163

Android
Last updated：2025-04-01 17:14:08

Basic Workflow for Multi-Segment Video Recording:
1. Start preview.
2. Begin recording.

3. Pause recording.
4. Resume recording.
5. Stop recording.
Each pause generates a video segment. Use TXUGCPartsManager to manage recorded segments, and finally merge
them.

// Start recording

mTXUGCRecord.startRecord();

// After pausing recording, a video segment will be generated and can be managed vi

mTXUGCRecord.pauseRecord();

// Get the segment manager instance

TXUGCPartsManager mTXUGCPartsManager = mTXUGCRecord.getPartsManager();

// Delete the last recorded video segment

mTXUGCPartsManager.deleteLastPart();

// Resume recording

mTXUGCRecord.resumeRecord();

// Stop recording and merge all segments into a single output video

mTXUGCRecord.stopRecord();

/**/

// Video Segment Management APIs

/**/

// Get total duration of all current video segments

mTXUGCPartsManager.getDuration();

// Get paths of all video segments

mTXUGCPartsManager.getPartsPathList();

// Delete the last video segment

mTXUGCPartsManager.deleteLastPart();

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 32
of 163

// Delete a specific video segment by index

mTXUGCPartsManager.deletePart(index);

// Delete all video segments

mTXUGCPartsManager.deleteAllParts();

// Insert an external video (not from current recording) into the segment list

mTXUGCPartsManager.insertPart(videoPath, index);

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 33
of 163

Shoot Drafts
iOS
Last updated：2024-12-23 14:53:57

How the shooting drafts feature works

Starting a shooting

1. Start shooting a video.
2. Pause/End the shooting.

3. Cache the video segment locally (draft box).

Resuming the shooting

1. Preload the locally cached video segment.
2. Continue with the shooting.
3. End the shooting.

//Get the object of the previous shooting

record = [TXUGCRecord shareInstance];

//Start shooting a video.

[record startRecord];

//Pause the shooting and cache the video segment

[record pauseRecord:^{

NSArray *videoPathList = record.partsManager.getVideoPathList;

//Set `videoPathList` to a local path.

}];

//Get the object of the resumed shooting.

record2 = [TXUGCRecord shareInstance]；

//Preload the locally cached video segment.

[record2.partsManager insertPart:videoPath atIndex:0];

//Start the shooting

[record2 startRecord];

//End the shooting. The SDK will splice together the two video segments.

[record2 stopRecord];

Note:

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 34
of 163

 For detailed instructions, see the UGCKitRecordViewController class in (Demo) Source Code for All-Feature

UGSV Apps.

https://www.tencentcloud.com/document/product/1069/37914

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 35
of 163

Android
Last updated：2022-05-24 16:02:37

You can implement the drafts logic as follows:

First Shooting

1. Start shooting.
2. Pause/End the first shooting.

3. Cache the video segment locally (in drafts).

Second Shooting

1. Preload the locally cached video segment.
2. Resume shooting.
3. End shooting.

// Get the first video shooting object

mTXCameraRecord = TXUGCRecord.getInstance(this.getApplicationContext());

// Start shooting

mTXCameraRecord.startRecord();

// Pause shooting

mTXCameraRecord.pauseRecord();

// Get the cached video segment and write it locally

List<String> pathList = mTXCameraRecord.getPartsManager().getPartsPathList();

// Write `pathList` locally

// Open the application again and get the shooting object

mTXCameraRecord2 = TXUGCRecord.getInstance(this.getApplicationContext());

// Preload the locally cached segment

mTXCameraRecord2.getPartsManager().insertPart(videoPath, 0);

// Start shooting

mTXCameraRecord2.startRecord();

// End shooting, and the SDK will compose the cached video segment with the

currently shot one

mTXCameraRecord2.stopRecord();

Note:

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 36
of 163

For the specific implementation method, please see the usage of the RecordDraftManager class in the shooting

module in the UGSV application demo source code.

https://www.tencentcloud.com/document/product/1069/37914

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 37
of 163

Adding Background Music
iOS
Last updated：2025-04-01 17:14:08

Adding Background Music During Shooting

// Get the recorder instance

TXUGCRecord *recorder = [TXUGCRecord shareInstance];

// Set BGM file path

[recorder setBGMAsset:path];

// Set BGM using AVAsset loaded from the system media library

[recorder setBGMAsset:asset];

// Play BGM

[recorder playBGMFromTime:beginTime

 toTime:endTime

 withBeginNotify:^(NSInteger errCode) {

 // Playback start callback. errCode 0: success, others: failure

 } withProgressNotify:^(NSInteger progressMS, NSInteger durationMS) {

 // progressMS: elapsed time (ms), durationMS: total duration (ms)

 } andCompleteNotify:^(NSInteger errCode) {

 // Playback complete callback. errCode 0: success, others: failure

 }];

// Stop BGM playback

[recorder stopBGM];

// Pause BGM playback

[recorder pauseBGM];

// Resume BGM playback

[recorder resumeBGM];

// Set microphone volume (used during BGM mixing)

// volume: 1.0 is normal volume. Recommended range: 0-2. Higher values allowed for

[recorder setMicVolume:1.0];

// Set BGM volume (used during BGM mixing)

// volume: 1.0 is normal volume. Recommended range: 0-2. Higher values allowed for

[recorder setBGMVolume:1.0];

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 38
of 163

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 39
of 163

Android
Last updated：2025-04-01 17:14:08

Adding Background Music During Shooting

// Set BGM path

mTXUGCRecord.setBGM(path);

// Play BGM from startTime to endTime

mTXUGCRecord.playBGMFromTime(startTime, endTime)

// Stop BGM playback

mTXUGCRecord.stopBGM();

// Pause BGM playback

mTXUGCRecord.pauseBGM();

// Resume BGM playback

mTXUGCRecord.resumeBGM();

// Set the volume of background music (BGM). Used when playing background music mix

// Volume value: 1 is normal volume, recommended range 0~2. For higher BGM volume,

mTXUGCRecord.setBGMVolume(x);

// Set the start and end positions for BGM playback. Must be called before startPla

mTXUGCRecord.seekBGM(startTime, endTime);

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 40
of 163

Voice Changing and Reverb
iOS
Last updated：2022-05-24 16:06:06

Voice changing and reverb for video shooting:

// Get the `recorder` object

recorder = [TXUGCRecord shareInstance];

// Set reverb

// TXRecordCommon.VIDOE_REVERB_TYPE_0 Disable reverb

// TXRecordCommon.VIDOE_REVERB_TYPE_1 Karaoke room

// TXRecordCommon.VIDOE_REVERB_TYPE_2 Small room

// TXRecordCommon.VIDOE_REVERB_TYPE_3 Big hall

// TXRecordCommon.VIDOE_REVERB_TYPE_4 Deep

// TXRecordCommon.VIDOE_REVERB_TYPE_5 Resonant

// TXRecordCommon.VIDOE_REVERB_TYPE_6 Metallic

// TXRecordCommon.VIDOE_REVERB_TYPE_7 Husky

[recorder setReverbType:VIDOE_REVERB_TYPE_1];

// Set voice changing

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_0 Disable voice changing

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_1 Naughty boy

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_2 Little girl

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_3 Middle-aged man

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_4 Heavy metal

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_6 Non-native speaker

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_7 Furious animal

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_8 Chubby

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_9 Strong electric current

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_10 Robot

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_11 Ethereal voice

[record setVoiceChangerType:VIDOE_VOICECHANGER_TYPE_1];

Note:
Voice changing and reverb take effect only for recorded human voice but not for background music.

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 41
of 163

Android
Last updated：2025-04-01 17:14:08

Voice changing and reverb for video shooting:

// Set reverb

// TXRecordCommon.VIDOE_REVERB_TYPE_0 Disable reverb

// TXRecordCommon.VIDOE_REVERB_TYPE_1 Karaoke room

// TXRecordCommon.VIDOE_REVERB_TYPE_2 Small room

// TXRecordCommon.VIDOE_REVERB_TYPE_3 Big hall

// TXRecordCommon.VIDOE_REVERB_TYPE_4 Deep

// TXRecordCommon.VIDOE_REVERB_TYPE_5 Resonant

// TXRecordCommon.VIDOE_REVERB_TYPE_6 Metallic

// TXRecordCommon.VIDOE_REVERB_TYPE_7 Husky

mTXCameraRecord.setReverb(TXRecordCommon.VIDOE_REVERB_TYPE_1);

// Set voice changing

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_0 Disable voice changing

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_1 Naughty boy

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_2 Little girl

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_3 Middle-aged man

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_4 Heavy metal

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_6 Non-native speaker

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_7 Furious animal

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_8 Chubby

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_9 Strong electric current

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_10 Robot

// TXRecordCommon.VIDOE_VOICECHANGER_TYPE_11 Ethereal voice

mTXCameraRecord.setVoiceChangerType(TXRecordCommon.VIDOE_VOICECHANGER_TYPE_1);

Note:
Voice changing and reverb take effect only for recorded human voice but not for background music.

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 42
of 163

Preview, Clipping, and Splicing
Video Editing
iOS
Last updated：2022-05-24 15:54:21

Feature Overview

Video editing includes features such as video clipping, time-based special effects (slow motion, reverse, and loop),
special effect filters (dynamic light-wave, darkness and phantom, soul out, and cracked screen), filter styles (aesthetic,
rosy, blues, etc.), music mix, animated stickers, static stickers, and bubble subtitles.

Overview of Relevant Classes

Class Name Feature

TXVideoInfoReader.h Gets media information

TXVideoEditer.h Edits video

Use Instructions

The following is the basic usage process of video editing:
1. Set the video path.
2. Add effects.
3. Generate a video and output it to a specified file.
4. Listen on the generation event.

Sample

// Here, `Common/UGC/VideoPreview` in the demo is used as the preview view

#import "VideoPreview.h"

@implementation EditViewController

{

 TXVideoEditer *editor;

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 43
of 163

 VideoPreview *_videoPreview;

}

- (void)viewDidLoad {

 [super viewDidLoad];

 _videoPreview = [[VideoPreview alloc] initWithFrame:self.view.bounds];

 [self.view addSubview:_videoPreview];

 // Edit preview parameters

 TXPreviewParam *param = [[TXPreviewParam alloc] init];

 param.videoView = _videoPreview.renderView;

 param.renderMode = PREVIEW_RENDER_MODE_FILL_EDGE;

 // 1. Initialize the editor. If you do not need preview, you can pass in

`nil` or directly call the `init` method

 TXVideoEditer *editor = [[TXVideoEditer alloc] initWithPreview:param];

 // Set the source video path

 NSString *path = [[NSBundle mainBundle] pathForResource:@"demo"

ofType:@"mp4"]

 [editor setVideoPath: path];

 // Configure the delegation

 editor.generateDelegate = self; // Set the callback delegation object

of the generation event, which can be used to get the generation progress and

result

 // 2. Process the video. Watermarking is used as an example here

 [editor setWaterMark:[UIImage imageNamed:@"water_mark"]

 normalizationFrame:CGRectMake(0,0,0.1,0)];

}

// 3. Generate the video. Response to a user click is used as an example here

- (IBAction)onGenerate:(id)sender {

 NSString *output = [NSTemporaryDirectory()

stringByAppendingPathComponent:@"temp.mp4"];

 [editor generateVideo:VIDEO_COMPRESSED_720P videoOutputPath:output];

}

// 4. Get the generation progress

-(void) onGenerateProgress:(float)progress

{

}

// Get the generation result

-(void) onGenerateComplete:(TXGenerateResult *)result

{

 if (result.retCode == 0) {

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 44
of 163

 // Generated successfully

 } else {

 // Generation failed. For the specific cause, please see

`result.descMsg`.

 }

}

@end

Getting Video Information

The getVideoInfo method of TXVideoInfoReader can get certain basic information of a specified video

file. The relevant APIs are as detailed below:

// Get the video file information

+ (TXVideoInfo *)getVideoInfo:(NSString *)videoPath;

/** Get the video file information

 * @param videoAsset Video file attributes

 * @return Video information

 */

+ (TXVideoInfo *)getVideoInfoWithAsset:(AVAsset *)videoAsset;

The returned TXVideoInfo is defined as follows:

/// Video information

@interface TXVideoInfo : NSObject

/// Image of the first video frame

@property (nonatomic, strong) UIImage* coverImage;

/// Video duration in seconds

@property (nonatomic, assign) CGFloat duration;

/// Video size in bytes

@property (nonatomic, assign) unsigned long long fileSize;

/// Video frame rate in fps

@property (nonatomic, assign) float fps;

/// Video bitrate in Kbps

@property (nonatomic, assign) int bitrate;

/// Audio sample rate

@property (nonatomic, assign) int audioSampleRate;

/// Video width

@property (nonatomic, assign) int width;

/// Video height

@property (nonatomic, assign) int height;

/// Video image rotation angle

@property (nonatomic, assign) int angle;

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 45
of 163

@end

Getting Thumbnail

The thumbnail APIs are mainly used to generate the preview thumbnails displayed on the video editing page, get the
video cover, and perform other relevant operations.

1. Get the thumbnails evenly distributed along the video duration by number

 getSampleImages of TXVideoInfoReader can get the specified number of thumbnails at the same time

intervals:

/** Get the list of thumbnails of the video

 * @param count Number of the thumbnails to be obtained (at even sampling

intervals)

 * @param maxSize Maximum thumbnail dimensions. The dimensions of the

generated thumbnails will not exceed the specified width and height.

 * @param videoAsset Video file attributes

 * @param sampleProcess Sampling progress

 */

+ (void)getSampleImages:(int)count

 maxSize:(CGSize)maxSize

 videoAsset:(AVAsset *)videoAsset

 progress:(sampleProcess)sampleProcess;

 VideoRangeSlider in the SDK uses getSampleImages to get 10 thumbnails so as to construct a progress

bar consisting of video preview images.

2. Get thumbnails according to the list of points in time

 /**

 * Get the thumbnails according to the list of points in time

 * @param asset Video file object

 * @param times List of points in time for getting thumbnails

 * @param maxSize Thumbnail dimensions

 */

+ (UIImage *)getSampleImagesFromAsset:(AVAsset *)asset

 times:(NSArray<NSNumber*> *)times

 maxSize:(CGSize)maxSize

 progress:(sampleProcess)sampleProcess;

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 46
of 163

Editing and Previewing

Video editing supports two effect preview modes: pinpoint preview (the video image is frozen at a specified point in
time) and range preview (a video segment within a specified time range (A–B) is looped). To use a preview mode,
you need to bind a UIView to the SDK in order to display the video image.

1. Bind UIView

The initWithPreview function of TXVideoEditer is used to bind a UIView to the SDK for video image

rendering. You can set whether to use the fit or fill mode by controlling renderMode of TXPreviewParam .

 PREVIEW_RENDER_MODE_FILL_SCREEN - Fill mode, where the video image will

cover the entire screen with no black bars present, but the video image may be

cropped.

 PREVIEW_RENDER_MODE_FILL_EDGE - Fit mode, where the video image will be

complete but black bars will exist if the aspect ratio of the video is

different from that of the screen.

2. Use pinpoint preview

The previewAtTime function of TXVideoEditer is used to preview the video image at a specified point in

time.

/** Render the video image at a specified point in time

 * @param time Preview frame time in seconds

 */

- (void)previewAtTime:(CGFloat)time;

3. Use range preview

The startPlayFromTime function of TXVideoEditer is used to loop a video segment within the time range

of A–B.

/** Play back a video segment within a time range

 * @param startTime Playback start time in seconds

 * @param endTime Playback end time in seconds

 */

- (void)startPlayFromTime:(CGFloat)startTime

 toTime:(CGFloat)endTime;

4. Pause and resume preview

/// Pause the video

- (void)pausePlay;

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 47
of 163

/// Resume the video

- (void)resumePlay;

/// Stop the video

- (void)stopPlay;

5. Add a beauty filter

You can add filter effects such as skin brightening, romantic, and fresh to the video. The demo provides multiple filters
(with resources in Common/Resource/Filter/FilterResource.bundle) for your choice, and you can also

set custom filters.You can set a filter as follows:

- (void) setFilter:(UIImage *)image;

Here, image is the filter mapping image. If image is set to null , the filter effect will be removed.

Demo:

TXVideoEditer *_ugcEdit;

NSString * path = [[NSBundle mainBundle] pathForResource:@"FilterResource"

ofType:@"bundle"];

path = [path stringByAppendingPathComponent:@"langman.png"];

UIImage* image = [UIImage imageWithContentsOfFile:path];

[_ugcEdit setFilter:image];

6. Set a watermark

1. Set a global watermark

You can set a watermark image for the video and specify the image position.
You can set a watermark as follows:

- (void) setWaterMark:(UIImage *)waterMark normalizationFrame:

(CGRect)normalizationFrame;

Here, waterMark indicates the watermark image, and normalizationFrame is a normalized frame

value relative to the video image. The values of x , y , width , and height in frame all range from 0 to

1.
Demo:

UIImage *image = [UIImage imageNamed:@"watermark"];

[_ugcEdit setWaterMark:image normalizationFrame:CGRectMake(0, 0, 0.3 , 0.3 *

image.size.height / image.size.width)];// The watermark width is 30% of the

video width, and the height is proportionally scaled according to the width

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 48
of 163

2. Set a post-roll watermark

You can set a post-roll watermark for the video and specify the watermark position.
You can set a post-roll watermark as follows:

- (void) setTailWaterMark:(UIImage *)tailWaterMark normalizationFrame:

(CGRect)normalizationFrame

 duration:(CGFloat)duration;

Here, tailWaterMark indicates the post-roll watermark image, and normalizationFrame is a normalized

frame relative to the video image. The values of x , y , width , and height in frame all range from 0 to

1. duration indicates the watermark duration in seconds.

Demo: set a post-roll watermark that can be displayed for 1 second in the middle of the video image

UIImage *tailWaterimage = [UIImage imageNamed:@"tcloud_logo"];

float w = 0.15;

float x = (1.0 - w) / 2.0;

float width = w * videoMsg.width;

float height = width * tailWaterimage.size.height / tailWaterimage.size.width;

float y = (videoMsg.height - height) / 2 / videoMsg.height;

[_ugcEdit setTailWaterMark:tailWaterimage

normalizationFrame:CGRectMake(x,y,w,0) duration:1];

Compressing and Clipping

Setting video bitrate

/**

 * Set the video bitrate

 * @param bitrate Video bitrate in Kbps

 * If the bitrate is set, it will be selected preferably when

the SDK compresses videos. Please set an appropriate bitrate. If it is too low,

the video image will be blurry; if it is too high, the video size will be too

large

 * We recommend you set it to a value between 600 and 12000. If

this API is not called, the SDK will automatically calculate the bitrate based

on the compression quality

 */

- (void) setVideoBitrate:(int)bitrate;

Clipping video

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 49
of 163

Video editing operations all follow the same principle: set the operation commands first and use generateVideo

to run all commands in sequence, which can prevent unnecessary quality loss caused by multiple compression
operations on the same video.

TXVideoEditer* _ugcEdit = [[TXVideoEditer alloc] initWithPreview:param];

// Set the clipping start and end time

[_ugcEdit setCutFromTime:_videoRangeSlider.leftPos toTime:_videoRangeSlider.rightPo

// ...

// Generate the final video file

_ugcEdit.generateDelegate = self;

[_ugcEdit generateVideo:VIDEO_COMPRESSED_540P videoOutputPath:_videoOutputPath];

Specify the file compression quality and output path during output, and the output progress and result will be returned
as a callback through generateDelegate .

Advanced Features

TikTok-like special effects
Setting background music
Stickers and subtitles

Editing image

https://www.tencentcloud.com/document/product/1069/38028
https://www.tencentcloud.com/document/product/1069/38010
https://www.tencentcloud.com/document/product/1069/38032
https://www.tencentcloud.com/document/product/1069/38036

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 50
of 163

Android
Last updated：2022-10-25 11:13:13

Overview

Video editing supports clipping, time effects (slow motion, reverse, loop), filters (rock light, dark dream, soul out,
screen split), filter styles (artistic, rosy, blues, etc.), music mixing, animated stickers, static stickers, bubble subtitles,
etc.

