
Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 1 of 588

Tencent Smart Advisor-Tencent RTC

Copilot

Scenario-Based Solutions

Product Documentation

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 2 of 588

Copyright Notice

©2013-2025 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by the Tencent corporate group, including
its parent, subsidiaries and affiliated companies, as the case may be. Trademarks of third parties referred to in this
document are owned by their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 3 of 588

Contents

Scenario-Based Solutions
Overview of Scenario-Based Solutions
Social Entertainment

Voice Chat Room
Scenario Solution
Quick Integration Guide

Android
iOS

Online Karaoke
Scenario Solution
Quick Integration Guide

Android
iOS

Live Show Streaming
Scenario Solution
Quick Integration Guide

Android
iOS

Live Shopping
Live Streaming with Goods

Scenario Solution
Quick Integration Guide

Android
iOS

Audio/Video Call
1V1 Audio and Video Call

Scenario Solution
Quick Integration Guide

Android
iOS

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 4 of 588

Scenario-Based Solutions
Overview of Scenario-Based Solutions
Last updated：2024-07-22 14:26:43

Overview

The scenario-based solutions systematically summarize the scenario implementation scheme and engineering
development steps to help you quickly familiarize yourself with the relevant scenarios and complete the TRTC
integration and launch work. Covers voice chat room, online karaoke, live show streaming, and other social

entertainment scenarios, and live streaming marketing and 1V1 audio and video call, and other scenario solutions and
quick integration guide. It can help improve integration development efficiency and facilitate the rapid implementation
of business scenarios.

Project Planning Phase

At this stage, you can see the experience demo and scenario-based solutions we provided to complete the project
planning.

https://intl.cloud.tencent.com/document/product/1228/59940#
https://intl.cloud.tencent.com/document/product/1228/59946#
https://intl.cloud.tencent.com/document/product/1228/59952#
https://intl.cloud.tencent.com/document/product/1228/60245#
https://intl.cloud.tencent.com/document/product/1228/60251#

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 5 of 588

Experience Demo: Quickly get started with related scenarios and gameplay and experience the project
implementation effect.
Scenario Solution: Be familiar with the relevant scenarios, functional modules, and technical architecture, and finalize

the project implementation scheme.

Project Development Phase

At this stage, you can see the demo source code and Quick Integration Guide we provided to complete project
development.
Demo Source Code: Provides complete engineering source code for the relevant scenarios. You can refer to the code
implementation of related modules.

Quick Integration Guide: Provides full-process integration guides for the relevant scenarios to help you quickly
complete project development.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 6 of 588

Social Entertainment
Voice Chat Room
Scenario Solution
Last updated：2024-07-25 16:45:57

Scenario Introduction

A voice chat room provides a virtual space for audio-only online social interaction. Typically, the room contains several
seats where anchors and co-speakers can engage in voice conversations, while other listeners can join the room to
listen in. The number of seats and listeners vary by room type. Tencent Cloud's Tencent Real-Time Communication

(TRTC) supports up to 50 people chatting on the mic simultaneously, with smooth transitions between speaking and
listening, and a voice chat latency of less than 300ms. It includes a variety of audio effects like voice changing,
ambiance effects, and reverb to enrich the chat experience. Combined with Instant Messaging, it supports various
forms of message interaction such as public chat, private chat, group chat, likes, and gift sending, creating a lively and
engaging chat interaction experience.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 7 of 588

Implementation Scheme

Implementing a complete voice chat room scenario usually involves several functional modules: Room Management,
Seat Management, Audio Stream Management, On-Cloud Recording, etc. The key actions and feature points under

each functional module are as follows:

Functional Module Key Actions and Feature Points

Room Management Room list, create a room, enter a room, exit a room, and terminate a
room.

Seat Management Become a speaker, invite a listener to speak, become a listener, remove
a speaker, mute a seat, lock a seat and move a seat.

https://intl.cloud.tencent.com/document/product/1228/59940#45608109-3c99-471b-9911-2ddf76785e47
https://intl.cloud.tencent.com/document/product/1228/59940#45608109-3c99-471b-9911-2ddf76785e47#f6b567ce-31cc-4bff-bc6b-c26483820a6f
https://intl.cloud.tencent.com/document/product/1228/59940#45608109-3c99-471b-9911-2ddf76785e47#f6b567ce-31cc-4bff-bc6b-c26483820a6f#510bdc2b-c44b-41f4-af70-aec43c9cfdf8
https://intl.cloud.tencent.com/document/product/1228/59940#45608109-3c99-471b-9911-2ddf76785e47#f6b567ce-31cc-4bff-bc6b-c26483820a6f#510bdc2b-c44b-41f4-af70-aec43c9cfdf8#386b6ae3-8aff-4b87-9dd5-6527257cce97

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 8 of 588

Audio Stream Management Publishing/Playback Architecture Solution, Real-Time Stream
Subscription Mode

On-Cloud Recording TRTC On-Cloud Recording.

The overall business architecture of the voice chat room is shown in the figure below. Room owners create voice chat
rooms, and users can choose to join rooms that interest them. After entering a room, users can go on the seat and
engage in voice interaction with the speakers. However, due to compliance requirements, the voice content in the
room needs to be recorded and reviewed.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 9 of 588

Room Management

The Room Management Module is primarily responsible for maintaining the room list and includes the following
features:
Create Room: After users log in to the business system, they can create a room. The room list needs to be updated
after a room is created.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 10 of 588

Enter Room: Users can choose to enter an existing room. Upon entering, the current list of room members should be
updated.
Exit Room: Users can choose to exit the current room. Upon exiting, the current list of room members needs to be

updated with a delete operation.
Terminate Room: After all users exit the room, it needs to be terminateed. Upon destruction, the room list needs to be
updated with a delete operation.

Scheme Architecture

In the overall architecture of room management, there are primarily three major modules involved:
Room Management: Mainly used for the maintenance and administration of the room list, such as synchronizing the

properties and status of rooms. Features include room list querying, entering/exiting rooms, and creating/terminateing
rooms.
IM group management: This module is primarily used for managing room member lists, signaling transmission, and
message interactions. For instance, it handles actions such as approving/rejecting a speaking request, inviting a
listener to speak/removing a listener, muting/unmuting a seat, and blocking/unblocking a seat. This feature is also
distinguished by group dimension, including creating groups, joining groups, exiting groups, and terminateing groups.

TRTC Room Management: This module is mainly used for the interaction and transmission of audio streams. For
instance, it facilitates the sending and listening of voice/music between anchors and audiences. It is also distinguished
by room dimensions. Features include entering/exiting TRTC rooms.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 11 of 588

Specific Implementation

In room management, different user roles have different feature permissions and implementation processes. In voice
chat rooms, there are mainly two roles: the room owner and the listeners. For a detailed description and differences of
roles, see the table below:

Roles Description Differences

Room
Owner

The room owner with the highest authority in
the room can create or terminate the room.

The role must be an anchor.
Creates or terminates rooms/IM groups/RTC
rooms

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 12 of 588

Listeners Participants in the room can also take the mic
to become the anchor.

The role can be either audience or anchor.
Enter/Exit Room

Implementation Process

Room Owner

1. Obtain the room list.
2. Create the corresponding room through the business API.
3. Create an IM group.
4. Enter the Room/IM Room/RTC Room, and interact with others.

5. Exit the IM Room/RTC Room/Room.
6. Terminate the IM Group.
Listeners

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 13 of 588

1. Obtain the room list.
2. Enter the Room/IM Group/RTC Room, and interact with others.
3. Exit the IM Group/RTC Room/Room.

Seat Management

In a Voice Chat Room, the seats are usually ordered and limited. For example, an audience needs the room owner's
approval to speak orderly. Generally, the number of seats in a room does not exceed 10. Seat management is mainly
responsible for managing the number of seats in a room according to the business scenario, as well as the status of all
current seats in the room. The main features of seat management include: becoming a speaker, inviting a listener to
speak, becoming a listener, removing a speaker, muting a seat, locking a seat, and moving a seat.

After users enter the room, they can only request to speak when there are idle seats available.
After the room owner approves a user to become a speaker, the seat status needs to be changed to non-idle.
After the user stops streaming and becomes a listener, the seat status needs to be reset.
The room owner has the authority to lock the seat, invite a listener to speak, remove a speaker, mute a speaker, etc.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 14 of 588

Scheme Architecture

The architecture of seat management will be organized by integrating Tencent Real-Time Communication (TRTC) and
Instant Messaging (IM). In the entire room management architecture, the room owner has the highest authority and
can invite a listener to speak, remove a speaker, mute/unmute a seat, and block/unblock a seat. Listeners can also

request to speak, become speakers, and interact with other speakers in the room.

Specific Implementation

In seat management, different user roles have different feature permissions and implementation processes, primarily
involving two roles: room owner and audience. For details on role descriptions and their differences, see the table

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 15 of 588

below:

Roles Description Differences

Room
Owner

The figure with the highest authority over seats. The
room owner is responsible for managing all seats. When
the room owner exits the room, all seats are
automatically dissolved.

The role must be an anchor.
Enter the room and become a speaker
Approve or reject speaking requests
Invite a listener to speak/Remove a
listener
Mutes/Unmutes a seat
Blocks/Unblocks a seat

Listeners
Room seat participants who engage in voice
interactions.

The role can be either audience or
anchor.
Request to speak/become a listener

Implementation Process

Room Owner

1. Anchors enter the Room Lobby and obtain the room list.

2. Anchors create and enter the room as room owners.
3. The room owner obtains the seat list based on group attributes and becomes a speaker.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 16 of 588

4. Listeners become speakers. After becoming speakers, they can interact with other speakers. There are two ways
for listeners to become speakers: they can either request to speak actively, which the room owner approves, or the
room owner can invite them to speak, which they accept.

5. Speakers become listeners. There are two ways to become listeners: they can become listeners actively, or the
room owner can forcibly remove them.
6. The room owner exits and terminates the room (the room is dissolved, and all speakers are forcibly removed and
exit the room).
Listeners

1. Listeners enter the Room Lobby and obtain the room list.
2. Listeners select and enter the room.
3. Listeners obtain the seat list based on group attributes.

4. Listeners request to speak. After approval from the room owner, they interact with other speakers.
5. Speakers become listeners and exit the room.

Audio Stream Management

The typical interactive scenario for voice chat often opts for the RTC stream access solution, as it offers simplicity and
quick integration while providing the low-latency characteristics of real-time interaction. As shown in the figure below,

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 17 of 588

a classic publishing/playback architecture of real-time interactive voice chat is displayed, showcasing two roles:
speakers and listeners.

For real-time stream subscription within the room, TRTC offers two subscription modes: Automatic Subscription and
Manual Subscription.
Automatic Subscription: Upon entering the room, users will immediately receive the room's audio and video streams,

with audio automatically playing and video automatically starting to decode.
Manual Subscription: After entering the room, users need to manually call startRemoteView to start the

subscription and decoding of the video stream, and manually call muteRemoteAudio to start the playback of

audio.
In most scenarios, TRTC defaults to the Automatic Subscription mode, where users subscribe to audio and video

streams from all anchors in the room upon entering, achieving a better instant opening experience. The Manual

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 18 of 588

Subscription mode, on the other hand, offers greater flexibility and customizability, allowing users to selectively
subscribe to audio and video streams.
Note:

Compared to the Manual Subscription mode, Automatic Subscription does not require complex media stream
subscription management. For voice chat scenarios without special requirements, Automatic Subscription is
recommended.

On-Cloud Recording

TRTC's newly upgraded On-Cloud Recording does not depend on Cloud Streaming Services. It does not require a
relayed push for cloud live streaming and uses TRTC's internal real-time recording cluster for audio and video

recording, offering a more comprehensive and unified recording experience.
Single Stream Recording: With TRTC's On-Cloud Recording feature, you can record each user's audio stream in the
room as a separate file.

Mixed Stream Recording: Mix and record the audio media streams from the same room into a single file.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 19 of 588

Note:
For a detailed introduction and activation guide to TRTC On-Cloud Recording, see On-Cloud Recording.

Key Business Logic

Ganchor Mic Handling Solution

Ganchor mic, also known as blast mic or black mic, refers to the phenomenon where users not becoming speakers
can speak and other users can hear their voice. The fundamental reason for the ganchor mic phenomenon is the

inconsistency between the seat status and the TRTC user role status. There are several possible reasons for this
issue.
When a speaker becomes a listener, the seat list is updated accordingly. However, if the seat information callback is
not triggered or intercepted, the local TRTC operations for switching the audience's role and turning off the mic will not
be performed. This can result in the listener being able to speak.
When a speaker becomes a listener, the seat list is updated accordingly. However, after the seat information callback

is received, the audience's local call to the TRTC switch audience's role API fails, resulting in listeners being able to
speak.
The app is cracked by brute force, leading to the UserSig being intercepted by hackers, allowing hackers to enter the
TRTC room as an anchor and speak at will.

Detection and Handling of Ganchor Mics

By detecting ganchor mics, we can proactively identify and promptly handle them. It is recommended to use a server

detection solution: Real-time anchor list comparison detection.
Principle of the Solution: In the voice chat room scenario, user roles are divided into anchors and audiences, with
only the anchor being able to upstream local audio. Therefore, ganchor mics can be detected by comparing the seat

https://intl.cloud.tencent.com/document/product/647/45169

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 20 of 588

list with the TRTC role list. TRTC provides server-side room and media event callbacks. By listening for events such
as entering the room, switching roles, and leaving the room, you can maintain a real-time anchor list for the current
room. Then, by comparing the TRTC real-time anchor list with the full seat list, ganchor mics can be easily detected

and identified, and actions such as removing from the room or muting can be performed.
1. Tencent Real-Time Communication (TRTC) Console supports self-configuration of callback information. Once the
configuration is complete, event callback notifications can be received. For more details, see Callback Configuration.
2. Receive and parse callback event packages, pay attention to events 103/104/105, and count the real-time online
anchor list in the current room. For more details, see Callback Event.

103
104
105

{

 "EventGroupId": 1, #Room event group

 "EventType": 103, #Enter room event

 "CallbackTs": 1687679847972, #Callback time, in milliseconds

 "EventInfo": {

 "RoomId": "123456", #Room ID

 "EventTs": 1687679847, #Event occurrence time, i

 "EventMsTs": 1687679847899, #Event occurrence time, in mi

 "UserId": "1a99b0a9", #Username

 "Role": 20, #User role 20:Anchor; 21:Audi

 "TerminalType": 2, #Terminal Type

 "UserType": 3, #User Type

 "Reason": 1 #Specific reasons

 }

}

{

 "EventGroupId": 1, #Room event group

 "EventType": 104, #Exit room event

 "CallbackTs": 1687679847972, #Callback time, in milliseconds

 "EventInfo": {

 "RoomId": "123456", #Room ID

 "EventTs": 1687679847, #Event occurrence time, i

 "EventMsTs": 1687679847899, #Event occurrence time, in mi

 "UserId": "1a99b0a9", #Username

 "Role": 20, #User role 20:Anchor; 21:Audi

 "Reason": 1 #Specific reasons

 }

}

{

https://intl.cloud.tencent.com/document/product/647/39559
https://intl.cloud.tencent.com/document/product/647/39558

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 21 of 588

 "EventGroupId": 1, #Room event group

 "EventType": 105, #Switch role event

 "CallbackTs": 1687679847972, #Callback time, in milliseconds

 "EventInfo": {

 "RoomId": "123456", #Room ID

 "EventTs": 1687679847, #Event occurrence time, i

 "EventMsTs": 1687679847899, #Event occurrence time, in mi

 "UserId": "1a99b0a9", #Username

 "Role": 20 #User role 20: Anchor; 21: Au

 }

}

Note:
105-Switch Role Event is only triggered by changes in the user role after entering the room. Therefore, you also

need to supplement the user role list based on the initial role information in 103-Enter Room Event, as well as update
the user role list according to 104-Exit Room Event, to maintain a more accurate list of room user roles.
3. Periodically compare the seat list and the real-time TRTC anchor list for each room, identify ganchor mics, and
mute or remove them accordingly.

Anti-Stutter Solution When Switching on and off the Mic

Problem Description

Due to differences in the mechanisms of mobile device systems, the performance of switching on and off the mic in the

voice chat scenario may differ between Android and iOS. On iOS devices, there may be brief audio stutters when
switching on and off the mic.

Cause Analysis

This is related to the iOS system's audio mechanism. The startLocalAudio and stopLocalAudio

operations access and release the microphone device permissions, respectively. SDK's audio re-capturing causes the
AVAudioSession to restart the audio driver, resulting in a temporary audio stutter when switching on and off the mic.

