
Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 1
of 48

Serverless Application Center

Framework Support

Product Documentation

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 2
of 48

Copyright Notice

©2013-2025 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by the Tencent corporate group, including
its parent, subsidiaries and affiliated companies, as the case may be. Trademarks of third parties referred to in this
document are owned by their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 3
of 48

Contents

Framework Support
Deploying Framework on Command Line
Quickly Deploying Egg Framework
Quickly Deploying Koa Framework
Quickly Deploying Express Framework
Quickly Deploying Next.js Framework
Quickly Deploying Nuxt.js Framework
Quickly Deploying Flask Framework
Quickly Deploying Laravel Framework
Quickly Deploying Nest.js Framework
Quickly Deploying Django Framework
Quickly Deploying Native WordPress Application

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 4
of 48

Framework Support
Deploying Framework on Command Line
Last updated：2024-12-02 11:16:20

In addition to the console, you can also quickly deploy a web framework on the command line. This document
describes how to use the HTTP component of Serverless Framework to complete the local deployment of web
applications.

Prerequisites

You have activated the service and completed the permission configuration for Serverless Framework.

Supported frameworks

Supported Framework Document

Express Quickly Deploying Express Framework

Koa Quickly Deploying Koa Framework

Egg Quickly Deploying Egg Framework

Next.js Quickly Deploying Next.js Framework

Nuxt.js Quickly Deploying Nuxt.js Framework

Nest.js Quickly Deploying Nest.js Framework

Flask Quickly Deploying Flask Framework

Django Quickly Deploying Django Framework

Laravel Quickly Deploying Laravel Framework

Directions

1. Develop an application locally

Complete the development locally according to your actual business scenario. For more information, please see the
documents in the Supported frameworks section.
2. Configure the .yml file

Create a serverless.yml file in the project root directory and write the configuration by referring to the following

sample. For the full configuration, please see Configuration Document.

https://github.com/serverless-components/tencent-http/blob/master/docs/configure.md
https://www.tencentcloud.com/document/product/1040/36793
https://www.tencentcloud.com/document/product/1040/37354
https://www.tencentcloud.com/document/product/1040/36792
https://www.tencentcloud.com/document/product/1040/36795
https://www.tencentcloud.com/document/product/1040/36705
https://www.tencentcloud.com/document/product/1040/37355
https://www.tencentcloud.com/document/product/1040/41601
https://www.tencentcloud.com/document/product/1040/37042
https://www.tencentcloud.com/document/product/1040/36798
https://www.tencentcloud.com/document/product/1040/36863
https://github.com/serverless-components/tencent-http/blob/master/docs/configure.md

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 5
of 48

serverless.yml

component: http # Component name, which is required

name: webDemo # Component instance name, which is required

inputs:

 region: ap-guangzhou # Function region

 src: # Deploy the file code under `src`, package it into a zip file, and upload i

 src: ./ # The file directory that needs to be packaged locally

 exclude: # Excluded files or directories

 - .env

 - 'node_modules/**'

 faas: # Function configuration

 framework: express # Select the framework. Express is used here as an example

 runtime: Nodejs12.16

 name: webDemo # Function name

 timeout: 10 # Timeout period in seconds

 memorySize: 512 # Memory size, which is 512 MB by default

 layers:

 - name: layerName # Layer name

 version: 1 # Version

 apigw: # # The HTTP component will create an API Gateway service by default

 isDisabled: false # Specify whether to disable automatic API Gateway creation

 id: service-xxx # API Gateway service ID. If you leave it empty, a gateway will

 name: serverless # API Gateway service ID

 api: # Relevant configuration of the created API

 cors: true # Specify whether to allow CORS

 timeout: 15 # API timeout period

 name: apiName # API name

 qualifier: $DEFAULT # Version associated with the API

 protocols:

 - http

 - https

 environment: test

3. After the creation is completed, run sls deploy in the root directory to deploy. The component will

automatically generate the scf_bootstrap bootstrap file for deployment according to the selected framework.

Note:
As the bootstrap file logic is strongly related to your business logic, the generated default bootstrap file may cause the
framework start to fail. We recommend you manually configure the bootstrap file according to your actual business
needs. For more information, please see the deployment guide document of each framework.

Sample scf_bootstrap :

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 6
of 48

express:

#!/usr/bin/env bash

/var/lang/node12/bin/node app.js

koa

#!/usr/bin/env bash

/var/lang/node12/bin/node app.js

egg

#!/var/lang/node12/bin/node

/**

 * Node path in docker: /var/lang/node12/bin/node

 * As only `/tmp` is readable/writable in SCF, two environment variables need

to be modified at startup

 * `NODE_LOG_DIR` changes the default node write path of `egg-scripts` (~/logs)

to `/tmp`

 * `EGG_APP_CONFIG` changes the default directory of the Egg application to

`/tmp`

 */

process.env.EGG_SERVER_ENV = 'prod';

process.env.NODE_ENV = 'production';

process.env.NODE_LOG_DIR = '/tmp';

process.env.EGG_APP_CONFIG = '{"rundir":"/tmp","logger":{"dir":"/tmp"}}';

const { Application } = require('egg');

// If you deploy `node_modules` through layers, you need to modify `eggPath`

Object.defineProperty(Application.prototype, Symbol.for('egg#eggPath'), {

 value: '/opt',

});

const app = new Application({

 mode: 'single',

 env: 'prod',

});

app.listen(9000, '0.0.0.0', () => {

 console.log('Server start on http://0.0.0.0:9000');

});

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 7
of 48

nextjs

#!/var/lang/node12/bin/node

/*

As the HTTP passthrough function runs based on the docker image, the

listening address must be 0.0.0.0, and the port 9000

*/

const { nextStart } = require('next/dist/cli/next-start');

nextStart(['--port', '9000', '--hostname', '0.0.0.0']);

nuxtjs

#!/var/lang/node12/bin/node

/*

As the HTTP passthrough function runs based on the docker image, the

listening address must be 0.0.0.0, and the port 9000

*/

require('@nuxt/cli')

 .run(['start', '--port', '9000', '--hostname', '0.0.0.0'])

 .catch((error) => {

 require('consola').fatal(error);

 require('exit')(2);