Classes

Class Description

 TXVideoInfoReader Media information obtaining

 TXVideoEditer Video editing

Directions

Follow the steps below to edit your video:
1. Choose the video path
2. Import your video
3. Apply effects
4. Generate a file of the editing result

5. Listen for the callback for video generation
6. Release the resources

Getting Video Information

You can use getVideoFileInfo of TXVideoInfoReader to obtain some basic video information. Below is a request
sample:

/**

 * Acquire video information

 * @param videoPath Video file path

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 51
of 163

 * @return

 */

public TXVideoEditConstants.TXVideoInfo getVideoFileInfo(String videoPath);

 TXVideoInfo is returned and is defined as follows:

public final static class TXVideoInfo {

 public Bitmap coverImage; // First video

frame

 public long duration; // Video

duration (ms)

 public long fileSize; // Video

file size (byte)

 public float fps; //

Video frame rate (fps)

 public int bitrate; //

Video bitrate (Kbps)

 public int width; //

Video width

 public int height; //

Video height

 public int audioSampleRate; // Audio

bitrate

 }

Below is a complete sample:

//sourcePath Path of the video to edit

String sourcePath = Environment.getExternalStorageDirectory() + File.separator

+ "temp.mp4";

TXVideoEditConstants.TXVideoInfo info =

TXVideoInfoReader.getInstance().getVideoFileInfo(sourcePath);

Getting Thumbnails

The thumbnail obtaining API is used to generate thumbnail preview during video editing or get the cover of a video.

1. Get thumbnails by splitting a video evenly

Quick generation

Below is a request sample:

/**

 * Get the thumbnail list

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 52
of 163

 * @param count Number of thumbnails to get

 * @param width Thumbnail width

 * @param height Thumbnail height

 * @param fast Whether to get keyframes

 * @param listener Callback API for thumbnail generation

*/

public void getThumbnail(int count, int width, int height, boolean fast,

TXThumbnailListener listener)

The @param fast parameter supports two modes:

Quick generation: Pass in true to use this mode, under which thumbnails are generated relatively quickly, but they

may not correspond exactly to video frames.
Precise generation: Pass in false to use this mode, under which the thumbnails generated correspond exactly to

video frames, but the generation may be slow if the resolution is high.
Below is a complete sample:

mTXVideoEditer.getThumbnail(TCVideoEditerWrapper.mThumbnailCount, 100, 100,

false, mThumbnailListener);

private TXVideoEditer.TXThumbnailListener mThumbnailListener = new

TXVideoEditer.TXThumbnailListener() {

 @Override

 public void onThumbnail(int index, long timeMs, final Bitmap bitmap) {

 Log.i(TAG, "onThumbnail: index = " + index + ",timeMs:" + timeMs);

 // Insert the thumbnails into the image control

 }

 };

Precise generation

See Importing Video below.

2. Get thumbnails according to the time list

List<Long> list = new ArrayList<>();

list.add(10000L);

list.add(12000L);

list.add(13000L);

list.add(14000L);

list.add(15000L);

TXVideoEditer txVideoEditer = new TXVideoEditer(TCVideoPreviewActivity.this);

txVideoEditer.setVideoPath(mVideoPath);

txVideoEditer.setThumbnailListener(new TXVideoEditer.TXThumbnailListener() {

 @Override

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 53
of 163

 public void onThumbnail(int index, long timeMs, Bitmap bitmap) {

 Log.i(TAG, "bitmap:" + bitmap + ",timeMs:" + timeMs);

 saveBitmap(bitmap, timeMs);

 }

});

txVideoEditer.getThumbnailList(list, 200, 200);

Note:
If a time point in the list is larger than the total video duration, the last video frame will be returned.
Time points in the list are measured in milliseconds.

Importing Video

1. Quick import

This mode supports preview during editing. You can trim a video, play a video in slow motion, apply filters, change the

filter style, mix music, and add animated/static stickers and bubble subtitles, among others. It does not support video
looping or reversing.

2. Complete import

This mode supports all video editing features, including the time effects looping and reversing. Videos are pre-
processed in this mode.

In this mode, you can locate any time point of a video and view the corresponding video frame. Thumbnails that
correspond exactly to video frames are also generated during pre-processing.

The steps of complete import and the APIs used during the process are as follows:
1. Configure precise generation of thumbnails.

/**

 * Configure the thumbnails generated during pre-processing

 */

public void setThumbnail(TXVideoEditConstants.TXThumbnail thumbnail)

2. Configure the callback for thumbnail generation.

/**

 * Configure the callback for thumbnail generation during pre-processing

 * @param listener

 */

public void setThumbnailListener(TXThumbnailListener listener)

Note:
We recommend you do not specify thumbnail width or height as scaling by the SDK is more efficient.

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 54
of 163

3. Configure the callback for video pre-processing.

/**

 * Configure the callback for video pre-processing

 * @param listener

 */

public void setVideoProcessListener(TXVideoProcessListener listener)

4. Pre-process videos

public void processVideo();

Below is a complete sample:

int thumbnailCount = 10; //Number of thumbnails to generate

TXVideoEditConstants.TXThumbnail thumbnail = new

TXVideoEditConstants.TXThumbnail();

thumbnail.count = thumbnailCount;

thumbnail.width = 100; // Thumbnail width

thumbnail.height = 100; // Thumbnail height

mTXVideoEditer.setThumbnail(thumbnail); //

Configure the thumbnails generated during pre-processing

mTXVideoEditer.setThumbnailListener(mThumbnailListener); // Configure the

callback for thumbnail generation

mTXVideoEditer.setVideoProcessListener(this); //

Configure the callback of video pre-processing progress

mTXVideoEditer.processVideo(); //

Pre-process videos

Preview

You can preview a video during editing in two modes. Time-point preview shows the frame of a certain time point,
while time-range preview plays a video segment between two time points on loop (A<=>B). You need to bind the SDK
with a UIView to display video images.

1. Configure preview layout

public void initWithPreview(TXVideoEditConstants.TXPreviewParam param)

Two video rendering modes are supported, which are defined in the constant TXVideoEditConstants .

public final static int PREVIEW_RENDER_MODE_FILL_SCREEN = 1; // Aspect fill.

The image is stretched to fill the entire screen, and the excess parts are

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 55
of 163

cropped.

public final static int PREVIEW_RENDER_MODE_FILL_EDGE = 2; // Aspect

fit. The image is kept intact, and there may be black bars if the aspect ratio

does not match.

2. Time-point preview

You can locate any time point of a video imported in the complete import mode.

public void previewAtTime(long timeMs);

3. Time-range preview

You can use startPlayFromTime of TXVideoEditer to play a video segment between two time points

(A<=>B).

// Play a segment of a video from `startTime` to `endTime`

public void startPlayFromTime(long startTime, long endTime);

4. Pause and resume preview

// Pause preview

public void pausePlay();

// Resume preview

public void resumePlay();

// Stop preview

public void stopPlay();

5. Add beauty filter

You can apply filter effects such as skin brightening, romantic, and refreshing to your video. The demo offers 16 filters.
You can also customize filters.
The method to set filter is:

void setFilter(Bitmap bmp)

A bitmap is a mapping of the filter image. Setting bmp to null means to remove the filter effect.

void setSpecialRatio(float specialRatio)

You can use this API to set the filter strength on a scale of 0.0 to 1.0.

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 56
of 163

void setFilter(Bitmap leftBitmap, float leftIntensity, Bitmap rightBitmap,

float rightIntensity, float leftRatio)

You can use this API to apply different filters to the left and right sections of your video. leftBitmap represents

the left filter and leftIntensity the strength of the left filter. rightBitmap represents the right filter and

 rightIntensity the strength of the right filter. leftRatio indicates the ratio (0.0-1.0) of the image section

the left filter is applied to. If leftBitmap or rightBitmap is set to null, the filter effect for the corresponding

section will be removed.

6. Watermark

1. Add a global watermark

You can add a watermark to a specified position of a video.
The method to add a watermark is as follows:

public void setWaterMark(Bitmap waterMark, TXVideoEditConstants.TXRect rect);

 waterMark represents the watermark image. rect is the normalized frame of the watermark image in relation

to the video image. The value range of x , y , width , and height is 0 to 1.

Demo:

TXVideoEditConstants.TXRect rect = new TXVideoEditConstants.TXRect();

rect.x = 0.5f;

rect.y = 0.5f;

rect.width = 0.5f;

mTXVideoEditer.setWaterMark(mWaterMarkLogo, rect);

2. Add an ending watermark

You can add a watermark to the end of a video at the specified location.

The method to add an ending watermark is as follows:

setTailWaterMark(Bitmap tailWaterMark, TXVideoEditConstants.TXRect txRect, int

duration);

 tailWterMark represents the watermark image. txRect is the normalized frame of the watermark image in

relation to the video image, and the value range of x , y , and width in txRect is from 0 to 1.

 duration indicates for how long (s) the watermark is displayed.

Demo: add an ending watermark to the center of a video and show the watermark for 3 seconds

Bitmap tailWaterMarkBitmap = BitmapFactory.decodeResource(getResources(),

R.drawable.tcloud_logo);

TXVideoEditConstants.TXRect txRect = new TXVideoEditConstants.TXRect();

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 57
of 163

txRect.x = (mTXVideoInfo.width - tailWaterMarkBitmap.getWidth()) / (2f *

mTXVideoInfo.width);

txRect.y = (mTXVideoInfo.height - tailWaterMarkBitmap.getHeight()) / (2f *

mTXVideoInfo.height);

txRect.width = tailWaterMarkBitmap.getWidth() / (float) mTXVideoInfo.width;

mTXVideoEditer.setTailWaterMark(tailWaterMarkBitmap, txRect, 3);

Compression and Clipping

Setting video bitrate

You can specify a custom value, preferably between 600 and 12000 (Kbps), for video bitrate. The SDK will prioritize
the bitrate set during video compression. Do not set the bitrate too high or too low. The former drives up the size of
video files, and the latter results in blurry videos.

public void setVideoBitrate(int videoBitrate);

Clipping video

Set the start and end time for clipping

/**

 * Specify the time range for video clipping

 * @param startTime Start time (ms) for clipping

 * @param endTime End time (ms) for clipping

 */

public void setCutFromTime(long startTime, long endTime)

// ...

// Generate the video file

public void generateVideo(int videoCompressed, String videoOutputPath)

The constants of videoCompressed in TXVideoEditConstants are as follows:

VIDEO_COMPRESSED_360P – Compress to 360p (360 × 640)

VIDEO_COMPRESSED_480P – Compress to 480p (640 × 480)

VIDEO_COMPRESSED_540P – Compress to 540p (960 × 540)

VIDEO_COMPRESSED_720P – Compress to 720p (1280 × 720)

VIDEO_COMPRESSED_1080P – Compress to 1080p (1920 × 1080)

If the resolution of the original video is lower than the configured constant, the original resolution will be used.

If the resolution of the original video is higher than the configured constant, the video will be compressed to the
configured resolution.

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 58
of 163

Releasing Resources

When you no longer use the mTXVideoEditer object, be sure to call release() to release it.

Advanced Features

TikTok-like Special Effects
Adding Background Music

Stickers and Subtitles
Image Transition Special Effects

https://www.tencentcloud.com/document/product/1069/38029
https://www.tencentcloud.com/document/product/1069/38022
https://www.tencentcloud.com/document/product/1069/38033
https://www.tencentcloud.com/document/product/1069/38037

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 59
of 163

Video Splicing
iOS
Last updated：2025-04-01 17:14:08

The TXVideoJoiner can merge multiple videos either by sequentially concatenating them or by combining their frames
in a split-screen layout.

1. Basic Video Concatenation

To simply concatenate multiple video files sequentially, refer to the following code:

// Create TXVideoJoiner (nil for preview param indicates no preview needed)

TXVideoJoiner* _videoJoin = [[TXVideoJoiner alloc] initWithPreview:nil];

// Set video files to concatenate (_composeArray)

[_videoJoin setVideoPathList:_composeArray];

// Set delegate for progress/completion callbacks

_videoJoin.joinerDelegate = self;

// Start merging (540p compressed output)

[_videoJoin joinVideo:VIDEO_COMPRESSED_540P videoOutputPath:_outFilePath];

2. Preview Before Concatenation

To preview the concatenated videos before merging, use the following code:

// Configure preview view

TXPreviewParam *param = [[TXPreviewParam alloc] init];

param.videoView = _videoPreview.renderView;

param.renderMode = PREVIEW_RENDER_MODE_FILL_EDGE;

// Create TXVideoJoiner with preview

TXVideoJoiner* _videoJoin = [[TXVideoJoiner alloc] initWithPreview:param];

_videoJoin.previewDelegate = _videoPreview;

// Set video files

[_videoJoin setVideoPathList:_composeArray];

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 60
of 163

// Start preview playback

[_videoJoin startPlay];

Control playback with:

startPlay: Start preview
pausePlay: Pause preview
resumePlay: Resume preview

3. Split-Screen Video Merging

TXVideoJoiner also supports merging multiple videos into a split-screen layout. Example code:

TXVideoJoiner* _videoJoin = [[TXVideoJoiner alloc] initWithPreview:nil];

[_videoJoin setVideoPathList:_composeArray];

_videoJoin.joinerDelegate = self;

// Configure split-screen layout

TXSplitScreenParams* splitScreenParams = [[TXSplitScreenParams alloc] init];

splitScreenParams.canvasWidth = 720 * 2; // Total output width

splitScreenParams.canvasHeight = 1280; // Total output height

// Define positions for each video

splitScreenParams.rects = @[

 [NSValue valueWithCGRect:CGRectMake(0, 0, splitScreenParams.canvasWidth/2,

splitScreenParams.canvasHeight)],

 [NSValue valueWithCGRect:CGRectMake(splitScreenParams.canvasWidth/2, 0,

splitScreenParams.canvasWidth/2, splitScreenParams.canvasHeight)]

];

splitScreenParams.durationMode = ALIGNS_TO_LONGEST; // Duration matches

longest input

[_videoJoiner setSplitScreenList:splitScreenParams];

// Set audio mix ratios (0: muted, 1: full volume)

[_videoJoiner setVideoVolumes:@[@0, @1]];

// Start merging

[_videoJoin joinVideo:VIDEO_COMPRESSED_540P videoOutputPath:_outFilePath];

When configuring split-screen layout parameters via setSplitScreenList and audio mixing ratios via setVideoVolumes,
these settings apply to ​both the final video output (generated by splitJoinVideo) ​andthe live preview during editing.

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 61
of 163

Android
Last updated：2025-04-01 17:14:09

The TXVideoJoiner can merge multiple videos either by sequentially concatenating them or by combining their frames
in a split-screen layout.

1. Basic Video Concatenation

To simply concatenate multiple video files sequentially, refer to the following code:

mTXVideoJoiner = new TXVideoJoiner(mContext);

// Set the video source list. A return value < 0 indicates invalid or unsupported f

if (mTXVideoJoiner.setVideoPathList(videoSourceList) < 0) {

 return;

}

// Set a listener to track concatenation progress and completion.

mTXVideoJoiner.setVideoJoinerListener(new TXVideoJoinerListener() {

 @Override

 public void onJoinProgress(float progress) {}

 @Override

 public void onJoinComplete(TXJoinerResult result) {}

});

// Start concatenation. Specify the output resolution and path.

// Note: If all input videos share the same format and resolution, concatenation is

// Otherwise, re-encoding is required, which slows the process.

mTXVideoJoiner.joinVideo(TXVideoEditConstants.VIDEO_COMPRESSED_540P, mOutputPath);

2. Preview Before Concatenation

To preview the concatenated videos before merging, use the following code:

mTXVideoJoiner = new TXVideoJoiner(mContext);

// Set the video source list.

if (mTXVideoJoiner.setVideoPathList(videoSourceList) < 0) {

 return;

}

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 62
of 163

// Set a listener for preview progress and completion.

mTXVideoJoiner.setTXVideoPreviewListener(new TXVideoPreviewListener() {

 @Override

 public void onPreviewProgress(int time) {}

 @Override

 public void onPreviewFinished() {}

});

// Prepare the preview view.

TXVideoEditConstants.TXPreviewParam param = new TXVideoEditConstants.TXPreviewParam

param.videoView = mVideoView;

param.renderMode = TXVideoEditConstants.PREVIEW_RENDER_MODE_FILL_EDGE;

mTXVideoJoiner.initWithPreview(param);

// Start preview.

mTXVideoJoiner.startPlay();

Control playback with:

startPlay: Start preview
pausePlay: Pause preview
resumePlay: Resume preview

3. Split-Screen Video Merging

TXVideoJoiner also supports merging multiple videos into a split-screen layout. Example code:

mTXVideoJoiner = new TXVideoJoiner(mContext);

// Set the video source list.

if (mTXVideoJoiner.setVideoPathList(videoSourceList) < 0) {

 return;

}

// Set a listener for split-screen merging progress and completion.

mTXVideoJoiner.setVideoJoinerListener(new TXVideoJoinerListener() {

 @Override

 public void onJoinProgress(float progress) {}

 @Override

 public void onJoinComplete(TXJoinerResult result) {}

});

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 63
of 163

// Configure split-screen layout parameters.

SplitScreenParam splitScreenParam = new SplitScreenParam();

splitScreenParam.canvasWidth = 720; // Canvas width during split-screen

joining

splitScreenParam.canvasHeight = 1280; // Canvas height

splitScreenParam.durationControlMode = DurationControlMode.ALIGNS_TO_LONGEST;

// Duration matches the longest video

// Define positions and sizes for each video on the canvas.

TXAbsoluteRect rect1 = new TXAbsoluteRect();

TXAbsoluteRect rect2 = new TXAbsoluteRect();

splitScreenParam.rects.add(rect1);

splitScreenParam.rects.add(rect2);

mTXVideoJoiner.setSplitScreenList(splitScreenParam);

// Set audio mixing weights for each video (e.g., video1: 100% volume, video2:

0%).

List<Float> volumes = new LinkedList<>();

volumes.add(1.0f);

volumes.add(0.0f);

mTXVideoJoiner.setVideoVolumes(volumes);

// Start split-screen merging.

// If input videos differ in format or resolution, re-encoding is required,

which may slow the process.

mTXVideoJoiner.splitJoinVideo(TXVideoEditConstants.VIDEO_COMPRESSED_540P,

mOutputPath);

When configuring split-screen layout parameters via setSplitScreenList and audio mixing ratios via setVideoVolumes,
these settings apply to ​both the final video output (generated by splitJoinVideo) ​andthe live preview during editing.

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 64
of 163

Upload and Playback
Signature Distribution
Last updated：2020-08-28 16:53:57

Video upload from client refers to uploading local videos to the VOD platform by an end user of the application. For
more information, please see Guide. This document describes how to generate a signature for upload from client.

Overview

The overall process for upload from client is as follows:

To support upload from client, you need to build two backend services: signature distribution service and event
notification receipt service.

https://www.tencentcloud.com/document/product/266/33921

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 65
of 163

The client first requests an upload signature from the signature distribution service.
The signature distribution service verifies whether the client user has the upload permission. If the verification passes,
a signature will be generated and distributed; otherwise, an error code will be returned, and the upload process will

end.
After receiving the signature, the client will use the upload feature integrated in the UGSV SDK to upload the video.
After the upload is completed, the VOD backend will send an upload completion event notification to your event
notification receipt service.
If the signature distribution service specifies a video processing task flow in the signature, the VOD service will

automatically process the video accordingly after the video is uploaded. Video processing in UGSV scenarios is
generally AI-based porn detection.
After the video is processed, the VOD backend will send a task flow status change event notification to your event
notification receipt service.
At this point, the entire video upload and processing flow ends.

Signature Generation

For more information on the signature for upload from client, please see Signature for Upload from Client.

Signature Distribution Service Implementation Sample

/**

 * Calculate a signature

 */

function createFileUploadSignature({ timeStamp = 86400, procedure = '', classId

= 0, oneTimeValid = 0, sourceContext = '' }) {

 // Determine the current time and expiration time of the signature

 let current = parseInt((new Date()).getTime() / 1000)

 let expired = current + timeStamp; // Signature validity period: 1 day

 // Enter the parameters into the parameter list

 let arg_list = {

 //required

 secretId: this.conf.SecretId,

 currentTimeStamp: current,

 expireTime: expired,

 random: Math.round(Math.random() * Math.pow(2, 32)),

 //opts

 procedure,

 classId,

 oneTimeValid,

https://www.tencentcloud.com/document/product/266/33950
https://www.tencentcloud.com/document/product/266/33931
https://www.tencentcloud.com/document/product/1069/38040#.E4.BD.BF.E7.94.A8-ai-.E9.89.B4.E9.BB.84
https://www.tencentcloud.com/document/product/266/33953
https://www.tencentcloud.com/document/product/266/33922

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 66
of 163

 sourceContext

 }

 // Calculate the signature

 let orignal = querystring.stringify(arg_list);

 let orignal_buffer = new Buffer(orignal, "utf8");

 let hmac = crypto.createHmac("sha1", this.conf.SecretKey);

 let hmac_buffer = hmac.update(orignal_buffer).digest();

 let signature = Buffer.concat([hmac_buffer,

orignal_buffer]).toString("base64");

 return signature;

}

/**

 * Respond to a signature request

 */

function getUploadSignature(req, res) {

 res.json({

 code: 0,

 message: 'ok',

 data: {

 signature: gVodHelper.createFileUploadSignature({})

 }

 });

}

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 67
of 163

Video Upload
iOS
Last updated：2022-05-24 16:08:49

Calculating Upload Signature

Video upload from client refers to uploading local videos to the VOD platform by an end user of the application. For
more information, please see Guide. This document describes how to generate a signature for upload from client.

