
Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 1
of 56

Serverless Application Center

Operation Guide

Product Documentation



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 2
of 56

Copyright Notice

©2013-2025 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by the Tencent corporate group, including
its parent, subsidiaries and affiliated companies, as the case may be. Trademarks of third parties referred to in this
document are owned by their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 3
of 56

Contents

Operation Guide
Permission Configuration

Configuring Role for Specified Operation
Account and Permission Configuration
Access Management Configuration

.yml File Specification
Project Structure
Local Debugging
Building Application
In-cloud Debugging
Deploying Application
Deleting Application
List of Supported Commands
Multi-Function Application Deployment
Basic Component List
Connecting to MySQL Database
Quickly Deploying Web Function



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 4
of 56

Operation Guide
Permission Configuration
Configuring Role for Specified Operation
Last updated：2024-12-02 10:48:10

In addition to the default role  SLS_QcsRole , a root account can also create multiple custom roles and assign them 

to sub-users, so that they can have only the policies granted by the corresponding roles as needed, which can 
implement permission control. Its flowchart is as follows:


Root Account Configuration Process

You can create a sub-account, configure a role, and grant the role the corresponding policies. The following uses the 
deployment of an SCF function triggered by API Gateway as an example:



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 5
of 56

Creating sub-account role

1. Log in to the CAM Console with your root account and click Role on the left sidebar.
2. On the role page, click Create Role and select Tencent Cloud Service as the role entity.
3. Among the services supporting roles, select Serverless Framework (sls) and click Next.

4. Select presets policies QcloudCOSFullAccess, QcloudAPIGWFullAccess, and QcloudSCFFullAccess and 
click Next.	
5. Enter a role name such as  test-role1  and click Complete.


You can click the role name to view the role page after configuration:


Configuring role policy

1. Click Policy on the left sidebar to enter the policy management page.
2. On the policy management page, click Create Custom Policy and select Create by Policy Syntax.
3. Select Blank Template as the policy template and click Next.
4. Enter the policy name and content and click Complete.

Bind the role policy. Here, you need to populate the  resource  parameter with the six-segment description of the 

https://console.tencentcloud.com/cam/role
https://console.tencentcloud.com/cam/policy


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 6
of 56

role to be bound to the sub-account:

{

 "version": "2.0",

 "statement": [

     {

         "action": [

             "cam:PassRole"

         ],

         "resource": [

             # Six-segment role description (such as `qcs::cam::uin/123456789:roleN

         ],

         "effect": "allow"

     }

 ]

}

Note: 

The role resource description can be obtained on the role information page.

Associating sub-user with policy

1. Click User > User List on the left sidebar to enter the user list page.
2. Select the sub-user to be authorized and click Authorize in the "Operation" column.
3. Select the created policy and the preset policy QcloudSLSFullAccess in the policy list and click OK to associate 
them with the target sub-account so as to bind the role.
4. (Optional) If you think that  QcloudSLSFullAccess  contains excessive permissions, you can create a custom 

policy to grant a specified resource the SLS call permission with the following policy template:

{

 "version": "2.0",

 "statement": [

     {

         "action": [

             "sls:*"

         ],

         "resource": [

             # Enter the project resource name (such as `qcs::sls:ap-guangzhou::app

         ],

         "effect": "allow"

     }

 ]

}

Note: 

https://console.tencentcloud.com/cam


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 7
of 56

The project resource description must strictly follow the CAM specifications. You can also describe the resource more 
specifically by entering a function name or stage name.

Sub-account Configuration Process

Create a Serverless project locally, add a global configuration item  configRole  in the  serverless.yaml  

configuration file, and enter the role name. After the backend successfully checks the permissions, the deployment will 
be completed.

# serverless.yml

component: scf # Name of the imported component, which is required. The `tencent-sc

name: scfdemo # Name of the instance created by this component, which is required

org: test # Organization information, which is optional. The default value is the `

app: scfApp # SCF application name, which is optional

stage: dev # Information for identifying environment, which is optional. The defaul

globalOptions:

   configRole: test-role1     # Name of specified role, which is optional

inputs:

  name: scfFunctionName

  src: ./src

  runtime: Nodejs10.15 # Runtime environment of function. Valid values: Python2.7, 

  region: ap-guangzhou

  handler: index.main_handler

  events:

    - apigw:

        name: serverless_api

        parameters:

          protocols:

            - http

            - https

          serviceName:

          description: The service of Serverless Framework

          environment: release

          endpoints:

            - path: /index

              method: GET

Note: 
If no role is bounded, the sub-account will use  SLS_QcsRole  for SLS deployment by default, and the 

 configRole  parameter does not need to be set in the configuration file.



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 8
of 56

Once a role is bounded, please check the  configRole  name in the  yaml  file carefully. An error will be reported 

if the value is incorrect or empty. A sub-account can use only bounded roles but cannot use other roles.

Granting Permission to Sub-account

If you want to grant a permission to a sub-account, you need to provide the role name and the name of the policy to be 

associated together to the root account. Then, the root account can grant the permission in CAM Console > Role.

https://console.tencentcloud.com/cam/role


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 9
of 56

Account and Permission Configuration
Last updated：2024-12-02 10:48:10

This document describes several authorization methods of Serverless Cloud Framework and demonstrates actual 
operations by configuring sub-account permissions.

Prerequisites

Serverless Cloud Framework enables you to quickly deploy your project to Serverless Application Center (SAC). 

Before the deployment, please make sure that you have registered a Tencent Cloud account.

Authorization Method

Authorizing by scanning code

When you perform deployment by running  scf deploy , you can scan the QR code for quick authorization and 

deployment. After you grant the authorization by scanning the code, temporary key information (which will expire in 60 
minutes) will be generated and written to the  .env  file in the current directory.

TENCENT_APP_ID=xxxxxx     # `AppId` of authorizing account

TENCENT_SECRET_ID=xxxxxx  # `SecretId` of authorizing account

TENCENT_SECRET_KEY=xxxxxx # `SecretKey` of authorizing account

TENCENT_TOKEN=xxxxx       # Temporary token

For more information about the permissions obtained during quick authorization, see scf_QcsRole role permission list.
Note
If your account is a Tencent Cloud sub-account, policy authorization needs to be first configured by using the root 
account. For more information about the configuration, see Sub-account Permission Configuration.

Authorizing with local key

To eliminate the need for repeated authorization due to information expiration in case of authorization by scanning the 
code, you can authorize with a key. Create an  .env  file in the root directory of the project to be deployed and 

configure the Tencent Cloud  SecretId  and  SecretKey  information:

# .env

TENCENT_SECRET_ID=xxxxxxxxxx # `SecretId` of your account

TENCENT_SECRET_KEY=xxxxxxxx # `SecretKey` of your account

You can obtain  SecretId  and  SecretKey  in API Key Management.

https://www.tencentcloud.com/document/product/378/17985
https://www.tencentcloud.com/document/product/1040/36793#scf_qcsrole-.E8.A7.92.E8.89.B2.E6.9D.83.E9.99.90.E5.88.97.E8.A1.A8-.5B.5D(id.3Alist)
https://console.tencentcloud.com/cam/capi


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 10
of 56

Note
To ensure the account security, we recommend you use a sub-account key for authorization. The sub-account can 
be used to deploy the project only after being granted the relevant permissions. For more information about the 

configuration, see Sub-account Permission Configuration.

Configuring with permanent key

You can run the  scf credentials  command to quickly set the persistent storage of the global key information. 

This command must be configured under the created SCF project. Make sure that you have created a project with 
 serverless.yml  by using  scf init  or manually.