 });

nestjs

#!/bin/bash

SERVERLESS=1 /var/lang/node12/bin/npm run start -- -e

/var/lang/node12/bin/node

SERVERLESS=1 /var/lang/node12/bin/node ./dist/main.js

flask

#!/bin/bash

As the HTTP passthrough function runs based on the docker image, the

listening address must be 0.0.0.0, and the port 9000

/var/lang/python3/bin/python3 app.py

django

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 8
of 48

#!/bin/bash

As the HTTP passthrough function runs based on the docker image, the

listening address must be 0.0.0.0, and the port 9000

/var/lang/python3/bin/python3 manage.py runserver 0.0.0.0:9000

laravel

#!/bin/bash

#######################################

Inject environment variables in the serverless environment

#######################################

Inject the SERVERLESS flag

export SERVERLESS=1

Modify the template compilation cache path, as only `/tmp` is

readable/writable in SCF

export VIEW_COMPILED_PATH=/tmp/storage/framework/views

Modify `session` to store it in the memory (array type)

export SESSION_DRIVER=array

Output logs to `stderr`

export LOG_CHANNEL=stderr

Modify the application storage path

export APP_STORAGE=/tmp/storage

Initialize the template cache directory

mkdir -p /tmp/storage/framework/views

As the HTTP passthrough function runs based on the docker image, the

listening address must be 0.0.0.0, and the port 9000

Path of the executable file in the cloud: /var/lang/php7/bin/php

/var/lang/php7/bin/php artisan serve --host 0.0.0.0 --port 9000

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 9
of 48

Quickly Deploying Egg Framework
Last updated：2024-12-02 11:16:20

The SLS framework deployment scheme has been upgraded. You can use an SCF HTTP-triggered function to quickly
deploy your Egg service to the cloud.
Note:

What are the differences between SLS console deployment and direct function deployment?

Both SLS console deployment and function deployment can be based on HTTP-triggered functions, and quick
deployment is usually used for web frameworks.
If you only need to develop code logic and do not need to create additional resources, you can perform quick
deployment through the Serverless console.

If you need to create more capabilities or resources, such as automatic creation of layer hosting dependencies, quick
implementation of static resource isolation, and support for direct code repository pulling, in addition to code
deployment, you can use the SLS console to create web applications.
This document introduces the SLS console deployment scheme. You can also complete the deployment in CLI by
referring to Deploying Web Function on Command Line.

Template Deployment - Deploying Egg Sample Code

1. Log in to the SLS console.

2. Choose Create Application and select Web Application > Egg Framework.
3. Click Next and complete basic configuration.
4. Select Sample Code as the upload mode and click Complete. The application deployment starts.
5. After the application deployment is completed, you can view the basic information of the sample application on the
application details page. In addition, you can use access the deployed Egg project at the access path URL generated

by API Gateway.

Custom Deployment - Quickly Deploying Web Application

Prerequisites

The Node.js runtime environment has been installed locally.

Local development

1. Refer to Quick Start to quickly initialize the sample project as follows:

mkdir egg-example && cd egg-example

https://www.tencentcloud.com/document/product/583/41376
https://console.tencentcloud.com/sls
https://www.eggjs.org/intro/quickstart

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 10
of 48

npm init egg --type=simple

npm i

2. In the root directory, run the following command to directly start the service locally.

npm run dev

open http://localhost:7001

3. Start a browser, and you can access the sample Egg project locally.

Deployment in cloud

Next, perform the following steps to make simple modifications to the locally created project, so that it can be quickly
deployed through an HTTP-triggered function. The steps of project transformation for the Egg framework are as
follows:
Change the listening address and port to 0.0.0.0:9000 .

Modify the write path. Only the /tmp directory is readable/writable in the SCF environment.

Add the scf_bootstrap file.

1. (Optional) Configure the scf_bootstrap file.

Note:
You can also complete the configuration in the console.
Create the scf_bootstrap file in the root directory of the project and add the following content to it (the file is

used to configure environment variables and start the service. Here is only a sample. Please adjust the configuration

according to your actual business scenario):

#!/var/lang/node12/bin/node

'use strict';

/**

 * Node path in docker: /var/lang/node12/bin/node

 * As only `/tmp` is readable/writable in SCF, two environment variables need

to be modified at startup

 * `NODE_LOG_DIR` changes the default node write path of `egg-scripts` (~/logs)

to `/tmp`

 * `EGG_APP_CONFIG` changes the default directory of the Egg application to

`/tmp`

 */

process.env.EGG_SERVER_ENV = 'prod';

process.env.NODE_ENV = 'production';

process.env.NODE_LOG_DIR = '/tmp';

process.env.EGG_APP_CONFIG = '{"rundir":"/tmp","logger":{"dir":"/tmp"}}';

const { Application } = require('egg');

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 11
of 48

// If you deploy `node_modules` through layers, you need to modify `eggPath`

Object.defineProperty(Application.prototype, Symbol.for('egg#eggPath'), {

 value: '/opt',

});

const app = new Application({

 mode: 'single',

 env: 'prod',

});

app.listen(9000, '0.0.0.0', () => {

 console.log('Server start on http://0.0.0.0:9000');

});

After the file is created, you need to run the following command to modify the executable permission of the file. By
default, the permission 777 or 755 is required for the service to start normally. Below is the sample code:

chmod 777 scf_bootstrap

2. Console upload
Log in to the SLS console, select Web Application > Egg Framework, and select Local Upload or Code
Repository Pull as the upload mode.
You can configure the scf_bootstrap file in the console. When the configuration is completed, the console

automatically generates the scf_bootstrap file and packages it and the project code for deployment.

Note:
The actual scf_bootstrap file in your project prevails. If the scf_bootstrap file already exists in your

project, its content will not be overwritten.
When the configuration is completed, click Complete to deploy your Egg project.

Advanced configuration management

In Advanced Configuration, you can perform more application management operations, such as creating layers,
binding custom domains, and configuring environment variables.

https://console.tencentcloud.com/sls

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 12
of 48

Quickly Deploying Koa Framework
Last updated：2024-12-02 11:16:20

The SLS framework deployment scheme has been upgraded. You can use an SCF HTTP-triggered function to quickly
deploy your Koa service to the cloud.
Note:

What are the differences between SLS console deployment and direct function deployment?

Both SLS console deployment and function deployment can be based on HTTP-triggered functions, and quick
deployment is usually used for web frameworks.
If you only need to develop code logic and do not need to create additional resources, you can perform quick
deployment through the Serverless console.