Overview

The overall process for upload from client is as follows:

https://www.tencentcloud.com/document/product/266/33921

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 68
of 163

To support upload from client, you need to build two backend services: signature distribution service and event
notification receipt service.
The client first requests an upload signature from the signature distribution service.

The signature distribution service verifies whether the client user has the upload permission. If the verification passes,
a signature will be generated and delivered; otherwise, an error code will be returned, and the upload process will end.
After receiving the signature, the client will use the upload feature integrated in the UGSV SDK to upload the video.
After the upload is completed, the VOD backend will send an upload completion event notification to your event
notification receipt service.

If the signature distribution service specifies a video processing task flow in the signature, the VOD service will
automatically process the video accordingly after the video is uploaded. Video processing in UGSV scenarios is
generally AI-based porn detection.
After the video is processed, the VOD backend will send a task flow status change event notification to your event
notification receipt service.
At this point, the entire video upload and processing flow ends.

Signature generation

For more information on the signature for upload from client, please see Signature for Upload from Client.

Signature distribution service implementation sample

/**

 * Calculate a signature

 */

function createFileUploadSignature({ timeStamp = 86400, procedure = '', classId

= 0, oneTimeValid = 0, sourceContext = '' }) {

 // Determine the generation time and expiration time of the signature

 let current = parseInt((new Date()).getTime() / 1000)

 let expired = current + timeStamp; // Signature validity period: 1 day

 // Enter the parameters into the parameter list

 let arg_list = {

 //required

 secretId: this.conf.SecretId,

 currentTimeStamp: current,

 expireTime: expired,

 random: Math.round(Math.random() * Math.pow(2, 32)),

 //opts

 procedure,

 classId,

 oneTimeValid,

 sourceContext

 }

 // Calculate the signature

 let orignal = querystring.stringify(arg_list);

https://www.tencentcloud.com/document/product/266/33950
https://www.tencentcloud.com/document/product/266/33931
https://www.tencentcloud.com/document/product/266/33944
https://www.tencentcloud.com/document/product/266/33953
https://www.tencentcloud.com/document/product/266/33922

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 69
of 163

 let orignal_buffer = new Buffer(orignal, "utf8");

 let hmac = crypto.createHmac("sha1", this.conf.SecretKey);

 let hmac_buffer = hmac.update(orignal_buffer).digest();

 let signature = Buffer.concat([hmac_buffer,

orignal_buffer]).toString("base64");

 return signature;

}

/**

 * Respond to a signature request

 */

function getUploadSignature(req, res) {

 res.json({

 code: 0,

 message: 'ok',

 data: {

 signature: gVodHelper.createFileUploadSignature({})

 }

 });

}

Connection Process

Publishing short video

Upload a .mp4 file to Tencent Video Cloud and get the online watch URL. Tencent Video Cloud can meet various
video watch needs such as nearby scheduling, instant live streaming and playback, dynamic acceleration, and global
connection, delivering a smooth watch experience.

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 70
of 163

Step 1. Use the TXUGCRecord API to shoot a short video, and a .mp4 short video file will be generated after the

shoot ends and be called back.

Step 2. Your application applies for an upload signature ("credential" for the application to upload the .mp4 file to
VOD) to your business server. To ensure the security, upload signatures should be distributed by your business server
but not generated by the client application.
Step 3. Use the TXUGCPublish API to publish the video. After the video is successfully published, the SDK will

call back the watch URL to you.

Notes

You should never write the SecretID or SecretKey for upload signature calculation into the client code of the

application, as their disclosure will cause security risks. If attackers get such information by cracking the application,
they can misappropriate your traffic and storage service.
The correct practice is to generate a one-time upload signature by using the SecretID and SecretKey on

your server and send the signature to the application. As the server is generally hard to be intruded, the security is
guaranteed.

When publishing a short video, please make sure that the Signature field is correctly passed in; otherwise, the

release will fail.

Connection directions

1. Select a video

You can upload the shot or edited video as described in previous documents or upload a local video on your phone.

2. Compress the video

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 71
of 163

Use the TXVideoEditer.generateVideo(int videoCompressed, String videoOutputPath) API

to compress the selected video. Four resolutions are supported for compression currently, and compression with
customizable bitrate will be supported in the future.

3. Publish the video

Publish the generated .mp4 file to Tencent Cloud. The application needs to get the upload signature with a short
validity period for file upload as instructed in Signature Distribution.

 TXUGCPublish (in TXUGCPublish.h) is used to publish .mp4 files to VOD so as to meet various video watch

needs such as nearby scheduling, instant live streaming and playback, dynamic acceleration, and global connection.

TXPublishParam * param = [[TXPublishParam alloc] init];

param.signature = _signature; // Enter the upload si

// Video file path generated by shoot, which can be obtained through the `onRecordC

param.videoPath = _videoPath;

// Path of the first-frame video preview image generated by shoot. The value is the

param.coverPath = _coverPath;

TXUGCPublish *_ugcPublish = [[TXUGCPublish alloc] init];

// Checkpoint restart is used for file release by default

_ugcPublish.delegate = self; // Set the `TXVideoPub

[_ugcPublish publishVideo:param];

The release process and result will be returned through the TXVideoPublishListener API (defined in the

 TXUGCPublishListener.h header file):

 onPublishProgress is used to return the file release progress, the uploadBytes parameter indicates the

number of uploaded bytes, and the totalBytes parameter indicates the total number of bytes that need to be

uploaded.

@optional

-(void) onPublishProgress:(NSInteger)uploadBytes totalBytes: (NSInteger)totalBytes;

 onPublishComplete is used to return the release result, the errCode and descMsg fields of

 TXPublishResult indicate the error code and error message respectively, videoURL indicates the VOD

address of the short video, coverURL indicates the cloud storage address of the video cover, and videoId

indicates the cloud storage ID the video file, with which you can call VOD's server APIs.

@optional

-(void) onPublishComplete:(TXPublishResult*)result;

Release result.
You can check the short video release result against the error code table.

https://www.tencentcloud.com/document/product/1069/38015
https://www.tencentcloud.com/document/product/266/34110
https://www.tencentcloud.com/document/product/1069/38042

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 72
of 163

4. Play back the video

After the video is successfully uploaded in step 3, the video fileId , playback URL, and cover URL will be

returned. You can directly pass in the fileId or playback URL to the VOD player for playback.

https://www.tencentcloud.com/document/product/1069/38017

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 73
of 163

Android
Last updated：2022-05-24 16:09:04

Connection Process

Short video release: upload a .mp4 file to Tencent Video Cloud and get the online watch URL. Tencent Video Cloud
can meet various video watch needs such as nearby scheduling, instant live streaming and playback, dynamic
acceleration, and global connection, delivering a smooth watch experience.

Step 1. Use the TXUGCRecord API to shoot a short video, and a .mp4 short video file will be generated after the

shoot ends and be called back.
Step 2. Your application applies for an upload signature ("credential" for the application to upload the .mp4 file to

VOD) to your business server. To ensure the security, upload signatures should be distributed by your business server
but not generated by the client application.
Step 3. Use the TXUGCPublish API to publish the video. After the video is successfully published, the SDK will

call back the watch URL to you.

Notes

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 74
of 163

You should never write the SecretID or SecretKey for upload signature calculation into the client code of the

application, as their disclosure will cause security risks. If attackers get such information by cracking the application,
they can misappropriate your traffic and storage service.

The correct practice is to generate a one-time upload signature by using the SecretID and SecretKey on

your server and send the signature to the application.
When publishing a short video, please make sure that the Signature field is correctly passed in; otherwise, the

release will fail.

Connection Directions

Integrate the short video upload feature as instructed in Upload SDK for Android.

1. Select a video

Uploa
ded a shot, edited, or spliced video or select a local video for upload.

2. Compress the video

Video
 compression can reduce the short video file size but will also reduce the video definition. You can determine whether

to compress videos as needed.
Use the TXVideoEditer.generateVideo(int videoCompressed, String videoOutputPath) API

to compress the video. Four resolutions are supported for compression currently, and compression with customizable
bitrate will be supported in the future.

3. Publish the video

Publis
h the generated .mp4 file to Tencent Cloud. The application needs to get the upload signature with a short validity
period for file upload as instructed in Signature Distribution. TXUGCPublish (in TXUGCPublish.java) is used

to publish .mp4 files to VOD so as to meet various video watch needs such as nearby scheduling, instant live
streaming and playback, dynamic acceleration, and global connection.

mVideoPublish = new TXUGCPublish(TCVideoPublisherActivity.this.getApplicationContex

// Checkpoint restart is used for file release by default

TXUGCPublishTypeDef.TXPublishParam param = new TXUGCPublishTypeDef.TXPublishParam()

param.signature = mCosSignature;	 	 	 	 	 	 //

https://www.tencentcloud.com/document/product/266/33925
https://liteav.sdk.qcloud.com/doc/api/zh-cn/group__TXVideoEditer__android.html#af3f16bcb21f26c608c980b91671e386e
https://www.tencentcloud.com/document/product/1069/38015

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 75
of 163

// Video file path generated by shoot, which can be obtained through the `onRecordC

param.videoPath = mVideoPath;

// First-frame video preview generated by shoot, which can be obtained through the

param.coverPath = mCoverPath;

mVideoPublish.publishVideo(param);

The release process and result will be returned through the TXRecordCommon.ITXVideoPublishListener

API (in the TXRecordCommon.java header file):

 onPublishProgress is used to return the release progress, the uploadBytes parameter indicates the

number of uploaded bytes, and the totalBytes parameter indicates the total number of bytes that need to be

uploaded.

void onPublishProgress(long uploadBytes, long totalBytes);

 onPublishComplete is used to return the release result.

void onPublishComplete(TXPublishResult result);

The fields in the TXPublishResult parameter and their descriptions are as detailed below:

Field Description

errCode Error code.

descMsg Error message.

videoURL VOD address of short video.

coverURL Cloud storage address of video cover.

videoId Cloud storage ID of video file, through which you can call VOD's server APIs.

You can check the short video release result against the error code table.

4. Play back the video

After
 the video is successfully uploaded in step 3, the video fileId , playback URL, and cover URL will be returned.

You can directly pass in the fileId or playback URL to the VOD player for video playback.

https://www.tencentcloud.com/document/product/266/7788
https://www.tencentcloud.com/document/product/1069/38042
https://www.tencentcloud.com/document/product/1069/38027

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 76
of 163

Player SDK
iOS
Last updated：2022-11-21 17:29:27

Overview

Tencent Cloud RT-Cube Player for iOS is an open-source Tencent Cloud player component. It can provide powerful
playback functionality similar to Tencent Video with just a few lines of code. It has basic features such as
landscape/portrait mode switching, definition selection, gestures, and small window playback, as well as special

features such as video buffering, software/hardware decoding switching, and adjustable-speed playback. It supports
more formats and has better compatibility and functionality than system-default players. In addition, it features instant
broadcasting of the first frame and low latency and offers advanced capabilities like video thumbnail.
If the Player component cannot meet your custom requirements and you have development experience, you can
integrate the RT-Cube Player SDK as instructed in Integration Guide to customize the player UI and playback

features.

Prerequisites

1. Activate VOD. If you don't have an account yet, sign up first.
2. Download and install Xcode from App Store.
3. Download and install CocoaPods as instructed at the CocoaPods website.

Content Summary

How to integrate the RT-Cube Player component for iOS
How to create and use a player

Directions

Step 1. Download the player code package

GitHub page: LiteAVSDK/Player_iOS
You can download a ZIP file of the Player component from the GitHub page or use the Git clone command to
download the component.

https://www.tencentcloud.com/document/product/266/47849
https://www.tencentcloud.com/product/vod
https://www.tencentcloud.com/login
https://cocoapods.org/
https://github.com/LiteAVSDK/Player_iOS

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 77
of 163

Download the ZIP file
Download using a Git command
Go to the Player GitHub page and click Code > Download ZIP.

1. First, make sure that your computer has Git installed; if not, you can install it as instructed in Git Installation Tutorial.
2. Run the following command to clone the code of the Player component to your local system.

git clone git@github.com:tencentyun/SuperPlayer_iOS.git

If you see the following information, the project code has been cloned to your local system successfully.

Cloning to 'SuperPlayer_iOS'...

remote: Enumerating objects: 2637, done.

remote: Counting objects: 100% (644/644), done.

remote: Compressing objects: 100% (333/333), done.

remote: Total 2637 (delta 227), reused 524 (delta 170), pack-reused 1993

Receiving the object: 100% (2637/2637), 571.20 MiB | 3.94 MiB/s, done.

Processing delta: 100% (1019/1019), done.

Below is the directory structure of the component's source code after decompression:

Filename Description

SDK Stores the Superplayer framework and static library.

Demo The folder of the Player demo.

https://git-scm.com/downloads

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 78
of 163

App The entry point UI.

SuperPlayerDemo The Player demo.

SuperPlayerKit The Player component.

Step 2. Integrate the component

This step describes how to integrate the Player component. We recommend you integrate it through CocoaPods or
manually download the SDK and then import it into your current project.

Integrate via CocoaPods
Manually download the SDK
1. To install the component using CocoaPods, add the code below to the Podfile:

Directly integrate SuperPlayer as a Pod:

pod 'SuperPlayer

To use the Player edition, add the following dependency to podfile :

pod 'SuperPlayer/Player'

To use the All-in-one edition, add the following dependency to podfile :

pod 'SuperPlayer/Professional'

2. Run pod install or pod update .

1. Download the SDK and demo at GitHub.
2. Import TXLiteAVSDK_Player.framework into your project and select Do Not Embed.

3. Copy Demo/TXLiteAVDemo/SuperPlayerKit/SuperPlayer to your project directory.

4. Third-party dependency libraries of SuperPlayer include AFNetworking , SDWebImage , Masonry ,

and TXLiteAVSDK_Player .

5. To integrate TXLiteAVSDK_Player manually, you need to add the required system frameworks and libraries:

System frameworks: MetalKit, ReplayKit, SystemConfiguration, CoreTelephony, VideoToolbox, CoreGraphics,
AVFoundation, Accelerate, MobileCoreServices, and VideoToolbox.
System libraries: libz, libresolv, libiconv, libc++, and libsqlite3.

In addition, you need to add TXFFmpeg.xcframework and TXSoundTouch.scframework under the

 TXLiteAVSDK_Player file as dynamic libraries.

https://github.com/LiteAVSDK/Player_iOS

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 79
of 163

6. If you integrate TXLiteAVSDK_Player as a Pod, no libraries need to be added.

Step 3. Use the player features

This step describes how to create a player and use it for video playback.

1. ﻿
Create a player.

Create a SuperPlayerView object to play videos (SuperPlayerView is the main class of the Superplayer).

// Import the header file

#import <SuperPlayer/SuperPlayer.h>

// Create a player

_playerView = [[SuperPlayerView alloc] init];

// Set a delegate for events

_playerView.delegate = self;

// Set the parent view. _playerView will be automatically added under holderView.

_playerView.fatherView = self.holderView;

2. License configuration.
If you have the required license, get the license URL and key in the RT-Cube console.
If you don't have the required license, please contact us to get a license.

After getting the license information, before calling relevant APIs of the SDK, initialize the license through the following
API. We recommend you set the following in - [AppDelegate

application:didFinishLaunchingWithOptions:] :

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSD

 NSString * const licenceURL = @"<The license URL obtained>";

https://console.tencentcloud.com/vcube
https://www.tencentcloud.com/contact-us

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 80
of 163

 NSString * const licenceKey = @"<The key obtained>";

 //TXLiveBase can be found in the "TXLiveBase.h" header file

 [TXLiveBase setLicenceURL:licenceURL key:licenceKey];

 NSLog(@"SDK Version = %@", [TXLiveBase getSDKVersionStr]);

}

3. Video playback:
This step describes how to play back a video. The RT-Cube Player for iOS supports playback through FileId in

VOD or URL. We recommend you integrate the FileId because it allows you to use more VOD capabilities.

Play by VOD file ID

Play by URL

A video
 file ID is returned by the server after the video is uploaded.
1. After a video is published from a client, the server will return a file ID to the client.
2. When the video is uploaded to the server, the corresponding FileId will be included in the notification of upload

confirmation.
If the video you want to play is already saved with VOD, you can go to Media Assets to view its file ID.

Note:

To play by VOD file ID, you need to use the Adaptive-HLS template (ID: 10) to transcode the video or use the player
signature psign to specify the video to play; otherwise, the playback may fail. For more information on how to

transcode a video and generate psign , see Play back a video with the Player component and Player Signature.

If a "no v4 play info" exception occurs during playback through FileId , the above problem may exist. In this case,

we recommend you make adjustments as instructed above. You can also directly get the playback link of the source

video for playback through URL.

https://console.tencentcloud.com/vod/media
https://www.tencentcloud.com/document/product/266/38098
https://www.tencentcloud.com/document/product/266/38099

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 81
of 163

We recommend you transcode videos for playback because untranscoded videos may experience
compatibility issues during playback.

// If you haven't enabled hotlink protection and a "no v4 play info" error

occurs, we recommend you transcode your video using the Adaptive-HLS template

(ID: 10) or get the playback URL of the video and play it by URL.

SuperPlayerModel *model = [[SuperPlayerModel alloc] init];

model.appId = 1400329071;// Configure AppId

model.videoId = [[SuperPlayerVideoId alloc] init];

model.videoId.fileId = @"5285890799710173650"; // Configure `FileId`

// If you enable hotlink protection, you need to enter a `psign` (player

signature) for playback. For more information on the signature and how to

generate it, see [Player Signature]

(https://www.tencentcloud.com/document/product/266/38099).

//model.videoId.pSign =

@"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhcHBJZCI6MTQwMDMyOTA3MSwiZmlsZUlkIjoi

NTI4NTg5MDc5OTcxMDE3MzY1MCIsImN1cnJlbnRUaW1lU3RhbXAiOjEsImV4cGlyZVRpbWVTdGFtcCI

6MjE0NzQ4MzY0NywidXJsQWNjZXNzSW5mbyI6eyJ0IjoiN2ZmZmZmZmYifSwiZHJtTGljZW5zZUluZm

8iOnsiZXhwaXJlVGltZVN0YW1wIjoyMTQ3NDgzNjQ3fX0.yJxpnQ2Evp5KZQFfuBBK05BoPpQAzYAWo

6liXws-LzU";

[_playerView playWithModelNeedLicence:model];

SuperPlayerModel *model = [[SuperPlayerModel alloc] init];

model.videoURL = @"http://your_video_url.mp4"; // Enter the URL of the video to p

[_playerView playWithModelNeedLicence:model];

Stop playback.
If the player is no longer needed, call resetPlayer to reset the player and free up memory.

[_playerView resetPlayer];

At this point, you have learned how to create a player, use it to play videos, and stop playback.

More Features

1. Full screen playback

The Player component supports full screen playback, where it allows setting screen lock, volume and brightness
control through gestures, on-screen commenting, screencapturing, and definition selection. This feature can be tried
out in TCToolkit App > Player > Player Component, and you can enter the full screen playback mode by clicking

the full screen icon.
You can call the API below to go full screen from the windowed playback mode:

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 82
of 163

- (void)superPlayerFullScreenChanged:(SuperPlayerView *)player {

 // You can customize the logic after switching to the full screen mode here

}

Features of full screen playback mode

Back to windowed mode
Enable screen locking
On-screen comments
Screenshot

Change resolution
Tap the back button to return to the windowed mode. The delegate method that will be triggered after the SDK
implements the logic for exiting full screen is as follows:

// The back button tapping event

- (void)superPlayerBackAction:(SuperPlayerView *)player;

Triggered by tapping of the back button at the top left

// The exit full screen notification

- (void)superPlayerFullScreenChanged:(SuperPlayerView *)player;

Screen locking disables touch screen and allows users to enter an immersive playback mode. The SDK will handle the
tapping event and no callbacks will be sent.