Solutions

The typical sequence of switching on and off the mic in TRTC is shown in the figure below. Switching roles
simultaneously starts or stops local audio capture and publishing. This solution works normally on the Android
platform.
On iOS, during the mic off operation, it is possible to stop streaming simply by switching the audience role, without the
need to call stopLocalAudio to stop audio capture and release mic permissions, thereby avoiding audio stutters

during mic on/off.

https://intl.cloud.tencent.com/document/product/647/51289
https://intl.cloud.tencent.com/document/product/647/34268

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 22 of 588

User

User

TRTCCloud

TRTCCloud

Enter the TRTC Room

enterRoom

onEnterRoom

Become a Speaker and Start Publishing

switchRole:Anchor Switch to Anchor Role

onSwitchRole

startLocalAudio Enable Local Audio Capture and Publishing

Become a Listener and Stop Publishing

switchRole:Audience Switch to Audience Role

onSwitchRole

opt [Android Standard Solution]

stopLocalAudio Stop Local Audio Capture and Publishing

Note:
In the anti-stutter solution, not calling stopLocalAudio will keep the mic in a continuous capturing state, which

may lead to user misunderstanding.

Best Practices for Audio Configuration

In audio configuration, audio quality and volume type are two distinct concepts. In TRTC, audio quality can be set
during the enabling of local audio capture and publishing by using startLocalAudio(TRTCAudioQuality) or

 setAudioQuality(TRTCAudioQuality) to individually set audio quality; volume type is determined by a

combination of factors such as the room entry scenario and audio quality settings. Additionally, it can be forcibly
specified through setSystemVolumeType(TRTCSystemVolumeType) .

Best Practices for Audio Quality Configuration

The TRTC SDK provides three finely tuned audio quality modes to meet the diverse audio quality needs of various

vertical scenarios.

Audio
Quality
Mode

Audio Quality Enumeration
Values

Audio Quality
Parameters Audio Quality Explanation

Voice
Mode

TRTCAudioQualitySpeech Sampling Rate: 16 k;
Mono;
Encoding Bitrate: 16
kbps

It has strong network resilience and
performs well in poor network environments,
making it suitable for applications primarily

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 23 of 588

focused on voice communication, such as
online meetings, voice calls, etc.

Default
Mode TRTCAudioQualityDefault

Sampling Rate: 48k;
Mono;
Encoding Bitrate: 50
kbps

The default SDK settings. It offers better
fidelity for music than the Voice Mode, while
also transmitting much less data volume
than the Music Mode. This makes it
versatile and suitable for various scenarios.

Music
Mode

TRTCAudioQualityMusic

Sampling Rate: 48 k;
Full-Band Stereo;
Encoding Bitrate:
128 kbps

Under this mode, the audio transmission
consumes a significant data volume,
ensuring that the music signal achieves high
fidelity in detail restoration across all
frequency bands, suitable for scenarios
requiring high-quality music transmission.

As can be seen from the table, from Voice Mode to Music Mode, the audio quality effect improves, but the data volume
of audio transmission also increases.
In the scenario of a voice chat room, it is recommended to choose the Voice Mode for pure voice communication,
which can achieve better smoothness under weak network conditions.

For voice chat rooms with a need to play background music, it is recommended to choose the Default Mode or Music
Mode to achieve good audio detail restoration.
Considering the bandwidth pressure on downstream audience networks, to ensure a good user experience, it is
advisable to use the Music Mode cautiously in business scenarios with ten or more seats.
Note:

TRTC audio quality supports dynamic adjustment, which means audio quality can be dynamically adjusted during the
streaming process by calling setAudioQuality(TRTCAudioQuality) .

Best Practices for Volume Type Configuration

The TRTC SDK provides three control modes for system volume types to meet the different needs of volume types in
various scenarios.

Volume
Type
Mode

Volume Type Mode Enumerated
Values Volume Type Mode Description

Full Call
Volume TRTCSystemVolumeTypeVOIP

The advantage of this solution is that the audio module does
not need to switch working modes during mic on/off, enabling
seamless mic switching. It is suitable for applications where
users frequently switch mics. If the scenario selected upon
entering the room is TRTCAppSceneVideoCall or
TRTCAppSceneAudioCall, the SDK will automatically use
this mode.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 24 of 588

Automatic
Switching
Mode

TRTCSystemVolumeTypeAuto Also known as Voice Call on Mic, Media Off Mic. This mode
ensures that the anchor uses call volume when on the mic,
while the off-mic audience uses media volume, suitable for
live streaming scenarios. If the scenario selected upon
entering the room is TRTCAppSceneLIVE or
TRTCAppSceneVoiceChatRoom, the SDK will automatically
use this mode.

Full Media
Volume

TRTCSystemVolumeTypeMedia

Use Media Volume for the entire call. It is suitable for music
scenarios where demanding audio quality is required. If your
users mainly use external devices (such as external sound
cards), this mode can be adopted.

In call scenarios, it is recommended to choose the default Full Call Volume, where the audio module does not need to
switch;

In voice chat room scenarios, it is recommended to use the default Automatic Switching mode for pure voice
communication, that is, Voice Call on Mic, Media Off Mic.
Voice chat rooms that need background music can consider setting the volume to Full Media Volume throughout to
avoid users perceiving stuttering or sudden volume changes in music when going on and off the mic.
Note:

If you need to specify a volume type, it is recommended to call setSystemVolumeType once after entering the

room and before starting to stream. Do not call it during the mic on/off.
Call Volume supports the phone's built-in AEC feature and allows audio pickup via the mic on Bluetooth headphones,
but the disadvantage is the audio quality is relatively average.
Media Volume does not support the phone's built-in AEC feature and does not support audio pickup via the mic on

Bluetooth headphones, but it has better music playback performance.

Single-Stream Volume Evaluation

In voice chat room scenarios, some customers may opt to push and pull RTC single streams for speakers, while
pulling mixed streams from the room for audiences, aiming to save bandwidth costs. However, in voice chat room
scenarios, it is usually necessary to provide UI prompts based on the volume level of the speakers, such as sound
waves or volume bars. While volume evaluation and feedback for single-channel audio is straightforward to implement
in TRTC rooms, achieving this in audio-only mix streams requires specialized techniques. Below are the specific

implementations of two solutions.

Single-Stream Volume Evaluation in RTC Room

Step One: Enable Volume Prompts
Enable the volume callback through the enableAudioVolumeEvaluation API, and optionally enable the local

voice detection feature. After enabling this feature, the SDK will provide feedback in the onUserVoiceVolume

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 25 of 588

callback about the volume of both local users and remote streaming users, the maximum volume value, as well as the
local voice detection result.
Note:

Starting from TRTC SDK version 10.2, the local voice detection feature has been added. Once enabled, the local
voice detection result will be displayed in TRTCVolumeInfo.vad (for users in the anchor role). Operations such

as muteLocalAudio and setAudioCaptureVolume(0) will not affect the voice detection result, making it

convenient to remind users to turn on their mics.
Step Two: Listen to the Volume Callback

Listen to the onUserVoiceVolume callback in TRTCCloudListener . This callback provides information on

the volume levels of both local and remote users' streams, as well as the maximum volume value of remote users.
Based on these volume levels, you can adjust the UI to display corresponding voice waveforms.
Note:
Rendering voice waveform animations for speakers can be determined by the volume level in the onUserVoiceVolume
callback. The activation and deactivation of voice waveform animations (user's mic on/off state) are recommended to

be determined based on the onUserAudioAvailable callback.

Evaluation of Single Stream Volume in Audio-Only Mixed Stream

The implementation process of evaluating single stream volume in audio-only mixed stream is shown in the diagram

above. Speakers need to listen for volume level callback and determine both local and remote volume levels. Then,
insert the local volume value and user information into the audio stream in the form of SEI messages. After mixing,
these messages are transmitted to listeners. Alternatively, the room owner can send out speakers' callback
volume values through SEI messages. The diagram below shows the sequence diagram of the entire process:

https://intl.cloud.tencent.com/document/product/647/50763#2ec23470e2480bd26d91353c0998d019
https://intl.cloud.tencent.com/document/product/647/50763#cb979bbb36c24acc891ce2115ff2b6c6

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 26 of 588

Anchor

Anchor

TRTC_SDK

TRTC_SDK

LivePlayer_SDK

LivePlayer_SDK

Audience

Audience

Anchor Enters Room and Starts Pushing Stream

enterRoom:role:Anchor

onEnterRoom

callExperimentalAPI("enableBlackStream")

enableAudioVolumeEvaluation(interval)

startLocalAudio(quality)

Listen to Volume Level Callback

onUserVoiceVolume

alt [Local Volume]

sendSEIMsg

[Remote Volume]
Update Speaker's Volume in Client UI Layer

Mixed Stream Pushback or Relay to CDN

alt [Mixed Stream Pushback to TRTC Room]

startPublishMediaStream(target, param, config)

[MixTranscoding and Relay to CDN]
setMixTranscodingConfig(config)

startPublishing(streamId, streamType)

Audience Pulls Stream and Parses SEI

alt [TRTC Audience]

onUserVideoAvailable(mixUserId, true)

startRemoteView(mixUserId, null)

onRecvSEIMsg

[CDN Audience]
startPlay(URL)

enableReceiveSeiMessage(true, payloadType)

onReceiveSeiMessage

Update Speaker's Volume in Client UI L

Note:
If there is a requirement for mixing and relaying to CDN while transmitting SEI:
The room entry scenario must be set to LIVE and cannot be set to pure audio entry, otherwise SEI messages will not
be transmitted.
If the mixing API adopts setMixTranscodingConfig , then the mixing mode cannot use the PureAudio

audio-only mode.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 27 of 588

If the mixing API adopts startPublishMediaStream , then the media stream transcoding configuration

parameters must carry the TRTCVideoLayout parameter.

As shown below, the audience will see the volume levels of the respective speakers in the SEI messages parsed from

the mixed stream.

Scenario Gameplay

In the voice chat room scenario, the room owner and several speakers interact online through voice, and there may
also be listeners who cannot speak but only listen and interact through sending gifts and chat messages. Different

room themes are usually set to attract users with similar interests for viewing and interaction. Common themes include
FM radio, Karaoke chat, game interaction, and sports event streaming.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 28 of 588

FM Radio Room

There may be a solo live broadcast by an anchor or a host with several fixed chatting guests, while background music
and sound effects are played simultaneously. Listeners can request to speak by giving gifts to participate in voice
interaction.

This scenario typically involves a large number of audiences, with infrequent mic switching. It is suitable to use the
solution of speakers pushing and pulling RTC streams while the audience pulls CDN mixed streams. When audiences
become speakers, they switch from the RTMP channel to the TRTC channel to enter the room and stream in real time.
This solution balances real-time interaction with cost.
Note:

For this scenario, it is recommended to use the solution of speakers pushing and pulling RTC streams while the
audience pulls CDN mixed streams.
When audiences switch between the RTMP and RTC protocol for mic-connecting, ensure a smooth transition
between on-mic and off-mic states.

Karaoke Voice Chat Room

 Usually, there is one administrator, and everyone can select songs, comment, guess songs, continue singing, etc. It
mainly consists of two models: Multi-Person Co-Anchoring and Multi-Person Mic Rotation. In the Multi-Person Co-

Anchoring mode, one person sings while other co-anchoring users can listen and speak simultaneously, but the lead
singer cannot hear the other speakers. However, the audience in the room can hear all the voices. The Multi-Person
Mic Rotation mode allows a person to sing a portion of a song, after which it automatically transitions to the next
person; meanwhile, other users can only listen and comment during the waiting period, without participating in voice
chat.

Online Karaoke scenarios require high synchronization and allow audiences to join in singing at any time, making it
suitable to use the solution of the speaker pushing and pulling RTC streams while the audience pulls RTC mixed
streams. Here, a mixing robot is needed to initiate the mixing command and push the mixed stream back to the TRTC
room for the listeners to pull and watch.
Note:

For this scenario, it is recommended to use the solution of the speaker pushing and pulling RTC streams while the
audience pulls RTC mixed streams.
For specific technical details and precautions regarding the implementation of Karaoke Voice Chat Rooms, please
refer to Online Karaoke Scenario Solutions.

Interactive Gaming Room

In scenarios like Werewolf, Murder Mystery, Dubbing, Truth or Dare, and Draw and Guess, rooms are created based
on the game's progression, and the speaking permissions of players are controlled in sequence according to the

game's progress.
In interactive gaming scenarios, the number of participants is typically limited, and there is a need for frequent joining
and leaving of the mic for gaming purposes. This scenario is suitable for the conventional approach of having the

https://intl.cloud.tencent.com/document/product/1228/59946#611de69c-c7e9-44db-9a11-50c9aa8acb0d

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 29 of 588

speaker pull and push RTC streams while the audience pulls RTC single streams. Game participants can request to
speak at any time or choose to mute themselves until their character dies, forcing them to become listeners or exit the
room.

Note:
This scenario recommends the solution of the speaker pulling and pushing RTC streams while the audience pulls RTC
single streams.
Interactive gaming rooms usually include the playing of local game audio effects, so attention must be paid to AEC
processing and the selection of volume types.

Supporting Products for the Solution

System
Level

Product Name Application Scenarios

Access
Layer

Tencent Real-
Time
Communication
(TRTC)

Provides low-latency, high-quality real-time interactive live streaming
solutions for multi-person voice interaction, serving as the foundational
capability for voice chat scenarios.

Access
Layer

Instant Messaging
(IM)

Provides room management and seat management capabilities based on
group features, enables the sending and receiving of rich media messages
such as live streaming room-wide messaging, public screen messages, as
well as custom signaling and other communication needs.

Cloud
Services

Cloud Streaming
Services (CSS)

Provides real-time audio and video relayed push, along with accelerated
media stream distribution services, as well as additional capabilities such
as recording and pornography detection.

Cloud
Services

Video on Demand
(VOD)

For audio-video media, it offers an integrated high-quality media service
that includes production and upload, storage, transcoding, media
processing, media AI, accelerated distribution and playback, and
copyright protection

Data
Storage

 Cloud Object
Storage (COS)

Provides storage services for audio recording files and audio slicing files.

https://intl.cloud.tencent.com/products/trtc
https://intl.cloud.tencent.com/products/im
https://intl.cloud.tencent.com/products/css
https://intl.cloud.tencent.com/products/vod
https://intl.cloud.tencent.com/products/cos

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 30 of 588

Quick Integration Guide
Android
Last updated：2024-07-18 14:26:14

Business Process

This section summarizes some common business processes in voice chat rooms to help you better understand the
entire scenario implementation process.
Room management process

Room owner seat management process
Audience seat management process
The following figure shows the room management process, including the creation, joining, exiting, and dissolvement of
rooms.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 31 of 588

The following figure shows the room owner seat management process, including inviting a listener to speak, removing

a speaker, and muting a seat.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 32 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 33 of 588

The following figure shows the audience seat management process, including becoming a speaker, become a
listener, and moving a seat.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 34 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 35 of 588

Integration Preparation

Step 1. Activating the service.

Voice chat room scenarios usually require dependencies on two paid PaaS services from Tencent Cloud, Instant
Messaging (IM) and Tencent Real-Time Communication (TRTC) for construction.
1. First, you need to log in to the Tencent Real-Time Communication (TRTC) console to create an application. At this

time, in the Instant Messaging (IM) console, an IM experience edition application with the same SDKAppID as the
current TRTC application will be automatically created. The account and authentication system of the two can be
reused. Subsequently, you can choose to upgrade the TRTC or IM application version as needed. For example,
advanced versions can unlock more value-added feature services.

https://intl.cloud.tencent.com/products/im
https://intl.cloud.tencent.com/products/trtc
https://console.trtc.io/
https://console.intl.cloud.tencent.com/im

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 36 of 588

Note:

It is recommended to create two applications for testing and production environments, respectively. Each Tencent
Cloud account (UIN) is given 10,000 minutes of free duration every month for one year.
TRTC offers monthly subscription plans including the experience edition (default), basic edition, and professional
edition. Different value-added feature services can be unlocked. For details, see Version Features and Monthly
Subscription Plan Instructions.

2. After an application is created, you can see the basic information of the application in the Application
Management - Application Overview section. It is important to keep the SDKAppID and SDKSecretKey safe for
later use and to avoid key leakage that could lead to traffic theft.

https://intl.cloud.tencent.com/document/product/647/52816#f10b65d1-6e8d-41e3-8686-84909b00a1a2

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 37 of 588

Step 2: Importing SDK.

The TRTC SDK and IM SDK have been released to the mavenCentral repository. You can configure Gradle to

download and update automatically.
1. Add the dependency for the appropriate version of the SDK in dependencies.

dependencies {

 // TRTC SDK Simplified Edition. It has two features of the TRTC and live

streaming playback.

 implementation 'com.tencent.liteav:LiteAVSDK_TRTC:latest.release'

 // Add IM SDK. Entering the latest Version No. is recommended.

 implementation 'com.tencent.imsdk:imsdk-plus:Version number'

 // If you need to add the Quic plugin, uncomment the next line (Note:

Version No. of the plugin needs to be the same as that of the IM SDK).

