
Elasticsearch Service

©2013-2024 Tencent Cloud. All rights reserved. Page 1 of 16

Elasticsearch Service

ES Kernel Enhancement

Product Documentation

Elasticsearch Service

©2013-2024 Tencent Cloud. All rights reserved. Page 2 of 16

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Elasticsearch Service

©2013-2024 Tencent Cloud. All rights reserved. Page 3 of 16

Contents

ES Kernel Enhancement
Kernel Release Notes
Targeted Routing Optimization
Compression Algorithm Optimization
FST Off-Heap Memory Optimization

Elasticsearch Service

©2013-2024 Tencent Cloud. All rights reserved. Page 4 of 16

ES Kernel Enhancement
Kernel Release Notes
Last updated：2022-06-28 09:36:21

Tencent Cloud Elasticsearch Service (ES) team has been continuously optimizing the ES kernel based on its
extensive practical experience in large-scale applications while remaining fully compatible with the open-source
Elasticsearch kernel, in an effort to improve cluster performance and stability and reduce costs. In addition, the team

keeps up with latest updates in the community. This document describes the major kernel optimizations of ES.
Major optimizations in April 2022:

Optimization
Category

Optimization Policy Supported
Version

Performance

Time series index query clipping is optimized, shifting from large-scale
traversal to fixed-point boundary clipping and increasing the high-
dimensional time series search performance by over ten times.

7.14.2

DSL query results can be returned in columns, which greatly reduces
the duplicate key redundancy, lowers the network bandwidth usage by
35%, and increases the performance by 20%.

7.14.2

The serialization of transparent data transfer between nodes is
optimized, reducing the redundant serialization costs and increasing
the query performance by 30%.

7.14.2

The X-Pack authentication performance is optimized. CPU hotspots
are eliminated through special permission processing, caching, and
delayed loading, improving the query performance by over 30%.

7.10.1, 7.14.2

The query performance is optimized in fine-grained block-level
sampling, increasing the estimated query performance of operators
such as topk, avg, min, max, and histogram by over ten times.

7.14.2

Feature The query preference parameters are optimized. `_shards` and
`custom_string` can be used in combination to fix primary and replica
shards, which ensures stable query results in scoring scenarios.

7.14.2

The truncation of super-long content of keyword fields is optimized, so
that such content can be written without an truncation exception
reported.

7.14.2

The underlying fine-grained control of query timeout is optimized to
avoid the further occupation of cluster resources by a large number of

7.10.1, 7.14.2

Elasticsearch Service

©2013-2024 Tencent Cloud. All rights reserved. Page 5 of 16

canceled or timed-out queries (the queries should carry the `timeout`
parameter).

Stability

The memory leak issue in specific memory usage throttling scenarios
during the query process is fixed, and the memory usage throttling
policy is further optimized to avoid OOM errors in aggregation
scenarios and enhance the cluster stability.

7.14.2

The issue of repeated join and removal of nodes leaving the cluster is
fixed to increase the cluster stability.

7.10.1, 7.14.2

The node-level and index-level shard balancing policies are optimized
to improve the shard balancing capabilities and eliminate load
hotspotting.

7.10.1, 7.14.2

The shard relocation and balancing policies are optimized for multi-
disk scenarios to improve the shard relocation performance.

6.8.2, 7.10.1,
7.14.2

The shard start and the priority of failed shard tasks are optimized to
avoid prolonged index unavailability.

6.8.2, 7.10.1,
7.14.2

The cluster scalability performance is optimized, with the shard
quantity and node expansion capabilities greatly increased, many
metadata changes implemented, and cluster restart performance
multiplied.

7.14.2

Security The Log4j vulnerability is fixed. All versions

Major optimizations in February 2021:

Optimization
Dimension

Optimization
Category

Optimization Policy Supported
Version

Performance

Write
performance

Shard-targeted routing is optimized, solving the long-tail shard
issue in the writing process in single-index multi-shard
scenarios. This also increases the write throughput by over
10% and reduces the CPU usage by over 20%.