// Use the API below to enable/disable screen locking

@property(nonatomic, assign) BOOL isLockScreen;

After the on-screen commenting feature is enabled, text comments sent by users will be displayed on the screen.
Get the SPDefaultControlView object and, during initialization of the player view, set an event for the on-

screen comment button of SPDefaultControlView . The on-screen comment content and view are customized

by yourself. For details, see CFDanmakuView , CFDanmakuInfo , and CFDanmaku in

 SuperPlayerDemo .

SPDefaultControlView *dv = (SPDefaultControlView *)**self**.playerView.controlView;

[dv.danmakuBtn addTarget:**self** action:**@selector**(danmakuShow:) forControlEven

CFDanmakuView: Configure the attributes of on-screen commenting during initialization.

// The following attributes are required--------

// On-screen time

@property(nonatomic, assign) CGFloat duration;

// On-screen time in the center, at top, and at bottom

@property(nonatomic, assign) CGFloat centerDuration;

// On-screen comment line height

@property(nonatomic, assign) CGFloat lineHeight;

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 83
of 163

// Spacing between on-screen comment lines

@property(nonatomic, assign) CGFloat lineMargin;

// Maximum number of on-screen comment lines

@property(nonatomic, assign) NSInteger maxShowLineCount;

// Maximum number of on-screen comment lines in the center, at top, and at bottom

@property(nonatomic, assign) NSInteger maxCenterLineCount;

The Player component allows users to take and save a screenshot of a video during playback. The SDK will handle

the screenshot button tapping event and no callbacks will be sent for successful or failed screenshots. Screenshots
are saved to the phone album.
Users can change the video definition (such as SD, HD, and FHD) during playback. After the definition selection
button is tapped, the SDK will implement the logic for displaying the definition selection view and handle the selection
event. No callbacks will be sent.

2. Floating window playback

The Player component supports playback in a small floating window, which allows users to switch to another page of
the application without interrupting the video playback. You can try out this feature in TCToolkit App > Player >
Player Component by clicking Back in the top-left corner.

// Tapping the back button during playback in portrait mode will trigger the API

[SuperPlayerWindowShared setSuperPlayer:self.playerView];

[SuperPlayerWindowShared show];

// The API triggered by tapping the floating window to return to the main window

SuperPlayerWindowShared.backController = self;

3. Thumbnail

The Player component supports customizing a video thumbnail, which is displayed before the callback is received for
playing back the first video frame. This feature can be tried out in TCToolkit App > Player > Player Component >
Thumbnail Customization Demo.
When the Player component is set to the automatic playback mode PLAY_ACTION_AUTO_PLAY , the video will be

played back automatically, and the thumbnail will be displayed before the first video frame is loaded.
When the Player component is set to the manual playback mode PLAY_ACTION_MANUAL_PLAY , the video will be

played back only after the user clicks Play. The thumbnail will be displayed until the first video frame is loaded.
You can set the thumbnail by specifying the URL of a local or online file. For detailed directions, see the code below. If
you play by VOD file ID, you can also set the thumbnail in the VOD console.

SuperPlayerModel *model = [[SuperPlayerModel alloc] init];

SuperPlayerVideoId *videoId = [SuperPlayerVideoId new];

videoId.fileId = @"8602268011437356984";

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 84
of 163

model.appId = 1400329071;

model.videoId = videoId;

// Playback mode, which can be set to automatic (`PLAY_ACTION_AUTO_PLAY`) or manual

model.action = PLAY_ACTION_MANUAL_PLAY;

// Specify the URL of an online file to use as the thumbnail. If `coverPictureUrl`

model.customCoverImageUrl = @"http://1500005830.vod2.myqcloud.com/6c9a5118vodcq1500

[self.playerView playWithModelNeedLicence:model];

4. Video playlist loop

The Player component supports looping a video playlist:
After a video ends, the next video in the list can be played automatically or users can manually start the next video.
After the last video in the list ends, the first video in the list will start automatically.

You can try out this feature in TCToolkit App > Player > Player Component > Video List Loop Demo.

// Step 1. Create a `NSMutableArray` for the loop data

NSMutableArray *modelArray = [NSMutableArray array];

SuperPlayerModel *model = [SuperPlayerModel new];

SuperPlayerVideoId *videoId = [SuperPlayerVideoId new];

videoId.fileId = @"8602268011437356984";

model.appId = 1252463788;

model.videoId = videoId;

[modelArray addObject:model];

model = [SuperPlayerModel new];

videoId = [SuperPlayerVideoId new];

videoId.fileId = @"4564972819219071679";

model.appId = 1252463788;

model.videoId = videoId;

[modelArray addObject:model];

// Step 2. Call the loop API of `SuperPlayerView`

[self.playerView playWithModelListNeedLicence:modelArray isLoopPlayList:YES startIn

(void)playWithModelListNeedLicence:(NSArray *)playModelList isLoopPlayList:(BOOL)is

API parameters:

Parameter Type Description

playModelList NSArray * Loop data list

isLoop Boolean Whether to loop the playlist

index NSInteger Index of the video from which to start the playback

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 85
of 163

5. Picture-in-Picture (PiP) feature

The Picture-in-Picture (PiP) feature has been launched on iOS 9 but can currently be used only on iPads. To use PiP
on an iPhone, you need to update the iOS version to iOS 14.
The Player component supports both in-app PiP and system-wide PiP. To use the feature, you need to enable

background modes: In Xcode, choose your target, click Signing & Capabilities > +Capability > Background
Modes, and select Audio, AirPlay, and Picture in Picture.

Code sample for using PiP capabilities:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

// Enter the PiP mode

 if (![TXVodPlayer isSupportPictureInPicture]) {

 return;

 }

 [_vodPlayer enterPictureInPicture];

// Exit the PiP mode

[_vodPlayer exitPictureInPicture];

6. Video preview

The Player component supports video preview, which is useful if you want to allow non-subscribers to watch the
beginning of a video. We offer parameters for you to set the video preview duration, pop-up message, and preview
end screen. You can find a demo for this feature in the TCToolkit app: Player > Player Component > Preview
Feature Demo.

 // Step 1. Create a preview model

 TXVipWatchModel *model = [[TXVipWatchModel alloc] init];

 model.tipTtitle = @"You can preview 15 seconds of the video. Become a subscriber t

 model.canWatchTime = 15;

 // Step 2. Set the preview model

 self.playerView.vipWatchModel = model;

 // Step 3. Call the method below to display the preview

 [self.playerView showVipTipView];

 TXVipWatchModel class parameter description:

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 86
of 163

Parameter Type Description

tipTtitle NSString Pop-up message

canWatchTime float Preview duration in seconds

7. Dynamic watermark

The Player component allows you to add a randomly moving text watermark to protect your content against piracy.
Watermarks are visible in both the full screen mode and windowed mode. The text, font size, and color of a watermark

are customizable. You can find a demo for this feature in the TCToolkit app: Player > Player Component >
Dynamic Watermark Demo.

// Step 1. Create a video source information model

SuperPlayerModel * playermodel = [SuperPlayerModel new];

// Add other information of the video source

// Step 2. Create a dynamic watermark model

DynamicWaterModel *model = [[DynamicWaterModel alloc] init];

// Step 3. Set the data of the dynamic watermark

model.dynamicWatermarkTip = @"shipinyun";

model.textFont = 30;

model.textColor = [UIColor colorWithRed:255.0/255.0 green:255.0/255.0 blue:255.0/25

playermodel.dynamicWaterModel = model;

// Step 4. Call the method below to display the dynamic watermark

[self.playerView playWithModelNeedLicence:playermodel];

Parameters for DynamicWaterModel :

Parameter Type Description

dynamicWatermarkTip NSString Watermark text

textFont CGFloat Font size

textColor UIColor Text color

Demo

To try out more features, you can directly run the demo project or scan the QR code to download the TCToolkit App
demo.

Running a demo project

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 87
of 163

1. In the Demo directory, run the pod update command to generate the TXLiteAVDemo.xcworkspace

file again.
2. Double-click the file to open it, modify the certificate, and run the project on a real device.

3. After the demo is run successfully, go to Player > Player Component to try out the player features.

TCToolkit app

You can try out more features of the Player component in TCToolkit App > Player.

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 88
of 163

Android
Last updated：2022-11-14 18:22:09

Overview

The Tencent Cloud RT-Cube Player for Android is an open-source player component of Tencent Cloud. It integrates
quality monitoring, video encryption, Top Speed Codec, definition selection, and small window playback and is
suitable for all VOD and live playback scenarios. It encapsulates complete features and provides upper-layer UIs to

help you quickly create a playback program comparable to mainstream video applications.
If the Player component cannot meet your custom requirements and you have development experience, you can
integrate the RT-Cube Player SDK as instructed in Integration Guide to customize the player UI and playback
features.

Prerequisites

1. To try out all features of the player, we recommend you activate VOD. If you don't have an account yet, sign up for

one first. If you don't use the VOD service, you can skip this step; however, you will only be able to use basic player
features after integration.
2. Download and install Android Studio. If you have already done so, skip this step.

Content Summary

1. How to integrate the Player component for Android
2. How to create and use the player

Directions

Step 1. Download the player code package

GitHub page: LiteAVSDK/Player_Android

You can download the Player for Android by downloading the Player component ZIP package or running the
Git clone command.
Download the ZIP file
Download using a Git command

https://www.tencentcloud.com/document/product/266/47849
https://www.tencentcloud.com/product/vod
https://www.tencentcloud.com/login
https://developer.android.com/studio
https://github.com/LiteAVSDK/Player_Android

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 89
of 163

Go to the Player GitHub page and click Code > Download ZIP.

1. First, make sure that your computer has Git installed; if not, you can install it as instructed in Git Installation Tutorial.
2. Run the following command to clone the code of the Player component to your local system.

git clone git@github.com:tencentyun/SuperPlayer_Android.git

If you see the following information, the project code has been cloned to your local system successfully.

Cloning to 'SuperPlayer_Android'...

remote: Enumerating objects: 2637, done.

remote: Counting objects: 100% (644/644), done.

remote: Compressing objects: 100% (333/333), done.

remote: Total 2637 (delta 227), reused 524 (delta 170), pack-reused 1993

Receiving the object: 100% (2637/2637), 571.20 MiB | 3.94 MiB/s, done.

Processing delta: 100% (1019/1019), done.

After the project is downloaded, the directory generated after decompression of the source code is as follows:

Filename Description

LiteAVDemo(Player) The Player demo project, which can be run directly after being imported
into Android Studio.

app The entry of the main UI

superplayerkit The Player component (SuperPlayerView), which provides common
features such as playback, pause, and gesture control.

https://git-scm.com/downloads

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 90
of 163

superplayerdemo The Player component demo code

common Tool module

SDK
Player SDK, including LiteAVSDK_Player_x.x.x.aar (SDK
provided in AAR format) and LiteAVSDK_Player_x.x.x.zip (SDKs
provided in lib and JAR formats)

Player Documentation
(Android).pdf

The Player component user guide

Step 2. Integrate the component

This step describes how to integrate the player. You can integrate the project by using Gradle for automatic loading,
manually downloading the AAR and importing it into your current project, or importing the JAR and SO libraries.
Automatic loading in Gradle (AAR)
Manual download in Gradle (AAR)

SDK integration (jar + so)
1. Download the SDK + demo package for Android here.
2. Copy the Demo/superplayerkit module to your project and then configure as follows:

Import superplayerkit into setting.gradle in your project directory.

include ':superplayerkit'

Open the build.gradle file of the superplayerkit project and modify the constant values of

 compileSdkVersion , buildToolsVersion , minSdkVersion , targetSdkVersion , and

 rootProject.ext.liteavSdk .

https://github.com/LiteAVSDK/Player_Android

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 91
of 163

compileSdkVersion 26

buildToolsVersion "26.0.2"

defaultConfig {

 targetSdkVersion 23

 minSdkVersion 19

}

dependencies {

 // To integrate an older version, change `latest.release` to the corresponding ve

 implementation 'com.tencent.liteav:LiteAVSDK_Player:latest.release'

}

Import the common module into your project as instructed above and configure it.

3. Configure the mavenCentral repository in Gradle, and LiteAVSDK will be automatically downloaded and

updated. Open app/build.gradle and configure as follows:

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 92
of 163

3.1 Add the LiteAVSDK_Player dependencies to dependencies .

dependencies {

 implementation 'com.tencent.liteav:LiteAVSDK_Player:latest.release'

 implementation project(':superplayerkit')

 // Third-party library for integration of the on-screen commenting feature of

 implementation 'com.github.ctiao:DanmakuFlameMaster:0.5.3'

}

If you need to integrate an older version of the LiteAVSDK_Player SDK, view it in MavenCentral and then integrate it
as instructed below:

dependencies {

 // Integrate the LiteAVSDK_Player SDK v8.5.10033

 implementation 'com.tencent.liteav:LiteAVSDK_Player:8.5.10033'

}

3.2 In the defaultConfig of app/build.gradle , specify the CPU architecture to be used by the

application (currently, LiteAVSDK supports armeabi, armeabi-v7a, and arm64-v8a, which you can configure as
needed).

ndk {

https://repo1.maven.org/maven2/com/tencent/liteav/LiteAVSDK_Player/

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 93
of 163

 abiFilters "armeabi", "armeabi-v7a", "arm64-v8a"

}

If you haven't used the download cache feature (APIs in TXVodDownloadManager) of the SDK v9.4 or earlier and
don't need to play back the downloaded files in the SDK v9.5 or later, you don't need to use the SO file of the feature,
which helps reduce the size of the installation package. For example, if you have downloaded a cached file by using
the setDownloadPath and startDownloadUrl functions of the TXVodDownloadManager class in the

SDK v9.4 or earlier, and the getPlayPath path called back by TXVodDownloadManager is stored in the

application for subsequent playback, you will need libijkhlscache-master.so to play back the file at the

 getPlayPath path; otherwise, you won't need it. You can add the following to app/build.gradle :

packagingOptions{

 exclude "lib/armeabi/libijkhlscache-master.so"

 exclude "lib/armeabi-v7a/libijkhlscache-master.so"

 exclude "lib/arm64-v8a/libijkhlscache-master.so"

}

3.3 Add the mavenCentral repository to the build.gradle in your project directory.

repositories {

 mavenCentral()

}

4. Click

Sync Now to sync the SDK. If mavenCentral can be connected to, the SDK will be automatically downloaded

and integrated into the project very soon.
1. Download the SDK + demo package for Android here.
2. Import SDK/LiteAVSDK_Player_XXX.aar (XXX is the version number) into the libs folder under

 app and copy the Demo/superplayerkit module to the project.

3. Import superplayerkit into setting.gradle in your project directory.

include ':superplayerkit'

4. Open the build.gradle file of the superplayerkit project and modify the constant values of

 compileSdkVersion , buildToolsVersion , minSdkVersion , targetSdkVersion , and

 rootProject.ext.liteavSdk .

https://www.tencentcloud.com/document/product/266/47849#txvoddownloadmanager
https://github.com/LiteAVSDK/Player_Android

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 94
of 163

compileSdkVersion 26

buildToolsVersion "26.0.2"

defaultConfig {

 targetSdkVersion 23

 minSdkVersion 19

}

dependencies {

 implementation(name:'LiteAVSDK_Player_8.9.10349', ext:'aar')

}

Import the common module into your project as instructed above and configure it.

Configure repositories

repositories {

flatDir {

 dirs '../app/libs'

}

}

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 95
of 163

5. Add dependencies to app/build.gradle :

compile(name:'LiteAVSDK_Player_8.9.10349', ext:'aar')

implementation project(':superplayerkit')

// Third-party library for integration of the on-screen commenting feature of the P

implementation 'com.github.ctiao:DanmakuFlameMaster:0.5.3'

6. Add the following to the project's build.gradle :

allprojects {

 repositories {

 flatDir {

 dirs 'libs'

 }

 }

}

7. In the defaultConfig of app/build.gradle , specify the CPU architecture to be used by the application

(currently, LiteAVSDK supports armeabi, armeabi-v7a, and arm64-v8a).

ndk {

 abiFilters "armeabi", "armeabi-v7a", "arm64-v8a"

}

If you haven't used the download cache feature (APIs in TXVodDownloadManager) of the SDK v9.4 or earlier and
don't need to play back the downloaded files in the SDK v9.5 or later, you don't need to use the SO file of the feature,
which helps reduce the size of the installation package. For example, if you have downloaded a cached file by using
the setDownloadPath and startDownloadUrl functions of the TXVodDownloadManager class in the

SDK v9.4 or earlier, and the getPlayPath path called back by TXVodDownloadManager is stored in the

application for subsequent playback, you will need libijkhlscache-master.so to play back the file at the

 getPlayPath path; otherwise, you won't need it. You can add the following to app/build.gradle :

packagingOptions{

 exclude "lib/armeabi/libijkhlscache-master.so"

 exclude "lib/armeabi-v7a/libijkhlscache-master.so"

 exclude "lib/arm64-v8a/libijkhlscache-master.so"

}

8. Click Sync Now to sync the SDK.
If you do not want to import the AAR library, you can also integrate LiteAVSDK by importing JAR and SO libraries.

1. Download the SDK + demo package for Android here and decompress it. Find
 SDK/LiteAVSDK_Player_XXX.zip (XXX is the version number) in the SDK directory. After decompression,

you can get the libs directory, which contains the JAR file and folders of SO files as listed below:

https://www.tencentcloud.com/document/product/266/47849#txvoddownloadmanager
https://github.com/LiteAVSDK/Player_Android

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 96
of 163

2. Copy the Demo/superplayerkit module to your project and import superplayerkit into

 setting.gradle in your project directory.

include ':superplayerkit'

3. Copy the libs folder obtained by decompression in step 1 to the superplayerkit project root directory.

4. Modify the superplayerkit/build.gradle file:

compileSdkVersion 26

buildToolsVersion "26.0.2"

defaultConfig {

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 97
of 163

 targetSdkVersion 23

 minSdkVersion 19

}

Import the common module into your project as instructed above and configure it.

Configure sourceSets and add the SO library import code.

sourceSets{

 main{

 jniLibs.srcDirs = ['libs']

 }

 }

Configure repositories , add flatDir , and specify the path of the local repository.

repositories {

flatDir {

 dirs 'libs'

}

}

5. In the defaultConfig of app/build.gradle , specify the CPU architecture to be used by the application

(currently, LiteAVSDK supports armeabi, armeabi-v7a, and arm64-v8a).

ndk {

 abiFilters "armeabi", "armeabi-v7a", "arm64-v8a"

}

6. Click Sync Now to sync the SDK.
At this point, you have completed integrating the RT-Cube Player for Android.

Step 3. Configure application permissions

Configure permissions for your application in AndroidManifest.xml . LiteAVSDK needs the following

permissions:

<!--network permission-->

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />

<!--VOD player floating window permission -->

<uses-permission android:name="android.permission.SYSTEM_ALERT_WINDOW" />

<!--storage-->

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 98
of 163

Step 4. Set obfuscation rules

In the proguard-rules.pro file, add the classes related to the TRTC SDK to the "do not obfuscate" list:

-keep class com.tencent.** { *;}

At this point, you have completed configuring permissions for the RT-Cube Player application for Android.

Step 5. Use the player features

This step describes how to create a player and use it for video playback.
1. Player creation.
The main class of the player is SuperPlayerView , and videos can be played back after it is created. FileId

or URL can be integrated for playback. Create SuperPlayerView in the layout file:

<!-- Player component -->

<com.tencent.liteav.demo.superplayer.SuperPlayerView

 android:id="@+id/superVodPlayerView"

 android:layout_width="match_parent"

 android:layout_height="200dp" />

2. License configuration.
If you have the required license, get the license URL and key in the RT-Cube console.
If you don't have the required license, contact us to get it.
After obtaining the license information, before calling relevant APIs of the SDK, initialize the license through the

following API. We recommend you set the following in the Application class:

public class MApplication extends Application {

 @Override

 public void onCreate() {

 super.onCreate();

 String licenceURL = ""; // The license URL obtained

 String licenceKey = ""; // The license key obtained

 TXLiveBase.getInstance().setLicence(this, licenceURL, licenceKey);

 TXLiveBase.setListener(new TXLiveBaseListener() {

 @Override

 public void onLicenceLoaded(int result, String reason) {

 Log.i(TAG, "onLicenceLoaded: result:" + result + ", reason:" + reason)

 }

 });

 }

}

3. Video playback.

https://console.tencentcloud.com/vcube
https://www.tencentcloud.com/contact-us

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 99
of 163

This step describes how to play back a video. The RT-Cube Player for Android can be used for VOD and live
playback as follows:
VOD

playback
: The Player component supports two VOD playback methods, namely, through FileID or URL.

Live playback: The Player component can use the playback through URL method for live playback. A live audio/video
stream can be pulled for playback simply by passing in its URL. For more information on how to generate a Tencent
Cloud live streaming URL, see Splicing Live Streaming URLs.