 // implementation 'com.tencent.imsdk:timquic-plugin:Version number'

}

Note:

Besides the recommended automatic loading method, you can also choose to download the SDK and manually import
it. For details, see Manually Integrating the TRTC SDK and Manually Integrating IM SDK.
Quic plugin offers axp-quic Multiplexing Transmission Protocol, providing better resistance to poor networks. Even
with a packet loss rate of 70%, it still can offer services. Available only for Flagship users. For non-Flagship users,
purchase the Flagship package before use, and see Pricing Instructions. To ensure proper functionality, update

Terminal SDK to version 7.7.5282 or above.
2. Specify the CPU architecture used by the app in defaultConfig.

defaultConfig {

 ndk {

 abiFilters "armeabi-v7a", "arm64-v8a"

 }

https://intl.cloud.tencent.com/document/product/647/35093#.E6.96.B9.E6.A1.88.E4.BA.8C.EF.BC.9A.E4.B8.8B.E8.BD.BD-sdk-.E5.B9.B6.E6.89.8B.E5.8A.A8.E5.AF.BC.E5.85.A5
https://intl.cloud.tencent.com/document/product/1047/34306#36006ca4-f19c-4555-a4f9-7cdd5dc79c56
https://intl.cloud.tencent.com/document/product/1047/34577
https://intl.cloud.tencent.com/document/product/1047/34350#.E5.9F.BA.E7.A1.80.E6.9C.8D.E5.8A.A1.E8.AF.A6.E6.83.85

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 38 of 588

}

Note:
The TRTC SDK supports architectures including armeabi, armeabi-v7a and arm64-v8a. Additionally, it supports

architectures for simulators including x86 and x86_64.
The IM SDK supports architectures including armeabi-v7a, arm64-v8a, x86, and x86_64. To reduce the size of the
installer package, you can choose to package SO files for only a subset of these architectures.

Step 3: Project configuration.

1. To configure app permissions in AndroidManifest.xml, for voice chat scenarios, both the TRTC SDK and IM SDK
require the following permissions:

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />

<uses-permission android:name="android.permission.RECORD_AUDIO" />

<uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" />

<uses-permission android:name="android.permission.BLUETOOTH" />

Note:

The TRTC SDK does not have built-in permission request logic. You need to declare the corresponding permissions
and features yourself. Some permissions (such as storage and recording), also require runtime dynamic requests.
If the Android project's targetSdkVersion is 31 or higher, or if the target device runs Android 12 or a newer

version, the official requirement is to dynamically request android.permission.BLUETOOTH_CONNECT

permission in the code to use the Bluetooth feature properly. For more information, see Bluetooth Permissions.

2. Since we use Java's reflection features inside the SDK, you need to add relevant TRTC SDK classes to the non-
obfuscation list in the proguard-rules.pro file:

-keep class com.tencent.** { *; }

Integration Process

Step 1: Generate authentication credentials.

UserSig is a security protection signature designed by Tencent Cloud. Its purpose is to prevent malicious attackers
from misappropriating your cloud service usage rights. Tencent Cloud's Tencent Real-Time Communication (TRTC)

and Instant Messaging (IM) services both implement this security mechanism. TRTC authentication when entering a
room, and IM authentication when logging in.
Debugging Stage: UserSig can be generated through two methods for debugging and testing purposes only: client
sample code and console access.

https://developer.android.google.cn/develop/connectivity/bluetooth/bt-permissions
https://intl.cloud.tencent.com/document/product/647/35166#.E5.AE.A2.E6.88.B7.E7.AB.AF.E7.A4.BA.E4.BE.8B.E4.BB.A3.E7.A0.81.E8.AE.A1.E7.AE.97-usersig
https://intl.cloud.tencent.com/document/product/647/35166#.E6.8E.A7.E5.88.B6.E5.8F.B0.E8.8E.B7.E5.8F.96-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 39 of 588

Formal Operation Stage: It is recommended to use a higher security level server computation for generating UserSig.
This is to prevent key leakage due to client reverse engineering.
The specific implementation process is as follows:

1. Before calling the SDK's initialization function, your app must first request UserSig from your server.
2. Your server computes the UserSig based on the SDKAppID and UserID.
3. The server returns the computed UserSig to your app.
4. Your app passes the obtained UserSig into the SDK through a specific API.
5. The SDK submits the SDKAppID + UserID + UserSig to Tencent Cloud CVM for verification.

6. Tencent Cloud verifies the UserSig and confirms its validity.
7. Once the verification is passed, it will provide instant communication services to the IM SDK and Tencent Real-
Time Communication (TRTC) services to the TRTC SDK.

Note:
The local computation method of UserSig during the debugging stage is not recommended for application in an online
environment. It is prone to reverse engineering, leading to key leakage.
We provide server computation source code for UserSig in multiple programming languages
(Java/GO/PHP/Nodejs/Python/C#/C++). For details, see Server Computation of UserSig.

https://intl.cloud.tencent.com/document/product/1047/34385#.E6.9C.8D.E5.8A.A1.E7.AB.AF.E8.AE.A1.E7.AE.97-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 40 of 588

Step 2: Initialization and listening.

Sequence diagram

APP

APP

V2TIMManager

V2TIMManager

TRTCCloud

TRTCCloud

IM Initialization and Listening

addIMSDKListener

initSDK

onConnecting

onConnectSuccess

TRTC Initialization and Listening

sharedInstance

setListener

onError

onWarning

TRTC Deinitialization and Listening Removal

setListener:null

destroySharedInstance

IM Deinitialization and Listening Removal

removeIMSDKListener

unInitSDK

1. Initialize the IM SDK and add event listeners.

// Add event listener.

V2TIMManager.getInstance().addIMSDKListener(imSdkListener);

// Initialize the IM SDK. After calling this API, you can immediately call the log-

V2TIMManager.getInstance().initSDK(context, sdkAppID, null);

// After the SDK is initialized, it will trigger various events, such as connection

private V2TIMSDKListener imSdkListener = new V2TIMSDKListener() {

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 41 of 588

 @Override

 public void onConnecting() {

 Log.d(TAG, "IM SDK is connecting to Tencent cloud service");

 }

 @Override

 public void onConnectSuccess() {

 Log.d(TAG, "IM SDK has successfully connected to Tencent cloud service");

 }

};

// Remove event listener.

V2TIMManager.getInstance().removeIMSDKListener(imSdkListener);

// Deinitialize the IM SDK.

V2TIMManager.getInstance().unInitSDK();

Note:

If your application's lifecycle is consistent with the SDK's lifecycle, you do not need to deinitialize before exiting the
application. If you only initialize the SDK after entering a specific interface and no longer use it after exiting, you may
deinitialize the SDK.
2. Create TRTC SDK instances and set event listeners.

// Create TRTC SDK instance (Single Instance Pattern).

TRTCCloud mTRTCCloud = TRTCCloud.sharedInstance(context);

// Set event listeners.

mTRTCCloud.setListener(trtcSdkListener);

// Notifications from various SDK events (e.g., error codes, warning codes, audio a

private TRTCCloudListener trtcSdkListener = new TRTCCloudListener() {

 @Override

 public void onError(int errCode, String errMsg, Bundle extraInfo) {

 Log.d(TAG, errCode + errMsg);

 }

 @Override

 public void onWarning(int warningCode, String warningMsg, Bundle extraInfo) {

 Log.d(TAG, warningCode + warningMsg);

 }

};

// Remove event listener.

mTRTCCloud.setListener(null);

// Terminate TRTC SDK instance (Singleton Pattern).

TRTCCloud.destroySharedInstance();

Note:

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 42 of 588

It is recommended to listen to SDK event notifications. Perform log printing and handling for some common errors. For
details, see Error Code Table.

Step 3: Log in and log out.

After initializing the IM SDK, you need to call the SDK log-in API to authenticate your account identity and have

permissions to use features. Before using any other features, ensure you are successfully logged in, or you might
encounter feature malfunctions or unavailability. If you only need to use TRTC's audio and video services, you can
skip this step.

Sequence diagram

User

User

V2TIMManager

V2TIMManager

Business_Backend

Business_Backend

IM Login

Request UserSig

UserSig

login:userid:usersig

alt [Login Successful]

onSuccess

[Login Failed]
onError

IM Logout

logout

alt [Logout Successful]

onSuccess

[Logout Failed]
onError

1. Log in.

// Log in: userID can be defined by the user and userSig can be generated as per St

V2TIMManager.getInstance().login(userID, userSig, new V2TIMCallback() {

 @Override

 public void onSuccess() {

 Log.i("imsdk", "success");

 }

 @Override

https://intl.cloud.tencent.com/document/product/647/35130

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 43 of 588

 public void onError(int code, String desc) {

 // The following error codes mean an expired UserSig, and you need to gener

 // 1. ERR_USER_SIG_EXPIRED（6206）

 // 2. ERR_SVR_ACCOUNT_USERSIG_EXPIRED（70001）

 // Note: Do not call the log-in API in case of other error codes. Otherwise

 Log.i("imsdk", "failure, code:" + code + ", desc:" + desc);

 }

});

2. Log out.

// Log out.

V2TIMManager.getInstance().logout(new V2TIMCallback() {

 @Override

 public void onSuccess() {

 Log.i("imsdk", "success");

 }

 @Override

 public void onError(int code, String desc) {

 Log.i("imsdk", "failure, code:" + code + ", desc:" + desc);

 }

});

Note:
If your application's lifecycle matches the IM SDK's lifecycle, logging out before exiting the application is not

necessary. However, if you only use the IM SDK after entering a specific interface and stop using it after exiting, you
can log out and deinitialize the IM SDK.

Step 4: Room management.

Sequence diagram

Anchor V2TIMManager TRTCCloud Audience

Create Room

addGroupListener

createGroup Create IM Group

alt [Group Created Successfully]

onSuccess

onGroupCreated

[Failed to Create Group]

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 44 of 588

[Failed to Create Group]
onError

Enter Room

joinGroup Join IM Group

alt [Joined Group Successfully]

onSuccess

onMemberEnter

enterRoom Enter TRTC Room

onEnterRoom

[Failed to Join Group]
onError

addGroupListener

joinGroupJoin IM Group

alt [Joined Group Successfully]

onSuccess

onMemberEnter

onMemberEnter

enterRoomEnter TRTC Room

onEnterRoom

onRemoteUserEnterRoom

[Failed to Join Group]
onError

Exit Room

exitRoomExit TRTC Room

onExitRoom

quitGroupQuit IM Group

alt [Quited group successfully]

onSuccess

onQuitFromGroup

onMemberLeave

[Failed to Quit Group]
onError

Dismiss Room

dismissGroup Dismiss the IM group

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 45 of 588

Anchor V2TIMManager TRTCCloud Audience

g p

alt [Group Dismissed Successfully]

onSuccess

onGroupDismissed

[Failed to Dismiss Group]
onError

1. Create a room.
When the anchor (room owner) starts live streaming, a room needs to be created. The concept of "room" here
corresponds to "group" in IM. This example only shows how to create an IM group on the client, but it is also possible
to create a group on the server.

V2TIMManager.getInstance().createGroup(V2TIMManager.GROUP_TYPE_AVCHATROOM, groupID,

 @Override

 public void onSuccess(String s) {

 // Group creation successful

 }

 @Override

 public void onError(int code, String desc) {

 // Group creation failed

 }

});

// Listen for group creation notifications.

V2TIMManager.getInstance().addGroupListener(new V2TIMGroupListener() {

 @Override

 public void onGroupCreated(String groupID) {

 // Group creation callback. groupID is the ID of the newly created group.

 }

});

Note:
For voice chat room scenarios, when creating IM groups, you need to choose the type of live streaming groups:

 GROUP_TYPE_AVCHATROOM .

TRTC does not have a room-creation API, so when a user attempts to join a room that does not exist, the backend
automatically creates a room.
2. Join a room.
Join IM group.

V2TIMManager.getInstance().joinGroup(groupID, message, new V2TIMCallback() {

 @Override

https://intl.cloud.tencent.com/document/product/1047/34895

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 46 of 588

 public void onSuccess() {

 // Successfully joined the group.

 }

 @Override

 public void onError(int code, String desc) {

 // Failed to join the group.

 }

});

// Listen for the event of joining a group.

V2TIMManager.getInstance().addGroupListener(new V2TIMGroupListener() {

 @Override

 public void onMemberEnter(String groupID, List<V2TIMGroupMemberInfo> memberList)

 // Someone joined the group.

 }

});

Join a TRTC room.

private void enterRoom(String roomId, String userId) {

 TRTCCloudDef.TRTCParams params = new TRTCCloudDef.TRTCParams();

 // Using a string as the room ID for example, it is recommended to keep it cons

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend.

 params.userSig = getUserSig(userId);

 // Replace with your SDKAppID.

 params.sdkAppId = SDKAppID;

 // For entering a room in voice chat interaction scenarios, specify the user's

 params.role = TRTCCloudDef.TRTCRoleAudience;

 // Use room entry in voice chat interaction scenarios as an example.

 mTRTCCloud.enterRoom(params, TRTCCloudDef.TRTC_APP_SCENE_VOICE_CHATROOM);

}

// Event callback for the result of entering the room.

@Override

public void onEnterRoom(long result) {

 if (result > 0) {

 // result indicates the time taken (in milliseconds) to join the room.

 Log.d(TAG, "Enter room succeed");

 } else {

 // result indicates the error code when you fail to enter the room.

 Log.d(TAG, "Enter room failed");

 }

}

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 47 of 588

Note:
TRTC room IDs are divided into integer type roomId and string type strRoomId . The rooms of these two types

are not interconnected. It is recommended to unify the room ID type.

When entering a room in voice chat interaction scenarios, it is necessary to specify the user's role (anchor/audience).
Only anchors have permissions to push streams. If not specified, the default role is anchor.
For voice chat interaction room-entering scenarios, it is recommended to use
 TRTC_APP_SCENE_VOICE_CHATROOM .

3. Exit the room.

Exit the IM group.

V2TIMManager.getInstance().quitGroup(groupID, new V2TIMCallback() {

 @Override

 public void onSuccess() {

 // Exiting the group successful.

 }

 @Override

 public void onError(int code, String desc) {

 // Exiting the group failed.

 }

});

V2TIMManager.getInstance().addGroupListener(new V2TIMGroupListener() {

 @Override

 public void onMemberLeave(String groupID, V2TIMGroupMemberInfo member) {

 // Group member leave callback.

 }

});

Note:
In a live streaming group (AVChatRoom), the group owner cannot exit the group. The owner can only dissolve the
group by calling dismissGroup .

Exit the TRTC room.

private void exitRoom() {

 mTRTCCloud.stopLocalAudio();

 mTRTCCloud.exitRoom();

}

// Event callback for exiting the room.

@Override

public void onExitRoom(int reason) {

 if (reason == 0) {

 Log.d(TAG, "Actively call exitRoom to exit the room.");

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 48 of 588

 } else if (reason == 1) {

 Log.d(TAG, "Removed from the current room by the server.");

 } else if (reason == 2) {

 Log.d(TAG, "The current room has been dissolved.");

 }

}

Note:
After all resources occupied by the SDK are released, the SDK will throw the onExitRoom callback notification to

inform you.
If you want to call enterRoom again or switch to another audio/video SDK, wait for the onExitRoom callback

before proceeding. Otherwise, you may encounter exceptions such as the camera or microphone being forcefully
occupied.
4. Dissolve the room.
Dissolve the IM group.
This example only shows the client method of dissolving an IM group. It can also be done through server dissolves the
group.

V2TIMManager.getInstance().dismissGroup(groupID, new V2TIMCallback() {

 @Override

 public void onSuccess() {

 // Dissolving group successful.

 }

 @Override

 public void onError(int code, String desc) {

 // Dissolving the group failed.

 }

});

V2TIMManager.getInstance().addGroupListener(new V2TIMGroupListener() {

 @Override

 public void onGroupDismissed(String groupID, V2TIMGroupMemberInfo opUser) {

 // Group dissolved callback.

 }

});

Dissolve TRTC room.
Server dissolvement: TRTC provides the Server dissolves the room API DismissRoom (differentiating between

numeric room ID and string room ID). You can call this API to remove all users from the room and dissolve the room.

Client dissolvement: Through the room exit exitRoom API of each client, all the anchors and audiences in the

room can be completed of room exit. After room exit, according to TRTC room lifecycle rules, the room will
automatically be dissolved. For details, see Exit Room.

https://intl.cloud.tencent.com/document/product/1047/34896
https://intl.cloud.tencent.com/document/product/647/34269
https://intl.cloud.tencent.com/document/product/647/48271

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 49 of 588

Warning:
It is recommended that after the end of live streaming, you call the room dissolvement API to ensure the room is
dissolved. This will prevent audiences from accidentally entering the room and incurring unexpected charges.