If you need to create more capabilities or resources, such as automatic creation of layer hosting dependencies, quick
implementation of static resource isolation, and support for direct code repository pulling, in addition to code
deployment, you can use the SLS console to create web applications.

Prerequisites

Before using Tencent Cloud Serverless, sign up for a Tencent Cloud account and complete identity verification.
Note:
This document introduces the SLS console deployment scheme. You can also complete the deployment in CLI by

referring to Deploying Web Function on Command Line.

Directions

Template deployment - deploying Koa sample code

1. Log in to the SLS console.
2. Choose Create Application and select Web Application > Koa Framework.
3. Click Next and complete basic configuration.
4. Select Sample Code as the upload mode and click Complete. The application deployment starts.

5. After the application deployment is completed, you can view the basic information of the sample application on the
application details page. In addition, you can use access the deployed Koa project at the access path URL generated
by API Gateway.

Custom deployment - quickly deploying web application

Prerequisites

https://www.tencentcloud.com/account/register?s_url=https%3A%2F%2Fconsole.intl.cloud.tencent.com%2Fddos%2Funblock%2Flist
https://www.tencentcloud.com/document/product/378/3629
https://www.tencentcloud.com/document/product/583/41376
https://console.tencentcloud.com/sls

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 13
of 48

The Node.js runtime environment has been installed locally.

Local development

1. Refer to the Koa.js official documentation to install the Koa environment and initialize your Koa project. The
following takes hello world as an example. The content of app.js is as follows:

// app.js

const Koa = require('koa');

const app = new Koa();

const main = ctx => {

 ctx.response.body = 'Hello World';

};

app.use(main);

app.listen(3000);

2. In the root directory, run the following command to directly start the service locally.

node app.js

3. Visit http://localhost:3000 in a browser, and you can access the sample Koa project locally.

Deployment in cloud

You need to make simple modifications to the initialized project, so that the project can be quickly deployed through
an HTTP-triggered function. The project transformation here is usually divided into the following two steps:

Change the listening address and port to 0.0.0.0:9000 .

Add the scf_bootstrap file.

The detailed steps are as follows:
1. In the sample Koa project, change the listening port to 9000 .

2. Create the scf_bootstrap file in the root directory of the project and add the following content to it (the file is

used to configure environment variables and start the service):

https://koajs.com/

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 14
of 48

Note:
You can also complete the configuration in the console.

#!/bin/bash

/var/lang/node12/bin/node app.js

After the file is created, you need to run the following command to modify the executable permission of the file. By
default, the permission 777 or 755 is required for the service to start normally. Below is the sample code:

chmod 777 scf_bootstrap

3. After the local configuration is completed, run the bootstrap file and make sure that your service can be normally
started locally. Then log in to the SLS console, select Web Application > Koa Framework, and select Local
Upload or Code Repository Pull as the upload mode.
You can configure the scf_bootstrap file in the console. When the configuration is completed, the console

automatically generates the scf_bootstrap file and packages it and the project code for deployment.

Note:
The actual scf_bootstrap file in your project prevails. If the scf_bootstrap file already exists in your

project, its content will not be overwritten.
When the configuration is completed, click Complete to deploy your Koa project.

https://console.tencentcloud.com/sls

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 15
of 48

Quickly Deploying Express Framework
Last updated：2024-12-02 11:16:20

The SLS framework deployment scheme has been upgraded. You can use an SCF HTTP-triggered function to quickly
deploy your Express service to the cloud.
Note:

What are the differences between SLS console deployment and direct function deployment?

Both SLS console deployment and function deployment can be based on HTTP-triggered functions, and quick
deployment is usually used for web frameworks.
If you only need to develop code logic and do not need to create additional resources, you can perform quick
deployment through the SLS console.

If you need to create more capabilities or resources, such as automatic creation of layer hosting dependencies, quick
implementation of static resource isolation, and support for direct code repository pulling, in addition to code
deployment, you can use the SLS console to create web applications.
This document describes the SLS console deployment scheme. You can also complete the deployment in CLI by
referring to Deploying Web Function on Command Line.

Template Deployment: Deploying Express Sample Code

1. Log in to the SLS console.

2. Click Create Application and choose Web Application > Express Framework.
3. Click Next and complete the basic configuration. Select Sample Code as the upload mode.
4. Click Complete.
5. After the application is deployed, you can click the sample application name on the Application List page to go to
the details page of the application.

6. On the Resource List page, click the access URL generated by the API gateway of the sample application to
access the deployed Express project.

Custom Deployment - Quickly Deploying Web Application

Prerequisites

The Node.js runtime environment has been installed locally.

Local development

https://www.tencentcloud.com/document/product/583/41376
https://console.tencentcloud.com/sls

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 16
of 48

1. After confirming that the Node.js runtime environment has been installed locally, install the Express framework and
express-generator tool and initialize your sample Express project.

npm install express --save

npm install express-generator --save

express WebApp

2. Go to the project directory and install the dependency package.

cd WebApp

npm install

3. After the installation is completed, you can directly start the service locally. Enter http://localhost:3000 in

a browser to access the sample Express project locally.

npm start

Deployment in cloud

Next, perform the following steps to make simple modifications to the initialized project, so that it can be quickly
deployed through an HTTP-triggered function. The project transformation here is usually divided into the following two
steps:
Change the listening address and port to 0.0.0.0:9000 .

Add the scf_bootstrap file.

The detailed directions are as follows:
1. In the sample Express project, you can specify the listening address and port by using the environment variable in
the ./bin/www file. If you don't specify it, port 3000 will be listened on by default.

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 17
of 48

2. Create the scf_bootstrap file in the root directory of the project. This file is used to configure environment

variables and specify service startup commands.
Note:

You can also complete the configuration in the console.

#!/bin/bash

export PORT=9000

npm run start

After the file is created, you need to run the following command to modify the executable permission of the file. By
default, the permission 777 or 755 is required for the service to start normally.

chmod 777 scf_bootstrap

3. After the local configuration is completed, run the bootstrap file and make sure that your service can be normally

started locally. Then log in to the SLS console, choose Web Application > Express Framework, and select Local
Upload or Code Repository Pull as the upload mode.
You can configure the scf_bootstrap file in the console. When the configuration is completed, the console

automatically generates the scf_bootstrap file and packages it and the project code for deployment.