VOD and live playback through URL
VOD playback through `FileID`
A URL can be the playback address of a VOD file or the pull address of a live stream. A video file can be played back
simply by passing in its URL.

SuperPlayerModel model = new SuperPlayerModel();

model.appId = 1400329073; // Configure `AppId`

model.url = "http://your_video_url.mp4"; // Configure a URL for your video for pl

mSuperPlayerView.playWithModelNeedLicence(model);

A video file ID is returned by the server after the video is uploaded.

1. After a video is published from a client, the server will return a file ID to the client.
2. After a video is uploaded to the server, the notification for successful upload will contain a file ID for the video.
If the video you want to play is already saved with VOD, you can go to Media Assets to view its file ID.

Note:

To play by VOD file ID, you need to use the Adaptive-HLS template (ID: 10) to transcode the video or use the player
signature psign to specify the video to play; otherwise, the playback may fail. For more information on how to

transcode a video and generate psign , see Play back a video with the Player component and Player Signature.

If a "no v4 play info" exception occurs during playback through FileId , the above problem may exist. In this case,

we recommend you make adjustments as instructed above. You can also directly get the playback link of the source

https://www.tencentcloud.com/document/product/267/38393
https://console.tencentcloud.com/vod/media
https://www.tencentcloud.com/document/product/266/38098
https://www.tencentcloud.com/document/product/266/38099

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 100
of 163

video for playback through URL.
We recommend you transcode videos for playback because untranscoded videos may experience
compatibility issues during playback.

// If you haven't enabled hotlink protection and a "no v4 play info" error

occurs, we recommend you transcode your video using the Adaptive-HLS template

(ID: 10) or get the playback URL of the video and play it by URL.

SuperPlayerModel *model = [[SuperPlayerModel alloc] init];

model.appId = 1400329071;// Configure AppId

model.videoId = [[SuperPlayerVideoId alloc] init];

model.videoId.fileId = @"5285890799710173650"; // Configure `FileId`

// If you enable hotlink protection, you need to enter a `psign` (player

signature) for playback. For more information on the signature and how to

generate it, see [Player Signature]

(https://www.tencentcloud.com/document/product/266/38099).

//model.videoId.pSign =

@"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhcHBJZCI6MTQwMDMyOTA3MSwiZmlsZUlkIjoi

NTI4NTg5MDc5OTcxMDE3MzY1MCIsImN1cnJlbnRUaW1lU3RhbXAiOjEsImV4cGlyZVRpbWVTdGFtcCI

6MjE0NzQ4MzY0NywidXJsQWNjZXNzSW5mbyI6eyJ0IjoiN2ZmZmZmZmYifSwiZHJtTGljZW5zZUluZm

8iOnsiZXhwaXJlVGltZVN0YW1wIjoyMTQ3NDgzNjQ3fX0.yJxpnQ2Evp5KZQFfuBBK05BoPpQAzYAWo

6liXws-LzU";

[_playerView playWithModelNeedLicence:model];

4. Playback exit.
If the player is no longer needed, call resetPlayer to reset the player and free up memory.

mSuperPlayerView.resetPlayer();

At this point, you have learned how to create a player, use it to play videos, and stop playback.

More Features

This section describes several common player features. For more features, see Demo. For features supported by the

Player component, see Feature Description.

1. Full screen playback

The Player component supports full screen playback. In full screen mode, users can lock the screen, control volume
and brightness with gestures, send on-screen comments, take screenshots, and switch the video definition. You can
try out this feature in TCToolkit App > Player > Player Component, and you can enter the full screen playback
mode by clicking the full screen icon in the bottom-right corner.
You can call the API below to enter full screen from the windowed playback mode:

https://www.tencentcloud.com/document/product/266/42965

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 101
of 163

mControllerCallback.onSwitchPlayMode(SuperPlayerDef.PlayerMode.FULLSCREEN);

Features of full screen playback mode

Return to the window
Screen lock
On-screen comments

Screenshot
Change resolution
Tap Back to return to the window playback mode.

// API triggered after tapping

mControllerCallback.onBackPressed(SuperPlayerDef.PlayerMode.FULLSCREEN);

onSwitchPlayMode(SuperPlayerDef.PlayerMode.WINDOW);

Screen locking disables touch screen and allows users to enter an immersive playback mode.

// API triggered after tapping

toggleLockState();

After the on-screen commenting feature is enabled, text comments sent by users will be displayed on the screen.

// Step 1. Add an on-screen comment to the on-screen comment view

addDanmaku(String content, boolean withBorder);

// Step 2. Enable or disable on-screen commenting

toggleBarrage();

The Player component allows users to take and save a screenshot of a video during playback. Click the button in
image 4 to capture the screen, and you can save the captured screenshot with the mSuperPlayer.snapshot

API.

mSuperPlayer.snapshot(new TXLivePlayer.ITXSnapshotListener() {

 @Override

 public void onSnapshot(Bitmap bitmap) {

 // The captured screenshot can be saved here

 }

});

Users can change the video definition (such as SD, HD, and FHD) during playback.

// The API for displaying the definition selection view triggered after the button

showQualityView();

// The callback API for tapping the definition option is as follows

mListView.setOnItemClickListener(new AdapterView.OnItemClickListener() {

 @Override

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 102
of 163

 public void onItemClick(AdapterView<?> parent, View view, int position, long id)

 // The event of tapping the definition list view

 VideoQuality quality = mList.get(position);

 mCallback.onQualitySelect(quality);

 }

});

// Callback for the selected definition

@Override

public void onQualityChange(VideoQuality quality) {

 mFullScreenPlayer.updateVideoQuality(quality);

 mSuperPlayer.switchStream(quality);

}

2. Floating window playback

The Player component supports playback in a small floating window, which allows users to switch to another
application without interrupting the video playback. You can try out this feature in TCToolkit App > Player > Player
Component by clicking Back in the top-left corner.
Floating window playback relies on the following permission in AndroidManifest :

<uses-permission android:name="android.permission.SYSTEM_ALERT_WINDOW" />

// The API triggered by switching to the floating window

mSuperPlayerView.switchPlayMode(SuperPlayerDef.PlayerMode.FLOAT);

// The API triggered by tapping the floating window to return to the main window

mControllerCallback.onSwitchPlayMode(SuperPlayerDef.PlayerMode.WINDOW);

3. Thumbnail

The Player component supports customizing a video thumbnail, which is displayed before the callback is received for
playing back the first video frame. You can try out this feature in TCToolkit App > Player > Player Component >
Thumbnail Customization Demo.
When the Player component is set to the automatic playback mode PLAY_ACTION_AUTO_PLAY , the video will be

played back automatically, and the thumbnail will be displayed before the first video frame is loaded.
When the Player component is set to the manual playback mode PLAY_ACTION_MANUAL_PLAY , the video will be

played back only after the user clicks Play. The thumbnail will be displayed until the first video frame is loaded.
You can set the thumbnail by specifying the URL of a local or online file. For detailed directions, see the code below. If
you play by VOD file ID, you can also set the thumbnail in the VOD console.

SuperPlayerModel model = new SuperPlayerModel();

model.appId = "Your `appid`";

model.videoId = new SuperPlayerVideoId();

model.videoId.fileId = "Your `fileId`";

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 103
of 163

// Playback mode, which can be set to automatic (`PLAY_ACTION_AUTO_PLAY`) or manual

model.playAction = PLAY_ACTION_MANUAL_PLAY;

// Specify the URL of an online file to use as the thumbnail. If `coverPictureUrl`

model.coverPictureUrl = "http://1500005830.vod2.myqcloud.com/6c9a5118vodcq150000583

mSuperPlayerView.playWithModelNeedLicence(model);

4. Video playlist loop

The Player component supports looping a video playlist:

After a video ends, the next video in the list can be played automatically or users can manually start the next video.
After the last video in the list ends, the first video in the list will start automatically.
This feature can be tried out in TCToolkit App > Player > Player Component > Video List Loop Demo.

// Step 1. Create a loop list<SuperPlayerModel>

ArrayList<SuperPlayerModel> list = new ArrayList<>();

SuperPlayerModel model = new VideoModel();

model = new SuperPlayerModel();

model.videoId = new SuperPlayerVideoId();

model.appid = 1252463788;

model.videoId.fileId = "4564972819219071568";

list.add(model);

model = new SuperPlayerModel();

model.videoId = new SuperPlayerVideoId();

model.appid = 1252463788;

model.videoId.fileId = "4564972819219071679";

list.add(model);

// Step 2. Call the loop API

mSuperPlayerView.playWithModelListNeedLicence(list, true, 0);

public void playWithModelListNeedLicence(List<SuperPlayerModel> models, boolean isL

API parameters:

Parameter Type Description

models List Loop data list

isLoopPlayList boolean Whether to loop video playback

index int
Index of SuperPlayerModel from which to start the
playback

5. Preview

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 104
of 163

The Player component supports the video preview feature, which allows non-member viewers to view a preview of the
video. You can pass in different parameters to control the video preview duration, prompt message, and preview end
screen. You can try out this feature in Tencent Cloud Toolkit App > Player > Player Component > Preview

Feature Demo.

 Method 1:

 // Step 1. Create a video model

 SuperPlayerModel mode = new SuperPlayerModel();

 //... Add the video source information

 // Step 2. Create a preview information model

 VipWatchModel vipWatchModel = new VipWatchModel("You can preview %ss and activate

 mode.vipWatchMode = vipWatchModel;

 // Step 3. Call the method for playing back videos

 mSuperPlayerView.playWithModelNeedLicence(mode);

 Method 2:

 // Step 1. Create a preview information model

 VipWatchModel vipWatchModel = new VipWatchModel("You can preview %ss and activate

 // Step 2. Call the method for setting the preview feature

 mSuperPlayerView.setVipWatchModel(vipWatchModel);

public VipWatchModel(String tipStr, long canWatchTime)

 VipWatchModel API parameter description:

Parameter Type Description

tipStr String Preview prompt message

canWatchTime Long Preview duration in seconds

6. Dynamic watermark

The Player component allows you to add a randomly moving text watermark to protect your content against piracy.
Watermarks are visible in both the full screen mode and windowed mode. The text, font size, and color of a watermark
are customizable. You can find a demo for this feature in the TCToolkit app: Player > Player Component >
Dynamic Watermark Demo.

 Method 1:

 // Step 1. Create a video model

 SuperPlayerModel mode = new SuperPlayerModel();

 //... Add the video source information

 // Step 2. Create a watermark information model

 DynamicWaterConfig dynamicWaterConfig = new DynamicWaterConfig("shipinyun", 30, Co

 mode.dynamicWaterConfig = dynamicWaterConfig;

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 105
of 163

 // Step 3. Call the method for playing back videos

 mSuperPlayerView.playWithModelNeedLicence(mode);

 Method 2:

 // Step 1. Create a watermark information model

 DynamicWaterConfig dynamicWaterConfig = new DynamicWaterConfig("shipinyun", 30, Co

 // Step 2. Call the method for setting the dynamic watermark feature

 mSuperPlayerView.setDynamicWatermarkConfig(dynamicWaterConfig);

public DynamicWaterConfig(String dynamicWatermarkTip, int tipTextSize, int tipTextC

API parameters:

Parameter Type Description

dynamicWatermarkTip String Watermark text information

tipTextSize int Text size

tipTextColor int Text color

Demo

To try out more features, you can directly run the project demo or scan the QR code to download the TCToolkit App
demo.

Running a demo project

1. Select File > Open on the navigation bar of Android Studio. In the pop-up window, select the
 $SuperPlayer_Android/Demo directory of the demo project. After the demo project is imported successfully,

click Run app to run the demo.
2. After running the demo successfully, go to Player > Player Component to try out the player features.

TCToolkit app

You can try out more features of the Player component in TCToolkit App > Player.

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 106
of 163

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 107
of 163

Tencent Effect SDK
SDK Features
Last updated：2022-06-24 14:59:35

The Tencent Effect SDK comes in 11 editions, which fall into two categories: the basic A series and advanced S
series. For details about the features of different editions, see the table below.

Basic A series

Basic A editions offer common beautification features and are for customers who do not have high requirements on

face editing.

Feature

Edition

A1 -
01

A1 -
02

A1 -
03

A1 -
04

A1 -
05

A1 -
06

Basic

Basic beauty filtersBrightening, skin
smoothing, and blush

✓ ✓ ✓ ✓ ✓ ✓

Image settingsContrast, saturation,
and sharpness

✓ ✓ ✓ ✓ ✓ ✓

Basic beautificationEye enlarging
and face slimming (natural,
attractive, and handsome)

✓ ✓ ✓ ✓ ✓ ✓

Filters10 general filters by default ✓ ✓ ✓ ✓ ✓ ✓

Extended

Stickers(10 2D general stickers for
free)

- ✓ ✓ ✓ ✓ ✓

General beautification SDKs(Face
narrowing/Chin reshaping/Hairline
adjustment/Nose narrowing)

- - ✓ - - -

Gesture recognition(One gesture
sticker for free)

- - - ✓ - -

Keying/Virtual background(Three
keying stickers for free)

- - - - ✓ -

Makeup(Three full-face makeup
looks for free)

- - - - - ✓

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 108
of 163

SDK
Download

iOS & Android -

Advanced S series

Advanced S editions offer enhanced beautification features (including stickers and makeup looks) and are for
customers with high requirements on face editing.

Feature

Edition

S1 -
00

S1 -
01

S1 - 02 S1 -
03

S1 -
04

Basic Basic beauty filters
Brightening, skin smoothing, and
blush

✓ ✓ ✓ ✓ ✓

Image settings
Contrast, saturation, and sharpness

✓ ✓ ✓ ✓ ✓

Advanced beautification
Eye enlarging, face narrowing, face
slimming (natural, attractive, and
handsome), chin slimming, chin
reshaping, face shortening, face
reshaping, hairline adjustment, eye
brightening, eye distance adjustment,
eye corner adjustment, nose
slimming, nose wing narrowing,
cheekbone slimming, nose
repositioning, teeth whitening, wrinkle
removal, smile line removal, eye bag
removal, mouth reshaping, lip
thickness adjustment, lipstick
application, blush, and facial
contouring

✓ ✓ ✓ ✓ ✓

Filters
(General filters by default)

✓ ✓ ✓ ✓ ✓

Stickers
(2D general stickers by default)

-- ✓ ✓ ✓ ✓

Advanced stickers
(3D general stickers by default)

- ✓ ✓ ✓ ✓

Makeup - ✓ ✓ ✓ ✓

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 109
of 163

Full face makeup

Extended

Gesture recognition
(One gesture sticker for free)

- - ✓ - ✓

Keying/Virtual background
(Three keying stickers for free)

- - - ✓ ✓

SDK
Download

iOS & Android -

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 110
of 163

SDK Integration Guide
iOS
Last updated：2022-11-14 18:18:58

Preparations

1. Download and decompress the demo package as described in Demos, and copy the xmagickit folder in the

 demo/XiaoShiPin/ directory in the demo project to the directory of the Podfile of your project.

2. Add the following dependencies to your Podfile and run pod install to import the component.

pod 'xmagickit', :path => 'xmagickit/xmagickit.podspec'

3. Replace the Bundle ID with the one under the obtained trial license.

Developer environment requirements

Xcode 11 or later: Download on App Store or here.
Recommended runtime environment:
Device requirements: iPhone 5 or later. iPhone 6 and older models support up to 720p for front camera.

System requirements: iOS 12.0 or later.

SDK API Integration

Step 1. Initiate authentication

Add the following code to didFinishLaunchingWithOptions of AppDelegate (set LicenseURL and

 LicenseKey according to the authorization information you get from the Tencent Cloud website):

[TXUGCBase setLicenceURL:LicenseURL key:LicenseKey];

[TELicenseCheck setTELicense:LicenseURLkey:LicenseKey completion:^(NSInteger authre

 if (authresult == TELicenseCheckOk) {

 NSLog(@"Authentication successful");

 } else {

 NSLog(@"Authentication failed");

 }

 }];

Authentication errorCode description:

https://www.tencentcloud.com/document/product/1143/45374
https://developer.apple.com/xcode/resources/

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 111
of 163

Error
Code

Description

0 Succeeded.

-1 The input parameter is invalid; for example, the URL or KEY is empty.

-3 Download failed. Check the network settings.

-4 The Tencent Effect SDK authorization information read from the local system is empty, which may
be caused by an I/O failure.

-5 The content of the read v_cube.license file is empty, which may be caused by an I/O failure.

-6 The JSON field in the v_cube.license file is incorrect. Contact Tencent Cloud for assistance.

-7 Signature verification failed. Contact Tencent Cloud for assistance.

-8 Decryption failed. Contact Tencent Cloud for assistance.

-9 The JSON field in the TELicense field is incorrect. Contact Tencent Cloud for assistance.

-10 The Tencent Effect SDK authorization information parsed online is empty. Contact Tencent Cloud for
assistance.

-11 Failed to write the Tencent Effect SDK authorization information to the local file, which may be
caused by an I/O failure.

-12 Failed to download and failed to parse local assets.

-13 Authentication failed.

Others Contact Tencent Cloud for assistance.

Step 2. Set the path of SDK materials

CGSize previewSize = [self getPreviewSizeByResolution:self.currentPreviewResolution

NSString *beautyConfigPath = [NSSearchPathForDirectoriesInDomains(NSDocumentDirecto

beautyConfigPath = [beautyConfigPath stringByAppendingPathComponent:@"beauty_config

NSFileManager *localFileManager=[[NSFileManager alloc] init];

BOOL isDir = YES;

NSDictionary * beautyConfigJson = @{};

if ([localFileManager fileExistsAtPath:beautyConfigPath isDirectory:&isDir] && !isD

 NSString *beautyConfigJsonStr = [NSString stringWithContentsOfFile:beautyConfig

 NSError *jsonError;

 NSData *objectData = [beautyConfigJsonStr dataUsingEncoding:NSUTF8StringEncodin

 beautyConfigJson = [NSJSONSerialization JSONObjectWithData:objectData

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 112
of 163

 options:NSJSONReadingMutableContainers

 error:&jsonError];

}

NSDictionary *assetsDict = @{@"core_name":@"LightCore.bundle",

 @"root_path":[[NSBundle mainBundle] bundlePath],

 @"tnn_"

 @"beauty_config":beautyConfigJson

};

// Init beauty kit

self.beautyKit = [[XMagic alloc] initWithRenderSize:previewSize assetsDict:assetsDi

Step 3. Add the log and event listener

// Register log

[self.beautyKit registerSDKEventListener:self];

[self.beautyKit registerLoggerListener:self withDefaultLevel:YT_SDK_ERROR_LEVEL];

Step 4. Configure beauty filter effects

- (int)configPropertyWithType:(NSString *_Nonnull)propertyType withName:(NSString *

Step 5. Render videos

In the preprocessing frame callback, construct YTProcessInput and pass textureId to the SDK for

rendering.

 [self.xMagicKit process:inputCPU withOrigin:YtLightImageOriginTopLeft

withOrientation:YtLightCameraRotation0]

Step 6. Pause/Resume the SDK

[self.beautyKit onPause];

[self.beautyKit onResume];

Step 7. Add the SDK beauty filter panel to the layout

UIEdgeInsets gSafeInset;

#if __IPHONE_11_0 && __IPHONE_OS_VERSION_MAX_ALLOWED >= __IPHONE_11_0

if(gSafeInset.bottom > 0){

}

if (@available(iOS 11.0, *)) {

 gSafeInset = [UIApplication sharedApplication].keyWindow.safeAreaInsets;

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 113
of 163

} else

#endif

 {

 gSafeInset = UIEdgeInsetsZero;

 }

dispatch_async(dispatch_get_main_queue(), ^{

 // Beauty filter option UI

 _vBeauty = [[BeautyView alloc] init];

 [self.view addSubview:_vBeauty];

 [_vBeauty mas_makeConstraints:^(MASConstraintMaker *make) {

 make.width.mas_equalTo(self.view);

 make.centerX.mas_equalTo(self.view);

 make.height.mas_equalTo(254);

 if(gSafeInset.bottom > 0.0){ // Adapt to full-view screen

 make.bottom.mas_equalTo(self.view.mas_bottom).mas_offset(0);

 } else {

 make.bottom.mas_equalTo(self.view.mas_bottom).mas_offset(-10);

 }

 }];

 _vBeauty.hidden = YES;

});

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 114
of 163

Android
Last updated：2022-11-14 18:18:58

Step 1. Replace resources

1. Download the UGSV demo which has been integrated with the Tencent Effect SDK. This demo is built based on the
Tencent Effect SDK S1-04 edition.
2. Replace resources: As the SDK edition used by the demo project may be different from the SDK edition you actually

use, you need to replace the different SDK files in the demo with the files in the SDK edition you actually use as
follows:
In the build.gradle file of the xmagickit module, find the following:

api 'com.tencent.mediacloud:TencentEffect_S1-04:latest.release'

Replace it with the SDK edition you purchased as described in Integrating the Tencent Effect SDK (Android).