6.8.2,
7.5.1,
7.10.1

Query
performance

Query performance is improved by over 10% by cropping the
query results, instead of using filter_path .

6.8.2,
7.5.1,
7.10.1

Stability Memory Node crashes and cluster avalanches caused by high-
concurrent writes and large queries are significantly reduced,
and the overall availability is increased to 99.99%.
High-concurrent write traffic is limited at the Netty network
layer based on memory resources. The memory consumed by

6.8.2,
7.5.1,
7.10.1

Elasticsearch Service

©2013-2024 Tencent Cloud. All rights reserved. Page 6 of 16

query and write request exceptions is quickly repossessed to
avoid memory leak. The proprietary single request circuit
breaker is optimized to prevent a large query from occupying
excessive resources.
Based on GC management, nodes with completely occupied
memory are automatically restarted in time. The Lucene file
type memory mapping model can be configured to improve
the system's memory usage in different business scenarios.

JDK, GC

Tencent's proprietary KONA JDK11 is adopted and known
JDK bugs are fixed, improving serial full GC capability. You
can switch to the G1 collector to improve GC efficiency and
reduce glitches caused by old GC.

6.8.2,
7.5.1,
7.10.1

Metadata
performance

The priority of mapping update tasks is optimized, solving the
issue where nodes cannot work properly due to excessive
requests in the queue caused by high number of concurrent
mapping update tasks. Metadata asynchronous storage is
optimized and metadata synchronization performance is
improved to avoid frequent timeouts of index creations and
mapping updates.

6.8.2,
7.5.1,
7.10.1

Costs Storage
The zstd compression algorithm is adopted, increasing the
compression ratio by 30% to 50% and the compression
performance by 30%.

6.8.2,
7.5.1,
7.10.1

Major optimizations as of July 2020 since the ES team restarted its kernel research:

Optimization
Dimension

Optimization
Category

Optimization Policy Supported
Versions

Performance
Write
performance

The translog lock mechanism is optimized, increasing the
overall write performance by 20%. Write deduplication and
segment file cropping are optimized, increasing the
performance of writes with primary keys by over 50%.

7.5.1,
7.10.1

Query
performance

The aggregation performance is optimized, making query
pruning more efficient and improving the composite
aggregation performance by 3 to 7 times in sorting
scenarios.
The query cache is optimized by canceling data caches with
high overheads and low hit rates, reducing query glitches
from 750 ms to 50 ms in actual use cases.
The merge policies are optimized by developing proprietary
merge policies based on time series and size similarity and

6.4.3, 6.8.2,
7.5.1,
7.10.1

Elasticsearch Service

©2013-2024 Tencent Cloud. All rights reserved. Page 7 of 16

auto warm shard merge policy, improving the query
performance by over 40% in search scenarios.
Sequence capture in the query fetch phase is optimized,
increasing the cache hit rate and improving the performance
by over 10% in scenarios where the result set is large.

Stability

Availability

Traffic can be limited through a smooth line curve at the
access layer.
The coordinator node performs memory bloat estimation
after receiving results returned by the data node to check
whether the estimated memory will exceed the limit.
Result sets of large aggregated queries are checked in a
streaming manner, and requests will be canceled if the used
memory reaches the threshold.
The proprietary single request circuit breaker can prevent a
large query from occupying excessive resources and thus
affecting other queries.
Node crashes and cluster avalanches caused by high-
concurrence writes and large queries are significantly
reduced, and the overall availability is increased to 99.99%.

6.4.3, 6.8.2,
7.5.1,
7.10.1

Balancing
policy

Balancing policies based on index and node distribution are
introduced, alleviating the serious uneven allocation of
shards caused by new nodes added to the cluster.
The uneven allocation of shards among multiple disks
(multiple data directories) is alleviated.
The balance of shards of newly created indices in cluster
scale-out scenarios and multiple-disk scenarios is improved,
reducing Ops costs.