Below are all the commands:

scf credentials   Manage global user authorization information

  set                     Store user authorization information

      --secretId / -i          (Required) `secretId` of the Tencent Cloud CAM 

account

      --secretKey / -k         (Required) `secretKey` of the Tencent Cloud CAM 

account

      --profile / -n {name}    Authorization name, which is `default` by 

default

      --overwrite / -o         Overwrite the key with an existing authorization 

name

  remove                  Remove user authorization information

      --profile / -n {name}    (Required) Authorization name

  list                    View user authorization information

Configure global authorization information:

# Configure authorization information through the default profile name

$ scf credentials set --secretId xxx --secretKey xxx

# Configure authorization information through the specified profile name

$ scf credentials set --secretId xxx --secretKey xxx --profile profileName1

# Update the authorization information in the specified profile name

$ scf credentials set --secretId xxx --secretKey xxx --profile profileName1 --

overwrite

Delete the global authorization information:

$ scf credentials remove --profile profileName1

View all the current authorization information:

$ scf credentials list



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 11
of 56

Perform deployment by using the global authorization information:

# Deploy through the default profile

$ scf deploy

# Deploy through the specified profile

$ scf deploy --profile newP

# Ignore global variables and scan the QR code for deployment

$ scf deploy --login

Sub-account Permission Configuration

Directions

If you use a Tencent Cloud sub-account, it does not have the operation permissions by default; therefore, it needs to 
be authorized by the root account (or a sub-account with the authorization permission) in the following steps:
1. On the CAM User List page, select the target sub-account and click Authorize in the Action column.


2. Search for and select  QcloudscfFullAccess  in the pop-up window and click OK to grant the sub-account the 

permission to manipulate all Serverless Cloud Framework resources.

https://console.tencentcloud.com/cam/user


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 12
of 56

3. On the CAM User List page, select the target sub-account and click the username to go to the user details page.

4. Click Associate Policy. On the policy adding page, click the Select policies from the policy list tab, and then 
click Create Custom Policy.

Policy association page:


https://console.tencentcloud.com/cam/user


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 13
of 56

Policy creation page:

5. Choose Create by Policy Syntax > Blank Template and enter the following content. Make sure to replace the 
role parameter with the UIN of your root account:

{

 "version": "2.0",

 "statement": [

     {

         "action":[

             "cam:PassRole"

         ],

         "resource": [

             "qcs::cam::uin/${Enter the UIN of your account}:roleName/scf_QcsRole"

         ],

         "effect": "allow"

     },

     {

         "resource": [

             "*"

         ],

         "action":[

             "name/sts:AssumeRole"

         ],

         "effect": "allow"



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 14
of 56

     }

 ]

}

6. After completing the custom policy configuration, go back to the authorization page in step 4, search for the custom 
policy just created, click Next, and then click OK to grant the sub-account the operation permissions of 
 scf_QcsRole . At this point, your sub-account should have a custom policy and a preset policy 

QcloudscfFullAccess and can use Serverless Cloud Framework normally.


Note
In addition to the permission to call the default  scf_QcsRole  role, you can also grant the sub-account the 

permission to call a custom role and control the sub-account permissions with refined permission policies in the 
custom role. For more information, see Configuring Role for Specified Operation.

scf_QcsRole role permission list

Policy Description

QcloudCOSFullAccess Full access to Tencent Cloud Object Storage (COS).

QcloudSCFFullAccess Full access to Serverless Cloud Function (SCF).

QcloudSSLFullAccess Full access to SSL Certificate Service.

QcloudTCBFullAccess Full access to Tencent CloudBase (TCB).

QcloudAPIGWFullAccess Full access to API Gateway.

QcloudVPCFullAccess Full access to Virtual Private Cloud (VPC).

QcloudMonitorFullAccess Full access to Cloud Monitor.

https://www.tencentcloud.com/document/product/1040/36819


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 15
of 56

QcloudslsFullAccess Full access to Serverless Cloud Framework (SLS).

QcloudCDNFullAccess Full access to Content Delivery Network (CDN).

QcloudCKafkaFullAccess Full access to CKafka.

QcloudCodingFullAccess Full access to CODING DevOps.

QcloudPostgreSQLFullAccess Full access to TencentDB for PostgreSQL.

QcloudCynosDBFullAccess Full access to TencentDB for CynosDB.

QcloudCLSFullAccess Full access to Tencent Cloud Log Service (CLS).

QcloudAccessForscfRole

This policy can be associated with the service role (scf_QCSRole) of 
Serverless Cloud Framework to access other Tencent Cloud service 
resources by using the quick experience feature of Serverless Cloud 
Framework. The scf_QCSRole role has the permissions to perform CAM-
related operations.



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 16
of 56

Access Management Configuration
Last updated：2024-12-02 10:48:10

CAM Overview

Cloud Access Management (CAM) is a web-based Tencent Cloud service that helps you securely manage and control 
access permissions, resources, and use permissions of your Tencent Cloud account. Using CAM, you can create, 
manage, and terminate users (groups), and control the Tencent Cloud resources that can be used by the specified 

user through identity and policy management.
Tencent Cloud SLS supports resource-level authorization. You can use policy syntax to grant sub-accounts 
permissions to manage individual resources. For more information, please see Authorization Scheme Examples.

Authorizable Resource Types

SLS supports resource-level authorization. You can grant a specified sub-account the API permission of a specified 
resource. APIs supporting resource-level authorization include:

API Name Description Six-Segment Example of Resource

SaveInstance

Saves the 
instance 
information 
of 
component

 qcs::sls:${Region}:uin/:appname/${AppName}/stagename

GetInstance

Gets the 
instance 
information 
of 
component

 qcs::sls:${Region}:uin/:appname/${AppName}/stagename

ListInstances

Gets the 
instance 
list 
information 
of 
component

 qcs::sls:${Region}:uin/:appname/${AppName}/stagename

RunComponent Runs 
component 

 qcs::sls:${Region}:uin/:appname/${AppName}/stagename



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 17
of 56

instance

RunFinishComponent

Finishes 
running 
component 
instance

 qcs::sls:${Region}:uin/:appname/${AppName}/stagename

Authorization Scheme Examples

Six-Segment resource description

Parameter Required Description

qcs Yes Tencent Cloud service abbreviation, which indicates a resource of Tencent Cloud.

project_id Yes Project information description, which is only used to enable compatibility with legacy
logic.

service_type Yes Product abbreviation, which is  sls  for Serverless Framework.

region Yes Region information, such as  bj . For more information, please see Region List.

account No
Root account of resource owner, such as  uin/164256472 . If it is empty, it indica
root account of the CAM user who creates the policy.

resource Yes
Detailed resource information of each product, which is 
 qcs::sls:${Region}:uin/:appname/${AppName}/stagename/${Stage

for Serverless Framework

Sample

You can log in to the CAM console as a root account to configure and manage the permissions of Serverless 
Framework. Currently, Serverless Framework provides two preset policies for full access permission and read-
only access permission:

Full access permission

Grant a sub-account full access to Serverless Framework (SLS).
Policy name: QcloudSLSFullAccess

{

  "version": "2.0",

  "statement": [

    {

      "action": [

https://www.tencentcloud.com/document/product/213/6091
https://console.tencentcloud.com/cam/policy


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 18
of 56

        "sls:*"

      ],

      "resource": "*",

      "effect": "allow"

    }

  ]

}

Read-only access permission

Grant a sub-account read-only access to Serverless SSR (SLS).
Policy name: QcloudSLSReadOnlyAccess

{

  "version": "2.0",

  "statement": [

    {

      "action": [

        "sls:Get*",

        "sls:List*"

      ],

      "resource": "*",

      "effect": "allow"

    }

  ]

}

Sub-account Resource Management

The sub-account can access and manage the resources authorized to it by the root account.

If the sub-account has the permission to create resources and pay bills, it can purchase resources by itself in the 
normal process, and the root account will be charged.