If your edition contains animated effects and filters, you need to download the corresponding resources on the Tencent
Effect SDK download page and put them in the following directories of the xmagickit module respectively:

Animated effects: ../assets/MotionRes .

Filters: ../assets/lut .

3. Import the xmagickit module from the demo into your actual project.

Step 2. Open build.gradle in app and do the following:

Replace the applicationId with the package name under the obtained trial license.

Step 3. Integrate the SDK APIs

You can refer to the UGCKitVideoRecord class of the demo.

1. Authorize:

 // For details about authentication and error codes, see https://www.tencentcloud.

 XMagicImpl.checkAuth(new TELicenseCheck.TELicenseCheckListener() {

 @Override

 public void onLicenseCheckFinish(int errorCode, String msg) {

 if (errorCode == TELicenseCheck.ERROR_OK) {

 loadXmagicRes();

 } else {

https://www.tencentcloud.com/document/product/1143/45374
https://www.tencentcloud.com/document/product/1143/45385
https://www.tencentcloud.com/document/product/1143/45377

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 115
of 163

 Log.e("TAG", "auth fail, please check auth url and key" + errorCod

 }

 }

 });

2. Initialize the material:

 private void loadXmagicRes() {

 if (XMagicImpl.isLoadedRes) {

 XmagicResParser.parseRes(mActivity.getApplicationContext());

 initXMagic();

 return;

 }

 new Thread(new Runnable() {

 @Override

 public void run() {

 XmagicResParser.copyRes(mActivity.getApplicationContext());

 XmagicResParser.parseRes(mActivity.getApplicationContext());

 XMagicImpl.isLoadedRes = true;

 new Handler(Looper.getMainLooper()).post(new Runnable() {

 @Override

 public void run() {

 initXMagic();

 }

 });

 }

 }).start();

 }

3. Bind beauty filters to UGSV:

 private void initBeauty() {

 TXUGCRecord instance = TXUGCRecord.getInstance(UGCKit.getAppContext());

 instance.setVideoProcessListener(new TXUGCRecord.VideoCustomProcessListener()

 @Override

 public int onTextureCustomProcess(int textureId, int width, int height) {

 if (xmagicState == XMagicImpl.XmagicState.STARTED && mXMagic != null)

 return mXMagic.process(textureId, width, height);

 }

 return textureId;

 }

 @Override

 public void onDetectFacePoints(float[] floats) {

 }

 @Override

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 116
of 163

 public void onTextureDestroyed() {

 if (Looper.getMainLooper() != Looper.myLooper()) { // Not the main th

 boolean stopped = xmagicState == XMagicImpl.XmagicState.STOPPED;

 if (stopped || xmagicState == XMagicImpl.XmagicState.DESTROYED) {

 if (mXMagic != null) {

 mXMagic.onDestroy();

 }

 }

 if (xmagicState == XMagicImpl.XmagicState.DESTROYED) {

 TXUGCRecord.getInstance(UGCKit.getAppContext()).setVideoProces

 }

 }

 }

 });

 }

4. Pause/Terminate the SDK:

 onPause() is used to pause the beauty filter effect, which can be executed in the Activity/Fragment

lifecycle method. The onDestroy method needs to be called in the GL thread (the onDestroy() of the

 XMagicImpl object can be called in the onTextureDestroyed method). For more information, see the

 onTextureDestroyed method in the sample code.

 @Override

 public void onTextureDestroyed() {

 if (Looper.getMainLooper() != Looper.myLooper()) { // Not the main th

 boolean stopped = xmagicState == XMagicImpl.XmagicState.STOPPED;

 if (stopped || xmagicState == XMagicImpl.XmagicState.DESTROYED) {

 if (mXMagic != null) {

 mXMagic.onDestroy();

 }

 }

 if (xmagicState == XMagicImpl.XmagicState.DESTROYED) {

 TXUGCRecord.getInstance(UGCKit.getAppContext()).setVideoProces

 }

 }

 }

5. Add the beauty filter panel to the layout:

 <RelativeLayout

 android:id="@+id/panel_layout"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_alignParentBottom="true"

 android:visibility="gone"/>

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 117
of 163

6. Create a beauty filter object and add the beauty filter panel.

private void initXMagic() {

 if (mXMagic == null) {

 mXMagic = new XMagicImpl(mActivity, getBeautyPanel());

 } else {

 mXMagic.onResume();

 }

}

For detailed directions, see the UGCKitVideoRecord class of the demo.

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 118
of 163

Migrating from UGSV Enterprise
Last updated：2022-08-02 15:05:19

We have deprecated UGSV Enterprise. The beauty filter module in UGSV Enterprise is now offered as an independent
SDK: Tencent Effect SDK. The SDK features more natural effects and more powerful beautification features. It also
offers greater flexibility in terms of integration. This document shows you how to migrate from UGSV Enterprise to

Tencent Effect SDK.

Notes

1. Modify the version number of the glide library in the Xmagic module to make it the same as the actual

version number.
2. Modify the earliest version number in the Xmagic module to make it the same as the actual version number.

Directions

Step 1. Replace resources

1. Download the UGSV demo which has integrated the Tencent Effect SDK. This demo is built based on the Tencent

Effect SDK S1-04 edition.
2. Replace the SDK files in the demo with the files for the SDK you actually use. Specifically, follow the steps below:
Replace the .aar file in the libs directory of the Xmagic module with the .aar file in libs of your

SDK.
Replace all the files in ../src/main/assets of the Xmagic module with those in assets/ of your SDK. If

there are files in the MotionRes folder of your SDK package, also copy them to the ../src/main/assets

directory.
Replace all the .so files in ../src/main/jniLibs of the Xmagic module with the .so files in

 jniLibs of your SDK package (you need to decompress the ZIP files in the jinLibs folder to get the .so

files for arm64-v8a and armeabi-v7a).
3. Import the Xmagic module in the demo into your project.

Step 2. Upgrade the SDK edition

Upgrade the SDK from UGSV Enterprise to UGSV Professional.
Before replacement: implementation

'com.tencent.liteav:LiteAVSDK_Enterprise:latest.release'

https://mediacloud-76607.gzc.vod.tencent-cloud.com/TencentEffect/Android/2.4.1.115.vcube/UGSV_Demo.zip

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 119
of 163

After replacement: implementation

'com.tencent.liteav:LiteAVSDK_Professional:latest.release'

Step 3. Configure the license

1. Call the following APIs in oncreate of application in your project:

XMagicImpl.init(this);

XMagicImpl.checkAuth(null);

2. In the XMagicImpl class, replace the values of license URL and key to the ones you obtain from Tencent

Cloud.

Step 4. Implement the code

The following example shows you how to implement the short video shooting view
(TCVideoRecordActivity.java).

1. Add the following variables to the TCVideoRecordActivity.java class:

private XMagicImpl mXMagic;

private int isPause = 0;// 0: not paused; 1: paused; 2: pausing; 3: to be terminate

2. Add the following code after onCreate in the TCVideoRecordActivity.java class:

TXUGCRecord instance = TXUGCRecord.getInstance(this);

instance.setVideoProcessListener(new TXUGCRecord.VideoCustomProcessListener() {

 @Override

 public int onTextureCustomProcess(int textureId, int width, int height) {

 if (isPause == 0 && mXMagic != null) {

 return mXMagic.process(textureId, width, height);

 }

 return 0;

 }

 @Override

 public void onDetectFacePoints(float[] floats) {

 }

 @Override

 public void onTextureDestroyed() {

 if (Looper.getMainLooper() != Looper.myLooper()) { // Not the main threa

 if (isPause == 1) {

 isPause = 2;

 if (mXMagic != null) {

 mXMagic.onDestroy();

 }

 initXMagic();

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 120
of 163

 isPause = 0;

 } else if (isPause == 3) {

 if (mXMagic != null) {

 mXMagic.onDestroy();

 }

 }

 }

 }

});

XMagicImpl.checkAuth((errorCode, msg) -> {

 if (errorCode == TELicenseCheck.ERROR_OK) {

 loadXmagicRes();

 } else {

 TXCLog.e("TAG", "Authentication failed. Check the authentication URL and

 }

});

3. Add the following code to onStop :

isPause = 1;

if (mXMagic != null) {

 mXMagic.onPause();

}

4. Add the following code to onDestroy :

isPause = 3;

XmagicPanelDataManager.getInstance().clearData();

5. Add the following code at the beginning of onActivityResult :

if (mXMagic != null) {

 mXMagic.onActivityResult(requestCode, resultCode, data);

}

6. Add the following two methods to the end of this class:

private void loadXmagicRes() {

 if (XMagicImpl.isLoadedRes) {

 XmagicResParser.parseRes(getApplicationContext());

 initXMagic();

 return;

 }

 new Thread(() -> {

 XmagicResParser.setResPath(new File(getFilesDir(), "xmagic").getAbsolu

 XmagicResParser.copyRes(getApplicationContext());

 XmagicResParser.parseRes(getApplicationContext());

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 121
of 163

 XMagicImpl.isLoadedRes = true;

 new Handler(Looper.getMainLooper()).post(() -> {

 initXMagic();

 });

 }).start();

}

/**

* Initialize the beauty filter SDK

*/

private void initXMagic() {

 if (mXMagic == null) {

 mXMagic = new XMagicImpl(this, mUGCKitVideoRecord.getBeautyPanel());

 }else{

 mXMagic.onResume();

 }

}

Step 5. Modify other classes

1. Change the type of mBeautyPanel in the AbsVideoRecordUI class to RelativeLayout and the

response type of getBeautyPanel() to RelativeLayout . You also need to modify the corresponding XML

file and comment out the code that reports errors.

2. Comment out the code that reports errors in the UGCKitVideoRecord class.

3. In the ScrollFilterView class, delete the mBeautyPanel variable and comment out the code that

reports errors.

Step 6. Delete the beautysettingkit dependencies

In the build.gradle file of the ugckit module, delete the beautysettingkit dependencies, compile

the project, and comment out the code that report errors.

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 122
of 163

Advanced Features and Special Effects
TikTok-like Special Effects
iOS
Last updated：2025-04-01 17:14:09

Special Effect Filter

You can add multiple special effect filters for your videos. Currently, 11 filters are supported, all of which allow you to
set the start and end time for display in the video. If multiple filters are set at the same point in time, the SDK will
display the last set one.

You can set a special effect as follows:

- (void) startEffect:(TXEffectType)type startTime:(float)startTime;

- (void) stopEffect:(TXEffectType)type endTime:(float)endTime;

// The special effect type (`type` parameter) is defined in the `TXEffectType` cons

typedef NS_ENUM(NSInteger,TXEffectType)

{

 TXEffectType_ROCK_LIGHT, // Dynamic light-wave

 TXEffectType_DARK_DRAEM, // Dark dream

 TXEffectType_SOUL_OUT, // Soul out

 TXEffectType_SCREEN_SPLIT,// Screen split

 TXEffectType_WIN_SHADOW, // Window blinds

 TXEffectType_GHOST_SHADOW,// Ghost shadow

 TXEffectType_PHANTOM, // Phantom

 TXEffectType_GHOST, // Ghost

 TXEffectType_LIGHTNING, // Lightening

 TXEffectType_MIRROR, // Mirror

 TXEffectType_ILLUSION, // Illusion

};

- (void) deleteLastEffect;

- (void) deleteAllEffect;

You can call deleteLastEffect() to delete the last set special effect filter.You can call

 deleteAllEffect() to delete all set special effect filters:

Demo:

Use the first special effect filter between the first and second seconds, use the second special effect filter between the
third and fourth seconds, and delete the special effect filter set between the third and fourth seconds:

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 123
of 163

// Use the first special effect filter between the first and second seconds

[_ugcEdit startEffect:TXEffectType_SOUL_OUT startTime:1.0];

[_ugcEdit stopEffect:TXEffectType_SOUL_OUT startTime:2.0)];

// Use the second special effect filter between the third and fourth seconds

[_ugcEdit startEffect:TXEffectType_SPLIT_SCREEN startTime:3.0];

[_ugcEdit stopEffect:TXEffectType_SPLIT_SCREEN startTime:4.0];

// Delete the special effect filter set between the third and fourth seconds

[_ugcEdit deleteLastEffect];

Slow/Fast Motions

You can change the playback speed of multiple video segments by setting slow/fast playback as follows:

- (void) setSpeedList:(NSArray *)speedList;

// The `TXSpeed` parameters are as follows:

@interface TXSpeed: NSObject

@property (nonatomic, assign) CGFloat startTime; // Speed change

@property (nonatomic, assign) CGFloat endTime; // Speed change

@property (nonatomic, assign) TXSpeedLevel speedLevel; // Speed change

@end

Currently, multiple speed change levels are supported, which are defined in the `TX

typedef NS_ENUM(NSInteger, TXSpeedLevel) {

 SPEED_LEVEL_SLOWEST, // Ultra-slow 0.25x of the source video's speed

 SPEED_LEVEL_SLOW, // Slow 0.5x of the source video's speed

 SPEED_LEVEL_NOMAL, // Normal 1x of the source video's speed

 SPEED_LEVEL_FAST, // Fast 1.5x of the source video's speed

 SPEED_LEVEL_FASTEST, // Ultra-fast 2x of the source video's speed

};

Demo:

// The SDK supports speed change of multiple video segments. This demo only shows s

 TXSpeed *speed =[[TXSpeed alloc] init];

 speed.startTime = 1.0;

 speed.endTime = 3.0;

 speed.speedLevel = SPEED_LEVEL_SLOW;

 [_ugcEdit setSpeedList:@[speed]];

Reverse Playback

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 124
of 163

You can reverse a video as follows:

- (void) setReverse:(BOOL)isReverse;

Demo:

[_ugcEdit setReverse:YES];

Video Segment Loop

You can loop a video segment, but the audio will not be looped.Set the video segment for loop as follows:

- (void) setRepeatPlay:(NSArray *)repeatList;

// The `TXRepeat` parameters are as follows:

@interface TXRepeat: NSObject

@property (nonatomic, assign) CGFloat startTime; // Loop start t

@property (nonatomic, assign) CGFloat endTime; // Loop end tim

@property (nonatomic, assign) int repeatTimes; // Number of re

@end

Demo:

TXRepeat *repeat = [[TXRepeat alloc] init];

repeat.startTime = 1.0;

repeat.endTime = 3.0;

repeat.repeatTimes = 3; // Number of repeats

[_ugcEdit setRepeatPlay:@[repeat]];

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 125
of 163

Android
Last updated：2025-04-01 17:14:09

Special Effect Filter

You can add multiple special effect filters for your videos. Currently, 11 filters are supported, all of which allow you to
set the start and end time for display in the video. If multiple filters are set at the same point in time, the SDK will
display the last set one.

Set the special effect filter:

/**

 * Set the start time of the special effect filter

 * @param type Special effect filter type

 * @param startTime Start time of special effect filter in ms

 */

public void startEffect(int type, long startTime);

/**

 * Set the end time of the special effect filter

 * @param type Special effect filter type

 * @param endTime End time of special effect filter in ms

*/

public void stopEffect(int type, long endTime);

Parameter description: @param type: special effect filter type, which is defined in the TXVideoEditConstants

constant:

public static final int TXEffectType_SOUL_OUT = 0; // Soul

out

public static final int TXEffectType_SPLIT_SCREEN = 1; // Screen

split

public static final int TXEffectType_DARK_DRAEM = 2; // Dark

dream

public static final int TXEffectType_ROCK_LIGHT = 3; //

Dynamic light-wave

public static final int TXEffectType_WIN_SHADDOW = 4; // Window

blinds

public static final int TXEffectType_GHOST_SHADDOW = 5; // Ghost

shadow

public static final int TXEffectType_PHANTOM_SHADDOW = 6; //

Phantom

public static final int TXEffectType_GHOST = 7; // Ghost

public static final int TXEffectType_LIGHTNING = 8; //

Lightening

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 126
of 163

public static final int TXEffectType_MIRROR = 9; // Mirror

public static final int TXEffectType_ILLUSION = 10; //

Illusion

Delete the last set special effect filter:

public void deleteLastEffect();

Delete all set special effect filters:

public void deleteAllEffect();

Below is a complete sample:

Use the first special effect filter between the first and second seconds, use the second special effect filter between the
third and fourth seconds, and delete the special effect filter set between the third and fourth seconds:

// Use the first special effect filter between the first and second seconds

mTXVideoEditer.startEffect(TXVideoEditConstants.TXEffectType_SOUL_OUT, 1000);

mTXVideoEditer.stopEffect(TXVideoEditConstants.TXEffectType_SOUL_OUT, 2000);

// Use the second special effect filter between the third and fourth seconds

mTXVideoEditer.startEffect(TXVideoEditConstants.TXEffectType_SPLIT_SCREEN, 3000);

mTXVideoEditer.stopEffect(TXVideoEditConstants.TXEffectType_SPLIT_SCREEN, 4000);

// Delete the special effect filter set between the third and fourth seconds

mTXVideoEditer.deleteLastEffect();

Slow/Fast Motions

You can change the playback speed of multiple video segments by setting slow/fast playback as follows:

public void setSpeedList(List speedList);

// The `TXSpeed` parameters are as follows:

public final static class TXSpeed {

 public int speedLevel; // Speed change level

 public long startTime; // Start time

 public long endTime; // End time

}

// Currently, multiple speed change levels are supported, which are defined in the

public static final int SPEED_LEVEL_SLOWEST = 0; // Ultra-slow 0.25x of the sourc

public static final int SPEED_LEVEL_SLOW = 1; // Slow 0.5x of the source

public static final int SPEED_LEVEL_NORMAL = 2; // Normal 1x of the source v

public static final int SPEED_LEVEL_FAST = 3; // Fast 1.5x of the source

public static final int SPEED_LEVEL_FASTEST = 4; // Ultra-fast 2x of the source v

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 127
of 163

Below is a complete sample:

List<TXVideoEditConstants.TXSpeed> list = new ArrayList<>();

TXVideoEditConstants.TXSpeed speed1 = new TXVideoEditConstants.TXSpeed();

speed1.startTime = 0;

speed1.endTime = 1000;

speed1.speedLevel = TXVideoEditConstants.SPEED_LEVEL_SLOW;

// Slow

list.add(speed1);

TXVideoEditConstants.TXSpeed speed2 = new TXVideoEditConstants.TXSpeed();

speed2.startTime = 1000;

speed2.endTime = 2000;

speed2.speedLevel = TXVideoEditConstants.SPEED_LEVEL_SLOWEST;

// Ultra-slow

list.add(speed2);

TXVideoEditConstants.TXSpeed speed3 = new TXVideoEditConstants.TXSpeed();

speed3.startTime = 2000;

speed3.endTime = 3000;

speed3.speedLevel = TXVideoEditConstants.SPEED_LEVEL_SLOW;

// Slow

list.add(speed3);

mTXVideoEditer.setSpeedList(list);

Reverse Playback

You can reverse video playback. Specifically, you can call setReverse(true) / setReverse(false) to

start/stop reverse playback.
Demo:

mTXVideoEditer.setReverse(true);

Video Segment Loop

You can loop a video segment, but the audio will not be looped. Currently, Android supports loop of only one video
segment thrice.

You can call setRepeatPlay(null) to cancel the video segment loop set previously.

Set the video segment for loop as follows:

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 128
of 163

public void setRepeatPlay(List repeatList);

// The `TXRepeat` parameters are as follows:

public final static class TXRepeat {

 public long startTime; // Loop start time in ms

 public long endTime; // Loop end time in ms

 public int repeatTimes; // Number of repeats

}

Demo:

long currentPts = mVideoProgressController.getCurrentTimeMs();

List repeatList = new ArrayList<>();

TXVideoEditConstants.TXRepeat repeat = new TXVideoEditConstants.TXRepeat();

repeat.startTime = currentPts;

repeat.endTime = currentPts + DEAULT_DURATION_MS;

repeat.repeatTimes = 3; // Currently, a video segment can be repeated only for

thrice.

repeatList.add(repeat); // Currently, only one video segment can be looped.

mTXVideoEditer.setRepeatPlay(repeatList);

Note:
To ensure smooth reverse playback, it is recommended to ​preprocess the video upon import by calling the
processVideo method.