Step 5: Seat management.

Sequence diagram

Anchor V2TIMManager TRTCCloud Audience

Setup Listening

addGroupListener

addSignalingListener

setListener

setListener

addGroupListener

addSignalingListener

Become a Speaker

invite:onSuccess

onReceiveNewInvitation

alt [Agree to Speaker Reqest]

accept:onSuccess

onInviteeAccepted

setGroupAttributes:onSuccess

onGroupAttributeChanged

Update Local Seat List and View

onGroupAttributeChanged

Update Local Seat List and View

switchRole:Anchor Switch to Anchor Role

onSwitchRole

onRemoteUserEnterRoom

startLocalAudio Start Capturing and Publishing Local Audio Stream

onSendFirstLocalAudioFrame

onUserAudioAvailable:true

onFirstAudioFrame

[Reject Speaker Request]
reject:onSuccess

onInviteeRejected

Invite a Listener to Speak

setGroupAttributes:onSuccess

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 50 of 588

setGroupAttributes:onSuccess

onGroupAttributeChanged

Update Local Seat List and View

onGroupAttributeChanged

Update Local Seat List and View

switchRole:Anchor Switch to Anchor Role

onSwitchRole

onRemoteUserEnterRoom

startLocalAudio Start Capturing and Publishing Local Audio Stream

onSendFirstLocalAudioFrame

onUserAudioAvailable:true

onFirstAudioFrame

Become a Listener

setGroupAttributes:onSuccess

onGroupAttributeChanged

Update Local Seat List and View

onGroupAttributeChanged

Update Local Seat List and View

switchRole:Audience Switch to Audience Role

onSwitchRole

onRemoteUserLeaveRoom

stopLocalAudio Stop Capturing and Publishing Local Audio Stream

onUserAudioAvailable:false

Remove a Speaker

setGroupAttributes:onSuccess

onGroupAttributeChanged

Update Local Seat List and View

onGroupAttributeChanged

Update Local Seat List and View

switchRole:Audience Switch to Audience Role

onSwitchRole

onRemoteUserLeaveRoom

stopLocalAudio Stop Capturing and Publishing Local Audio Stream

onUserAudioAvailable:false

Mute/Unmute Seat

setGroupAttributes:onSuccess

onGroupAttributeChanged

Update Local Seat List and View

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 51 of 588

Anchor V2TIMManager TRTCCloud Audience

onGroupAttributeChanged

Update Local Seat List and View

muteLocalAudio:true/false Pause/Resume Publishing Local Audio Stream

onUserAudioAvailable:false/true

Lock/Unlock Seat

setGroupAttributes:onSuccess

onGroupAttributeChanged

Update Local Seat List and View

onGroupAttributeChanged

Update Local Seat List and View

Seat Movement

setGroupAttributes:onSuccess

onGroupAttributeChanged

Update Local Seat List and View

onGroupAttributeChanged

Update Local Seat List and View

First, we can create a JavaBean to save seat information.

public class SeatInfo implements Serializable {

 public static final transient int STATUS_UNUSED = 0;

 public static final transient int STATUS_USED = 1;

 public static final transient int STATUS_LOCKED = 2;

 // The status of seats. There are three corresponding statuses.

 public int status;

 // Whether the seat is muted.

 public boolean mute;

 // When the seat is occupied, the user information is stored.

 public String userId;

 @Override

 public String toString() {

 return "TXSeatInfo{"

 + "status=" + status

 + ", mute=" + mute

 + ", user='" + userId + '\\''

 + '}';

 }

}

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 52 of 588

1. Become a speaker.
Becoming a speaker refers to off-mic audience sending a request to speak to the room owner or administrator. The
audience can speak once the approval signaling is received. In a free-speaking mode, the signaling request part can

be skipped.
Audience sends a request to speak.

// Audience sends a request to speak. userId is the Anchor ID, and data can pass in

private String sendInvitation(String userId, String data) {

 return V2TIMManager.getSignalingManager().invite(userId, data, true, null, 0, n

 @Override

 public void onError(int i, String s) {

 Log.e(TAG, "sendInvitation error " + i);

 }

 @Override

 public void onSuccess() {

 Log.i(TAG, "sendInvitation success ");

 }

 });

}

// Anchor receives the request to speak. inviteID is the request ID, and inviter is

V2TIMManager.getSignalingManager().addSignalingListener(new V2TIMSignalingListener(

 @Override

 public void onReceiveNewInvitation(String inviteID, String inviter,

 String groupId, List<String> inviteeList, St

 Log.i(TAG, "received invitation: " + inviteID + " from " + inviter);

 }

});

Anchor processes the request to speak.

// Agree to the request to speak.

private void acceptInvitation(String inviteID, String data) {

 V2TIMManager.getSignalingManager().accept(inviteID, data, new V2TIMCallback() {

 @Override

 public void onError(int i, String s) {

 Log.e(TAG, "acceptInvitation error " + i);

 }

 @Override

 public void onSuccess() {

 Log.i(TAG, "acceptInvitation success ");

 }

 });

}

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 53 of 588

// Reject the request to speak.

private void rejectInvitation(String inviteID, String data) {

 V2TIMManager.getSignalingManager().reject(inviteID, data, new V2TIMCallback() {

 @Override

 public void onError(int i, String s) {

 Log.e(TAG, "rejectInvitation error " + i);

 }

 @Override

 public void onSuccess() {

 Log.i(TAG, "rejectInvitation success ");

 }

 });

}

Audience to speak.

If the anchor agrees to the audience's request to speak, the audience can add seat information by modifying group
attributes. Other users will receive a callback for the change in group attributes. Update the local seat information.

// Locally saved full list of seats.

private List<SeatInfo> mSeatInfoList;

// Callback for agreeing to the request to speak.

V2TIMManager.getSignalingManager().addSignalingListener(new V2TIMSignalingListener(

 @Override

 public void onInviteeAccepted(String inviteID, String invitee, String data) {

 Log.i(TAG, "received accept invitation: " + inviteID + " from " + invitee);

 takeSeat(seatIndex);

 }

});

// Audience begins to speak.

private void takeSeat(int seatIndex) {

 // Create a seat information instance. Store the modified seat information.

 SeatInfo localInfo = mSeatInfoList.get(seatIndex);

 SeatInfo seatInfo = new SeatInfo();

 seatInfo.status = SeatInfo.STATUS_USED;

 seatInfo.mute = localInfo.mute;

 seatInfo.userId = mUserId;

 // Serialize the seat information object into JSON format.

 Gson gson = new Gson();

 String json = gson.toJson(seatInfo, SeatInfo.class);

 HashMap<String, String> map = new HashMap<>();

 map.put("seat" + seatIndex, json);

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 54 of 588

 // Set group attributes. If the group attribute already exists, its value is up

 V2TIMManager.getGroupManager().setGroupAttributes(groupId, map, new V2TIMCallba

 @Override

 public void onError(int code, String message) {

 // Failed to modify group attributes. Failed to become a speaker.

 }

 @Override

 public void onSuccess() {

 // Successfully modified group attributes. Switch TRTC role and start s

 mTRTCCloud.switchRole(TRTCCloudDef.TRTCRoleAnchor);

 mTRTCCloud.startLocalAudio(TRTCCloudDef.TRTC_AUDIO_QUALITY_DEFAULT);

 }

 });

}

2. Invite a listener to speak.

Anchor invites a listener to speak (without the need for audience's consent). Directly modify group attributes saved for
seats, and corresponding audiences will receive a callback for the change in group attributes. After matching the
userId successfully, they can switch TRTC role and start streaming. In an invite-to-speak mode, see the
implementation logic of becoming a speaker. Just switch the sender and receiver of the signaling.

// Locally saved full list of seats.

private List<SeatInfo> mSeatInfoList;

// Anchor calls this API to modify the seat information saved in group attributes.

private void pickSeat(String userId, int seatIndex) {

 // Create a seat information instance. Store the modified seat information.

 SeatInfo localInfo = mSeatInfoList.get(seatIndex);

 SeatInfo seatInfo = new SeatInfo();

 seatInfo.status = SeatInfo.STATUS_USED;

 seatInfo.mute = localInfo.mute;

 seatInfo.userId = userId;

 // Serialize the seat information object into JSON format.

 Gson gson = new Gson();

 String json = gson.toJson(seatInfo, SeatInfo.class);

 HashMap<String, String> map = new HashMap<>();

 map.put("seat" + seatIndex, json);

 // Set group attributes. If the group attribute already exists, its value is up

 V2TIMManager.getGroupManager().setGroupAttributes(groupId, map, new V2TIMCallba

 @Override

 public void onError(int code, String message) {

 // Failed to modify group attributes. Failed to be invited to the micro

 }

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 55 of 588

 @Override

 public void onSuccess() {

 // Successfully modified group attributes and it triggers onGroupAttrib

 }

 });

}

// Audience receives group attribute change callback. Audience starts streaming aft

V2TIMManager.getInstance().addGroupListener(new V2TIMGroupListener() {

 @Override

 public void onGroupAttributeChanged(String groupID, Map<String, String> groupAt

 // Last locally saved full list of seats.

 final List<SeatInfo> oldSeatInfoList = mSeatInfoList;

 // The most recent full list of seats parsed from groupAttributeMap.

 final List<SeatInfo> newSeatInfoList = getSeatListFromAttr(groupAttributeMa

 // Iterate through the full list of seats. Compare old and new seat informa

 for (int i = 0; i < seatSize; i++) {

 SeatInfo oldInfo = oldSeatInfoList.get(i);

 SeatInfo newInfo = newSeatInfoList.get(i);

 if (oldInfo.status != newInfo.status && newInfo.status == SeatInfo.STAT

 if (newInfo.userId.equals(mUserId)) {

 // Match own information successfully. Switch TRTC role and sta

 mTRTCCloud.switchRole(TRTCCloudDef.TRTCRoleAnchor);

 mTRTCCloud.startLocalAudio(TRTCCloudDef.TRTC_AUDIO_QUALITY_DEFA

 } else {

 // Update local seat list. Render local seat view.

 }

 }

 }

 }

});

3. Become a listener.
Mic-connecting audiences can reset seat information by modifying group attributes. Other users will receive a group
attribute change callback. Update local seat information.

// Locally saved full list of seats.

private List<SeatInfo> mSeatInfoList;

private void leaveSeat(int seatIndex) {

 // Create a seat information instance. Store the modified seat information.

 SeatInfo localInfo = mSeatInfoList.get(seatIndex);

 SeatInfo seatInfo = new SeatInfo();

 seatInfo.status = SeatInfo.STATUS_UNUSED;

 seatInfo.mute = localInfo.mute;

 seatInfo.userId = "";

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 56 of 588

 // Serialize the seat information object into JSON format.

 Gson gson = new Gson();

 String json = gson.toJson(seatInfo, SeatInfo.class);

 HashMap<String, String> map = new HashMap<>();

 map.put("seat" + seatIndex, json);

 // Set group attributes. If the group attribute already exists, its value is up

 V2TIMManager.getGroupManager().setGroupAttributes(groupId, map, new V2TIMCallba

 @Override

 public void onError(int code, String message) {

 // Failed to modify group attributes. Failed to become a listener.

 }

 @Override

 public void onSuccess() {

 // Successfully modified group attributes. Switch TRTC role and stop st

 mTRTCCloud.switchRole(TRTCCloudDef.TRTCRoleAudience);

 mTRTCCloud.stopLocalAudio();

 }

 });

}

4. Remove a speaker.
Anchor removes a speaker. Directly modify the seat information saved in group attributes. Corresponding mic-
connecting audience receives group attribute change callback. After successfully matching userId, they switch TRTC
role and stop streaming.

// Locally saved full list of seats.

private List<SeatInfo> mSeatInfoList;

// Anchor calls this API to modify the seat information saved in group attributes.

private void kickSeat(int seatIndex) {

 // Create a seat information instance. Store the modified seat information.

 SeatInfo localInfo = mSeatInfoList.get(seatIndex);

 SeatInfo seatInfo = new SeatInfo();

 seatInfo.status = SeatInfo.STATUS_UNUSED;

 seatInfo.mute = localInfo.mute;

 seatInfo.userId = "";

 // Serialize the seat information object into JSON format.

 Gson gson = new Gson();

 String json = gson.toJson(seatInfo, SeatInfo.class);

 HashMap<String, String> map = new HashMap<>();

 map.put("seat" + seatIndex, json);

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 57 of 588

 // Set group attributes. If the group attribute already exists, its value is up

 V2TIMManager.getGroupManager().setGroupAttributes(groupId, map, new V2TIMCallba

 @Override

 public void onError(int code, String message) {

 // Failed to modify group attributes. Failed to remove the speaker.

 }

 @Override

 public void onSuccess() {

 // Successfully modified group attributes and it triggers onGroupAttrib

 }

 });

}

// Mic-connecting audience receives group attribute change callback. It stops strea

V2TIMManager.getInstance().addGroupListener(new V2TIMGroupListener() {

 @Override

 public void onGroupAttributeChanged(String groupID, Map<String, String> groupAt

 // Last locally saved full list of seats.

 final List<SeatInfo> oldSeatInfoList = mSeatInfoList;

 // The most recent full list of seats parsed from groupAttributeMap.

 final List<SeatInfo> newSeatInfoList = getSeatListFromAttr(groupAttributeMa

 // Iterate through the full list of seats. Compare old and new seat informa

 for (int i = 0; i < seatSize; i++) {

 SeatInfo oldInfo = oldSeatInfoList.get(i);

 SeatInfo newInfo = newSeatInfoList.get(i);

 if (oldInfo.status != newInfo.status && newInfo.status == SeatInfo.STAT

 if (oldInfo.userId.equals(mUserId)) {

 // Match own information successfully. Switch TRTC role and sto

 mTRTCCloud.switchRole(TRTCCloudDef.TRTCRoleAudience);

 mTRTCCloud.stopLocalAudio();

 } else {

 // Update local seat list. Render local seat view.

 }

 }

 }

 }

});

5. Mute a seat.
Anchor mutes/unmutes a specific seat. Directly modify the seat information saved in group attributes. Corresponding

mic-connecting audience receives group attribute change callback. After successfully matching userId, they
pause/resume local streaming.

// Locally saved full list of seats.

private List<SeatInfo> mSeatInfoList;

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 58 of 588

// Anchor calls this API to modify the seat information saved in group attributes.

private void muteSeat(int seatIndex, boolean mute) {

 // Create a seat information instance. Store the modified seat information.

 SeatInfo localInfo = mSeatInfoList.get(seatIndex);

 SeatInfo seatInfo = new SeatInfo();

 seatInfo.status = localInfo.status;

 seatInfo.mute = mute;

 seatInfo.userId = localInfo.userId;

 // Serialize the seat information object into JSON format.

 Gson gson = new Gson();

 String json = gson.toJson(seatInfo, SeatInfo.class);

 HashMap<String, String> map = new HashMap<>();

 map.put("seat" + seatIndex, json);

 // Set group attributes. If the group attribute already exists, its value is up

 V2TIMManager.getGroupManager().setGroupAttributes(groupId, map, new V2TIMCallba

 @Override

 public void onError(int code, String message) {

 // Failed to modify group attributes. Failed to mute the seat.

 }

 @Override

 public void onSuccess() {

 // Successfully modified group attributes and it triggers onGroupAttrib

 }

 });

}

// The mic-connecting audience receives the group attribute change callback. The au

V2TIMManager.getInstance().addGroupListener(new V2TIMGroupListener() {

 @Override

 public void onGroupAttributeChanged(String groupID, Map<String, String> groupAt

 // Last locally saved full list of seats.

 final List<SeatInfo> oldSeatInfoList = mSeatInfoList;

 // The most recent full list of seats parsed from groupAttributeMap.

 final List<SeatInfo> newSeatInfoList = getSeatListFromAttr(groupAttributeMa

 // Iterate through the full list of seats. Compare old and new seat informa

 for (int i = 0; i < seatSize; i++) {

 SeatInfo oldInfo = oldSeatInfoList.get(i);

 SeatInfo newInfo = newSeatInfoList.get(i);

 if (oldInfo.mute != newInfo.mute) {

 if (oldInfo.userId.equals(mUserId)) {

 // Match own information successfully. Pause/resume local strea

 mTRTCCloud.muteLocalAudio(newInfo.mute);

 } else {

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 59 of 588

 // Update local seat list. Render local seat view.

 }

 }

 }

 }

});

6. Lock a seat.
Anchor locks/unlocks a seat by directly modifying the seat information saved in group attributes. Audience updates the
corresponding seat view after receiving the group attribute change callback.

// Locally saved full list of seats.

private List<SeatInfo> mSeatInfoList;

// Anchor calls this API to modify the seat information saved in group attributes.

private void lockSeat(int seatIndex, boolean isLock) {

 // Create a seat information instance. Store the modified seat information.