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 19
of 56

.yml File Specification
Last updated：2024-12-02 10:48:10

Serverless Framework uses the project configuration file  serverless.yml  to identify the application type and 

configure the resources. After you develop a project locally, you must configure the  .yml  file first before you can 

deploy the project in the cloud by running the  sls deploy  command to pass the configuration information in 

 serverless.yml  and the specified parameters or code directory in  inputs  to the Serverless Components 

deployment engine.

Basic Information

The first-level field in a basic  serverless.yml  file is configured as follows:

# Organization information (optional)

app: '' # Application name. If it is left empty, the instance name of the current c

stage: '' # Environment name. The default value is `dev`. We recommend you use the 

# Component information

component: scf # Component name, which is required. It is `scf` in this example

name: scfdemo # Component instance name, which is required

# Component parameter configuration, which configures specific resource information

inputs:

Detailed Configuration

In the  inputs  field, the corresponding information will be configured for the resources created by each component 

in the cloud. The SCF Component is taken as an example here. The second-level directory in the  input  field is as 

follows:

inputs:

  name: xxx # Function name, which is `${name}-${stage}-${app}` by default

  src: ./src # Project code path in the default format. Create a specifically named

  handler: index.main_handler # Entry

  runtime: Nodejs10.15 # Runtime environment, which is Nodejs10.15 by default

  region: ap-guangzhou # Function region

  description: This is a function in ${app} application.

  environment: # Environment variable

https://github.com/serverless-components/tencent-scf


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 20
of 56

    variables: # Environment variable object

      TEST: value

  layers: # Layer configuration

    - name: scfLayer # Layer name

      version: 1 # Version

  events: # Trigger configuration

    - timer: # Scheduled trigger

        parameters:

          cronExpression: '*/5 * * * * * *' # Trigger once every 5 seconds

          enable: true

Full Configuration List

Below is the list of full configuration information for each component of Serverless Framework:

Basic components

Component Full Configuration

SCF SCF - serverless.yml configuration

Website Website - serverless.yml configuration

API Gateway API Gateway - serverless.yml configuration

VPC VPC - serverless.yml configuration

COS COS - serverless.yml configuration

PostgreSQL PostgreSQL - serverless.yml configuration

CynosDB CynosDB - serverless.yml configuration

CDN CDN - serverless.yml configuration

Layer Layer - serverless.yml configuration

Framework components

Component Full Configuration

Express Express - serverless.yml configuration

Koa Koa - serverless.yml configuration

https://github.com/serverless-components/tencent-scf/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-website/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-apigateway/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-vpc/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-cos/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-postgresql/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-cynosdb/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-cdn/blob/master/example/serverless.yml
https://github.com/serverless-components/tencent-layer/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-express/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-koa/blob/master/docs/configure.md


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 21
of 56

Egg Egg - serverless.yml configuration

Next.js Next.js - serverless.yml configuration

Nuxt.js Nuxt.js - serverless.yml configuration

Flask Flask - serverless.yml configuration

Django Django - serverless.yml configuration

Laravel Laravel - serverless.yml configuration

ThinkPHP ThinkPHP - serverless.yml configuration

https://github.com/serverless-components/tencent-egg/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-nextjs/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-nuxtjs/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-flask/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-django/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-laravel/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-thinkphp/blob/master/docs/configure.md


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 22
of 56

Project Structure
Last updated：2024-12-02 10:48:10

Serverless Cloud Framework deploys applications based on the Serverless components. There are no mandatory 
requirements for the local project structure, but for the ease of management and deployment, we recommend you 
organize your application in the following directory structure:

Single-Function Application

For single-function applications, you can place your business code in the  src  directory and import this directory in 

the  serverless.yml  configuration file to achieve separate management of the project and the configuration file. 

Below is an example:

.

├── serverless.yml  # Configuration file

├── src

│   ├── package.json # Dependency file

│   └── index.js # Entry function

└── .env # Environment variable file

Multi-Function/Multi-Resource Application

Serverless Cloud Framework not only supports deploying single-function projects, but also can implement unified 
deployment at the application level for multi-function projects. You should configure the corresponding configuration 
file for each function; therefore, we recommend the following directory structure:

.

├── package.json # Dependency file

├── function1

│   ├── serverless.yml # Configuration file of function 1

│   └── index1.js # Entry function 1

├── function2

│   ├── serverless.yml # Configuration file of function 2

│   └── index2.js # Entry function 2

└── .env # Environment variable file

Under this structure, you only need to run  scf deploy  in the root directory, and Serverless Cloud Framework will 

automatically traverse all the  .yml  configuration files in the directory to deploy resources.

https://github.com/serverless/components/blob/master/README.cn.md


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 23
of 56

Meanwhile, if you import the creation of other cloud resources in the function project, you can also use the same 
directory structure:

.

├── package.json # Dependency file

├── src

│   ├── serverless.yml # Function configuration file

│   └── index1.js # Entry function

├── cos

│   └── serverless.yml # COS bucket configuration file

├── db

│   └── serverless.yml # Database configuration file

└── .env # Environment variable file



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 24
of 56

Local Debugging
Last updated：2024-12-02 10:48:10

Overview

With the local debugging capabilities of Serverless Framework, you can run code in your local simulation environment, 
send simulated test events, and get information such as execution logs of the function code.

Prerequisites

The Node.js environment has been installed in your system.

Note: 
Currently, the commands are supported only for Node.js and Python runtimes. In order to ensure that the results of 
cloud-based deployment and local execution are consistent, we recommend you install the same runtime version 
locally and in the cloud. For example, if you use Node.js 12.x in the cloud, we recommend you install Node.js 12.x 
locally.

Currently, only the SCF component supports local debugging.
Local debugging is supported only for event functions. For web functions, please test them as instructed in Cloud 
Test.

Directions

The code can be triggered locally by running the  sls invoke local  command. The Serverless Framework CLI 

will run the corresponding code in the specified local directory according to the specified function template 
configuration file and then implement the execution in the local SCF simulation environment through the specified 

trigger event.
The related commands are as follows:

invoke local .................. Invoke the local function

    --function / -f ............ Function name (you can only specify a function 

name in the yml file in the unified directory)

    --data / -d ................ Serialized event data to be passed to the 

invoked function (String)

    --path / -p ................ Path to the event JSON file to be passed to 

the invoked function

    --context .................. Serialized context data to be passed to the 

invoked function (String)

https://www.tencentcloud.com/document/product/583/40689


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 25
of 56

    --contextPath / -x ......... Path to the context JSON file to be passed to 

the invoked function

    --env / -e ................. Overwrite environment variable information, 

such as --env VAR1=val1 --env VAR2=val2

    --config / -c ..............Path to serverless config file

Directions

The following uses Node.js as an example to describe how to perform local debugging:

1. Run the following command to initialize the sample code.

sls init scf-nodejs && cd scf-nodejs

2. Create the test event template  test.json  in the directory. Below is an example:

{

         "value": "test",

         "text": "Hello World event template",

         "context": {

             "key1": "test value 1",

             "key2": "test value 2"

         }

}

3. Create a  .env  file and enter your permanent key. Below is an example:

# .env

TENCENT_SECRET_ID=xxxxxxxxxx # `SecretId` of your account

TENCENT_SECRET_KEY=xxxxxxxx # `SecretKey` of your account

Note: 
You can also scan the QR code to deploy and get a temporary key to automatically generate the configuration file.
4. Run the following command to view the invocation result locally.

sls invoke local -p xxxx.json

Below is a sample:

# sls invoke local -p test.json

Hello World

{

  value: 'test',

  text: 'Hello World event template',



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 26
of 56

  context: { key1: 'test value 1', key2: 'test value 2' }

}

undefined

{}

---------------------------------------------

Serverless: invocation succeeded

{

  value: "test",

  text: "Hello World event template",

  context: {

    key1: "test value 1",

    key2: "test value 2"

  }

}



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 27
of 56

Building Application
Last updated：2024-12-02 10:48:10

Overview

After Serverless Framework is installed, you can initialize a project template and build a multiple-component 
application as instructed in this document.