Note:
The actual scf_bootstrap file in your project prevails. If the scf_bootstrap file already exists in your

project, its content will not be overwritten.
When the configuration is completed, click Complete to deploy your Express project.

https://console.tencentcloud.com/sls

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 18
of 48

Quickly Deploying Next.js Framework
Last updated：2024-12-02 11:16:20

The SLS framework deployment scheme has been upgraded. You can use an SCF HTTP-triggered function to quickly
deploy your Next.js service to the cloud.
Note:

What are the differences between SLS console deployment and direct function deployment?

Both SLS console deployment and function deployment can be based on HTTP-triggered functions, and quick
deployment is usually used for web frameworks.
If you only need to develop code logic and do not need to create additional resources, you can perform quick
deployment through the Serverless console.

If you need to create more capabilities or resources, such as automatic creation of layer hosting dependencies, quick
implementation of static resource isolation, and support for direct code repository pulling, in addition to code
deployment, you can use the SLS console to create web applications.

Prerequisites

Before using Tencent Cloud Serverless, you need to sign up for a Tencent Cloud account and complete the identity
verification.
Note:

This document introduces the SLS console deployment scheme. You can also complete the deployment in CLI by
referring to Deploying Web Function on Command Line.

Directions

Template deployment - deploying Next.js sample code

1. Log in to the SLS console.
2. Choose Create Application and select Web Application > Next.js Framework.
3. Click Next and complete basic configuration.

4. Select Sample Code as the upload mode and click Complete. The application deployment starts.
5. After the application deployment is completed, you can view the basic information of the sample application on the
application details page. In addition, you can use access the deployed Next.js project at the access path URL
generated by API Gateway.

Custom deployment - quickly deploying web application

https://www.tencentcloud.com/en/account/register
https://www.tencentcloud.com/document/product/378/3629
https://www.tencentcloud.com/document/product/583/41376
https://console.tencentcloud.com/sls

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 19
of 48

Prerequisites

The Node.js runtime environment has been installed locally.

Local development

1. Refer to Getting Started to install and initialize your Next.js project:

npx create-next-app

2. In the root directory, run the following command to directly start the service locally.

cd my-app && npm run dev

3. Visit http://localhost:3000 in a browser, and you can access the sample Next.js project locally.

Deployment in cloud

You need to make simple modifications to the initialized project, so that the project can be quickly deployed through
an HTTP-triggered function. The project transformation here is usually divided into the following two steps:
Change the listening address and port to 0.0.0.0:9000 .

Add the scf_bootstrap file.

The detailed steps are as follows:

https://nextjs.org/docs

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 20
of 48

1. Create the scf_bootstrap file in the root directory of the project and add the following content to it (the file is

used to start the service and specify the start port):
Note:

You can also complete the configuration in the console.

#!/var/lang/node12/bin/node

const { nextStart } = require('next/dist/cli/next-start');

nextStart(['--port', '9000', '--hostname', '0.0.0.0'])

Note:
1. Here is only a sample bootstrap file. Please adjust the configuration according to your actual business scenario.
2. The sample uses the standard node environment path of SCF. When debugging locally, you need to change it to

your local path.
After the file is created, you need to run the following command to modify the executable permission of the file. By
default, the permission 777 or 755 is required for the service to start normally. Below is the sample code:

chmod 777 scf_bootstrap

2. After the local configuration is completed, run the bootstrap file and make sure that your service can be normally

started locally. Then log in to the SLS console, select Web Application > Next.js Framework, and select Local
Upload or Code Repository Pull as the upload mode.
You can configure the scf_bootstrap file in the console. When the configuration is completed, the console

automatically generates the scf_bootstrap file and packages it and the project code for deployment.

Note:
The actual scf_bootstrap file in your project prevails. If the scf_bootstrap file already exists in your

project, its content will not be overwritten.
When the configuration is completed, click Complete to deploy your Next.js project.

https://console.tencentcloud.com/sls

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 21
of 48

Quickly Deploying Nuxt.js Framework
Last updated：2024-12-02 11:16:20

The SLS framework deployment scheme has been upgraded. You can use an SCF HTTP-triggered function to quickly
deploy your Nuxt.js service to the cloud.
Note:

What are the differences between SLS console deployment and direct function deployment?

Both SLS console deployment and function deployment can be based on HTTP-triggered functions, and quick
deployment is usually used for web frameworks.
If you only need to develop code logic and do not need to create additional resources, you can perform quick
deployment through the Serverless console.

If you need to create more capabilities or resources, such as automatic creation of layer hosting dependencies, quick
implementation of static resource isolation, and support for direct code repository pulling, in addition to code
deployment, you can use the SLS console to create web applications.

Prerequisites

Before using Tencent Cloud Serverless, you need to sign up for a Tencent Cloud account and complete identity
verification.
Note:

This document introduces the SLS console deployment scheme. You can also complete the deployment in CLI by
referring to Deploying Web Function on Command Line.

Directions

Template deployment - deploying Nuxt.js sample code

1. Log in to the SLS console.
2. Choose Create Application and select Web Application > Nuxt.js Framework.
3. Click Next and complete basic configuration.

4. Select Sample Code as the upload mode and click Complete. The application deployment starts.
5. After the application deployment is completed, you can view the basic information of the sample application on the
application details page. In addition, you can use access the deployed Nuxt.js project at the access path URL
generated by API Gateway.

Custom deployment - quickly deploying web application

https://www.tencentcloud.com/en/account/register
https://www.tencentcloud.com/document/product/378/3629
https://www.tencentcloud.com/document/product/583/41376
https://console.tencentcloud.com/sls

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 22
of 48

Prerequisites

The Node.js runtime environment has been installed locally.

Local development

1. Refer to Installation to install and initialize your Nuxt.js project:

npx create-nuxt-app nuxt-app

2. In the root directory, run the following command to directly start the service locally.

cd nuxt-app && npm run dev

3. Visit http://localhost:3000 in a browser, and you can access the sample Nuxt.js project locally.

Deployment in cloud

You need to make simple modifications to the initialized project, so that the project can be quickly deployed through
an HTTP-triggered function. The project transformation here is usually divided into the following two steps:
Add the scf_bootstrap file.

Change the listening address and port to 0.0.0.0:9000 .