 SeatInfo localInfo = mSeatInfoList.get(seatIndex);

 SeatInfo seatInfo = new SeatInfo();

 seatInfo.status = isLock ? SeatInfo.STATUS_LOCKED : SeatInfo.STATUS_UNUSED;

 seatInfo.mute = localInfo.mute;

 seatInfo.userId = "";

 // Serialize the seat information object into JSON format.

 Gson gson = new Gson();

 String json = gson.toJson(seatInfo, SeatInfo.class);

 HashMap<String, String> map = new HashMap<>();

 map.put("seat" + seatIndex, json);

 // Set group attributes. If the group attribute already exists, its value is up

 V2TIMManager.getGroupManager().setGroupAttributes(groupId, map, new V2TIMCallba

 @Override

 public void onError(int code, String message) {

 // Failed to modify group attributes. Failed to lock the seat.

 }

 @Override

 public void onSuccess() {

 // Successfully modified group attributes and it triggers onGroupAttrib

 }

 });

}

// The audience receives the group attribute change callback. Update the correspond

V2TIMManager.getInstance().addGroupListener(new V2TIMGroupListener() {

 @Override

 public void onGroupAttributeChanged(String groupID, Map<String, String> groupAt

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 60 of 588

 // Last locally saved full list of seats.

 final List<SeatInfo> oldSeatInfoList = mSeatInfoList;

 // The most recent full list of seats parsed from groupAttributeMap.

 final List<SeatInfo> newSeatInfoList = getSeatListFromAttr(groupAttributeMa

 // Iterate through the full list of seats. Compare old and new seat informa

 for (int i = 0; i < seatSize; i++) {

 SeatInfo oldInfo = oldSeatInfoList.get(i);

 SeatInfo newInfo = newSeatInfoList.get(i);

 if (oldInfo.status == SeatInfo.STATUS_LOCKED && newInfo.status == SeatI

 // Unlock a seat.

 } else if (oldInfo.status != newInfo.status && newInfo.status == SeatIn

 // Lock a seat.

 }

 }

 }

});

7. Move a seat.
On-mic anchor moves a seat by necessarily and separately modifying the source and target seat information saved in
group attributes. Audience updates the corresponding seat view after receiving the group attribute change callback.

// Locally saved full list of seats.

private List<SeatInfo> mSeatInfoList;

// On-mic anchor calls this API to modify the seat information saved in group attri

private void moveSeat(int dstIndex) {

 // Obtain the source seat ID by userId.

 int srcIndex = -1;

 for (int i = 0; i < mSeatInfoList.size(); i++) {

 SeatInfo seatInfo = mSeatInfoList.get(i);

 if (seatInfo != null && mUserId.equals(seatInfo.userId)) {

 srcIndex = i;

 break;

 }

 }

 // Obtain the corresponding seat information by its ID.

 SeatInfo srcSeatInfo = mSeatInfoList.get(srcIndex);

 SeatInfo dstSeatInfo = mSeatInfoList.get(dstIndex);

 // Create a seat information instance to store the modified source seat data.

 SeatInfo srcChangeInfo = new SeatInfo();

 srcChangeInfo.status = SeatInfo.STATUS_UNUSED;

 srcChangeInfo.mute = srcSeatInfo.mute;

 srcChangeInfo.userId = "";

 // Create a seat information instance to store the modified target seat data.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 61 of 588

 SeatInfo dstChangeInfo = new SeatInfo();

 dstChangeInfo.status = SeatInfo.STATUS_USED;

 dstChangeInfo.mute = dstSeatInfo.mute;

 dstChangeInfo.userId = mUserId;

 // Serialize the seat information object into JSON format.

 Gson gson = new Gson();

 HashMap<String, String> map = new HashMap<>();

 String json = gson.toJson(srcChangeInfo, SeatInfo.class);

 map.put("seat" + srcIndex, json);

 json = gson.toJson(dstChangeInfo, SeatInfo.class);

 map.put("seat" + dstIndex, json);

 // Set group attributes. If the group attribute already exists, its value is up

 V2TIMManager.getGroupManager().setGroupAttributes(groupId, map, new V2TIMCallba

 @Override

 public void onError(int code, String message) {

 // Failed to modify group attributes. Failed to move the seat.

 }

 @Override

 public void onSuccess() {

 // Modify group attributes successfully. Move the seat successfully.

 }

 });

}

Step 6: Audio management.

Sequence diagram

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 62 of 588

Co_Anchor

Co_Anchor

TRTCCloud

TRTCCloud

Audience

Audience

Pre-Operation

opt [Setting Subscription Mode]

setDefaultStreamRecvMode

enterRoom:role:Audience It's suggested that all users initially enter the room as audience role

onEnterRoom

opt [Enable Volume Callback]

enableAudioVolumeEvaluation

opt [Set Audio Routing]

setAudioRoute

opt [Set Volume Type]

setSystemVolumeType

Pre-Operation as a Co-Anchor

Audio Management

switchRole:Anchor Switch to Anchor Role

onSwitchRole

onRemoteUserEnterRoom

startLocalAudio Start Capturing and Publishing Local Audio Stream

onSendFirstLocalAudioFrame

onUserAudioAvailable:true

alt [Manual Subscription Mode]

muteRemoteAudio:userid:falseManually Start Playing Remote Audio

onFirstAudioFrame

muteLocalAudio:true Pause Publishing Local Audio Stream

onUserAudioAvailable:false

alt [Manual Subscription Mode]

muteRemoteAudio:userid:trueManually Stop Playing Remote Audio

switchRole:Audience Switch to Audience Role

onSwitchRole

onRemoteUserLeaveRoom

stopLocalAudio Stop Capturing and Publishing Local Audio Stream

onUserAudioAvailable:false

alt [Manual Subscription Mode]

muteRemoteAudio:userid:trueManually Stop Playing Remote Audio

1. Subscription mode.
By default, the TRTC SDK uses an automatic subscription mode for audio streams. When users enter the room, the
system will automatically play remote users' voice. If manual subscription to audio streams is needed, calling

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 63 of 588

 muteRemoteAudio(userId, mute) to subscribe to and play remote users' audio streams is required.

// Automatic subscription mode (default).

mTRTCCloud.setDefaultStreamRecvMode(true, true);

// Manual subscription mode (custom).

mTRTCCloud.setDefaultStreamRecvMode(false, false);

Note:
Set the subscription mode setDefaultStreamRecvMode before entering the room enterRoom to ensure to

take effect.
2. Capture and publish.

// Enable local audio capture and publishing.

mTRTCCloud.startLocalAudio(TRTCCloudDef.TRTC_AUDIO_QUALITY_DEFAULT)

// Stop local audio capture and publishing.

mTRTCCloud.stopLocalAudio();

Note:
 startLocalAudio requests mic permissions, and stopLocalAudio releases them.

3. Mute and unmute.

// Pause publishing local audio streams (mute).

mTRTCCloud.muteLocalAudio(true);

// Resume publishing local audio streams (unmute).

mTRTCCloud.muteLocalAudio(false);

// Pause the subscription and playback of a specific remote user's audio streams.

mTRTCCloud.muteRemoteAudio(userId, true);

// Resume the subscription and playback of a specific remote user's audio streams.

mTRTCCloud.muteRemoteAudio(userId, false);

// Pause the subscription and playback of all remote users' audio streams.

mTRTCCloud.muteAllRemoteAudio(true);

// Resume the subscription and playback of all remote users' audio streams.

mTRTCCloud.muteAllRemoteAudio(false);

Note:
In comparison, muteLocalAudio only requires a pause or release of the data stream at the software level, thus it

is more efficient and smoother. And it is better suited for scenarios that require frequent muting and unmuting.
4.
Audio quality and volume type

Audio quality setting

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 64 of 588

// Set audio quality during local audio capture and publishing.

mTRTCCloud.startLocalAudio(TRTCCloudDef.TRTC_AUDIO_QUALITY_DEFAULT);

// Dynamically set audio quality during audio streaming.

mTRTCCloud.setAudioQuality(TRTCCloudDef.TRTC_AUDIO_QUALITY_DEFAULT);

Note:

TRTC's preset audio quality is divided into three levels (Speech/Default/Music), each corresponding to different audio
parameters. See TRTCAudioQuality for details.
Volume type setting.
Each TRTC audio quality level corresponds to a default volume type. If you need to forcibly specify a volume type, you
can use the following API.

// Set volume type.

mTRTCCloud.setSystemVolumeType(TRTCCloudDef.TRTCSystemVolumeTypeAuto);

Note:
TRTC volume types are divided into three levels (VOIP/Auto/Media), each corresponding to different volume

channels. See TRTCSystemVolumeType for details.
Audio routing setting.
Mobile devices such as smartphones usually have two playback locations: the speaker and the earpiece. If you need
to forcibly specify the audio routing, you can use the following API.

// Set audio routing.

mTRTCCloud.setAudioRoute(TRTCCloudDef.TRTC_AUDIO_ROUTE_SPEAKER);

Note:
TRTC audio routing is divided into two types (Speaker/Earpiece), each corresponding to a different sound emission
location. See TRTCAudioRoute for details.

Advanced Features

Bullet screen message interaction.

Voice chat live streaming rooms usually have text-based bullet screen message interactions. This can be achieved

through the sending and receiving of group chat regular text messages via IM.

// Send public screen bullet screen messages.

V2TIMManager.getInstance().sendGroupTextMessage(text, groupID, V2TIMMessage.V2TIM_P

 @Override

 public void onError(int i, String s) {

 // Failed to send bullet screen messages.

https://intl.cloud.tencent.com/document/product/647/50768#9ccda47c68c6d873c7938428e0f9fd5d
https://intl.cloud.tencent.com/document/product/647/50768#18a27b2511b4dfe97f272b7b7d1f6a7e
https://intl.cloud.tencent.com/document/product/647/50768#350887269528ceeaa223423a532cc383

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 65 of 588

 }

 @Override

 public void onSuccess(V2TIMMessage v2TIMMessage) {

 // Successfully sent bullet screen messages.

 }

});

// Receive public screen bullet screen messages.

V2TIMManager.getInstance().addSimpleMsgListener(new V2TIMSimpleMsgListener() {

 @Override

 public void onRecvGroupTextMessage(String msgID, String groupID, V2TIMGroupMemb

 Log.i(TAG, sender.getNickName + ": " + text);

 }

});

Volume level callback.

TRTC can callback the volume levels of the on-mic anchor at a fixed frequency. It is usually used to display sound

waves and indicate the speaking anchor.

// Enable volume level callback. It is recommended to be enabled immediately after

// interval: Callback interval (ms). enable_vad: Whether to enable voice detection.

mTRTCCloud.enableAudioVolumeEvaluation(int interval, boolean enable_vad);

private class TRTCCloudImplListener extends TRTCCloudListener {

 public void onUserVoiceVolume(ArrayList<TRTCCloudDef.TRTCVolumeInfo> userVolume

 super.onUserVoiceVolume(userVolumes, totalVolume);

 // userVolumes is used to hold the volume levels of all speaking users, inc

 // totalVolume is used to report the maximum volume value among remote stre

 ...

 // Adjust the corresponding visual representation of sound waves on the UI

 ...

 }

}

Note:
Voice detection only provides local voice detection results. The user's role must be an anchor to make it convenient to
remind users to turn on their mics.

 userVolumes is an array. For each element in the array, when userId is oneself, it indicates the volume captured

by the local microphone; when userId is others, it indicates the volume of remote users.

Music and sound effect playback.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 66 of 588

Playing background music and sound effects is a high-frequency demand in voice chat room scenarios. Below, we will
explain the use of and precautions for commonly used background music APIs.
1. Start/stop/pause/resume playback.

// Obtain the management class for configuring background music, short sound effect

TXAudioEffectManager mTXAudioEffectManager = mTRTCCloud.getAudioEffectManager();

TXAudioEffectManager.AudioMusicParam param = new TXAudioEffectManager.AudioMusicPar

// Whether to publish the music to remote (otherwise play locally only).

param.publish = true;

// Whether the playback is from a short sound effect file.

param.isShortFile = false;

// Start background music playback.

mTXAudioEffectManager.startPlayMusic(param);

// Stop background music playback.

mTXAudioEffectManager.stopPlayMusic(musicID);

// Pause background music playback.

mTXAudioEffectManager.pausePlayMusic(musicID);

// Resume background music playback.

mTXAudioEffectManager.resumePlayMusic(musicID);

Note:
TRTC supports playing multiple pieces of music simultaneously, each identified uniquely by a musicID. If you want to
play only one piece of music at a time, be sure to stop other music before starting playback, or you can use the same
musicID to play different music. In this way, the SDK will stop the old music first, and then play the new one.
TRTC supports playing both local and online audio files, by passing in a local absolute path or URL address through

 musicPath . MP3/AAC/M4A/WAV formats are supported.

2. Adjust the ratio of music and voice volume.

// Set the local playback volume of a piece of background music.

mTXAudioEffectManager.setMusicPlayoutVolume(musicID, volume);

// Set the remote playback volume of a specific background music.

mTXAudioEffectManager.setMusicPublishVolume(musicID, volume);

// Set the local and remote volume of all background music.

mTXAudioEffectManager.setAllMusicVolume(volume);

// Set the volume of voice capture.

mTXAudioEffectManager.setVoiceCaptureVolume(volume);

Note:
Volume value's normal range is 0-100, with a default of 60 and a maximum setting of 150, but there is a risk of audio

clipping.
If background music is overwhelming vocals, consider lowering the music playback volume and increasing the voice
capture volume.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 67 of 588

Mute microphone without muting background music: Use setVoiceCaptureVolume(0) to replace

 muteLocalAudio(true) .

3. Set music playback event callback.

mTXAudioEffectManager.setMusicObserver(mCurPlayMusicId, new TXAudioEffectManager.TX

 @Override

 // Background music starts playing.

 public void onStart(int id, int errCode) {

 // -4001: Path opening failed.

 // -4002: Decoding failed.

 // -4003: Invalid URL address.

 // -4004: Playback not stopped.

 if (errCode < 0) {

 // Before replaying after playback failure, you must first stop the cur

 mTXAudioEffectManager.stopPlayMusic(id);

 }

 }

 @Override

 // The playback progress of background music.

 public void onPlayProgress(int id, long curPtsMs, long durationMs) {

 // curPtsMS current playback duration (in milliseconds).

 // durationMs: Total duration of the current music (milliseconds).

 }

 @Override

 // Background music has finished playing.

 public void onComplete(int id, int errCode) {

 // Playback failure due to weak network during playback will also throw thi

 // Pausing or stopping playback midway will not trigger the onComplete call

 }

});

Note:
Use this API to set the playback event callback before playing background music to monitor the progress of the music;
If the MusicId does not need to be reused, you can execute setMusicObserver(musicId, null) after

playback is finished to completely release the Observer.

4. Loop playback of background music and sound effects.
Solution 1: Use the AudioMusicParam 's loopCount parameter to set the number of loop playbacks.

The value range is from 0 to any positive integer. The default value is 0. 0 means play the music once; 1 means play
the music twice; and so on.

private void startPlayMusic(int id, String path, int loopCount) {

 TXAudioEffectManager.AudioMusicParam param = new TXAudioEffectManager.AudioMusi

 // Whether to publish music to the remote.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 68 of 588

 param.publish = true;

 // Whether the playback is from a short sound effect file.

 param.isShortFile = true;

 // Set the number of loop playbacks. Negative number means an infinite loop.

 param.loopCount = loopCount < 0 ? Integer.MAX_VALUE : loopCount;

 mTRTCCloud.getAudioEffectManager().startPlayMusic(param);

}

Note:
Solution 1 will not trigger the onComplete callback after each loop playback. It will only be triggered after all the

set loop counts have been played.

Solution 2: Implement loop playback through the "Background music has finished playing" event callback
 onComplete . It is usually used for list loop or single track loop.

// The member variable used for indicating whether to loop playback.

private boolean loopPlay;

private void startPlayMusic(int id, String path) {

 TXAudioEffectManager.AudioMusicParam param = new TXAudioEffectManager.AudioMusi

 mTXAudioEffectManager.setMusicObserver(id, new MusicPlayObserver(id, path));

 mTXAudioEffectManager.startPlayMusic(param);

}

private class MusicPlayObserver implements TXAudioEffectManager.TXMusicPlayObserver

 private final int mId;

 private final String mPath;

 public MusicPlayObserver(int id, String path) {

 mId = id;

 mPath = path;

 }

 @Override

 public void onStart(int i, int i1) {

 }

 @Override

 public void onPlayProgress(int i, long l, long l1) {

 }

 @Override

 public void onComplete(int i, int i1) {

 mTXAudioEffectManager.stopPlayMusic(i);

 if (i1 >= 0 && loopPlay) {

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 69 of 588

 // Here, you can replace the ID or Path of the music in the loop playli

 startPlayMusic(mId, mPath);

 }

 }

}

Mixed stream relay and push back.