Prerequisites

You have installed Serverless Framework.

Directions

Initializing project template

You can quickly initialize a demo project by running the following command and modify it for further development:

sls init scf-demo

This command can quickly build a basic function application locally with the following directory structure:

.

├── serverless.yml  # Configuration file

└── src

   └── index.js # Entry function

You can enter this directory and develop your project based on the demo template.

Note: 
 sls init  can quickly initialize multiple project templates. You can run the  sls registry  command to view 

all supported project templates.

Building multiple-component application

Serverless Framework provides multiple basic resource components, which you can mix and use to quickly create 
and deploy resources in the cloud, thus eliminating the need for manual operations in the console (for more 

information, please see Basic Component List and Configuration Method).
This document uses deploying a function project triggered by a COS trigger as an example to describe how to import 
multiple components into your project and quickly complete the deployment. The steps are as follows:

https://www.tencentcloud.com/document/product/1040/37034
https://www.tencentcloud.com/document/product/1040/39135


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 28
of 56

1. Adjust the structure of the project directory, create a COS folder, and write the configuration file 
 serverless.yml  for the COS component in this directory. The adjusted structure of the directory is as follows:

.

├── src

│   ├── serverless.yml # Function configuration file

│   └── index.js # Entry function

├── cos

│   └── serverless.yml # COS bucket configuration file

└── .env # Environment variable file

A sample  .yml  file for the COS component is provided below. For more information on all configuration items, 

please see COS Component Configuration.

app: appDemo

stage: dev

component: cos

name: cosdemo

inputs:

  bucket: my-bucket

  region: ap-guangzhou

2. Modify the  .yml  configuration file for the SCF project and impot the deployment result of the COS component 

according to the following syntax in the trigger configuration part:

app: appDemo

stage: dev

component: scf

name: scfdemo

inputs:

  ...

  events:

   - cos: # COS trigger

        parameters:

          bucket: ${output:${stage}:${app}:cosdemo.bucket}

Note: 
When deploying multiple component instances in the same project, you need to make sure that the  app  and 

 stage  parameters of each project are the same; otherwise, they cannot be successfully imported.

3. In the project root directory, run  sls deploy  to complete COS bucket creation and use the output of the COS 

component as the input of the SCF component to configure the trigger.

https://github.com/serverless-components/tencent-cos/blob/master/docs/configure.md


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 29
of 56

Variable import description

 serverless.yml  supports multiple ways to import variables:

Import basic Serverless parameters

 In the  inputs  field, you can directly import basic Serverless configuration information through the  ${org}  and 

 ${app}  syntax.

Import environment variables

 In  serverless.yml , you can directly import the environment variable configuration (including the environment 

variable configuration in the  .env  file and variable parameters manually configured in the environment) through the 

 ${env}  syntax.


 For example, you can import the environment variable  REGION  through  ${env:REGION} .

Import the output results of other components

 If you want to import the output information of other component instances into the current component configuration 
file, you can configure it by using the following syntax:  ${output:[app]:[stage]:[instance name].

[output]} 

Sample  .yml  file:

app: demo

component: scf

name: rest-api

stage: dev

inputs:

  name: ${stage}-${app}-${name} # The final name is "acme-prod-ecommerce-rest-api"

  region: ${env:REGION} # `REGION=` information specified in the environment variab

  vpcName: ${output:prod:my-app:vpc.name} # Get the output information of other com

  vpcName: ${output:${stage}:${app}:vpc.name} # The above methods can also be used 



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 30
of 56

In-cloud Debugging
Last updated：2024-12-02 10:48:10

Development Mode

The development mode enables you to write code for and develop and debug projects in development status more 
easily, so that you can continuously focus on the process from development to debugging while minimizing the 
interruptions caused by other tasks such as packaging and update.

Entering development mode

Under a project, you can run  serverless dev  to enter the development mode:

Below is an example:

$ sls dev

serverless ⚡ framework
Dev Mode - Watching your Component for changes and enabling streaming logs, if 

supported...

Debugging listening on ws://127.0.0.1:9222.

For help see https://nodejs.org/en/docs/inspector.

Please open chorme, and visit chrome://inspect, click [Open dedicated DevTools 

for Node] to debug your code.

--------------------- The realtime log ---------------------

17:13:38 - express-api-demo - deployment

region: ap-guangzhou

apigw:

  serviceId:   service-b77xtibo

  subDomain:   service-b77xtibo-1253970226.gz.apigw.tencentcs.com

  environment: release

  url:         http://service-b77xtibo-

1253970226.gz.apigw.tencentcs.com/release/

scf:

  functionName: express_component_6r6xkh60k

  runtime:      Nodejs10.15

  namespace:    default

express-api-demo › Watching

After you enter the development mode, the Serverless tool will output the deployed content and start continuous file 
monitoring. When a code file is modified, it will be automatically deployed again to sync the local file to the cloud.
Deploy again and output the deployment information:



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 31
of 56

express-api-demo › Deploying ...

Debugging listening on ws://127.0.0.1:9222.

For help see https://nodejs.org/en/docs/inspector.

Please open chorme, and visit chrome://inspect, click [Open dedicated DevTools for 

--------------------- The realtime log ---------------------

21:11:31 - express-api-demo - deployment

region: ap-guangzhou

apigw:

  serviceId:   service-b7dlqkyy

  subDomain:   service-b7dlqkyy-1253970226.gz.apigw.tencentcs.com

  environment: release

  url:         http://service-b7dlqkyy-1253970226.gz.apigw.tencentcs.com/release/

scf:

  functionName: express_component_uo5v2vp

  runtime:      Nodejs10.15

  namespace:    default

Note: 
Currently,  serverless dev  supports only by the Node.js 10 runtime environment. It will support real-time logging 

in more environments such as Python and PHP.

Exiting development mode

You can press Ctrl+C to exit the development mode (  dev  mode).

express-api-demo › Disabling Dev Mode & Closing ...

express-api-demo › Dev Mode Closed

In-cloud Debugging: Node.js 10+

For projects whose runtime environment is Node.js 10+, you can connect them to in-cloud debugging by enabling in-

cloud debugging and using a debugging tool such as Chrome DevTools or VS Code Debugger.

Enabling in-cloud debugging

When you enter the development mode as instructed above, if the project is a function whose runtime environment is 
Node.js 10 or above, in-cloud debugging will be automatically enabled and debugging information will be output.
For example, when you enable the development mode, if the following information is output, in-cloud debugging has 
been enabled for this function.

Debugging listening on ws://127.0.0.1:9222.

For help see https://nodejs.org/en/docs/inspector.



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 32
of 56

Please open chorme, and visit chrome://inspect, click [Open dedicated DevTools for 

Using Chrome DevTools

The following steps are used as an example to describe how to use DevTools in Chrome to connect to a remote 
environment for debugging:

1. Start the Chrome browser.
2. Enter  chrome://inspect/  in the address bar to access it.

3. You can open DevTools in two ways as shown below:


4. (Recommended) Click Open dedicated DevTools for Node under "Devices".

5. Select inspect under a specific target in "Remote Target #LOCALHOST".

If you cannot open the target or there are no targets, please check whether configuration of  localhost:9229  or 

 localhost:9222  exists in "Configure" under "Devices", which corresponds to the output after in-cloud debugging 

is enabled.
6. In DevTools opened after you click Open dedicated DevTools for Node, you can click the Sources tab to view 

the remote code. The actual code of the function is in the  /var/user/  directory.