The detailed steps are as follows:
1. Create the scf_bootstrap file in the root directory of the project and add the following content to it (the file is

used to start the service and specify the start port):
Note:

https://zh.nuxtjs.org/docs/2.x/get-started/installation

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 23
of 48

Here is only a sample bootstrap file. Please adjust the configuration according to your actual business scenario.
The sample uses the standard node environment path of SCF. When debugging locally, you need to change it to your
local path.

#!/var/lang/node12/bin/node

require("@nuxt/cli")

 .run(["start", "--port", "9000", "--hostname", "0.0.0.0"])

 .catch(error => {

 require("consola").fatal(error);

 require("exit")(2);

 });

After the file is created, you need to run the following command to modify the executable permission of the file. By
default, the permission 777 or 755 is required for the service to start normally. Below is the sample code:

chmod 777 scf_bootstrap

2. After the local configuration is completed, run the bootstrap file and make sure that your service can be normally

started locally. Then log in to the SLS console, select Web Application > Nuxt.js Framework, and select Local
Upload or Code Repository Pull as the upload mode.
You can configure the scf_bootstrap file in the console. When the configuration is completed, the console

automatically generates the scf_bootstrap file and packages it and the project code for deployment.

Note:
The actual scf_bootstrap file in your project prevails. If the scf_bootstrap file already exists in your

project, its content will not be overwritten.
When the configuration is completed, click Complete to deploy your Nuxt.js project.

https://console.tencentcloud.com/sls

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 24
of 48

Quickly Deploying Flask Framework
Last updated：2024-12-02 11:16:20

The SLS framework deployment scheme has been upgraded. You can use an SCF HTTP-triggered function to quickly
deploy your Flask service to the cloud.
Note:

What are the differences between SLS console deployment and direct function deployment?

Both SLS console deployment and function deployment can be based on HTTP-triggered functions, and quick
deployment is usually used for web frameworks.
If you only need to develop code logic and do not need to create additional resources, you can perform quick
deployment through the SCF console.

If you need to create more capabilities or resources, such as automatic creation of layer hosting dependencies, quick
implementation of static resource isolation, and support for direct code repository pulling, in addition to code
deployment, you can use the SLS console to create web applications.
This document introduces the SLS console deployment scheme. You can also complete the deployment in CLI by
referring to Deploying Web Function on Command Line.

Template Deployment - Deploying Flask Sample Code

1. Log in to the SLS console.

2. Choose Create Application and select Web Application > Flask Framework.
3. Click Next and complete basic configuration.
4. Select Sample Code as the upload mode and click Complete. The application deployment starts.
5. After the application deployment is completed, you can view the basic information of the sample application on the
application details page. In addition, you can use access the deployed Flask project at the access path URL

generated by API Gateway.

Custom Deployment - Quickly Deploying Web Application

Local development

1. Confirm that Flask has been installed in your local environment.

pip install Flask

2. Create the Hello World sample project locally.

In the project directory, create the app.py file to implement the Hello World application. Below is the sample code:

https://www.tencentcloud.com/document/product/583/41376
https://console.tencentcloud.com/sls

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 25
of 48

from flask import Flask

app = Flask(__name__)

@app.route('/')

def hello_world():

return 'Hello World'

if __name__ == '__main__':

app.run()

3. Run the app.py file locally. Visit http://127.0.0.1:5000 in a browser, and you can access the sample

Express project locally.

$ python3 app.py

Serving Flask app "app" (lazy loading)
Environment: production

WARNING: Do not use the development server in a production environment.

Use a production WSGI server instead.
Debug mode: off
Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

 127.0.0.1 - - [22/Jun/2021 09:41:04] "GET / HTTP/1.1" 200 -

Deployment in cloud

Next, perform the following steps to make simple modifications to the locally created project, so that it can be quickly

deployed through an HTTP-triggered function. The steps of project transformation for Flask are as follows:
1. Install the dependency package
As the Flask dependency library is not provided in the standard cloud environment of SCF, you must install the
dependencies and upload them together with the project code. Please create the requirements.txt file first:

#requirements.txt

Flask==1.0.2

werkzeug==0.16.0

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 26
of 48

Then install the requirements.txt file:

pip install -r requirements.txt

Note:

Due to the limitation of SCF's built-in runtime environment version (Python 3.6), only lower versions (1.0.x or earlier) of
Werkzeug can be used, while higher versions may not work. The runtime environment version upgrade has been
planned. Please stay tuned.
2. Modify the listening address and port
The listening port in the HTTP-triggered function must be 9000 , so you need to change the listening address and

port to 0.0.0.0:9000 .

Note:
You can also configure the listening port through the environment variable in scf_bootstrap .

3. (Optional) Configure the scf_bootstrap file.

Create the scf_bootstrap file in the root directory of the project. This file is used to configure environment

variables, specify service start commands, and make sure that your service can be started normally through this file.

#!/bin/bash

/var/lang/python3/bin/python3 app.py

After the file is created, you need to run the following command to modify the executable permission of the file. By
default, the permission 777 or 755 is required for the service to start normally.

chmod 777 scf_bootstrap

Note:
You can also complete the configuration in the console.

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 27
of 48

In the SCF environment, only files in the /tmp directory are readable/writable. We recommend you select /tmp

when outputting files. If you select other directories, write will fail due to the lack of permissions.
If you want to output environment variables in the log, you need to add the -u parameter before the bootstrap

command, such as python -u app.py .

4. Console upload
Log in to the SLS console, select Web Application > Flask Framework, and select Local Upload or Code
Repository Pull as the upload mode.
You can configure the scf_bootstrap file in the console. When the configuration is completed, the console

automatically generates the scf_bootstrap file and packages it and the project code for deployment.

Note:
The actual scf_bootstrap file in your project prevails. If the scf_bootstrap file already exists in your

project, its content will not be overwritten.
When the configuration is completed, click Complete to deploy your Flask project.

Advanced configuration management

In Advanced Configuration, you can perform more application management operations, such as creating layers,

binding custom domains, and configuring environment variables.

https://console.tencentcloud.com/sls

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 28
of 48

Quickly Deploying Laravel Framework
Last updated：2024-12-02 11:16:20

Overview

This document describes how to use a web function to quickly migrate a local Laravel service to the cloud.
Note:
This document mainly describes how to deploy in the console. You can also complete the deployment on the

command line. For more information, please see Deploying Framework on Command Line.

Prerequisites

Before using SCF, you need to sign up for a Tencent Cloud account and complete identity verification first.