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 129
of 163

Stickers and Subtitles
iOS
Last updated：2025-04-01 17:14:09

Static Sticker

- (void) setPasterList:(NSArray *)pasterList;

// The `TXPaster` parameters are as follows:

@interface TXPaster: NSObject

@property (nonatomic, strong) UIImage* pasterImage; // Sticker

image

@property (nonatomic, assign) CGRect frame; // Sticker

frame (please note that the frame coordinates here are relative to the

rendering view)

@property (nonatomic, assign) CGFloat startTime; // Sticker

start time in s

@property (nonatomic, assign) CGFloat endTime; // Sticker

end time in s

@end

Animated Sticker

- (void) setAnimatedPasterList:(NSArray *)animatedPasterList;

// The `TXAnimatedPaster` parameters are as follows:

@interface TXAnimatedPaster: NSObject

@property (nonatomic, strong) NSString* animatedPasterpath; //

Animated image file path

@property (nonatomic, assign) CGRect frame; // Animated

image frame (please note that the frame coordinates here are relative to the

rendering view)

@property (nonatomic, assign) CGFloat rotateAngle; // Animated

image rotation angle. Value range: 0–360

@property (nonatomic, assign) CGFloat startTime; // Animated

image start time in s

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 130
of 163

@property (nonatomic, assign) CGFloat endTime; // Animated

image end time in s

@end

Demo:

- (void)setVideoPasters:(NSArray*)videoPasterInfos

{

 NSMutableArray* animatePasters = [NSMutableArray new];

 NSMutableArray* staticPasters = [NSMutableArray new];

 for (VideoPasterInfo* pasterInfo in videoPasterInfos) {

 if (pasterInfo.pasterInfoType == PasterInfoType_Animate) {

 TXAnimatedPaster* paster = [TXAnimatedPaster new];

 paster.startTime = pasterInfo.startTime;

 paster.endTime = pasterInfo.endTime;

 paster.frame = [pasterInfo.pasterView

pasterFrameOnView:_videoPreview];

 paster.rotateAngle = pasterInfo.pasterView.rotateAngle * 180 /

M_PI;

 paster.animatedPasterpath = pasterInfo.path;

 [animatePasters addObject:paster];

 }

 else if (pasterInfo.pasterInfoType == PasterInfoType_static){

 TXPaster *paster = [TXPaster new];

 paster.startTime = pasterInfo.startTime;

 paster.endTime = pasterInfo.endTime;

 paster.frame = [pasterInfo.pasterView

pasterFrameOnView:_videoPreview];

 paster.pasterImage = pasterInfo.pasterView.staticImage;

 [staticPasters addObject:paster];

 }

 }

 [_ugcEditer setAnimatedPasterList:animatePasters];

 [_ugcEditer setPasterList:staticPasters];

}

Adding Subtitles

Video subtitling is supported. You can add subtitles to each frame of a video and set the start and end time to display
each subtitle. All subtitles form a subtitle list, which can be passed to the SDK, and the SDK will automatically add the
subtitles to the video at the corresponding points in time.
You can set subtitles as follows:

- (void) setSubtitleList:(NSArray *)subtitleList;

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 131
of 163

The `TXSubtitle` parameters are as follows:

@interface TXSubtitle: NSObject

@property (nonatomic, strong) UIImage* titleImage; // Subtitle ima

@property (nonatomic, assign) CGRect frame; // Subtitle fra

@property (nonatomic, assign) CGFloat startTime; // Subtitle sta

@property (nonatomic, assign) CGFloat endTime; // Subtitle end

@end

titleImage: subtitle image. If controls like UILabel are used by the upper layer, please convert the control to

 UIImage first. For detailed directions, please see the sample code of the demo.

frame: subtitle frame (please note that the frame is relative to the frame of the rendering view passed in during
 initWithPreview). For more information, please see the sample code of the demo.

startTime: subtitle start time.
endTime: subtitle end time.

As the subtitle UI logic is complicated, a complete method is provided at the demo layer. We recommend you directly
implement subtitling as instructed in the demo, which greatly reduces your integration costs.
Demo:

@interface VideoTextInfo : NSObject

@property (nonatomic, strong) VideoTextFiled* textField;

@property (nonatomic, assign) CGFloat startTime; //in seconds

@property (nonatomic, assign) CGFloat endTime;

@end

videoTextInfos = @[VideoTextInfo1, VideoTextInfo2 ...];

 for (VideoTextInfo* textInfo in videoTextInfos) {

 TXSubtitle* subtitle = [TXSubtitle new];

 subtitle.titleImage = textInfo.textField.textImage; //UILabel (UIView)

-> UIImage

 subtitle.frame = [textInfo.textField textFrameOnView:_videoPreview]; //

Calculate the coordinates relative to the rendering view

 subtitle.startTime = textInfo.startTime; // Subtitle start time

 subtitle.endTime = textInfo.endTime; // Subtitle end time

 [subtitles addObject:subtitle]; // Add the subtitle list

 }

 [_ugcEditer setSubtitleList:subtitles]; // Set the subtitle list

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 132
of 163

Android
Last updated：2025-04-01 17:14:09

Static Sticker

You can set a static sticker as follows:

public void setPasterList(List pasterList);

// The `TXPaster` parameters are as follows:

public final static class TXPaster {

 public Bitmap pasterImage; // Sticker image

 public TXRect frame; // Sticker frame (ple

 public long startTime; // Sticker start time

 public long endTime; // Sticker end time i

}

Animated Sticker

You can set an animated sticker as follows:

public void setAnimatedPasterList(List animatedPasterList);

// The `TXAnimatedPaster` parameters are as follows:

public final static class TXAnimatedPaster {

 public String animatedPasterPathFolder; // Address of

animated sticker image

 public TXRect frame; // Animated

sticker frame (please note that the frame coordinates here are relative to the

rendering view)

 public long startTime; // Animated

sticker start time in ms

 public long endTime; // Animated

sticker end time in ms

 public float rotation;

}

Demo:

List animatedPasterList = new ArrayList<>();

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 133
of 163

List pasterList = new ArrayList<>();

for (int i = 0; i < mTCLayerViewGroup.getChildCount(); i++) {

 PasterOperationView view = (PasterOperationView)

mTCLayerViewGroup.getOperationView(i);

 TXVideoEditConstants.TXRect rect = new TXVideoEditConstants.TXRect();

 rect.x = view.getImageX();

 rect.y = view.getImageY();

 rect.width = view.getImageWidth();

 TXCLog.i(TAG, "addPasterListVideo, adjustPasterRect, paster x y = " +

rect.x + "," + rect.y);

 int childType = view.getChildType();

 if (childType == PasterOperationView.TYPE_CHILD_VIEW_ANIMATED_PASTER) {

 TXVideoEditConstants.TXAnimatedPaster txAnimatedPaster = new

TXVideoEditConstants.TXAnimatedPaster();

 txAnimatedPaster.animatedPasterPathFolder = mAnimatedPasterSDcardFolder

+ view.getPasterName() + File.separator;

 txAnimatedPaster.startTime = view.getStartTime();

 txAnimatedPaster.endTime = view.getEndTime();

 txAnimatedPaster.frame = rect;

 txAnimatedPaster.rotation = view.getImageRotate();

 animatedPasterList.add(txAnimatedPaster);

 TXCLog.i(TAG, "addPasterListVideo, txAnimatedPaster startTimeMs,

endTime is : " + txAnimatedPaster.startTime + ", " + txAnimatedPaster.endTime);

 } else if (childType == PasterOperationView.TYPE_CHILD_VIEW_PASTER) {

 TXVideoEditConstants.TXPaster txPaster = new

TXVideoEditConstants.TXPaster();

 txPaster.pasterImage = view.getRotateBitmap();

 txPaster.startTime = view.getStartTime();

 txPaster.endTime = view.getEndTime();

 txPaster.frame = rect;

 pasterList.add(txPaster);

 TXCLog.i(TAG, "addPasterListVideo, txPaster startTimeMs, endTime is : "

+ txPaster.startTime + ", " + txPaster.endTime);

 }

}

mTXVideoEditer.setAnimatedPasterList(animatedPasterList); // Set an animated

sticker

mTXVideoEditer.setPasterList(pasterList); // Set a static

sticker

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 134
of 163

Adding Subtitles

Bubble video subtitling is supported. You can add subtitles to each frame of a video and set the start and end time to
display each subtitle. All subtitles form a subtitle list, which can be passed to the SDK, and the SDK will automatically
add the subtitles to the video at the corresponding points in time.

You can set bubble subtitles as follows:

public void setSubtitleList(List subtitleList);

// The `TXSubtitle` parameters are as follows:

public final static class TXSubtitle {

 public Bitmap titleImage; // Subtitle image

 public TXRect frame; // Subtitle frame

 public long startTime; // Subtitle start

 public long endTime; // Subtitle end t

}

public final static class TXRect {

 public float x;

 public float y;

 public float width;

}

titleImage: subtitle image. If controls like TextView are used by the upper layer, please convert the control to

 Bitmap first. For detailed directions, please see the sample code of the demo.

frame: subtitle frame (please note that the frame is relative to the frame of the rendering view passed in during
 initWithPreview). For more information, please see the sample code of the demo.

startTime: subtitle start time.
endTime: subtitle end time.
As the subtitle UI logic is complicated, a complete method is provided at the demo layer. We recommend you directly

implement subtitling as instructed in the demo, which greatly reduces your integration costs.
Demo:

mSubtitleList.clear();

for (int i = 0; i < mWordInfoList.size(); i++) {

 TCWordOperationView view = mOperationViewGroup.getOperationView(i);

 TXVideoEditConstants.TXSubtitle subTitle = new

TXVideoEditConstants.TXSubtitle();

 subTitle.titleImage = view.getRotateBitmap(); // Get `Bitmap`

 TXVideoEditConstants.TXRect rect = new TXVideoEditConstants.TXRect();

 rect.x = view.getImageX(); // Get the X coordinate relative to the

parent view

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 135
of 163

 rect.y = view.getImageY(); // Get the Y coordinate relative to the

parent view

 rect.width = view.getImageWidth(); // Image width

 subTitle.frame = rect;

 subTitle.startTime = mWordInfoList.get(i).getStartTime(); // Set the start

time

 subTitle.endTime = mWordInfoList.get(i).getEndTime(); // Set the end

time

 mSubtitleList.add(subTitle);

}

mTXVideoEditer.setSubtitleList(mSubtitleList); // Set the subtitle list

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 136
of 163

Video Karaoke
iOS
Last updated：2020-09-01 14:58:16

This document describes how to implement basic duet features from scratch.

Process Overview

1. Place two views on the page, one for playback, and the other for shoot.
2. Place a button and progress bar for shoot and progress display, respectively.

3. Stop shoot after the video in the same duration as that of the source video has been shot.
4. Compose the shot video with the source video side by side.
5. Preview the composed video.

UI Construction

Create a project first. Open Xcode, select "File" > "New" > "Project", and name the project to create it. The project is
named "Demo" in this example. To shoot a video, the camera and mic permissions are required. Add the following

items to Info :

Privacy - Microphone Usage Description

Privacy - Camera Usage Description

You can enter desired values for the two items, such as "Shooting Video"
Configure a simple shoot page. Open Main.storyboard , drag two UIView objects into it, configure their

width to 0.5 time of the superview , and set their aspect ratio to 16:9.

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 137
of 163

Add the progress bar, bind the page to IBOutlet in ViewController.m , and set the button IBAction .

As the preview page needs to be redirected to after shoot, a navigation controller is required. Click the "VC" icon in

yellow, select "Editor" > "Embed In" in the menu, and click "Navigation Controller" to add a layer of "Navigation
Controller" onto the "ViewController". At this point, the basic UI has been constructed.

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 138
of 163

Sample Code

The duet feature mainly uses three other features: playback, shoot, and composition of the shot and source videos,
which correspond to the TXVideoEditer , TXUGCRecord , and TXVideoJoiner SDK classes,

respectively.
The SDK license needs to be configured before this feature can be used. Open AppDelegate.m and add the

following code to it:

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 139
of 163

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSD

 [TXUGCBase setLicenceURL:@"<License URL>" key:@"<License key>"];

 return YES;

}

Here, you need to apply for the license parameters in the UGSV Console. Once submitted, your application will be

generally approved very soon, and the relevant information will be displayed on the page.
1. First, implement the declaration and initialization.
Open ViewContorller.m , import the SDK, and declare the instances of the three classes above. As video

playback, shoot, and composition are all async operations here, you need to listen on their events by adding the
declaration for implementing the three protocols: TXVideoJoinerListener , TXUGCRecordListener , and

 TXVideoPreviewListener . After the declaration is added, the code will be as follows:

#import "ViewController.h"

@import TXLiteAVSDK_UGC;

@interface ViewController () <TXVideoJoinerListener, TXUGCRecordListener, TXVideoPr

{

 TXVideoEditer *_editor;

 TXUGCRecord *_recorder;

 TXVideoJoiner *_joiner;

 TXVideoInfo *_videoInfo;

 NSString *_recordPath;

 NSString *_resultPath;

}

@property (weak, nonatomic) IBOutlet UIView *cameraView;

@property (weak, nonatomic) IBOutlet UIView *movieView;

@property (weak, nonatomic) IBOutlet UIButton *recordButton;

@property (weak, nonatomic) IBOutlet UIProgressView *progressView;

- (IBAction)onTapButton:(UIButton *)sender;

@end

After preparing the member variables and API implementation declaration, initialize the member variables above in
 viewDidLoad .

- (void)viewDidLoad {

 [super viewDidLoad];

 // Here, place a .mp4 video file or a .mov video shot on the phone in the proje

 NSString *mp4Path = [[NSBundle mainBundle] pathForResource:@"demo" ofType:@"mp4

 _videoInfo = [TXVideoInfoReader getVideoInfo:mp4Path];

 TXAudioSampleRate audioSampleRate = AUDIO_SAMPLERATE_48000;

https://console.tencentcloud.com/vod/license

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 140
of 163

 if (_videoInfo.audioSampleRate == 8000) {

 audioSampleRate = AUDIO_SAMPLERATE_8000;

 }else if (_videoInfo.audioSampleRate == 16000){

 audioSampleRate = AUDIO_SAMPLERATE_16000;

 }else if (_videoInfo.audioSampleRate == 32000){

 audioSampleRate = AUDIO_SAMPLERATE_32000;

 }else if (_videoInfo.audioSampleRate == 44100){

 audioSampleRate = AUDIO_SAMPLERATE_44100;

 }else if (_videoInfo.audioSampleRate == 48000){

 audioSampleRate = AUDIO_SAMPLERATE_48000;

 }

 // Set the video storage path

 _recordPath = [NSTemporaryDirectory() stringByAppendingPathComponent:@"record.m

 _resultPath = [NSTemporaryDirectory() stringByAppendingPathComponent:@"result.m

 // Initialize the player

 TXPreviewParam *param = [[TXPreviewParam alloc] init];

 param.videoView = self.movieView;

 param.renderMode = RENDER_MODE_FILL_EDGE;

 _editor = [[TXVideoEditer alloc] initWithPreview:param];

 [_editor setVideoPath:mp4Path];

 _editor.previewDelegate = self;

 // Initialize the shoot parameters

 _recorder = [TXUGCRecord shareInstance];

 TXUGCCustomConfig *recordConfig = [[TXUGCCustomConfig alloc] init];

 recordConfig.videoResolution = VIDEO_RESOLUTION_720_1280;

 // The frame rates of the shot video and source video must be the same; otherwi

 // Note: the frame rate of the duet video obtained here is the average frame ra

 recordConfig.videoFPS = (int)(_videoInfo.fps + 0.5);

 // The audio sample rates of the shot video and source video must be the same;

 recordConfig.audioSampleRate = audioSampleRate;

 recordConfig.videoBitratePIN = 9600;

 recordConfig.maxDuration = _videoInfo.duration;

 _recorder.recordDelegate = self;

 // Enable camera preview

 [_recorder startCameraCustom:recordConfig preview:self.cameraView];

 // Compose videos

 _joiner = [[TXVideoJoiner alloc] initWithPreview:nil];

 _joiner.joinerDelegate = self;

 [_joiner setVideoPathList:@[_recordPath, mp4Path]];

}

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 141
of 163

2. Next, implement the shoot feature. You only need to respond to the user click of the button to call the SDK method.
For the sake of convenience, the button is reused here to display the current status, and the logic of displaying the
progress is added to the progress bar.

- (IBAction)onTapButton:(UIButton *)sender {

 [_editor startPlayFromTime:0 toTime:_videoInfo.duration];

 if ([_recorder startRecord:_recordPath coverPath:[_recordPath stringByAppending

 NSLog(@"Failed to start the camera");

 }

 [sender setTitle:@"Shooting" forState:UIControlStateNormal];

 sender.enabled = NO;

}

#pragma mark TXVideoPreviewListener

-(void) onPreviewProgress:(CGFloat)time

{

 self.progressView.progress = time / _videoInfo.duration;

}

3. After shoot, implement the composition. You need to specify the positions of the two videos in the output video.
Here, the left and right positions are set.

-(void)onRecordComplete:(TXUGCRecordResult*)result;

{

 NSLog(@"Shoot is completed and composition is started");

 [self.recordButton setTitle:@"Composing..." forState:UIControlStateNormal];

 // Get the width and height of the shot video

 TXVideoInfo *videoInfo = [TXVideoInfoReader getVideoInfo:_recordPath];

 CGFloat width = videoInfo.width;

 CGFloat height = videoInfo.height;

 // Place the shot and source videos on the left and right, respectively

 CGRect recordScreen = CGRectMake(0, 0, width, height);

 CGRect playScreen = CGRectMake(width, 0, width, height);

 [_joiner setSplitScreenList:@[[NSValue valueWithCGRect:recordScreen],[NSValue v

 [_joiner splitJoinVideo:VIDEO_COMPRESSED_720P videoOutputPath:_resultPath];

}

4. Implement the delegation method of the composition progress to display the progress on the progress bar.

-(void) onJoinProgress:(float)progress

{

 NSLog(@"Composing videos %d%%",(int)(progress * 100));

 self.progressView.progress = progress;

}

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 142
of 163

5. Implement the delegation method of the composition completion and switch to the preview page.

#pragma mark TXVideoJoinerListener

-(void) onJoinComplete:(TXJoinerResult *)result

{

 NSLog(@"Video composition completed");

 VideoPreviewController *controller = [[VideoPreviewController alloc] initWithVi

 [self.navigationController pushViewController:controller animated:YES];

}

At this point, the implementation is completed. The code of the video preview VideoPreviewController

mentioned above is as follows:

 VideoPreviewController.h

 #import <UIKit/UIKit.h>

 @interface VideoPreviewController : UIViewController

 - (instancetype)initWithVideoPath:(NSString *)path;

 @end

 VideoPreviewController.m:

@import TXLiteAVSDK_UGC;

@interface VideoPreviewController () <TXVideoPreviewListener>

{

 TXVideoEditer *_editor;

}

@property (strong, nonatomic) NSString *videoPath;

@end

@implementation VideoPreviewController

- (instancetype)initWithVideoPath:(NSString *)path {

 if (self = [super initWithNibName:nil bundle:nil]) {

 self.videoPath = path;

 }

 return self;

}

- (void)viewDidLoad {

 [super viewDidLoad];

 TXPreviewParam *param = [[TXPreviewParam alloc] init];

 param.videoView = self.view;

 param.renderMode = RENDER_MODE_FILL_EDGE;

 _editor = [[TXVideoEditer alloc] initWithPreview:param];

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 143
of 163

 _editor.previewDelegate = self;

 [_editor setVideoPath:self.videoPath];

 [_editor startPlayFromTime:0 toTime:[TXVideoInfoReader getVideoInfo:self.videoP

}

-(void) onPreviewFinished

{

 [_editor startPlayFromTime:0 toTime:[TXVideoInfoReader getVideoInfo:self.videoP

}

@end

At this point, all basic duet features have been implemented. For the demo with more features, please see Source
Code of Full-Featured UGSV Application Demo.

https://www.tencentcloud.com/document/product/1069/37914#.E5.85.A8.E5.8A.9F.E8.83.BD.E5.B0.8F.E8.A7.86.E9.A2.91-app.EF.BC.88demo.EF.BC.89.E6.BA.90.E4.BB.A3.E7.A0.81

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 144
of 163

Android
Last updated：2020-09-01 14:57:25

This document describes how to implement basic duet features.

Process Overview

1. Place two views on the page, one for playback, and the other for shoot.
2. Place a button and progress bar for shoot and progress display, respectively.

3. Stop shoot after the video in the same duration as that of the source video has been shot.
4. Compose the shot video with the source video side by side.
5. Preview the composed video.