On the Sources tab, the code that you want to view may be loaded. More remote files will be displayed as the 
debugging proceeds.
7. Open a file as needed and set a breakpoint at the specified position in it.
8. If you trigger the function in any means such as URL access, page, command, or API, the remote environment will 
start running and be interrupted at the breakpoint to wait for further operations.

9. On the tool bar on the right of DevTools, you can continue the execution of an interrupted program or perform other 
operations such as step-over, step-into, and step-out on it. You can also directly view the current variables or set the 
variables that you want to track. For more information on how to use DevTools, please see the DevTools user guide.



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 33
of 56

Exiting in-cloud debugging

When you exit the development mode, in-cloud debugging will be disabled automatically.

Command Debugging

The Serverless Framework SCF component supports triggering functions with the  invoke  command for 

debugging. For a function successfully deployed by running  sls deploy , enter the project directory and run the 

following command to invoke it:

sls invoke  --inputs function=functionName  clientContext='{"weights":

{"2":0.1}}'

Note: 

The  invoke  command must be executed in the same directory as the  serverless.yml  file deployed for the 

function.
 clientContext  is the JSON string passed when the function is triggered. You can simulate different triggering 

events according to the JSON string format in the triggering event template.

https://www.tencentcloud.com/document/product/583/14572


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 34
of 56

Deploying Application
Last updated：2024-12-02 10:48:09

Overview

After developing your project locally, you can quickly deploy the application, view deployment information, and 
perform function debugging.

Prerequisites

You have developed your project locally (for more information, please see Project Development).

Directions

Quick deployment

Serverless Framework enables you to quickly deploy your project in the cloud by following the steps below:

sls deploy

After you enter this command, Serverless Framework CLI will perform the following operations:

1. Scan QR code to authorize

You can authorize by scanning the QR code. After that, the CLI tool will write the generated temporary key information 
into the  .env  file in the current directory. The temporary key is valid for 2 hours. After it expires, you will be asked 

to scan the QR code again to authorize for deployment purposes.
If you don't want to scan the QR code repeatedly, you can also configure a permanent key in the  .env  file in the 

project directory:

# .env

TENCENT_SECRET_ID=xxxxxxxxxx # `SecretId` of your account

TENCENT_SECRET_KEY=xxxxxxxx # `SecretKey` of your account

You can get  SecretId  and  SecretKey  in API Key Management. 

2. Package and upload

After authorization is completed, Serverless Framework CLI will automatically package and upload your project 
according to the project code path configured in the  serverless.yml  file.

https://www.tencentcloud.com/document/product/1040/38289
https://console.tencentcloud.com/cam/capi


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 35
of 56

3. Deploy in the cloud

Resources will be created in the cloud for the uploaded project according to the parameters configured in the  .yml  

file. After the deployment is completed, the command line will output the resource information.

Advanced capabilities

View specific log information during deployment:

sls deploy --debug

Switch the specified traffic to the  $latest  function version during multi-version deployment and the rest traffic to 

the last published function version for grayscale release:

sls deploy --inputs traffic=0.1 public=true

There are multiple Serverless instances in the application directory, and you want to update the specified project only:

sls deploy --target xxx

For example, in the project root directory, you can run the  sls deploy --target ./cos  command to update 

the COS instance only without affecting other instances.

.

├── src

│   ├── serverless.yml 

│   └── index1.js 

├── cos

│   └── serverless.yml 

├── db

│   └── serverless.yml 

└── .env 

Viewing deployment information

After completing the deployment, you can run the following command to view the configuration information of the 
project:

sls info

Debugging function

Note: 
Currently, this command is supported only for function projects deployed through the Serverless Framework SCF 
component. It will be gradually supported for other components in the future.

https://github.com/serverless-components/tencent-scf


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 36
of 56

The Serverless Framework SCF component supports triggering functions with the  invoke  command for 

debugging. For a function successfully deployed by running  sls deploy , enter the project directory and run the 

function invocation command to remotely debug the function resources in the cloud. The debugging result will be 

output on the command line:

sls invoke  --inputs function=functionName  clientContext='{"weights":

{"2":0.1}}'

The  invoke  command must be executed in the same directory as the  serverless.yml  file deployed for the 

function.
 clientContext  is the JSON string passed when the function is triggered. You can simulate different triggering 

events according to the JSON string format in the triggering event template.

FAQs

If a proxy is configured in your environment, the following problems may occur:
Problem 1: the wizard does not pop up by default when  serverless  is entered.


Solution: make sure that your IP is in the Chinese mainland and add the 

 SERVERLESS_PLATFORM_VENDOR=tencent  configuration item to the  .env  file.

Problem 2: after  sls deploy  is entered, the deployment reports a network error.


Solution: add the following proxy configuration to the  .env  file.

HTTP_PROXY=http://127.0.0.1:12345 # Replace "12345" with your proxy port

HTTPS_PROXY=http://127.0.0.1:12345 # Replace "12345" with your proxy port

https://www.tencentcloud.com/document/product/583/14572


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 37
of 56

Deleting Application
Last updated：2024-12-02 10:48:09

Basic Features

You can quickly delete cloud resources by running the following command:

sls remove

Advanced Features

View specific log information during deletion:

sls remove --debug

There are multiple Serverless instances in the application directory, and you want to delete the specified project only:

sls remove --target xxx

For example, in the project root directory, you can run the  sls remove --target ./cos  command to delete 

the COS instance only without affecting other instances.

.

├── src

│   ├── serverless.yml 

│   └── index1.js 

├── cos

│   └── serverless.yml 

├── db

│   └── serverless.yml 

└── .env 

FAQs

What cloud resources will be removed when  sls remove  is executed?

Serverless Framework removes cloud resources according to the  .yml  configuration file. Resources created 

through the  .yml  file will be deleted, while imported existing resources will not. For example: 



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 38
of 56

When deploying a function through the SCF component, if you choose to create an API Gateway trigger for 
deployment, then when you run the command for deletion, the created function and API Gateway resources will be 
deleted.

If you select an existing API Gateway trigger for deployment, then only the function resources will be deleted, while the 
used API Gateway trigger will not.



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 39
of 56

List of Supported Commands
Last updated：2024-12-02 10:48:09

Serverless Application Center (SLS) is deployed based on Serverless Framework and supports the following CLI 
commands:
 serverless registry : Lists available components.

 serverless registry publish : Publishes components to the SLS component registry.

 --dev : Publishes components of the  @dev  version for development or testing.

 serverless init xxx : Downloads a specified template from the component registry by entering the name of 

the template to download after  init , such as "$ serverless init fullstack".

 sls init xxx --name my-app : Customizes the project directory name.

 --debug : Lists log information during template download.

 serverless deploy : Deploys a component instance in the cloud.

 --debug : Lists log information such as the deployment operations and the status output by  console.log()  

during component deployment.
 ---inputs publish=true : Publishes a new version during function deployment.

 ---inputs traffic=0.1 : Switches 10% of the traffic to the  $latest  function version during deployment 

and switches the rest of the traffic to the last published function version.
Note: 
The legacy command format  sls deploy --inputs.key=value  has been changed to  sls deploy --

inputs key=value  since Serverless CLI v3.2.3. Legacy commands cannot be used in new versions of Serverless 

CLI. If you have upgraded Serverless CLI, please use the new commands.

 serverless remove : Removes a component instance from the cloud.

 --debug : Lists log information such as the removal operations and the status output by  console.log()  

during component removal.
 serverless info : Gets and displays the information about a component instance.

 --debug : Lists more  state  values.

 serverless dev : Enables the development mode ("DEV Mode") and automatically deploys changed information 

when component status changes are detected. In development mode, information such as execution logs, invocation 
information, and errors can be displayed on the CLI in real time. The development mode also supports in-cloud 
debugging for Node.js applications.