1. Live streaming CDN with mixed stream relay.

 private void startPublishMediaToCDN(String streamName) {

 // Expiration time of the streaming URL. By default, it is one day.

 long txTime = (System.currentTimeMillis() / 1000) + (24 * 60 * 60);

 // LIVE_URL_KEY authentication key. Obtain from the streaming URL configuration

 String secretParam = UrlHelper.getSafeUrl(LIVE_URL_KEY, streamName, txTime);

 // The target URLs for media stream publication.

 TRTCCloudDef.TRTCPublishTarget target = new TRTCCloudDef.TRTCPublishTarget();

 // Publish to CDN after mixing.

 target.mode = TRTCCloudDef.TRTC_PublishMixStream_ToCdn;

 TRTCCloudDef.TRTCPublishCdnUrl cdnUrl = new TRTCCloudDef.TRTCPublishCdnUrl();

 // Streaming URL must include parameters. Otherwise, streaming fails.

 cdnUrl.rtmpUrl = "rtmp://" + PUSH_DOMAIN + "/live/" + streamName + "?" + secret

 // True means Tencent CSS push URLs, and false means third-party services.

 cdnUrl.isInternalLine = true;

 // Multiple CDN push URLs can be added.

 target.cdnUrlList.add(cdnUrl);

 // Set the encoding parameters of the transcoded audio stream (can be customize

 TRTCCloudDef.TRTCStreamEncoderParam trtcStreamEncoderParam = new TRTCCloudDef.T

 trtcStreamEncoderParam.audioEncodedChannelNum = 1;

 trtcStreamEncoderParam.audioEncodedKbps = 50;

 trtcStreamEncoderParam.audioEncodedCodecType = 0;

 trtcStreamEncoderParam.audioEncodedSampleRate = 48000;

 // Set the encoding parameters of the transcoded video stream (must be filled i

 trtcStreamEncoderParam.videoEncodedFPS = 15;

 trtcStreamEncoderParam.videoEncodedGOP = 3;

 trtcStreamEncoderParam.videoEncodedKbps = 30;

 trtcStreamEncoderParam.videoEncodedWidth = 64;

 trtcStreamEncoderParam.videoEncodedHeight = 64;

 // Configuration parameters for media stream transcoding.

 TRTCCloudDef.TRTCStreamMixingConfig trtcStreamMixingConfig = new TRTCCloudDef.T

 // By default, leave this field empty. It indicates that all audio in the room

 trtcStreamMixingConfig.audioMixUserList = null;

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 70 of 588

 // Must have TRTCVideoLayout parameters if mixing black frames (can be ignored

 TRTCCloudDef.TRTCVideoLayout videoLayout = new TRTCCloudDef.TRTCVideoLayout();

 trtcStreamMixingConfig.videoLayoutList.add(videoLayout);

 // Start mixing and relaying mixed streams.

 mTRTCCloud.startPublishMediaStream(target, trtcStreamEncoderParam, trtcStreamMi

}

2. Push the mixed stream back to the TRTC room.

private void startPublishMediaToRoom(String roomId, String userId) {

 // Create TRTCPublishTarget object.

 TRTCCloudDef.TRTCPublishTarget target = new TRTCCloudDef.TRTCPublishTarget();

 // After mixing, the stream is relayed back to the room.

 target.mode = TRTCCloudDef.TRTC_PublishMixStream_ToRoom;

 target.mixStreamIdentity.strRoomId = roomId;

 // Mixed stream robot's userid, must not duplicate with other users' userid in

 target.mixStreamIdentity.userId = userId + MIX_ROBOT;

 // Set the encoding parameters of the transcoded audio stream (can be customize

 TRTCCloudDef.TRTCStreamEncoderParam trtcStreamEncoderParam = new TRTCCloudDef.T

 trtcStreamEncoderParam.audioEncodedChannelNum = 2;

 trtcStreamEncoderParam.audioEncodedKbps = 64;

 trtcStreamEncoderParam.audioEncodedCodecType = 2;

 trtcStreamEncoderParam.audioEncodedSampleRate = 48000;

 // Set the encoding parameters of the transcoded video stream (can be ignored f

 trtcStreamEncoderParam.videoEncodedFPS = 15;

 trtcStreamEncoderParam.videoEncodedGOP = 3;

 trtcStreamEncoderParam.videoEncodedKbps = 30;

 trtcStreamEncoderParam.videoEncodedWidth = 64;

 trtcStreamEncoderParam.videoEncodedHeight = 64;

 // Set audio mixing parameters.

 TRTCCloudDef.TRTCStreamMixingConfig trtcStreamMixingConfig = new TRTCCloudDef.T

 // By default, leave this field empty. It indicates that all audio in the room

 trtcStreamMixingConfig.audioMixUserList = null;

 // Configure video mixing template (can be ignored for pure audio mix stream).

 TRTCCloudDef.TRTCVideoLayout videoLayout = new TRTCCloudDef.TRTCVideoLayout();

 trtcStreamMixingConfig.videoLayoutList.add(videoLayout);

 // Start mixing and pushing back.

 mTRTCCloud.startPublishMediaStream(target, trtcStreamEncoderParam, trtcStreamMi

}

3. Event callback and update stop task.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 71 of 588

Task result event callback.

private class TRTCCloudImplListener extends TRTCCloudListener {

 @Override

 public void onStartPublishMediaStream(String taskId, int code, String message,

 // taskId: When the request is successful, TRTC backend will provide the ta

 // code: Callback result. 0 means success and other values mean failure.

 }

 @Override

 public void onUpdatePublishMediaStream(String taskId, int code, String message,

 // When you call the publish media stream API (updatePublishMediaStream), t

 // code: Callback result. 0 means success and other values mean failure.

 }

 @Override

 public void onStopPublishMediaStream(String taskId, int code, String message, B

 // When you call the stop publishing media stream API (stopPublishMediaStre

 // code: Callback result. 0 means success and other values mean failure.

 }

}

Update the published media stream.
This API sends a command to the TRTC server to update the media stream initiated by
 startPublishMediaStream .

// taskId: Task ID returned by the onStartPublishMediaStream callback.

// target: For example, add or remove the published CDN URLs.

// params: It is recommended to maintain consistency in the encoding output paramet

// config: Update the list of users involved in mix stream transcoding, such as cro

mTRTCCloud.updatePublishMediaStream(taskId, target, trtcStreamEncoderParam, trtcStr

Note:
Switching between audio only, audio and video, and video only is not supported within the same task.
Stop publishing media stream.
This API sends a command to the TRTC server to stop the media stream initiated by

 startPublishMediaStream .

// taskId: Task ID returned by the onStartPublishMediaStream callback.

mTRTCCloud.stopPublishMediaStream(taskId);

Note:

If taskId is filled with an empty string, it will stop all media streams initiated by the user through
 startPublishMediaStream . If you have only initiated one media stream or want to stop all media streams

initiated by you, this method is recommended.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 72 of 588

Real-time network quality callback

You can listen to onNetworkQuality to real-time monitor the network quality of both local and remote users. This

callback is thrown every 2 seconds.

private class TRTCCloudImplListener extends TRTCCloudListener {

 @Override

 public void onNetworkQuality(TRTCCloudDef.TRTCQuality localQuality,

 ArrayList<TRTCCloudDef.TRTCQuality> remoteQuality)

 // localQuality userId is empty. It represents the local user's network qua

 // remoteQuality represents the remote user's network quality evaluation re

 switch (localQuality.quality) {

 case TRTCCloudDef.TRTC_QUALITY_Excellent:

 Log.i(TAG, "The current network is excellent.");

 break;

 case TRTCCloudDef.TRTC_QUALITY_Good:

 Log.i(TAG, "The current network is good.");

 break;

 case TRTCCloudDef.TRTC_QUALITY_Poor:

 Log.i(TAG, "The current network is moderate.");

 break;

 case TRTCCloudDef.TRTC_QUALITY_Bad:

 Log.i(TAG, "The current network is poor.");

 break;

 case TRTCCloudDef.TRTC_QUALITY_Vbad:

 Log.i(TAG, "The current network is very poor.");

 break;

 case TRTCCloudDef.TRTC_QUALITY_Down:

 Log.i(TAG, "The current network does not meet the minimum requireme

 break;

 default:

 Log.i(TAG, "Undefined");

 break;

 }

 }

}

Advanced permission control

TRTC advanced permission control can be used to set different entry permissions for different rooms, such as
advanced VIP rooms. It can also be used to control the permission for the audience to speak, such as handling ghost
microphones.
Step 1: Enable the Advanced Permission Control Switch in the TRTC console application's feature configuration page.
Step 2: Generate privateMapKey on the backend. For sample code, see privateMapKey computation source code.

Step 3: Room entry verification & speaking permission verification with PrivateMapKey.

https://console.trtc.io/
https://intl.cloud.tencent.com/document/product/1047/34385#.E6.9C.8D.E5.8A.A1.E7.AB.AF.E8.AE.A1.E7.AE.97-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 73 of 588

Room entry verification

TRTCCloudDef.TRTCParams mTRTCParams = new TRTCCloudDef.TRTCParams();

mTRTCParams.sdkAppId = SDKAPPID;

mTRTCParams.userId = mUserId;

mTRTCParams.strRoomId = mRoomId;

// UserSig obtained from the business backend.

mTRTCParams.userSig = getUserSig();

// PrivateMapKey obtained from the backend.

mTRTCParams.privateMapKey = getPrivateMapKey();

mTRTCParams.role = TRTCCloudDef.TRTCRoleAudience;

mTRTCCloud.enterRoom(mTRTCParams, TRTCCloudDef.TRTC_APP_SCENE_VOICE_CHATROOM);

Speaking permission verification

// Pass in the latest PrivateMapKey obtained from the backend into the role switchi

mTRTCCloud.switchRole(TRTCCloudDef.TRTCRoleAnchor, getPrivateMapKey());

Exception Handling

Exception error handling

When the TRTC SDK encounters an unrecoverable error, the error will be thrown in the onError callback. For

details, see Error Code Table.
UserSig related

UserSig verification failure will lead to room-entering failure. You can use the UserSig tool for verification.

Enumeration Value Description

ERR_TRTC_INVALID_USER_SIG -3320
Room entry parameter userSig is incorrect. Check
if TRTCParams.userSig is empty.

ERR_TRTC_USER_SIG_CHECK_FAILED -100018
UserSig verification failed. Check if the parameter
 TRTCParams.userSig is filled in correctly or
has expired.

Room entry and exit related
If failed to enter the room, you should first verify the correctness of the room entry parameters. It is essential that the
room entry and exit APIs are called in a paired manner. This means that, even in the event of a failed room entry, the
room exit API must still be called.

Enumeration Value Description

ERR_TRTC_CONNECT_SERVER_TIMEOUT -3308 Room entry request timed out. Check if your

https://intl.cloud.tencent.com/document/product/647/35130
https://console.trtc.io/usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 74 of 588

internet connection is lost or if a VPN is enabled.
You may also attempt to switch to 4G for testing.

ERR_TRTC_INVALID_SDK_APPID -3317
Room entry parameter sdkAppId is incorrect.
Check if TRTCParams.sdkAppId is empty.

ERR_TRTC_INVALID_ROOM_ID -3318

Room entry parameter roomId is incorrect.
Check if TRTCParams.roomId or
 TRTCParams.strRoomId is empty. Note
that roomId and strRoomId cannot be used
interchangeably.

ERR_TRTC_INVALID_USER_ID -3319
Room entry parameter userId is incorrect. Check
if TRTCParams.userId is empty.

ERR_TRTC_ENTER_ROOM_REFUSED -3340
Room entry request is denied. Check if
 enterRoom is called consecutively to enter
rooms with the same ID.

Device related

Errors for relevant monitoring devices. Prompt the user via UI in case of relevant errors.

Enumeration Value Description

ERR_MIC_START_FAIL -1302

Failed to open the mic. For example, if there is an exception for
the mic's configuration program (driver) on a Windows or
macOS device, you should try disabling then re-enabling the
device, restarting the machine, or updating the configuration
program.

ERR_SPEAKER_START_FAIL -1321

Failed to open the speaker. For example, if there is an
exception for the speaker's configuration program (driver) on a
Windows or macOS device, you should try disabling then re-
enabling the device, restarting the machine, or updating the
configuration program.

ERR_MIC_OCCUPY -1319 The mic is occupied. This occurs when, for example, the user
is currently having a call on the mobile device.

Exception exit handling.

1. Network disconnection detection and timeout room exit.
You can listen for TRTC disconnection and reconnection events through the following callback notifications.
Upon receiving the onConnectionLost callback, display a network disconnection icon on the local seat UI to

notify the user. Simultaneously, initiate a local timer. If the onConnectionRecovery callback is not received after

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 75 of 588

exceeding the set time threshold, it means the network remains disconnected. Then, locally initiate leaving the seatmic
and room exit process. Pop up a window to inform the user that they have exited the room and the page will be closed.
If the disconnection exceeds 90 seconds (default), a timeout room-exit will be triggered, and the TRTC server will

remove the user from the room. If the user has an anchor role, other users in the room will receive the
 onRemoteUserLeaveRoom callback.

private class TRTCCloudImplListener extends TRTCCloudListener {

 @Override

 public void onConnectionLost() {

 // The connection between the SDK and the cloud has been disconnected.

 }

 @Override

 public void onTryToReconnect() {

 // The SDK is attempting to reconnect to the cloud.

 }

 @Override

 public void onConnectionRecovery() {

 // The connection between the SDK and the cloud has been restored.

 }

}

2. Automatically remove an offline-status user.
The regular statuses of IM users include online (ONLINE), offline (OFFLINE), and not logged in (UNLOGINED). The
offline status typically results from the user force-stopping the process or experiencing an abnormal network
disruption. You may use the feature of anchors subscribing to the connection status of mic-connecting audiences to
detect offline mic-connecting audiences. And then you may remove them.

// Anchor subscribes to the connection status of mic-connecting audiences.

V2TIMManager.getInstance().subscribeUserStatus(userList, new V2TIMCallback() {

 @Override

 public void onSuccess() {

 // Subscription of user status succeeded.

 }

 @Override

 public void onError(int code, String message) {

 // Subscription of user status failed.

 }

});

// Anchor unsubscribes from the connection status of audiences leaving the seat.

V2TIMManager.getInstance().unsubscribeUserStatus(userList, new V2TIMCallback() {

 @Override

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 76 of 588

 public void onSuccess() {

 // Unsubscription of user status succeeded.

 }

 @Override

 public void onError(int code, String message) {

 // Failed to unsubscription of user status.

 }

});

// User status change notification and processing.

V2TIMManager.getInstance().addIMSDKListener(new V2TIMSDKListener() {

 @Override

 public void onUserStatusChanged(List<V2TIMUserStatus> userStatusList) {

 for (V2TIMUserStatus userStatus : userStatusList) {

 final String userId = userStatus.getUserID();

 int status = userStatus.getStatusType();

 if (status == V2TIMUserStatus.V2TIM_USER_STATUS_OFFLINE) {

 // Remove an offline-status user.

 kickSeat(getSeatIndexFromUserId(userId));

 }

 }

 }

});

Note:

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 77 of 588

User-status subscription needs to be upgraded to the advanced package. For details, see Basic Service Details.
User-status subscription needs User status query and status change notification configuration to be enabled in
Instant Messaging (IM) console in advance. Failure to enable will result in an error when calling

 subscribeUserStatus .

Server removes users from and dissolve the room.

1. Server removes users.
First, call the TRTC server user-removing API RemoveUser (for integer room IDs) or RemoveUserByStrRoomId (for
string room IDs) to remove the target user from the TRTC room. The input example is as follows:

https://trtc.tencentcloudapi.com/?Action=RemoveUser

&SdkAppId=1400000001

&RoomId=1234

&UserIds.0=test1

&UserIds.1=test2

&<Common request parameters>

After removing the user successfully, the target user will receive the onExitRoom() callback on the client, with the

 reason value being 1. At this moment, you can handle leaving the seat and exiting the IM group in this callback.

// Exit TRTC room event callback.

@Override

public void onExitRoom(int reason) {

 if (reason == 0) {

 Log.d(TAG, "Actively call exitRoom to exit the room.");

 } else {

 // reason 1: Removed from the current room by the server.

 // reason 2: The current room is dissolved.