Directions

Template deployment - quick deployment of Laravel project

1. Log in to the SCF console and click Function Service on the left sidebar.
2. Select the region where to create a function at the top of the page and click Create to enter the function creation
process.

3. Select Template for Creation Method, enter WebFunc in the search box to filter all web function templates,

select Laravel Framework Template, and click Next as shown below:

https://www.tencentcloud.com/document/product/583/41586
https://www.tencentcloud.com/register
https://www.tencentcloud.com/document/product/378/3629
https://console.tencentcloud.com/scf/index?rid=1

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 29
of 48

4. On the Configuration page, you can view and modify the specific configuration information of the template project.
5. Click Complete. After creating the web function, you can view its basic information on the Function Management

page.
6. You can access the deployed Laravel project at the access path URL generated by API Gateway. Click Trigger
Management on the left to view the access path as shown below:

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 30
of 48

7. Click the access path URL to access the Laravel project.

Custom deployment - quick migration of local project to cloud

Local development

1. Refer to Getting Started on macOS to set up the Laravel development environment locally.

2. Create the sample Laravel project locally. Enter the project directory and run the following command to initialize it.

composer create-project --prefer-dist laravel/laravel blog

3. Run the following command to start the sample project locally. Below is the sample code:

$ php artisan serve --host 0.0.0.0 --port 9000

 Laravel development server started: <http://0.0.0.0:9000>

 [Wed Jul 7 11:22:05 2021] 127.0.0.1:54350 [200]: /favicon.ico

4. Visit http://0.0.0.0:9000 in a browser, and you can access the sample Laravel project locally as shown

below:

https://laravel.com/docs/8.x#getting-started-on-macos

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 31
of 48

Deployment in cloud

Add the following content to the file (which is used to configure environment variables and start services. Here is only a
sample. Please adjust the specific operations according to your actual business scenario):

Next, perform the following steps to make simple modifications to the initialized project, so that it can be quickly
deployed through a web function. The steps of project transformation are as follows:
1. Add the scf_bootstrap bootstrap file

Create the scf_bootstrap bootstrap file in the project root directory. This file is used to configure environment

variables, specify service bootstrap commands, and make sure that your service can be started normally through this

file.
Note:
 scf_bootstrap must have the executable permission of 755 or 777 .

If you want to output environment variables in the log, you need to add the -u parameter before the bootstrap

command, such as python -u app.py .

2. Modify the file read/write path

In the SCF environment, only files in the /tmp directory are readable/writable. If you select other directories, write

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 32
of 48

will fail due to the lack of permissions. Therefore, you need to inject environment variables in the scf_bootstrap

file to adjust the output directory of the Laravel framework:

#!/bin/bash

Inject the SERVERLESS flag

export SERVERLESS=1

Modify the template compilation cache path, as only `/tmp` is

readable/writable in SCF

export VIEW_COMPILED_PATH=/tmp/storage/framework/views

Modify `session` to store it in the memory (array type)

export SESSION_DRIVER=array

Output logs to `stderr`

export LOG_CHANNEL=stderr

Modify the application storage path

export APP_STORAGE=/tmp/storage

Initialize the template cache directory

mkdir -p /tmp/storage/framework/views

3. Modify the listening address and port

The listening port in the web function must be 9000 , so you need to specify the listening port in

 scf_bootstrap through the following command:

/var/lang/php7/bin/php artisan serve --host 0.0.0.0 --port 9000

 The content of scf_bootstrap is as follows:

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 33
of 48

4. Deploy in the cloud

After the local configuration is completed, run the bootstrap file and make sure that your service can be normally

started locally. Then, perform the following steps to deploy Laravel:
4.1 Log in to the SCF console and click Function Service on the left sidebar.
4.2 Select the region where to create a function at the top of the page and click Create to enter the function creation
process.
4.3 Select Custom Creation for Creation Method and configure the options as prompted as shown below:

https://console.tencentcloud.com/scf/index?rid=1

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 34
of 48

Function Type: select Web function.
Function Name: enter the name of your function.

Region: enter your function deployment region, such as Chengdu.
Deployment Method: select Code deployment and upload your local project.
Runtime environment: select "Php7".
4.4 After the deployment is completed, click the generated URL to access your Laravel application as shown below:

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 35
of 48

Development management

After the deployment is completed, you can quickly access and test your web service in the SCF console and try out
various features of SCF, such as layer binding and log management. In this way, you can enjoy the advantages of low

cost and flexible scaling brought by the serverless architecture.

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 36
of 48

Quickly Deploying Nest.js Framework
Last updated：2024-12-02 11:16:20

The SLS framework deployment scheme has been upgraded. You can use an SCF HTTP-triggered function to quickly
deploy your Nest.js service to the cloud.
Note:

What are the differences between SLS console deployment and direct function deployment?

Both SLS console deployment and function deployment can be based on HTTP-triggered functions, and quick
deployment is usually used for web frameworks.
If you only need to develop code logic and do not need to create additional resources, you can perform quick
deployment through the SCF console.

If you need to create more capabilities or resources, such as automatic creation of layer hosting dependencies, quick
implementation of static resource isolation, and support for direct code repository pulling, in addition to code
deployment, you can use the SLS console to create web applications.

Prerequisites

Before using Tencent Cloud SCF, you need to sign up for a Tencent Cloud account and complete identity verification.
Note:
This document introduces the SLS console deployment scheme. You can also complete the deployment in CLI by

referring to Deploying Web Function on Command Line.

Directions

Template deployment - deploying Nest.js sample code

1. Log in to the SLS console.
2. Choose Create Application and select Web Application > Nest.js Framework.
3. Click Next and complete basic configuration.
4. Select Sample Code as the upload mode and click Complete. The application deployment starts.

5. After the application deployment is completed, you can view the basic information of the sample application on the
application details page. In addition, you can use access the deployed Nest.js project at the access path URL
generated by API Gateway.

Custom deployment - quickly deploying web application

Prerequisites

https://www.tencentcloud.com/en/account/register
https://www.tencentcloud.com/document/product/378/3629
https://www.tencentcloud.com/document/product/583/41376
https://console.tencentcloud.com/sls

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 37
of 48

The Node.js runtime environment has been installed locally.