5.6.4, 6.4.3,
6.8.2, 7.5.1,
7.10.1

Rolling restart
speed

The logic of reusing local data for shards in case of node
restart is optimized.
The restoration of shard copies within a scheduled delay
time period can be precisely controlled. The time to restart
one single node in a large cluster is reduced from over 10
minutes to 1 minute.

6.4.3, 6.8.2,
7.5.1,
7.10.1

Online master
switch

The proprietary online master switch feature allows you to
switch the master online in seconds by specifying the
preferred master through APIs. Typical use cases include:
You can switch online from the current heavily loaded master
to a node with a higher specification and a lower load during
manual Ops.
During rolling restart, you can restart the master node last
and quickly switch the master role to another node before the

6.4.3, 6.8.2,
7.5.1,
7.10.1

Elasticsearch Service

©2013-2024 Tencent Cloud. All rights reserved. Page 8 of 16

restart, which helps reduce the service interruption from
minutes to seconds.

Costs

Memory

The proprietary off-heap cache helps achieve FST off-heap
optimization.
The off-heap cache ensures that the FST reclaim policy is
controllable.
The precise eviction policy improves the cache hit rate.
Zero-copy and multi-level caches guarantee high access
performance.
The heap memory overheads are significantly reduced, the
GC time is decreased by over 10%, and the disk capacity of
a single node can reach 50 TB, with read/write performance
generally unaffected.

6.8.2, 7.5.1,
7.10.1

Storage
The proprietary ID field-based row storage cropping
algorithm reduces storage overheads by over 20% in time
series scenarios.

5.6.4, 6.4.3,
6.8.2, 7.5.1,
7.10.1

Elasticsearch Service

©2013-2024 Tencent Cloud. All rights reserved. Page 9 of 16

Targeted Routing Optimization
Last updated：2021-07-01 10:02:56

Background

In a larger cluster (with 100+ nodes), a single index generally has many shards (100+).
Users generally write in bulk, and ES uses _id as the routing for writing a single document by default, so that

shards can be distributed through routing. Such a bulk request will be evenly split into write subrequests of the number

of shards, which will be then sent to each shard for writing. The coordinator node needs to wait for all shards to be
written before returning to the client. If the number of shards is too large, long-tail subrequests appear easily, that is,
some subrequests may be delayed in responding due to node failures, Old GC, network jitters, etc., resulting in the
slow response and heap of the entire bulk request and eventually causing the node write queue to fill up. At this time,
write rejection will occur. Moreover, splitting one bulk request into too many subrequests cannot increase the write

throughput of data nodes and cannot make full use of the CPU.

Optimized Scheme

In the multi-shard bulk write scenario, one bulk request is written to only one shard through routing, which reduces the
network overheads, increases the CPU utilization of data nodes, and prevents long-tail shards from affecting the entire
bulk request.
The ES kernel provides an index attribute that can uniformly and automatically add a random routing for each write
subrequest of a bulk request, ensuring that one subrequest is only routed to one shard and that the data of each shard

is balanced in the index.

Directions

The new index attribute is index.bulk_routing.enabled, and its default value is false , which can be specified

during index creation or dynamically updated subsequently.
Specify to enable bulk routing optimization when creating an index:

curl -X PUT "localhost:9200/my-index" -H 'Content-Type: application/json' -d'

{

 "settings" : {

 "index" : {

 "bulk_routing.enabled" : true

 }

Elasticsearch Service

©2013-2024 Tencent Cloud. All rights reserved. Page 10 of 16

 }

}

'

Dynamically update a single index:

curl -X PUT "localhost:9200/my-index/_settings?pretty" -H 'Content-Type: applicatio

{

 "index.bulk_routing.enabled": true

}

'

Generally, a template can be created for multiple indexes of the same business type, which can take effect in batches
in index rolling scenarios:

curl -X PUT "localhost:9200/_template/bulk_routing_template?pretty" -H 'Content-Typ

{

 "index_patterns": ["indices-prefix*"],

 "settings": {

 "bulk_routing.enabled": true

 }

}

'

Optimization Limits

Write limits

After bulk routing optimization is enabled, subrequests of the same index will be routed to the same shard only in the

following situations:
Users don't customize the routing during writes.
Users don't customize the _id field for a single document.