 Log.d(TAG, "Removed from the room by the server, or the current room has be

 // Leave the seat.

 leaveSeat(seatIndex);

 // Exit IM group.

 quitGroup(groupID, new V2TIMCallback() {});

 }

}

2. Server dissolves the room.
First, call the IM server group dissolvement API destroy_group to dissolve the target group. The example request URL
is as follows:

https://xxxxxx/v4/group_open_http_svc/destroy_group?

sdkappid=88888888&identifier=admin&usersig=xxx&random=99999999&contenttype=json

https://intl.cloud.tencent.com/document/product/1047/34349#.E5.9F.BA.E7.A1.80.E6.9C.8D.E5.8A.A1.E8.AF.A6.E6.83.85
https://console.intl.cloud.tencent.com/im/login-message
https://intl.cloud.tencent.com/document/product/647/34268
https://intl.cloud.tencent.com/document/product/647/39630
https://intl.cloud.tencent.com/document/product/1047/34896

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 78 of 588

After the group is dissolved, all members within the target group will receive the onGroupDismissed() callback

on clients. At this point, you can handle operations such as exiting the TRTC room in this callback.

// Group dissolved callback.

V2TIMManager.getInstance().addGroupListener(new V2TIMGroupListener() {

 @Override

 public void onGroupDismissed(String groupID, V2TIMGroupMemberInfo opUser) {

 // Exit TRTC room.

 mTRTCCloud.stopLocalAudio();

 mTRTCCloud.exitRoom();

 }

});

Note:
When all users in the room have completed exiting by calling exitRoom() , the TRTC room will be automatically

dissolved. Of course, you can also mandatorily dissolve the TRTC room by calling the server API DismissRoom (for

integer room IDs) or DismissRoomByStrRoomId (for string room IDs).

View live streaming room's historical messages upon room entry.

By default, using AVChatRoom does not store live streaming room's historical messages. Therefore, when new users
enter the live streaming room, they can only see messages sent after their entry. To optimize the experience for new
users joining the group, you can configure the number of messages new live streaming group users can pull before
joining the group in the console, as shown in the figure:

Pulling historical messages before joining the live streaming group for live group users is the same as pulling historical
messages for other groups, as shown in the sample code:

V2TIMMessageListGetOption option = new V2TIMMessageListGetOption();

option.setGetType(V2TIMMessageListGetOption.V2TIM_GET_CLOUD_OLDER_MSG); // Pull ear

option.setGetTimeBegin(1640966400); // Starting from midnight January 1, 2022.

option.setGetTimePeriod(1 * 24 * 60 * 60); // Pull messages from a 24-hour period.

option.setCount(Integer.MAX_VALUE); // Return all messages within the time range.

https://intl.cloud.tencent.com/document/api/647/34269
https://intl.cloud.tencent.com/document/api/647/39631

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 79 of 588

option.setGroupID(#your group id#); // Pull messages for the group chat.

V2TIMManager.getMessageManager().getHistoryMessageList(option, new V2TIMValueCallba

 @Override

 public void onSuccess(List<V2TIMMessage> v2TIMMessages) {

 Log.i("imsdk", "success");

 }

 @Override

 public void onError(int code, String desc) {

 Log.i("imsdk", "failure, code:" + code + ", desc:" + desc);

 }

});

Note:
This feature is only available to advanced users. It only supports pulling up to 20 historical messages within 24 hours
from the group.

Enter the room to sense the mute status of on-mic anchors.

Solution 1: Default all anchors to mute status upon room entry, then unmute the corresponding anchors based on the
 onUserAudioAvailable(userId, true) callback.

private class TRTCCloudImplListener extends TRTCCloudListener {

 @Override

 public void onUserAudioAvailable(String userId, boolean available) {

 if (available) {

 // Unmute the corresponding anchors.

 }

 }

}

Solution 2: Store the mute status of the anchors in the IM group attributes. Audiences entering the room obtain all
group attributes to parse the mute status of on-mic anchors.

V2TIMManager.getGroupManager().getGroupAttributes(groupID, null, new V2TIMValueCall

 @Override

 public void onError(int i, String s) {

 // Failed to obtain the group attributes.

 }

 @Override

 public void onSuccess(Map<String, String> attrMap) {

 // Successfully obtained group attributes. It is assumed that the key used

 String muteStatus = attrMap.get("muteStatus");

 // Parse muteStatus, and obtain the mute status of each on-mic anchor.

 }

});

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 80 of 588

Issues with audio input and output of Bluetooth headphones.

The mobile phone has successfully connected to the Bluetooth headphones, but the audio input or output of the TRTC
application still uses the mobile phone's microphone or speaker.
1. If the audio output is working fine with the Bluetooth headphones, but only the audio input is still using the mobile

phone's microphone, check the settings for the audio volume type. Only under the call volume mode does it support
capturing audio through the microphone on the Bluetooth headphones. For details, see Audio Management - Audio
Quality and Volume Type.

mTRTCCloud.setSystemVolumeType(TRTCCloudDef.TRTCSystemVolumeTypeVOIP);

2. If both audio input and output fail to use the Bluetooth headphones, check if the app has been granted Bluetooth
permissions. Devices running on systems below Android 12 require at least the BLUETOOTH permission. Devices

running on Android 12 and above require at least the BLUETOOTH_CONNECT permission and also the permissions

to be requested dynamically in the code.
To configure Bluetooth permissions in the AndroidManifest.xml for compatibility with systems below Android 12, it is
recommended to declare permissions as follows:

<!--Normal Permission: basic Bluetooth connection permissions-->

<uses-permission android:name="android.permission.BLUETOOTH"

android:maxSdkVersion="30"/>

<!--Normal Permission: Bluetooth management and scan permissions-->

<uses-permission android:name="android.permission.BLUETOOTH_ADMIN"

android:maxSdkVersion="30" />

<!--Runtime Permission: Android 12 Bluetooth permissions for discovering

Bluetooth devices-->

<uses-permission android:name="android.permission.BLUETOOTH_SCAN" />

<!--Runtime Permission: Android 12 Bluetooth permissions for making the current

device discoverable by other Bluetooth devices-->

<uses-permission android:name="android.permission.BLUETOOTH_ADVERTISE" />

<!--Runtime Permission: Android 12 Bluetooth permissions for communicating with

paired Bluetooth devices or checking if Bluetooth is enabled on the current

mobile phone-->

<uses-permission android:name="android.permission.BLUETOOTH_CONNECT" />

For Android 12 and above systems, the method to dynamically request the newly added fine-grained Bluetooth
permissions, is as follows:

private List<String> permissionList = new ArrayList<>();

protected void initPermission() {

 // Check if the Android SDK version is Android 12 and later.

https://intl.cloud.tencent.com/document/product/1228/59942#step1

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 81 of 588

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.S) {

 // Add the required permissions to be requested dynamically according to th

 permissionList.add(Manifest.permission.BLUETOOTH_SCAN);

 permissionList.add(Manifest.permission.BLUETOOTH_ADVERTISE);

 permissionList.add(Manifest.permission.BLUETOOTH_CONNECT);

 }

 if (permissionList.size() != 0) {

 // Dynamically request permissions.

 ActivityCompat.requestPermissions(this, permissionList.toArray(new String[0

 }

}

Issues with supported resource paths for playing music.

When using the TRTC SDK API startPlayMusic to play background music, the music resource path parameter

 path does not support for file paths from directories such as assets or raw used in Android development for storing

application resources. This is because files in these directories are bundled into the APK and are not extracted to the
device's file system after installation. Currently, only absolute paths to network resources URLs, external storage on
Android devices, and files in the application's private directory are supported.
You can work around this issue by copying resource files from the assets directory to either the device external
storage or the application private directory beforehand. Sample code is as follows:

public static void copyAssetsToFile(Context context, String name) {

 // The files directory under the application's directory.

 String savePath = ContextCompat.getExternalFilesDirs(context, null)[0].getAbsol

 // The cache directory under the application's directory.

 // String savePath = getApplication().getExternalCacheDir().getAbsolutePath();

 // The files directory under the application's private storage directory.

 // String savePath = getApplication().getFilesDir().getAbsolutePath();

 String filename = savePath + "/" + name;

 File dir = new File(savePath);

 // Create the directory if it does not exist.

 if (!dir.exists()) {

 dir.mkdir();

 }

 try {

 if (!(new File(filename)).exists()) {

 InputStream is = context.getResources().getAssets().open(name);

 FileOutputStream fos = new FileOutputStream(filename);

 byte[] buffer = new byte[1024];

 int count = 0;

 while ((count = is.read(buffer)) > 0) {

 fos.write(buffer, 0, count);

 }

 fos.close();

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 82 of 588

 is.close();

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

}

Application private storage files directory path: /data/user/0/<package_name>/files/<file_name> .

Application external storage files directory
path: /storage/emulated/0/Android/data/<package_name>/files/<file_name> .

Application external storage cache directory

path: /storage/emulated/0/Android/data/<package_name>/cache/<file_name> .

Note:
If you provide a path that is an external storage path outside of the application's specific directories, on Android 10
and above devices, you may face denial of access to the resource. This is due to Google introducing Partition
Storage, a new storage management system. You can temporarily bypass this by adding the following code inside the
<application> tag in the AndroidManifest.xml file: android:requestLegacyExternalStorage="true" . This

attribute only takes effect on applications with targetSdkVersion 29 (Android 10), and applications with a higher
version targetSdkVersion are still recommended to use the application's private or external storage paths.
For TRTC SDK v11.5 and later, playback of local music resources on Android devices via Content URI from Content
Provider components is supported.
On Android 11 and HarmonyOS 3.0 or later, if you cannot access resource files in the external storage directory, you

need to request the MANAGE_EXTERNAL_STORAGE permission:

First, you need to add the following entry in your application's AndroidManifest file.

<manifest ...>

 <!-- This is the permission itself -->

 <uses-permission android:name="android.permission.MANAGE_EXTERNAL_STORAGE" />

 <application ...>

 ...

 </application>

</manifest>

Then, guide users to manually grant this permission at the point in your application where it is needed.

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.R) {

 if (!Environment.isExternalStorageManager()) {

 Intent intent = new Intent(Settings.ACTION_MANAGE_APP_ALL_FILES_ACCESS_PERM

 Uri uri = Uri.fromParts("package", getPackageName(), null);

 intent.setData(uri);

 startActivity(intent);

 }

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 83 of 588

} else {

 // For Android versions less than Android 11, you can use the old permissions m

 ActivityCompat.requestPermissions(this, new String[]{Manifest.permission.WRITE_

}

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 84 of 588

iOS
Last updated：2024-07-18 14:26:14

Business Process

This document summarizes some common business processes in voice chat rooms to help you better understand the
entire scenario implementation process.
Room management process.

Room owner seat management process.
Audience seat management process.
The following figure shows the room management process, including the creation, joining, exiting, and dissolvement of
rooms.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 85 of 588

The following figure shows the room owner seat management process, including inviting a listener to speak, removing

a speaker, and muting a seat.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 86 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 87 of 588

The following figure shows the audience seat management process, including becoming a speaker, become a
listener, and moving a seat.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 88 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 89 of 588

Integration Preparation

Step 1. Activating the service.

Voice chat room scenarios usually require dependencies on two paid PaaS services from Tencent Cloud, Instant
Messaging (IM) and Tencent Real-Time Communication (TRTC) for construction.
1. First, you need to log in to the Tencent Real-Time Communication (TRTC) console to create an application. At this

time, in the Instant Messaging (IM) console, an IM experience edition application with the same SDKAppID as the
current TRTC application will be automatically created. The account and authentication system of the two can be
reused. Subsequently, you can choose to upgrade the TRTC or IM application version as needed. For example,
advanced versions can unlock more value-added feature services.

Note:
It is recommended to create two applications for testing and production environments, respectively. Each Tencent
Cloud account (UIN) is given 10,000 minutes of free duration every month for one year.

https://intl.cloud.tencent.com/products/im
https://intl.cloud.tencent.com/products/trtc
https://console.trtc.io/
https://console.intl.cloud.tencent.com/im

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 90 of 588

TRTC offers monthly subscription plans including the experience edition (default), basic edition, and professional
edition. Different value-added feature services can be unlocked. For details, see Version Features and Monthly
Subscription Plan Instructions.

2. After creating the application, you can see its basic information in the Application Management - Application
Overview section. It is important to keep the SDKAppID and SDKSecretKey safe for later use and to avoid key
leakage that could lead to traffic theft.

Step 2: Importing SDK.

The TRTC SDK and IM SDK are now available on CocoaPods. It is recommended to integrate the SDK through
CocoaPods.
1. Install CocoaPods.
Enter the following command in a terminal window (you need to install Ruby on your Mac first):

sudo gem install cocoapods

2. Create a Podfile.
Go to the project directory, and enter the following command. A Podfile file will then be created in the project directory.

pod init

3. Edit the Podfile.
Choose the appropriate version for your project and edit the Podfile.

platform :ios, '8.0'

target 'App' do

 # TRTC Lite Edition

 # The installation package has the minimum incremental size. It only

supports two features of Tencent Real-Time Communication (TRTC) and

TXLivePlayer for live streaming playback.

 pod 'TXLiteAVSDK_TRTC', :podspec =>

'https://liteav.sdk.qcloud.com/pod/liteavsdkspec/TXLiteAVSDK_TRTC.podspec'

https://intl.cloud.tencent.com/document/product/647/52816#f10b65d1-6e8d-41e3-8686-84909b00a1a2

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 91 of 588

 # Add the IM SDK

 pod 'TXIMSDK_Plus_iOS'

 # pod 'TXIMSDK_Plus_iOS_XCFramework'

 # pod 'TXIMSDK_Plus_Swift_iOS_XCFramework'

 # If you need to add the Quic plugin, please uncomment the next line.

 # Note: This plugin must be used with the Objective-C edition or

XCFramework edition of the IM SDK, and the plugin version number must match the

IM SDK version number.

 # pod 'TXIMSDK_Plus_QuicPlugin'

end

4. Update and install the SDK.
Enter the following command in a terminal window to update the local repository files and install the SDK.

pod install

Or use the following command to update the local repository.

pod update

Upon the completion of pod command execution, an .xcworkspace project file integrated with the SDK will be
generated. Double-click to open it.
Note:

If the pod search fails, it is recommended to try updating the local repo cache of pod. The update command is as
follows.

pod setup

pod repo update

rm ~/Library/Caches/CocoaPods/search_index.json

Besides CocoaPods integration, you can also choose to download the SDK and manually import it. For details, see
Manually Integrating the TRTC SDK and Manual Integration of IM SDK.
Quic plugin offers axp-quic Multiplexing Transmission Protocol, providing better resistance to poor networks. Even
with a packet loss rate of 70%, it still can offer services. Available only for Flagship users. For non-Flagship users,

purchase the Flagship package before use, and see Pricing Instructions. To ensure proper functionality, update
Terminal SDK to version 7.7.5282 or above.

Step 3: Project configuration.

1. In voice chat scenarios, the TRTC SDK and IM SDK need to be authorized for mic permissions. Add the following
content to your app's Info.plist. It corresponds to the system's prompt message in the dialog box when mic
permissions are requested.

https://intl.cloud.tencent.com/document/product/647/35092#.E6.96.B9.E6.A1.88.E4.BA.8C.EF.BC.9A.E4.B8.8B.E8.BD.BD-sdk-.E5.B9.B6.E6.89.8B.E5.8A.A8.E5.AF.BC.E5.85.A5
https://intl.cloud.tencent.com/document/product/1047/34307#.E6.89.8B.E5.8A.A8.E9.9B.86.E6.88.90
https://intl.cloud.tencent.com/document/product/1047/34577
https://intl.cloud.tencent.com/document/product/1047/34350

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 92 of 588

Privacy - Microphone Usage Description. Also enter a prompt specifying the purpose

2. If you need your App to continue running certain features in the background, go to XCode. Choose your current
project. Under Capabilities, set the settings for Background Modes to ON, and check Audio, AirPlay, and Picture in
Picture, as shown below:

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 93 of 588

Integration Process

Step 1: Generate authentication credentials.

UserSig is a security protection signature designed by Tencent Cloud. Its purpose is to prevent malicious attackers
from misappropriating your cloud service usage rights. Tencent Cloud's Tencent Real-Time Communication (TRTC)

and Instant Messaging (IM) services both implement this security mechanism. TRTC authentication when entering a
room, and IM authentication when logging in.
Debugging Stage: UserSig can be generated through two methods for debugging and testing purposes only: client
sample code and console access.
Formal Operation Stage: It is recommended to use a higher security level server computation for generating UserSig.

This is to prevent key leakage due to client reverse engineering.
The specific implementation process is as follows:

https://intl.cloud.tencent.com/document/product/647/35166#.E5.AE.A2.E6.88.B7.E7.AB.AF.E7.A4.BA.E4.BE.8B.E4.BB.A3.E7.A0.81.E8.AE.A1.E7.AE.97-usersig
https://intl.cloud.tencent.com/document/product/647/35166#.E6.8E.A7.E5.88.B6.E5.8F.B0.E8.8E.B7.E5.8F.96-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 94 of 588

1. Before calling the SDK's initialization function, your app must first request UserSig from your server.
2. Your server computes the UserSig based on the SDKAppID and UserID.
3. The server returns the computed UserSig to your app.