Local development

1. Refer to First steps to initialize your Nest.js project:

npm i -g @nestjs/cli

nest new nest-app

2. In the root directory, run the following command to directly start the service locally.

cd nest-app && npm run start

3. Visit http://localhost:3000 in a browser, and you can access the sample Nest.js project locally.

Deployment in cloud

You need to make simple modifications to the initialized project, so that the project can be quickly deployed through
an HTTP-triggered function. The project transformation here is usually divided into the following two steps:
Add the scf_bootstrap file.

Change the listening address and port to 0.0.0.0:9000 .

The detailed steps are as follows:
1. Change the listening port to 9000 in the ./dist/main.js file.

https://nestjs.bootcss.com/first-steps

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 38
of 48

2. Create the scf_bootstrap file in the root directory of the project and add the following content to it (the file is

used to start the service):
Note:

You can also complete the configuration in the console.

#!/bin/bash

SERVERLESS=1 /var/lang/node12/bin/node ./dist/main.js

Note:
1. Here is only a sample bootstrap file. Please adjust the configuration according to your actual business scenario.
2. The sample uses the standard node environment path of SCF. When debugging locally, you need to change it to
your local path.
After the file is created, you need to run the following command to modify the executable permission of the file. By

default, the permission 777 or 755 is required for the service to start normally. Below is the sample code:

chmod 777 scf_bootstrap

3. After the local configuration is completed, run the bootstrap file and make sure that your service can be normally
started locally. Then log in to the SLS console, select Web Application > Nest.js Framework, and select Local
Upload or Code Repository Pull as the upload mode.

You can configure the scf_bootstrap file in the console. When the configuration is completed, the console

automatically generates the scf_bootstrap file and packages it and the project code for deployment.

Note:
The actual scf_bootstrap file in your project prevails. If the scf_bootstrap file already exists in your

project, its content will not be overwritten.

When the configuration is completed, click Complete to deploy your Nest.js project.

https://console.tencentcloud.com/sls

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 39
of 48

Quickly Deploying Django Framework
Last updated：2024-12-02 11:16:20

The SLS framework deployment scheme has been upgraded. You can use an SCF HTTP-triggered function to quickly
deploy your Django service to the cloud.
Note:

What are the differences between SLS console deployment and direct function deployment?

Both SLS console deployment and function deployment can be based on HTTP-triggered functions, and quick
deployment is usually used for web frameworks.
If you only need to develop code logic and do not need to create additional resources, you can perform quick
deployment through the SCF console.

If you need to create more capabilities or resources, such as automatic creation of layer hosting dependencies, quick
implementation of static resource isolation, and support for direct code repository pulling, in addition to code
deployment, you can use the SLS console to create web applications.
This document introduces the SLS console deployment scheme. You can also complete the deployment in CLI by
referring to Deploying Web Function on Command Line.

Template Deployment - Deploying Django Sample Code

1. Log in to the SLS console.

2. Choose Create Application and select Web Application > Django Framework.

3. Click Next and complete basic configuration.

https://www.tencentcloud.com/document/product/583/41376
https://console.tencentcloud.com/sls

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 40
of 48

4. Select Sample Code as the upload mode and click Complete. The application deployment starts.
5. After the application deployment is completed, you can view the basic information of the sample application on the
application details page. In addition, you can use access the deployed Django project at the access path URL

generated by API Gateway.

Custom Deployment - Quickly Deploying Web Application

Local development

1. Run the following command to confirm that Django has been installed in your local environment.

python -m pip install Django

2. Create the Hello World sample project locally.

django-admin startproject helloworld && cd helloworld

The directory structure is as follows:

$ tree

. manage.py Manager

|--***

| |-- __init__.py Package

| |-- settings.py Settings file

| |-- urls.py Route

| `-- wsgi.py Deployment

3. Run the python manage.py runserver command locally to start the bootstrap file. Below is the sample

code:

$ python manage.py runserver

July 27, 2021 - 11:52:20

Django version 3.2.5, using settings 'helloworld.settings'

Starting development server at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

4. Visit http://127.0.0.1:8000 in a browser, and you can access the sample Django project locally as shown

below:

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 41
of 48

Deployment in cloud

You need to make simple modifications to the locally created project, so that the project can be quickly deployed
through an HTTP-triggered function. The project modification steps for Django are as follows:

1. Install the dependency package
As the Django dependency library is not provided in the standard cloud environment of SCF, you must install the
dependencies and upload them together with the project code. Please create the requirements.txt file first

with the following content:

Django==3.1.3

Run the following installation command:

pip install -r requirements.txt -t .

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 42
of 48

Note:
As the db.sqlite3 library is referenced in the initialized default project, you need to install this dependency at the

same time or comment out the DATABASES field in the setting.py file of the project.

2. (Optional) Configure the scf_bootstrap file.

Note:
You can also complete the configuration in the console.
The listening port in the HTTP-triggered function must be 9000, so you need to change the listening address and port.
To do so, you need to create the scf_bootstrap file in the root directory of the project and add the following

content to the file to configure environment variables, specify service start commands, and so on to make sure that
your service can be started normally through the file:

#!/bin/bash

/var/lang/python3/bin/python3 manage.py runserver 9000

After the file is created, you need to run the following command to modify the executable permission of the file. By
default, the permission 777 or 755 is required for the service to start normally. Below is the sample code:

chmod 777 scf_bootstrap

Note:
In the SCF environment, only files in the /tmp directory are readable/writable. We recommend you select /tmp

when outputting files. If you select other directories, write will fail due to the lack of permissions.
If you want to output environment variables in logs, you need to add the -u parameter before the bootstrap

command, such as python -u app.py .

After the local configuration is completed, run the following command to start the service (take running the command
in the scf_bootstrap directory as an example) and make sure that your service can be normally started locally.

Note:
Be sure to change the python path to the local path during local testing.

./scf_bootstrap

3. Console upload
Log in to the SLS console, select Web Application > Django Framework, and select Local Upload or Code

Repository Pull as the upload mode.
You can configure the scf_bootstrap file in the console. When the configuration is completed, the console

automatically generates the scf_bootstrap file and packages it and the project code for deployment.

Note:
The actual scf_bootstrap file in your project prevails. If the scf_bootstrap file already exists in your

project, its content will not be overwritten.
When the configuration is completed, click Complete to deploy your Django project.

https://console.tencentcloud.com/sls

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 43
of 48

Advanced configuration management

In Advanced Configuration, you can perform more application management operations, such as creating layers,
binding custom domains, and configuring environment variables.