In the above situations, the bulk request cannot be optimized because the optimization will conflict with the user-
defined routing and _id .

Query limits

After the optimization is enabled, a random routing is automatically added for each subrequests of a bulk request. This

doesn't affect general queries at all. However, it affects queries for getting a single document by ID (getById), because
ES' current implementation of getById uses _id to route shards by default. This problem also exists in the

scenarios where users customize the routing during writes. In this case, getById can only get the original

document information by carrying the correct routing at the same time, which can be obtained through ordinary
queries.

Elasticsearch Service

©2013-2024 Tencent Cloud. All rights reserved. Page 11 of 16

Scenario limits

This optimization item works better in scenarios where there are many nodes and each index has many shards. Its
optimization effect may not be obvious in scenarios with a small number of nodes and a small number of shards per
index, for example, less than 10 shards.

Optimization Effect

Testing in online large customer clusters (with 100+ nodes and 100+ shards per index) shows that after the bulk
routing optimization is enabled, the rejections are directly reduced to 0, the CPU utilization is decreased by 25%, and
the write speed is increased by 10%.

Supported Versions

6.8.2, 7.5.1, and 7.10.1.

Elasticsearch Service

©2013-2024 Tencent Cloud. All rights reserved. Page 12 of 16

Compression Algorithm Optimization
Last updated：2024-11-29 19:43:54

Background

Lucene currently supports two compression algorithms for storing document fields data:
LZ4
Deflate

LZ4 has a higher compression and decompression speed, while Deflate has a higher compression ratio. They have
obvious differences in performance and compression ratio. Based on these two existing compression algorithm, you
cannot get a good balance between compression ratio and performance. Lucene uses LZ4 by default.

Optimized Scheme

ES integrates the industry-leading advanced compression algorithm Zstandard (ZSTD) to improve the compression
ratio while reducing the performance loss.

Strengths of Zstandard compression algorithm

The Zstandard compression algorithm has the strengths of both LZ4 and Deflate: its performance is equivalent to
that of LZ4 (tests with log data show that Zstandard is slightly better than LZ4), while its compression ratio is only
slightly lower than that of Deflate.
The following are the comparison results of the three compression algorithms:

Compression
Algorithm

Load Time (1
Shard)

Load Time (5
Shards)

Fields(*fdt) File
Size

Total Index
Size

LZ4 1143769 ms 420447 ms 4.15 GB 6.3 GB

Deflate 1270408 ms 448738 ms 2.56 GB 4.7 GB

Zstandard(16K
Chunk)

1109414 ms 415256 ms 2.93 GB 5.1 GB

Zstandard(32K
Chunk)

1088959 ms 406661 ms 2.67 GB 4.8 GB

Note:
1. Test data: based on a typical log application.

Elasticsearch Service

©2013-2024 Tencent Cloud. All rights reserved. Page 13 of 16

2. Test method: based on Elasticsearch REST High Level Client API.

Directions

Based on REST High Level Client API

When creating an index, add the index.codec configuration item for CreateIndexRequest and set the

value to zstandard :

CreateIndexRequest createRequest = new CreateIndexRequest(indexName);

 createRequest.settings(Settings.builder()

 .put("index.number_of_shards", shards)

 .put("index.number_of_replicas", replicas)

 .put("index.codec", "zstandard")

);

Based on HTTP request

Similarly, add the index.codec configuration item in settings and set the value to zstandard :

PUT /newIndex

{

 "settings": {

 "index.codec": "zstandard",

 "index.number_of_shards": 1

 }

}

Optimization Effect

ZSTD has a 35% higher row storage compression ratio than LZ4 and a performance comparable to that of LZ4.