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 40
of 56

Multi-Function Application Deployment
Last updated：2024-12-02 10:48:10

You can quickly build and deploy a multi-function application based on the Tencent Cloud multi-scf component, which 
greatly reduces the development costs of complex applications.

Prerequisites

Serverless Framework has been installed. For more information, please see Installing Serverless Framework.

Your account has the Serverless Framework permissions. For more information, please see Account and Permission 
Configuration.

Development and deployment steps

For details of sample projects, please see Case List.
1. Develop your application project locally. This document takes a project with two functions as an example. The 
application directory structure is as follows:

./multi-scf-demo

├── index

│   ├── index.js # Main function 1

│   ├── package.json

│   └── scf_bootstrap # Bootstrap file for HTTP-triggered functions, which can 

be ignored for event-triggered functions

├── user

│   ├── index.js # Main function 2

│   ├── package.json

│   └── scf_bootstrap # Bootstrap file for HTTP-triggered functions, which can 

be ignored for event-triggered functions

└── serverless.yml # YML configuration file

2. In the root directory, create a  serverless.yml  file and configure relevant parameters for your project by 

referring to the following sample YML. For more configuration content, please see Full Configuration.

app: multi-scf # Application name

component: multi-scf # Component type, which is `multi-scf` here

name: web_demo # Customizable instance name

inputs:

  src:

 # The code directory must be specified here, and SCF will automatically split the 

 src: ./

 exclude:

   - .env

https://github.com/serverless-components/tencent-multi-scf
https://www.tencentcloud.com/document/product/1040/37034
https://www.tencentcloud.com/document/product/1040/36793
https://github.com/serverless-components/tencent-multi-scf/tree/master/examples
https://github.com/serverless-components/tencent-multi-scf/blob/master/docs/configure.md


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 41
of 56

  region: ap-guangzhou # Region

  runtime: Nodejs12.16 # Function language version

  memorySize: 512

  timeout: 3

  type: web  # Function type, which is HTTP-triggered function here

  functions:

 index:

   src: ./index # Entry function of function 1

   handler: scf_bootstrap # Bootstrap file

 user:

   src: ./user # Entry function of function 2

   handler: scf_bootstrap # Bootstrap file

  triggers: # Trigger configuration

 - type: apigw

   parameters:

     name: serverless

     protocols:

       - https

       - http

     apis:

       - path: /

         method: ANY

         # The API function configuration has a higher priority than the outer func

         function: index

       - path: /user

         method: ANY

         # The API function configuration has a higher priority than the outer func

         function: user

3. After completing the configuration, run  sls deploy  in the root directory to test whether the project is 

successfully deployed.

Application launch in console

Submit the application through a ticket. Note that your project must include the following:

Parameter Description

Basic configuration parameter list Basic configuration parameter list

Advanced configuration parameter list Optional

Application name, overview, documentation link, and tag For block display in the console

https://console.tencentcloud.com/workorder/category?level1_id=876&level2_id=1123&source=0&data_title=Serverless%20Framework&step=1


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 42
of 56

Basic Component List
Last updated：2024-12-02 10:48:09

The use instructions and full configuration documents of the basic components of Serverless Framework are as 
follows:

Component Use Instructions Full Configuration

SCF component Use Instructions serverless.yml Configuration

Website component Use Instructions serverless.yml Configuration

API Gateway component Use Instructions serverless.yml Configuration

VPC component Use Instructions serverless.yml Configuration

COS component Use Instructions serverless.yml Configuration

PostgreSQL component Use Instructions serverless.yml Configuration

CynosDB component Use Instructions serverless.yml Configuration

CDN component Use Instructions serverless.yml Configuration

Layer component Use Instructions serverless.yml Configuration

CynosDB component Use Instructions serverless.yml Configuration

https://github.com/serverless-components/tencent-scf/blob/master/README.md
https://github.com/serverless-components/tencent-scf/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-website/blob/master/README.md
https://github.com/serverless-components/tencent-website/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-apigateway/blob/master/README.md
https://github.com/serverless-components/tencent-apigateway/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-vpc/blob/master/README.md
https://github.com/serverless-components/tencent-vpc/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-cos/blob/master/README.md
https://github.com/serverless-components/tencent-cos/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-postgresql/blob/master/README.md
https://github.com/serverless-components/tencent-postgresql/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-cynosdb/blob/master/README.md
https://github.com/serverless-components/tencent-cynosdb/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-cdn/blob/master/README.md
https://github.com/serverless-components/tencent-cdn/blob/master/example/serverless.yml
https://github.com/serverless-components/tencent-layer/blob/master/README.md
https://github.com/serverless-components/tencent-layer/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-cynosdb/blob/master/README.md
https://github.com/serverless-components/tencent-cynosdb/blob/master/docs/configure.md


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 43
of 56

Connecting to MySQL Database
Last updated：2024-12-02 10:48:10

Overview

Currently, TDSQL-C for MySQL supports serverless billing. In this billing mode, the service is billed based on the 
actual computing and storage usage which is calculated by second and settled by hour. The TDSQL-C component of 
Serverless Framework also supports creating this type of databases.

This document uses a function written in Node.js as an example to describe how to quickly create a TDSQL-C for 
MySQL serverless instance and call it in SCF.

Directions

Step Description

Step 1. Configure 
environment 
variables

-

Step 2. Configure a 
VPC

Use the Serverless Framework VPC component to create a VPC and subnet for 
communications between the function and the database.

Step 3. Configure 
Serverless DB﻿

Use the Serverless Framework TDSQL-C component to create a MySQL instance to 
provide database services for the function project.

Step 4. Write 
business code

Use the Serverless DB SDK to call the database. SCF allows you to directly call the 
Serverless DB SDK to connect to and manage a PostgreSQL database.

Step 5. Deploy an 
application

Use Serverless Framework to deploy the project in the cloud and test it in the SCF 
console.

Step 6. Remove the 
project (optional)

You can use Serverless Framework to remove the project.

Step 1. Configure environment variables

1. Create a local directory to store code and dependent modules. This document uses the  test-MySQL  folder as 

an example.

mkdir test-MySQL && cd test-MySQL

https://www.tencentcloud.com/document/product/1098/40626


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 44
of 56

2. Currently, TDSQL-C Serverless only supports four regions:  ap-beijing-3 ,  ap-guangzhou-4 ,  ap-

shanghai-2 , and  ap-nanjing-1 , so you need to create the  .env  file in the project root directory and then 

configure the two environment variables  REGION  and  ZONE :

# .env

REGION=xxx  

ZONE=xxx 

Step 2. Configure a VPC

1. Create a  VPC  folder in the  test-MySQL  directory.

mkdir VPC && cd VPC

2. Create a  serverless.yml  file in  VPC  and use the VPC component to create the VPC and subnet.


The sample content of  serverless.yml  is as follows (for all configuration items, please see the product 

documentation):

#serverless.yml

app: mysql-app

stage: dev

component: vpc # (required) name of the component. In that case, it's vpc.

name: mysql-app-vpc # (required) name of your vpc component instance.

inputs:

    region: ${env:REGION}

    zone: ${env:ZONE}

    vpcName: serverless-mysql

    subnetName: serverless-mysql

Step 3. Configure Serverless DB

1. Create a  DB  folder in  test-MySQL .

2. Create a  serverless.yml  file in the  DB  folder and enter the following content to use the Serverless 

Framework component to configure the TCB environment:

The sample content of  serverless.yml  is as follows (for all configuration items, please see the product 

documentation):

# serverless.yml 

app: mysql-app

stage: dev

component: cynosdb

name: mysql-app-db

inputs:

https://github.com/serverless-components/tencent-vpc
https://github.com/serverless-components/tencent-vpc/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-cynosdb/blob/master/docs/configure.md