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 44
of 48

Quickly Deploying Native WordPress
Application
Last updated：2024-12-17 16:03:46

Tencent Cloud Serverless Framework provides a new deployment method for WordPress based on the serverless
architecture. By using the Serverless Framework WordPress component, you can quickly deploy a WordPress project
in just a few steps.

Architecture Overview

This component mainly creates the following resources for you:

Module Description

SCF It implements the access layer of Serverless WordPress to run WordPress

API Gateway It is the ingress of WordPress and implements RESTful APIs

CFS It is the serverless storage warehouse for WordPress

TDSQL-C
Serverless

You can create a TDSQL-C for MySQL serverless database to implement a pay-as-you-go and
automatically scalable database service

VPC It is used to connect SCF, CFS, and TDSQL-C Serverless over the private network to ensure
network isolation

Features

Support for native WordPress framework

With the Serverless WordPress component, you can directly deploy native WordPress projects without having to
make any modifications, which is non-intrusive to the framework and supports subsequent version upgrade.
Reduced costs

From the access layer to compute layer to storage layer, everything uses serverless resources to truly implement pay-
as-you-go billing and auto scaling, greatly reducing the costs.
Easy deployment

With the Serverless WordPress component, you can quickly complete WordPress application deployment by using
just a few lines of configuration in a YAML file, greatly lowering the deployment threshold.

https://github.com/serverless-components/tencent-wordpress

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 45
of 48

Deployment Steps

You can deploy Serverless WordPress on the command line or in the console in the following steps:

Prerequisites

You have activated SCF.
You have activated CFS.

(Optional) You have prepared a custom domain name.

Deployment in console

Note:
Currently, only four regions are supported: Beijing, Guangzhou, Nanjing, and Shanghai.
1. Log in to the SAC console and click Create Application.
2. Enter the application name as prompted, select Application Template > WordPress Application, and click

Create to create an application.
3. On the serverless application page, click Access Application to access your WordPress project. You can also
configure a custom domain name on the application details page.

Deployment on command line

Note:
Currently, only four AZs are supported: ap-guangzhou-4 , ap-shanghai-2 , ap-beijing-3 , and ap-

nanjing-1 .

1. Create the wordpress-demo folder locally and download the application from the WordPress official website

into it.
2. In the folder, create the serverless.yml configuration file and complete application configuration as follows

(for more information on the configuration, please see the configuration document):

app: wordpress

stage: dev

component: wordpress

name: wordpressDemo

inputs:

 region: ap-shanghai # Project region

 zone: ap-shanghai-2

 src: # Project path, which should be your WordPress path

 src: ./wordpress

 exclude:

 - .env

 apigw: # API Gateway configuration

 customDomains: # (Optional) Bind a custom domain name

 - domain: abc.com # The custom domain name to be bound

https://console.tencentcloud.com/scf
https://console.tencentcloud.com/cfs
https://console.tencentcloud.com/sls?from=wpdocs
https://wordpress.org/download/
https://github.com/serverless-components/tencent-wordpress/blob/master/docs/configure.md

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 46
of 48

 certId: abcdefg # Unique certificate ID of the custom domain name to be bou

 customMap: true # Whether the path is custom

 pathMap:

 - path: /

 environment: release

 protocols: # Type of the protocol of the custom domain name to be bound, wh

 - http

 - https

After you complete the above configuration, your project structure will be as follows:

.wordpress-demo

├── wordpress # WordPress source file

├── serverless.yml # Configuration file

└── .env # Environment variable file

3. In the root directory, run sls deploy to complete the deployment. Below is an example:

$ sls deploy

serverless ⚡framework
Action: "deploy" - Stage: "dev" - App: "appDemo" - Instance: "wordpressDemo"

region: ap-shanghai

zone: ap-shanghai-2

vpc:

 ...

cfs:

 ...

db:

 ...

apigw:

 created: true

 url: https://service-xxxxx.sh.apigw.tencentcs.com/release/

 ...

layer:

 ...

wpInitFaas:

 ...

wpServerFaas:

 ...

4. After the deployment succeeds, click the URL output in the apigw part, configure the account and password as

prompted, and you can start using your WordPress application.

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 47
of 48

FAQs

What should I do if deployment failed due to permission problems?

Check whether the root account/sub-account has the following permissions:
Check roles: SCF_QcsRole, SLS_QcsRole, and CODING_QcsRole.
Check permissions:

 SCF_QcsRole must have the CFSFullAccess permission.

 CODING_QCSRole must have the QcloudSLSFullAccess, QcloudSSLFullAccess, and

QcloudAccessForCODINGRole permissions.
For a sub-account, you also need to check the following permissions:

The account should have permissions to use SLS, SCF, CFS, TDSQL-C, and CODING.

After a custom domain name was bound, the error message {"message":"There is no api match
env_mapping '\\/'"} was reported. What should I do?

Modify the custom mapping in the API Gateway console as shown below:

How do I modify php.ini to change the limit on the size of uploaded files?

1. Modify the layer code. Move the php.ini file in the etc folder to the etc/php.d folder. You can also

directly use the package provided by Tencent Cloud.

When packaging and uploading the layer again, pay attention to the hierarchy in the package and compress only files
in the parent directory; otherwise, function initialization will fail:

2. Modify the bootstrap code of the wp-server-xxx function as follows:

#!/bin/bash

https://console.tencentcloud.com/apigateway/service?rid=1
https://github.com/serverless-components/tencent-wordpress/blob/master/src/fixtures/layer/wp-layer.zip

Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 48
of 48

export PATH="/opt/bin:$PATH"

export LD_LIBRARY_PATH=/opt/lib/:$LD_LIBRARY_PATH

export PHP_INI_SCAN_DIR=/opt/etc/php.d

php -d extension_dir=/opt/lib/php/modules/ sl_handler.php 1>&2

How do I troubleshoot the "event too large" error?

Currently, you can only upload an event of up to 6 MB in size for a function. Larger files cannot be uploaded.
Currently, Base64 encoding by API Gateway will increase your code size by 1.5 times. Therefore, we recommend you

upload a file below 3.5 MB in size.

How do I modify files in the WordPress root directory?

Currently, such files are mounted to CFS and cannot be modified directly. We recommend you install the File Manager
plugin to manage files in the root directory.