UI Construction

In activity_video_record.xml of the shoot page TCVideoRecordActivity , create two views: the left

one is the shoot page, and the right one is the playback page.

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 145
of 163

Sample Code

The duet feature mainly uses three other features: playback, shoot, and composition of the shot and source videos,
which correspond to the TXVideoEditer , TXUGCRecord , and TXVideoJoiner SDK classes,

respectively. You can also use TXVodPlayer for playback.

1. In the video list on the UGSV application homepage, select a video to enter the playback page
 TCVodPlayerActivity . Then, click "Duet" in the bottom-right corner.

The video will be first downloaded onto the local SD card, the video information such as audio sample rate and frame
rate (in fps) will be obtained, and then the shoot page will be displayed.
2. Enter the shoot page TCVideoRecordActivity for duet. Please pay attention to the following:

The maximum length of the shoot progress bar should be the length of the source video progress bar.
The frame rates of the shot video and source video must be the same; otherwise, the audio and video may be out of
sync.
The audio sample rates of the shot video and source video must be the same; otherwise, the audio and video may be
out of sync.
The rendering mode set for shoot is fit mode, where the video image can be proportionally scaled at the aspect ratio of

9:16.
You need to set audio mute for shoot on Android; otherwise, the source and shot videos' audios will be mixed.

// Shoot page

mVideoView = mVideoViewFollowShotRecord;

// Played back video

mFollowShotVideoPath = intent.getStringExtra(TCConstants.VIDEO_EDITER_PATH);

mFollowShotVideoDuration = (int)

(intent.getFloatExtra(TCConstants.VIDEO_RECORD_DURATION, 0) * 1000);

initPlayer();

// The maximum length of the shoot progress bar should be the length of the

source video. The frame rate (`fps`) of the source video should also be used

for the shot video

mMaxDuration = (int)mFollowShotVideoDuration;

mFollowShotVideoFps = intent.getIntExtra(TCConstants.RECORD_CONFIG_FPS, 20);

mFollowShotAudioSampleRateType =

intent.getIntExtra(TCConstants.VIDEO_RECORD_AUDIO_SAMPLE_RATE_TYPE,

TXRecordCommon.AUDIO_SAMPLERATE_48000);

// Initialize the duet API

mTXVideoJoiner = new TXVideoJoiner(this);

mTXVideoJoiner.setVideoJoinerListener(this);

// Initialize the player. Here, `TXVideoEditer` is used. You can also use `TXVodPla

mTXVideoEditer = new TXVideoEditer(this);

mTXVideoEditer.setVideoPath(mFollowShotVideoPath);

TXVideoEditConstants.TXPreviewParam param = new TXVideoEditConstants.TXPreviewParam

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 146
of 163

param.videoView = mVideoViewPlay;

param.renderMode = TXVideoEditConstants.PREVIEW_RENDER_MODE_FILL_EDGE;

mTXVideoEditer.initWithPreview(param);

customConfig.videoFps = mFollowShotVideoFps;

customConfig.audioSampleRate = mFollowShotAudioSampleRateType; // The audio

sample rate of the shot video must be the same as that of the source video

customConfig.needEdit = false;

mTXCameraRecord.setVideoRenderMode(TXRecordCommon.VIDEO_RENDER_MODE_ADJUST_RESO

LUTION); // Set the rendering mode to fit mode

mTXCameraRecord.setMute(true); // The duet audio played back by the speaker

will not be recorded, because if it is recorded by mic, the source and shot

videos' audios will be mixed

3. Start shoot. When the maximum shoot duration is reached, the onRecordComplete callback will be returned to

proceed with the composition. Here, you need to specify the positions of the two videos in the result.

private void prepareToJoiner(){

 List<String> videoSourceList = new ArrayList<>();

 videoSourceList.add(mRecordVideoPath);

 videoSourceList.add(mFollowShotVideoPath);

 mTXVideoJoiner.setVideoPathList(videoSourceList);

 mFollowShotVideoOutputPath = getCustomVideoOutputPath("Follow_Shot_");

 // Proportionally scale the video on the right by the width and height of the

shot video on the left

 int followVideoWidth;

 int followVideoHeight;

 if ((float) followVideoInfo.width / followVideoInfo.height >=

(float)recordVideoInfo.width / recordVideoInfo.height) {

 followVideoWidth = recordVideoInfo.width;

 followVideoHeight = (int) ((float)recordVideoInfo.width *

followVideoInfo.height / followVideoInfo.width);

 } else {

 followVideoWidth = (int) ((float)recordVideoInfo.height *

followVideoInfo.width / followVideoInfo.height);

 followVideoHeight = recordVideoInfo.height;

 }

 TXVideoEditConstants.TXAbsoluteRect rect1 = new

TXVideoEditConstants.TXAbsoluteRect();

 rect1.x = 0; // Top-left point position of the first video

 rect1.y = 0;

 rect1.width = recordVideoInfo.width; // Width and height of the first video

 rect1.height = recordVideoInfo.height;

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 147
of 163

 TXVideoEditConstants.TXAbsoluteRect rect2 = new

TXVideoEditConstants.TXAbsoluteRect();

 rect2.x = rect1.x + rect1.width; // Top-left point position of the second

video

 rect2.y = (recordVideoInfo.height - followVideoHeight) / 2;

 rect2.width = followVideoWidth; // Width and height of the second video

 rect2.height = followVideoHeight;

 List<TXVideoEditConstants.TXAbsoluteRect> list = new ArrayList<>();

 list.add(rect1);

 list.add(rect2);

 mTXVideoJoiner.setSplitScreenList(list, recordVideoInfo.width +

followVideoWidth, recordVideoInfo.height); // The second and third parameters:

width and height of the video composition canvas

 mTXVideoJoiner.splitJoinVideo(TXVideoEditConstants.VIDEO_COMPRESSED_540P,

mFollowShotVideoOutputPath);

}

4. Listen on the composition callback. After onJoinComplete , redirect to the preview page for playback.

@Override

public void onJoinComplete(TXVideoEditConstants.TXJoinerResult result) {

 mCompleteProgressDialog.dismiss();

 if(result.retCode == TXVideoEditConstants.JOIN_RESULT_OK){

 runOnUiThread(new Runnable() {

 @Override

 public void run() {

 isReadyJoin = true;

 startEditerPreview(mFollowShotVideoOutputPath);

 if(mTXVideoEditer != null){

 mTXVideoEditer.release();

 mTXVideoEditer = null;

 }

 }

 });

 }else{

 runOnUiThread(new Runnable() {

 @Override

 public void run() {

 Toast.makeText(TCVideoRecordActivity.this, "Composition failed",

Toast.LENGTH_SHORT).show();

 }

 });

 }

}

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 148
of 163

At this point, all basic duet features have been implemented. For the complete code, please see Source Code of Full-
Featured UGSV Application Demo.

https://www.tencentcloud.com/document/product/1069/37914#.E5.85.A8.E5.8A.9F.E8.83.BD.E5.B0.8F.E8.A7.86.E9.A2.91-app.EF.BC.88demo.EF.BC.89.E6.BA.90.E4.BB.A3.E7.A0.81

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 149
of 163

Image Transition Special Effects
iOS
Last updated：2025-04-01 17:14:09

 The image editing feature is added starting from SDK 4.7. You can select a desired image to add effects such as
transition animation, background music, and stickers.The API functions are as follows:

/*

 *pitureList: list of transition images, which must contain at least three images (

 *fps: frame rate of the video generated from the transition images in fps. Value r

 * Returned values:

 * 0: set successfully

 * -1: failed to set. Please check whether the image list exists, the number o

 */

- (int)setPictureList:(NSArray<UIImage *> *)pitureList fps:(int)fps;

/*

 *transitionType: transition type. For more information, please see `TXTransitionTy

 * Returned values:

 * duration: transition video duration (note: the duration for the same image

 */

- (void)setPictureTransition:(TXTransitionType)transitionType duration:(void(^)(CGF

typedef NS_ENUM(NSInteger, TXTransitionType) {

 TXTransitionType_LefRightSlipping,

 TXTransitionType_UpDownSlipping,

 TXTransitionType_Enlarge,

 TXTransitionType_Narrow,

 TXTransitionType_RotationalScaling,

 TXTransitionType_FadeinFadeout,

};

The setPictureList API is used to set the image list, which must contain at least three images. If too many

images are set, the image size should be appropriate to avoid editing exceptions due to high memory usage.
The setPictureTransition API is used to set the transition effect. Currently, six effects are available, and their

durations may vary. You can get the transition duration through duration here.

Pay attention to the API call sequence: call setPictureList first and then call setPictureTransition .

Image editing currently does not support loop, reverse, fast/slow motions, and post-roll watermarking, but supports
other video editing features. The call method is the same as that of video editing.

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 150
of 163

Android
Last updated：2025-04-01 17:14:09

 The image editing feature is added starting from SDK 4.9. You can select a desired image to add effects such as
transition animation, background music, and stickers.The API functions are as follows:

/*

 * bitmapList: list of transition images, which must contain at least three images

 * fps: frame rate of the video generated from the transition images in fps. Value

 * Returned values:

 * 0: set successfully

 * -1: failed to set. Please check whether the image list exists

 */

public int setPictureList(List<Bitmap> bitmapList, int fps);

/*

 * type: transition type. For more information, please see `TXVideoEditConstants`

 * Returned values:

 * duration: transition video duration (note: the duration for the same image

 */

public long setPictureTransition(int type)

/**

* Transition type for image to video conversion

*/

public static final int TX_TRANSITION_TYPE_LEFT_RIGHT_SLIPPING = 1;

public static final int TX_TRANSITION_TYPE_UP_DOWN_SLIPPING = 2;

public static final int TX_TRANSITION_TYPE_ROTATIONAL_SCALING = 3;

public static final int TX_TRANSITION_TYPE_ENLARGE = 4;

public static final int TX_TRANSITION_TYPE_NARROW = 5;

public static final int TX_TRANSITION_TYPE_FADEIN_FADEOUT = 6;

Here, the setPictureList API is used to set the image list, which must contain at least three images. If too

many images are set, the image size should be appropriate to avoid editing exceptions due to high memory usage.
The setPictureTransition API is used to set the transition effect. Currently, six effects are available, and their

durations may vary. You can get the transition duration through the returned value here.

Pay attention to the API call sequence: call setPictureList first and then call setPictureTransition .

Image editing currently does not support loop, reverse, and fast/slow motions, but supports other video editing
features. The call method is the same as that of video editing.

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 151
of 163

Customizing Video Data
iOS
Last updated：2025-04-01 17:14:09

If you want to use third-party beauty libraries to add video effects during recording and editing, you can implement this
in the ​preprocessing callbacks for both recording and editing.

Callback for Pre-Processing for Shooting

/**

 * Call back in the OpenGL thread, where captured images can be processed.

 * @param texture Texture ID

 * @param width Texture width

 * @param height Texture height

 * @return Texture returned to the SDK

 * Note: The type of textures called back by the SDK is GL_TEXTURE_2D, which must a

 */

- (GLuint)onPreProcessTexture:(GLuint)texture width:(CGFloat)width height:(CGFloat)

/**

 * Call back in the OpenGL thread. You can release OpenGL resources here.

 */

- (void)onTextureDestoryed;

Callback for Pre-Processing for Video Editing

/**

 Call back in the OpenGL thread, where captured images can be processed.

 @param textureId Texture ID

 @param width Texture width

 @param height Texture height

 @param timestamp Texture timestamp (ms)

 @return Texture returned to the SDK

 Note: The type of textures called back by the SDK is GL_TEXTURE_2D, which must als

 Timestamp is the PTS of the current video frame and is measured in milliseconds. Y

 */

- (GLuint)onPreProcessTexture:(GLuint)texture width:(CGFloat)width height:(CGFloat)

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 152
of 163

/**

 * Call back in the OpenGL thread. You can release OpenGL resources here.

 */

- (void)onTextureDestoryed;

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 153
of 163

Android
Last updated：2025-04-01 17:14:09

If you want to use third-party beauty libraries to add video effects during recording and editing, you can implement this
in the ​preprocessing callbacks for both recording and editing.

Shoot Preprocessing Callback

public interface VideoCustomProcessListener {

/**

 * Call back in the OpenGL thread. You can further process the captured video imag

 * @param textureId Texture ID

 * @param width Texture width

 * @param height Texture height

 * @return Texture ID returned to SDK. If no processing is required, simply retu

 * Note: the texture type called back by the SDK is `GLES20.GL_TEXTURE_2D`, which

 */

int onTextureCustomProcess(int textureId, int width, int height);

/**

 * Call back in the OpenGL thread. You can release the created OpenGL resources in

 */

void onTextureDestroyed();

}

Editing Preprocessing Callback

public interface TXVideoCustomProcessListener {

 /**

 * Call back in the OpenGL thread. You can further process the captured vid

 *

 * @param textureId Texture ID

 * @param width Texture width

 * @param height Texture height

 * @return Texture ID returned to SDK. If no processing is required, simp

 * <p>

 * Note: the texture type called back by the SDK is `GLES20.GL_TEXTURE_2D`,

 */

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 154
of 163

 int onTextureCustomProcess(int textureId, int width, int height, long times

 /**

 * Call back in the OpenGL thread. You can release the created OpenGL resou

 */

 void onTextureDestroyed();

 }

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 155
of 163

Video Porn Detection
Last updated：2020-09-01 14:56:48

In scenarios such as personal live streaming shoot and UGSV, the video content is unpredictable. To prevent non-
compliant contents from being displayed on the VOD platform, you need to audit the uploaded videos first and
transcode and distribute them after confirming that they are compliant. The Tencent Cloud UGSV solution supports

AI-based porn detection in videos, which can automatically identify whether a video involves pornographic information.

Using AI-based Porn Detection

The AI-based porn detection feature can be used only after it is integrated into the video processing task flow. It
depends on the video AI - content audit feature on the VOD backend, and the audit result will be sent to the
application backend service as an event notification. VOD has a built-in task flow QCVB_ProcessUGCFile for

UGSV porn detection scenarios. If you use this task flow and specify to perform AI-based porn detection, the porn

detection task will be executed first, and whether to perform subsequent operations (such as transcoding,
watermarking, and screencapturing) will be determined based on the porn detection result.

AI Template Overview

Template
ID

Porn Processing Sample Rate

10

End the task flow (operations such
as transcoding, watermarking, and
screencapturing will not be executed
subsequently)

For videos whose duration is less than 500 seconds,
sampling is performed once per second; for videos
whose duration is greater than or equal to 500 seconds,
sampling is performed once every 1% of the duration

20 Continue executing the task flow None

AI-based Porn Detection Connection Sample

Step 1. Submit an AI-based porn detection task when generating an upload signature

/**

 * Generate a signature that contains an AI-based porn detection task

 */

function getUploadSignature(req, res) {

https://www.tencentcloud.com/document/product/266/33944

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 156
of 163

 res.json({

 code: 0,

 message: 'ok',

 data: {

 // Specify the template parameters and task flow during the upload

 signature: gVodHelper.createFileUploadSignature({ procedure:

'QCVB_SimpleProcessFile({1,1,1,1})' })

 }

 });

}

Step 2. Get the AI-based porn detection result when getting the event notification

/**

 * Get the AI-based porn detection result of the event

 */

function getAiReviewResult(event){

 let data = event.eventContent.data;

 if(data.aiReview){

 return data.aiReview;

 }

 return {};

}

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 157
of 163

Custom Themes
iOS
Last updated：2022-11-15 11:20:02

 UGCKit allows you to freely modify the preset text, colors, and icons.

Text

 UGCKit offers two language packages by default: Simplified Chinese and American English. All their localized

strings are stored in the default standard localized string format in

 UGCKit/UGCKitResources/Localizable.strings . You can replace the text to change the default strings

or add new languages.
Below is an example of changing the Simplified Chinese animated effect names, which are in
 UGCKit/UGCKitResources/zh-Hans.lproj/Localizable.strings .

"UGCKit.Edit.VideoEffect.DynamicLightWave" = "Rock light";

"UGCKit.Edit.VideoEffect.DarkFantasy" = "Dark dream";

"UGCKit.Edit.VideoEffect.SoulOut" = "Soul out";

"UGCKit.Edit.VideoEffect.ScreenSplit" = "Split screen";

"UGCKit.Edit.VideoEffect.Shutter" = "Blinds";

"UGCKit.Edit.VideoEffect.GhostShadow" = "Shadow";

"UGCKit.Edit.VideoEffect.Phantom" = "Phantom";

"UGCKit.Edit.VideoEffect.Ghost" = "Ghost";

"UGCKit.Edit.VideoEffect.Lightning" = "Lightning";

"UGCKit.Edit.VideoEffect.Mirror" = "Mirror";

"UGCKit.Edit.VideoEffect.Illusion" = "Illusion";

To change "Illusion" to "Phantasm", you only need to modify the last line as follows:

"UGCKit.Edit.VideoEffect.Illusion" = "Phantasm";

Color

The methods of getting the colors on all UIs of UGCKit are defined in the UGCKitTheme class. You can modify

the attribute values to change colors. For the specific resource names, see the comments in UGCKitTheme.h .

Below is an example of changing the background color of the application UI:

UGCKitTheme *theme = [[UGCKitTheme alloc] init];

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 158
of 163

theme.backgroundColor = [UIColor whiteColor]; // Change the background color to whi

UGCKitEditViewController *editViewController = [[UKEditViewController alloc] initWi

Icons

The icons on all UIs of UGCKit are in the UGCKit.xcassets resource file and can be replaced as needed.

The specific icon filenames can be viewed in UGCKitTheme.h . An icon's resource name is the same as its

attribute/method name, and all icons are defined in UGCKitTheme.h . Taking the recording UI as an example, the

following names are the icons' attribute names in UGCKitTheme as well as the resource names in

 UGCKit.xcassets .

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 159
of 163

You can replace icons in UGCKit in two ways:

Directly replace icons in UGCKitTheme.xcassets .

Write code to assign values to objects in UGCKitTheme to change icons.

Below is the sample code for changing icons on the recording UI:

UGCKitTheme *theme = [[UGCKitTheme alloc] init];

theme.nextIcon = [UIImage imageName:@"myConfirmIcon"]; // Set the icon used to comp

theme.recordMusicIcon = [UIImage imageName:@"myMusicIcon"]; // Set the icon of the

theme.beautyPanelWhitnessIcon = [UIImage imageNamed:@"beauty_whitness"]; // Set the

UGCKitRecordViewController *viewController = [[UGCKitRecordViewController alloc] in

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 160
of 163

Android
Last updated：2022-11-14 18:25:34

 UGCKit is a set of encapsulated interactive UIs, which is the UGSV demo app's theme by default. With simple

modifications, you can customize your own theme and replace the icons, text, and colors.

Customizing the recording theme

The recording UI contains the right icon toolbar, the bottom toolbar, music panel, beauty filter panel, and sound effect

panel.

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 161
of 163

1. Declare a <style> in app/res/values/style.xml , specify its parent theme as RecordStyle , and

change the theme to the target theme. You can find all available themes in
 app/ugckit/res/values.theme_style.xml .

Below is the sample code for replacing the music and beauty filter icons on the recording UI:

<style name="RecordActivityTheme" parent="RecordStyle">

 <item name="recordMusicIcon">@drawable/ic_music</item>

 <item name="recordBeautyIcon">@drawable/ic_beauty</item>

</style>

2. Declare the custom theme in AndroidManifest.xml :

<activity

 android:name="com.tencent.qcloud.xiaoshipin.videorecord.TCVideoRecordActivity"

 android:launchMode="singleTop"

 android:screenOrientation="portrait"

 android:theme="@style/RecordActivityTheme"

 android:windowSoftInputMode="adjustNothing" />

Customizing the editing theme

The editing UI contains the editing and clipping UI, animated effect, beauty filter, and special effect panel, and speed,
filter, sticker, and bubble subtitles panels.

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 162
of 163

1. Declare a <style> in app/res/values/style.xml , specify its parent theme as EditerStyle , and

change the theme to the target theme. You can find all available themes in

 app/ugckit/res/values.theme_style.xml .

2. Below is the sample code for replacing the playback and pause icons on the editing UI:

<style name="EditerActivityTheme" parent="EditerStyle">

 <item name="editorPlayIcon">@drawable/ic_play</item>

 <item name="editorPauseIcon">@drawable/ic_pause</item>

</style>

3. Declare the custom theme in AndroidManifest.xml :

<activity

 android:name=".videoeditor.TCVideoEffectActivity"

 android:screenOrientation="portrait"

User Generated Short Video SDK

©2013-2025 Tencent Cloud International Pte. Ltd. Page 163
of 163

 android:theme="@style/EditerActivityTheme" />