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 45
of 56

  region: ${env:REGION}

  zone: ${env:ZONE}

  vpcConfig:

    vpcId: ${output:${stage}:${app}:mysql-app-vpc.vpcId}

    subnetId: ${output:${stage}:${app}:mysql-app-vpc.subnetId}

Step 4. Write the business code and configuration file

1. Create an  src  folder in  test-MySQL  to store the business logic code and relevant dependencies.

2. Create an  index.js  file in the  src  folder and enter the following sample code, so that you can use the SDK 

to connect to the MySQL database through the function and call the database in the environment:

exports.main_handler = async (event, context, callback) => {

    var mysql      = require('mysql2');

    var connection = mysql.createConnection({

    host     : process.env.HOST,

    user     : 'root',

    password : process.env.PASSWORD

    });

    connection.connect();

    connection.query('SELECT 1 + 1 AS solution', function (error, results, fields) 

    if (error) throw error;

    console.log('The solution is: ', results[0].solution);

    });

    connection.end();

 }

3. Install the required dependent modules.

npm install mysql2

4. After writing the business code and installing the dependencies, create a  serverless.yml  file as shown 

below:

app: mysql-app

stage: dev

component: scf

name: mysql-app-scf

inputs:

  src: ./

  functionName: ${name}

  region: ${env:REGION}

  runtime: Nodejs10.15



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 46
of 56

  timeout: 30

  vpcConfig:

    vpcId: ${output:${stage}:${app}:mysql-app-vpc.vpcId}

    subnetId: ${output:${stage}:${app}:mysql-app-vpc.subnetId}

  environment:

    variables:

      HOST: ${output:${stage}:${app}:mysql-app-db.connection.ip}

      PASSWORD: ${output:${stage}:${app}:mysql-app-db.adminPassword}

Step 5. Deploy

After the creation, the project directory structure is as follows:

   ./test-MySQL

   ├── vpc

   │   └── serverless.yml # VPC configuration file

   ├── db

   │   └── serverless.yml # Database configuration file

   ├── src

   │   ├── serverless.yml # SCF component configuration file

   │   ├── node_modules # Project dependency file

   │   └── index.js # Entry function

   └── .env # Environment variable file

1. Run the following command for deployment in  test-MySQL  on the command line:

sls deploy

Note: 

During deployment, you need to scan the QR code to authorize. If you don't have a Tencent Cloud account yet, please 
sign up first.
If your account is a sub-account, please get the authorization first as instructed in Account and Permission 
Configuration.
 If the following result is returned, the deployment is successful:

mysql-app-vpc: 

  region:        xxx

  zone:          xxx

  vpcId:         xxxx-xxx

  ...

mysql-app-db: 

  dbMode:        xxxx

  region:        xxxx

  zone:          xxxx

https://www.tencentcloud.com/register
https://www.tencentcloud.com/document/product/1040/36793


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 47
of 56

  ...

mysql-app-scf: 

  functionName:  xxxx

  description:   xxx

  ...

59s › test-MySQL › "deploy" ran for 3 apps successfully.

2. After the deployment succeeds, you can view and debug the function in the SCF console.

Step 6. Remove the project (optional)

Run the following command in the  test-MySQL  directory to remove the project:

sls remove

If the following result is returned, the removal is successful:

serverless ⚡ framework
4s › test-MySQL › Success

Sample Code

Python

In Python, you can use the built-in pymysql dependency package in the SCF environment to connect to the database. 
The sample code is as follows:

# -*- coding: utf8 -*-

from os import getenv

import pymysql

from pymysql.err import OperationalError

mysql_conn = None

def __get_cursor():

    try:

        return mysql_conn.cursor()

    except OperationalError:

        mysql_conn.ping(reconnect=True)

        return mysql_conn.cursor()

def main_handler(event, context):

https://console.tencentcloud.com/scf/index?rid=1


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 48
of 56

    global mysql_conn

    if not mysql_conn:

        mysql_conn = pymysql.connect(

        host        = getenv('DB_HOST', '<YOUR DB HOST>'),

        user        = getenv('DB_USER','<YOUR DB USER>'),

        password    = getenv('DB_PASSWORD','<YOUR DB PASSWORD>'),

        db          = getenv('DB_DATABASE','<YOUR DB DATABASE>'),

        port        = int(getenv('DB_PORT','<YOUR DB PORT>')),

        charset     = 'utf8mb4',

        autocommit  = True

        )

    with __get_cursor() as cursor:

        cursor.execute('select * from employee')

        myresult = cursor.fetchall()

        print(myresult)

        for x in myresult:

            print(x)

Node.js

Node.js allows you to use a connection pool for connection, which supports automatic reconnection to effectively avoid 
connection unavailability due to connection release by the SCF underlying layer or database. The sample code is as 
follows:
Note: 
Before using a connection pool, you need to install the mysql2 dependency package first. For more information, 

please see Dependency Installation.

'use strict';

const DB_HOST       = process.env[`DB_HOST`]

const DB_PORT       = process.env[`DB_PORT`]

const DB_DATABASE   = process.env[`DB_DATABASE`]

const DB_USER       = process.env[`DB_USER`]

const DB_PASSWORD   = process.env[`DB_PASSWORD`]

const promisePool = require('mysql2').createPool({

  host              : DB_HOST,

  user              : DB_USER,

  port              : DB_PORT,

  password          : DB_PASSWORD,

  database          : DB_DATABASE,

  connectionLimit   : 1

}).promise();

https://www.tencentcloud.com/document/product/583/34879


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 49
of 56

exports.main_handler = async (event, context, callback) => {

  let result = await promisePool.query('select * from employee');

  console.log(result);

}

PHP

In PHP, you can use the pdo_mysql or mysqli dependency package for data connection. The sample code is as 
follows:
pdo_mysql

<?php

function handler($event, $context) {

try{

$pdo = new PDO('mysql:host= getenv("DB_HOST");dbname= getenv("DB_DATABASE"),getenv(

$pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

}catch(PDOException $e){

echo 'Databases connection failed: '.$e->getMessage();

exit;

}

}

mysqli

<?php

function main_handler($event, $context) {

   $host = "";

  $username = "";

  $password = "";

  // Create a connection

  $conn = mysqli_connect($servername, $username, $password);

  // Test the connection

  if (!$conn) {

      die("Connection failed: " . mysqli_connect_error());

      }

  echo "Connected successfully"; 

  mysqli_close($conn);

  echo "Disconnected"; 

}

?>



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 50
of 56

Java

1. Please install the following dependencies as instructed in Dependency Installation.

<dependencies>

    <dependency>

        <groupId>com.tencentcloudapi</groupId>

        <artifactId>scf-java-events</artifactId>

        <version>0.0.2</version>

    </dependency>

    <dependency>

        <groupId>com.zaxxer</groupId>

        <artifactId>HikariCP</artifactId>

        <version>3.2.0</version>

    </dependency>

    <dependency>

        <groupId>mysql</groupId>

        <artifactId>mysql-connector-java</artifactId>

        <version>8.0.11</version>

    </dependency>

</dependencies>

2. Use HikariCP for connection. The sample code is as follows:

package example;

import com.qcloud.scf.runtime.Context;

import com.qcloud.services.scf.runtime.events.APIGatewayProxyRequestEvent;

import com.qcloud.services.scf.runtime.events.APIGatewayProxyResponseEvent;

import com.zaxxer.hikari.HikariConfig;

import com.zaxxer.hikari.HikariDataSource;

import javax.sql.DataSource;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.util.HashMap;

import java.util.Map;

public class Http {

    private DataSource dataSource;

    public Http() {

        HikariConfig config = new HikariConfig();

        config.setJdbcUrl("jdbc:mysql://" + System.getenv("DB_HOST") + ":"+ System.

https://www.tencentcloud.com/document/product/583/34879#java-.E8.BF.90.E8.A1.8C.E6.97.B6