Supported Versions

 6.8.2, 7.5.1, and 7.10.1.

Elasticsearch Service

©2013-2024 Tencent Cloud. All rights reserved. Page 14 of 16

FST Off-Heap Memory Optimization
Last updated：2021-07-01 10:02:55

Background

On a single ES node, the FST structure in the inverted index resides permanently in the heap memory, which uses a
relatively high proportion of the memory (up to over 50% especially on cold nodes with large disks). This restricts the
capability of a single node to manage disks, limits the heap memory, and thus affects the node availability. As there

are very few query requests on cold nodes, storing FST in the memory is of little significance. Therefore, we need to
move this part of data structure out of the heap for management, so that it is not loaded by default but loaded from the
disk off heap for direct use when needed, reducing the heap memory usage and improving the single-node disk
management capabilities.

Optimized Scheme

ES implements a precisely controlled off-heap cache based on the WLFU elimination strategy and implements a

second-level in-heap cache based on zero copy and weak reference. In this way, the performance is comparable to
that of in-heap access.

Directions

Enabling/Disabling off-heap feature (disabled by default)

curl -H "Content-Type:application/json" -XPUT http://localhost:9200/_cluster/settin

 "persistent" : {

 "indices.segment_memory.off_heap.enable" : true

 }

}'

Adjusting the size of off-heap cache (500 MB by default)

curl -H "Content-Type:application/json" -XPUT http://localhost:9210/_cluster/settin

 "persistent" : {

 "indices.segment_memory.off_heap.size" : "5gb"

 }

}'

Elasticsearch Service

©2013-2024 Tencent Cloud. All rights reserved. Page 15 of 16

 It can be set to 1/3 of the off-heap memory of a single node and should not exceed 32 GB. Below are specific
examples:
If the total memory of s single node (including JVM and off-heap memory) is 64 GB, it can be set to (64 – 32)/3. You

can set it to 10 GB.
If the total memory of s single node (including JVM and off-heap memory) is 96 GB, it can be set to (96 – 32)/3. You
can set it to 20 GB.

Optimization Effect

The optimized scheme works much better in terms of memory overheads, data management, and GC and has a
slightly better performance.

Scheme
FST
Storage
Location

FST Memory Usage
Single-FST
Heap Memory
Usage

Single-Node
Maximum Disk Data
Volume

Native
scheme

Heap
memory

Full storage in memory with high
memory usage

MB-level (native
FST data
structure)

10 TB (tuning
required)

Optimized
scheme

Off-heap
memory

Cold data elimination based on
cache LRU with low memory
usage

Around 100
bytes (cache key
size)

50 TB

Write
Performance

Memory Usage
(MB)

GC Time
(s)

TPS 90th Percentile
Latency (ms)

99th Percentile
latency (ms)

Native
scheme

402.59 20.453 198051 463.201 617.701

Optimized
scheme

102.217 18.969 201188 455.124 618.379

Difference 74.6% better 7.26%
better

1.58%
better

1.74% better 0.11% worse

Query
Performance

Memory Usage
(MB)

GC
Time (s)

QPS 90th Percentile
Latency (ms)

99th Percentile
Latency (ms)

Native
scheme

401.806 20.107 200.057 3.96062 11.1894

Elasticsearch Service

©2013-2024 Tencent Cloud. All rights reserved. Page 16 of 16

Optimized
scheme

101.004 19.228 200.087 3.87805 11.2316

Difference 74.9% better 4.37%
better

- 2.00% better 0.38% worse

Supported Versions

6.8.2, 7.5.1, and 7.10.1.