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 51
of 56

        config.setUsername(System.getenv("DB_USER"));

        config.setPassword(System.getenv("DB_PASSWORD"));

        config.setDriverClassName("com.mysql.jdbc.Driver");

        config.setMaximumPoolSize(1);

        dataSource = new HikariDataSource(config);

    }

    public String mainHandler(APIGatewayProxyRequestEvent requestEvent, Context con

        System.out.println("start main handler");

        System.out.println("requestEvent: " + requestEvent);

        System.out.println("context: " + context);

        try (Connection conn = dataSource.getConnection(); PreparedStatement ps = c

            ResultSet rs = ps.executeQuery();

            while (rs.next()) {

                System.out.println(rs.getInt("id"));

                System.out.println(rs.getString("first_name"));

                System.out.println(rs.getString("last_name"));

                System.out.println(rs.getString("address"));

                System.out.println(rs.getString("city"));

            }

        } catch (SQLException e) {

            e.printStackTrace();

        }

        APIGatewayProxyResponseEvent apiGatewayProxyResponseEvent = new APIGatewayP

        apiGatewayProxyResponseEvent.setBody("API GW Test Success");

        apiGatewayProxyResponseEvent.setIsBase64Encoded(false);

        apiGatewayProxyResponseEvent.setStatusCode(200);

        Map<String, String> headers = new HashMap<>();

        headers.put("Content-Type", "text");

        headers.put("Access-Control-Allow-Origin", "*");

        apiGatewayProxyResponseEvent.setHeaders(headers);

        return apiGatewayProxyResponseEvent.toString();

    }

}

SCF DB SDK for MySQL

For ease of use, the SCF team encapsulated the code related to connection pools in Node.js and Python as SCF DB 
SDK for MySQL. Please refer to Dependency Installation for installation and use. With this SDK, you can connect to 
MySQL, TDSQL-C, or TDSQL for MySQL databases and performs operations such as insertion and query.
SCF DB SDK for MySQL has the following features:

https://www.tencentcloud.com/document/product/583/34879
https://www.tencentcloud.com/document/product/236/5147
https://www.tencentcloud.com/document/product/1098/40615
https://www.tencentcloud.com/document/product/1042/33311


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 52
of 56

It can automatically initialize the database client from environment variables.
It can maintain a persistent database connection globally and handle reconnection after disconnection.
The SCF team will continuously check issues to ensure that the database connection is available, so you don't need to 

pay attention to connection issues.
1. SDK for Node.js

'use strict';

const database = require('scf-nodejs-serverlessdb-sdk').database;

exports.main_handler = async (event, context, callback) => {

  let pool = await database('TESTDB2').pool()

  pool.query('select * from coffee',(err,results)=>{

    console.log('db2 callback query result:',results)

  })

  // no need to release pool

  console.log('db2 query result:',result)

}

Note: 
For specific usage of the SDK for Node.js, please see SCF DB SDK for MySQL.
2. SDK for Python

from serverless_db_sdk import database

def main_handler(event, context):

    print('Start Serverlsess DB SDK function')

    connection = database().connection(autocommit=False)

    cursor = connection.cursor()

    cursor.execute('SELECT * FROM name')

    myresult = cursor.fetchall()

    for x in myresult:

        print(x)

https://www.npmjs.com/package/scf-nodejs-serverlessdb-sdk


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 53
of 56

Quickly Deploying Web Function
Last updated：2024-12-02 10:56:39

Overview

Web function is a new function capability in SCF. Compared with event function that has limits on the event format, 
web function focuses on optimization of web service scenarios and can directly send HTTP requests to URLs to 
trigger function execution. For more information, please see Function Overview.

The Serverless Framework SCF component now supports deploying web functions. therefore, you can use it to 
quickly create and deploy web functions.

Directions

1. Run the following command to initialize the serverless web function template.

sls init http-demo

2. Enter the demo project and view the directory structure as shown below:

. http-demo

├── serverless.yml  # Configuration file

├── package.json # Dependency file

├── scf_bootstrap # Project bootstrap file

└── index.js # Service function

Here,  scf_bootstrap  is the project bootstrap file. For the specific writing rules, please see Bootstrap File 

Description.
3. Open  serverless.yml  to view the configuration information.


You only need to add the  type  parameter in  yml  to specify the function type and deploy the web function.

Note: 
For web functions, there is no need to specify the entry function.
If the  type  parameter is not entered, the function will be an event function by default.

If there is no  scf_bootstrap  bootstrap file in the local code, you can specify the  entryFile  parameter in 

 yml  to specify the entry function, and the component will generate a default  scf_bootstrap  file for you to 

complete the deployment based on the runtime language. After the deployment is completed, you need to modify the 
content of the  scf_bootstrap  file in the SCF console according to the actual needs of your project.

Below is a sample  yml  file:

https://www.tencentcloud.com/document/product/583/40688
https://www.tencentcloud.com/document/product/583/40690
https://console.tencentcloud.com/scf/index?rid=1


Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 54
of 56

component: scf

name: http

inputs: 

  src: 

    src: ./

    exclude: 

      - .env

  # Specify web type as the function type

  type: web

  name: web-function

  region: ap-guangzhou

  runtime: Nodejs12.16

  # For Node.js, you can enable automatic dependency installation

  installDependency: true

  events: 

    - apigw: 

        parameters: 

          protocols: 

            - http

            - https

          environment: release

          endpoints: 

            - path: /

              method: ANY

4. In the root directory, run  sls deploy  to complete the service deployment. Below is a sample:

$ sls deploy

serverless ⚡components
Action: "deploy" - Stage: "dev" - App: "http" - Name: "http"

type:         web

functionName: web-function

description:  This is a function in http application

namespace:    default

runtime:      Nodejs12.16

handler:      

memorySize:   128

lastVersion:  $LATEST

traffic:      1

triggers: 

 - 

   NeedCreate:  true

   created:     true

   serviceId:   service-xxxxxx

   serviceName: serverless



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 55
of 56

   subDomain:   service-xxxxxx.cd.apigw.tencentcs.com

   protocols:   http&https

   environment: release

   apiList: 

     - 

       path:            /

       method:          ANY

       apiName:         index

       created:         true

       authType:        NONE

       businessType:    NORMAL

       isBase64Encoded: false

       apiId:           api-xxxxxx

       internalDomain:  

       url:             https://service-xxxx.cd.apigw.tencentcs.com/release/

18s › http › Success

Relevant Commands

Viewing access log

Similar to event function, you can directly run the  sls log  command to view the latest 10 logs of the deployed 

function. Below is a sample:

$ sls log

serverless ⚡components
Action: "log" - Stage: "dev" - App: "http" - Name: "http"

- 

  requestId:   xxxxx

  retryNum:    0

  startTime:   1624262955432

  memoryUsage: 0.00

  duration:    0

  message: 

    """

    """

- 

  requestId: xxxxx

  retryNum:    0

  startTime:   1624262955432

  memoryUsage: 0.00

  duration:    0

  message: 

    """

    """



Serverless Application Center

©2013-2025 Tencent Cloud International Pte. Ltd. Page 56
of 56

Testing service

Scheme 1: directly open the output path URL in a browser, and if it can be accessed normally, the function is 

successfully created, as shown below:


Scheme 2: use other HTTP testing tools such as CURL and Postman to test the web function you have successfully 
created. Below is a sample test with CURL:

curl https://service-xxx.cd.apigw.tencentcs.com/release/

Deleting service

Run the following command to remove your deployed cloud resources.

sls remove

Web framework migration

Serverless Framework CLI provides an HTTP component specifically for web framework deployment, which can 
quickly implement features such as web framework deployment, layer creation, static/dynamic resource separation, 
and CDN acceleration. For usage, please see Deploying Framework on Command Line.

https://www.tencentcloud.com/document/product/1040/41597