4. Your app passes the obtained UserSig into the SDK through a specific API.
5. The SDK submits the SDKAppID + UserID + UserSig to Tencent Cloud CVM for verification.
6. Tencent Cloud verifies the UserSig and confirms its validity.
7. Once the verification is passed, it will provide instant communication services to the IM SDK and Tencent Real-
Time Communication (TRTC) services to the TRTC SDK.

Note:
The local computation method of UserSig during the debugging stage is not recommended for application in an online
environment. It is prone to reverse engineering, leading to key leakage.

We provide server computation source code for UserSig in multiple programming languages
(Java/GO/PHP/Nodejs/Python/C#/C++). For details, see Server Computation of UserSig.

Step 2: Initialization and listening.

Sequence diagram

https://intl.cloud.tencent.com/document/product/1047/34385#.E6.9C.8D.E5.8A.A1.E7.AB.AF.E8.AE.A1.E7.AE.97-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 95 of 588

APP

APP

V2TIMManager

V2TIMManager

TRTCCloud

TRTCCloud

IM Initialization and Listening

addIMSDKListener

initSDK

onConnecting

onConnectSuccess

TRTC Initialization and Listening

sharedInstance

setListener

onError

onWarning

TRTC Deinitialization and Listening Removal

setListener:null

destroySharedInstance

IM Deinitialization and Listening Removal

removeIMSDKListener

unInitSDK

1. Initialize the IM SDK and add event listeners.

// Obtain the SDKAppID from the Instant Messaging (IM) console.

// Add a V2TIMSDKListener event listener. self is the implementation class of id <V

[[V2TIMManager sharedInstance] addIMSDKListener:self];

// Initialize the IM SDK. After calling this API, you can immediately call the log-

[[V2TIMManager sharedInstance] initSDK:sdkAppID config:config];

// After the SDK is initialized, it will trigger various events, such as connection

- (void)onConnecting {

 NSLog(@"The IM SDK is connecting to Tencent Cloud CVM.");

}

- (void)onConnectSuccess {

 NSLog(@"The IM SDK has successfully connected to Tencent Cloud CVM.");

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 96 of 588

}

// Remove event listener.

// self is the implementation class of id <V2TIMSDKListener>.

[[V2TIMManager sharedInstance] removeIMSDKListener:self];

// Deinitialize the SDK.

[[V2TIMManager sharedInstance] unInitSDK];

Note:
If your application's lifecycle is consistent with the SDK's lifecycle, you do not need to deinitialize before exiting the
application. If you only initialize the SDK after entering a specific interface and no longer use it after exiting, you may

deinitialize the SDK.
2. Create TRTC SDK instances and set event listeners.

// Create TRTC SDK instance (Single Instance Pattern).

_trtcCloud = [TRTCCloud sharedInstance];

// Set event listeners.

_trtcCloud.delegate = self;

// Notifications from various SDK events (e.g., error codes, warning codes, audio a

- (void)onError:(TXLiteAVError)errCode errMsg:(nullable NSString *)errMsg extInfo:(

 NSLog(@"%d: %@", errCode, errMsg);

}

- (void)onWarning:(TXLiteAVWarning)warningCode warningMsg:(nullable NSString *)warn

 NSLog(@"%d: %@", warningCode, warningMsg);

}

// Remove event listener.

_trtcCloud.delegate = nil;

// Terminate TRTC SDK instance (Singleton Pattern).

[TRTCCloud destroySharedIntance];

Note:

It is recommended to listen to SDK event notifications. Perform log printing and handling for some common errors. For
details, see Error Code Table.

Step 3: Log in and log out.

After initializing the IM SDK, you need to call the SDK log-in API to authenticate your account identity and have
permissions to use features. Before using any other features, ensure you are successfully logged in, or you might
encounter feature malfunctions or unavailability. If you only need to use TRTC's audio and video services, you can
skip this step.

Sequence diagram

https://intl.cloud.tencent.com/document/product/647/35135

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 97 of 588

User

User

V2TIMManager

V2TIMManager

Business_Backend

Business_Backend

IM Login

Request UserSig

UserSig

login:userid:usersig

alt [Login Successful]

onSuccess

[Login Failed]
onError

IM Logout

logout

alt [Logout Successful]

onSuccess

[Logout Failed]
onError

1. Log in.

// Log in: userID can be defined by the user and userSig can be generated as per St

[[V2TIMManager sharedInstance] login:userID userSig:userSig succ:^{

 NSLog(@"success");

} fail:^(int code, NSString *desc) {

 // The following error codes mean an expired UserSig, and you need to generate

 // 1. ERR_USER_SIG_EXPIRED(6206).

 // 2. ERR_SVR_ACCOUNT_USERSIG_EXPIRED(70001).

 // Note: Do not call the log-in API in case of other error codes. Otherwise, th

 NSLog(@"failure, code:%d, desc:%@", code, desc);

}];

2. Log out.

// Log out.

[[V2TIMManager sharedInstance] logout:^{

 NSLog(@"success");

} fail:^(int code, NSString *desc) {

 NSLog(@"failure, code:%d, desc:%@", code, desc);

}];

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 98 of 588

Note:
If your application's lifecycle matches the IM SDK's lifecycle, logging out before exiting the application is not
necessary. However, if you only use the IM SDK after entering a specific interface and stop using it after exiting, you

can log out and deinitialize the IM SDK.

Step 4: Room management.

Sequence diagram

Anchor V2TIMManager TRTCCloud Audience

Create Room

addGroupListener

createGroup Create IM Group

alt [Group Created Successfully]

onSuccess

onGroupCreated

[Failed to Create Group]
onError

Enter Room

joinGroup Join IM Group

alt [Joined Group Successfully]

onSuccess

onMemberEnter

enterRoom Enter TRTC Room

onEnterRoom

[Failed to Join Group]
onError

addGroupListener

joinGroupJoin IM Group

alt [Joined Group Successfully]

onSuccess

onMemberEnter

onMemberEnter

t R

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 99 of 588

Anchor V2TIMManager TRTCCloud Audience

enterRoomEnter TRTC Room

onEnterRoom

onRemoteUserEnterRoom

[Failed to Join Group]
onError

Exit Room

exitRoomExit TRTC Room

onExitRoom

quitGroupQuit IM Group

alt [Quited group successfully]

onSuccess

onQuitFromGroup

onMemberLeave

[Failed to Quit Group]
onError

Dismiss Room

dismissGroup Dismiss the IM group

alt [Group Dismissed Successfully]

onSuccess

onGroupDismissed

[Failed to Dismiss Group]
onError

1. Create a room.
When the anchor (room owner) starts live streaming, a room needs to be created. The concept of "room" here
corresponds to "group" in IM. This example only shows how to create an IM group on the client, but it is also possible
to create a group on the server.

// Create a group.

[[V2TIMManager sharedInstance] createGroup:GroupType_AVChatRoom groupID:groupID gro

 // Group created successfully.

} fail:^(int code, NSString *desc) {

 // Group creation failed.

}];

https://intl.cloud.tencent.com/document/product/1047/34895

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 100 of 588

// Listen for group creation notifications.

[[V2TIMManager sharedInstance] addGroupListener:self];

- (void)onGroupCreated:(NSString *)groupID {

 // Group creation callback. groupID is the ID of the newly created group.

}

Note:

For creating an IM group in the voice chat room scenarios, select the live streaming group type:
 GroupType_AVChatRoom .

TRTC does not have a room-creation API, so when a user attempts to join a room that does not exist, the backend
automatically creates a room.
2. Join a room.

Join IM group.

// Join a group.

[[V2TIMManager sharedInstance] joinGroup:groupID msg:message succ:^{

 // Successfully joined the group.

} fail:^(int code, NSString *desc) {

 // Failed to join the group.

}];

// Listen for the event of joining a group.

[[V2TIMManager sharedInstance] addGroupListener:self];

- (void)onMemberEnter:(NSString *)groupID memberList:(NSArray<V2TIMGroupMemberInfo

 // Someone joined the group.

}

Join a TRTC room.

- (void)enterRoomWithRoomId:(NSString *)roomId userID:(NSString *)userId {

 TRTCParams *params = [[TRTCParams alloc] init];

 // Using a string as the room ID for example, it is recommended to keep it cons

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend.

 params.userSig = getUserSig(userId);

 // Replace with your SDKAppID.

 params.sdkAppId = SDKAppID;

 // For entering a room in voice chat interaction scenarios, specify the user's

 params.role = TRTCRoleAudience;

 // Use room entry in voice chat interaction scenarios as an example.

 [self.trtcCloud enterRoom:params appScene:TRTCAppSceneVoiceChatRoom];

}

// Event callback for the result of entering the room.

- (void)onEnterRoom:(NSInteger)result {

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 101 of 588

 if (result > 0) {

 // result indicates the time taken (in milliseconds) to join the room.

 [self toastTip:@"Enter room succeed!"];

 } else {

 // result indicates the error code when you fail to enter the room.

 [self toastTip:@"Enter room failed!"];

 }

}

Note:

TRTC room IDs are divided into integer type roomId and string type strRoomId . The rooms of these two types

are not interconnected. It is recommended to unify the room ID type.
When entering a room in voice chat interaction scenarios, it is necessary to specify the user's role (anchor/audience).
Only anchors have permissions to push streams. If not specified, the default role is anchor.
For entering a room in voice chat interaction scenarios, it is recommended to select

 TRTCAppSceneVoiceChatRoom .

3. Exit the room.
Exit the IM group.

[[V2TIMManager sharedInstance] quitGroup:groupID succ:^{

 // Exiting the group successful.

} fail:^(int code, NSString *desc) {

 // Exiting the group failed.

}];

[[V2TIMManager sharedInstance] addGroupListener:self];

- (void)onMemberLeave:(NSString *)groupID member:(V2TIMGroupMemberInfo *)member {

 // Group member leave callback.

}

Note:
In a live streaming group (AVChatRoom), the group owner cannot exit the group. The owner can only dissolve the
group by calling dismissGroup .

Exit the TRTC room.

- (void)exitTrtcRoom {

 self.trtcCloud = [TRTCCloud sharedInstance];

 [self.trtcCloud stopLocalAudio];

 [self.trtcCloud exitRoom];

}

// Listen for the onExitRoom callback to get the reason for exiting the room.

- (void)onExitRoom:(NSInteger)reason {

 if (reason == 0) {

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 102 of 588

 // Actively call exitRoom to exit the room.

 NSLog(@"Exit current room by calling the 'exitRoom' api of sdk ...");

 } else if (reason == 1) {

 // Removed from the current room by the server.

 NSLog(@"Kicked out of the current room by server through the restful api...

 } else if (reason == 2) {

 // The current room is dissolved.

 NSLog(@"Current room is dissolved by server through the restful api...");

 }

}

Note:
After all resources occupied by the SDK are released, the SDK will throw the onExitRoom callback notification to

inform you.

If you want to call enterRoom again or switch to another audio/video SDK, wait for the onExitRoom callback

before proceeding. Otherwise, you may encounter exceptions such as the camera or microphone being forcefully
occupied.
4. Dissolve the room.
Dissolve the IM group.
This example only shows the client method of dissolving an IM group. It can also be done through server dissolves the

group.

[[V2TIMManager sharedInstance] dismissGroup:groupID succ:^{

 // Dissolving group successful.

} fail:^(int code, NSString *desc) {

 // Dissolving the group failed.

}];

[[V2TIMManager sharedInstance] addGroupListener:self];

- (void)onGroupDismissed:(NSString *)groupID opUser:(V2TIMGroupMemberInfo *)opUser

 // Group dissolved callback.

}

Dissolve TRTC room.
Server dissolvement: TRTC provides the Server dissolves the room API DismissRoom (differentiating between

numeric room ID and string room ID). You can call this API to remove all users from the room and dissolve the room.
Client dissolvement: Through the room exit exitRoom API of each client, all the anchors and audiences in the

room can be completed of room exit. After room exit, according to TRTC room lifecycle rules, the room will
automatically be dissolved. For details, see Exit Room.
Warning:
It is recommended that after the end of live streaming, you call the room dissolvement API to ensure the room is
dissolved. This will prevent audiences from accidentally entering the room and incurring unexpected charges.

https://intl.cloud.tencent.com/document/product/1047/34896
https://intl.cloud.tencent.com/document/product/647/34269
https://intl.cloud.tencent.com/document/product/647/48271

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 103 of 588

Step 5: Seat management.

Sequence diagram

Anchor V2TIMManager TRTCCloud Audience

Setup Listening

addGroupListener

addSignalingListener

setListener

setListener

addGroupListener

addSignalingListener

Become a Speaker

invite:onSuccess

onReceiveNewInvitation

alt [Agree to Speaker Reqest]

accept:onSuccess

onInviteeAccepted

setGroupAttributes:onSuccess

onGroupAttributeChanged

Update Local Seat List and View

onGroupAttributeChanged

Update Local Seat List and View

switchRole:Anchor Switch to Anchor Role

onSwitchRole

onRemoteUserEnterRoom

startLocalAudio Start Capturing and Publishing Local Audio Stream

onSendFirstLocalAudioFrame

onUserAudioAvailable:true

onFirstAudioFrame

[Reject Speaker Request]
reject:onSuccess

onInviteeRejected

Invite a Listener to Speak

setGroupAttributes:onSuccess

onGroupAttributeChanged

U d t L l S t Li t d Vi

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 104 of 588

Update Local Seat List and View

onGroupAttributeChanged

Update Local Seat List and View

switchRole:Anchor Switch to Anchor Role

onSwitchRole

onRemoteUserEnterRoom

startLocalAudio Start Capturing and Publishing Local Audio Stream

onSendFirstLocalAudioFrame

onUserAudioAvailable:true

onFirstAudioFrame

Become a Listener

setGroupAttributes:onSuccess

onGroupAttributeChanged

Update Local Seat List and View

onGroupAttributeChanged

Update Local Seat List and View

switchRole:Audience Switch to Audience Role

onSwitchRole

onRemoteUserLeaveRoom

stopLocalAudio Stop Capturing and Publishing Local Audio Stream

onUserAudioAvailable:false

Remove a Speaker

setGroupAttributes:onSuccess

onGroupAttributeChanged

Update Local Seat List and View

onGroupAttributeChanged

Update Local Seat List and View

switchRole:Audience Switch to Audience Role

onSwitchRole

onRemoteUserLeaveRoom

stopLocalAudio Stop Capturing and Publishing Local Audio Stream

onUserAudioAvailable:false

Mute/Unmute Seat

setGroupAttributes:onSuccess

onGroupAttributeChanged

Update Local Seat List and View

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 105 of 588

Anchor V2TIMManager TRTCCloud Audience

p

onGroupAttributeChanged

Update Local Seat List and View

muteLocalAudio:true/false Pause/Resume Publishing Local Audio Stream

onUserAudioAvailable:false/true

Lock/Unlock Seat

setGroupAttributes:onSuccess

onGroupAttributeChanged

Update Local Seat List and View

onGroupAttributeChanged

Update Local Seat List and View

Seat Movement

setGroupAttributes:onSuccess

onGroupAttributeChanged

Update Local Seat List and View

onGroupAttributeChanged

Update Local Seat List and View

Firstly, we can create a model to save seat information.

#import "JSONModel.h"

typedef NS_ENUM(NSUInteger, SeatInfoStatus) {

 SeatInfoStatusUnused = 0,

 SeatInfoStatusUsed = 1,

 SeatInfoStatusLocked = 2,

};

NS_ASSUME_NONNULL_BEGIN

@interface SeatInfoModel : JSONModel

/// Seat status, corresponding to three statuses.

@property (nonatomic, assign) SeatInfoStatus status;

/// Whether the seat is muted.

@property (nonatomic, assign) BOOL mute;

/// When the seat is occupied, store the user information.

@property (nonatomic, copy) NSString *userId;

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 106 of 588

@end

NS_ASSUME_NONNULL_END

1. Become a speaker.
Becoming a speaker refers to off-mic audience sending a request to speak to the room owner or administrator. The
audience can speak once the approval signaling is received. In a free-speaking mode, the signaling request part can
be skipped.

Audience sends a request to speak.

// Audience sends a request to speak. userId is the Anchor ID, and data can pass in

- (void)sendInvitationWithUserId:(NSString *)userId data:(NSString *)data {

 [[V2TIMManager sharedInstance] invite:userId data:data onlineUserOnly:YES offli

 NSLog(@"sendInvitation success");

 } fail:^(int code, NSString *desc) {

 NSLog(@"sendInvitation error %d", code);

 }];

}

// Anchor receives the request to speak. inviteID is the request ID, and inviter is

[[V2TIMManager sharedInstance] addSignalingListener:self];

- (void)onReceiveNewInvitation:(NSString *)inviteID inviter:(NSString *)inviter gro

 NSLog(@"received invitation: %@ from %@", inviteID, inviter);

}

Anchor processes the request to speak.

// Agree to the request to speak.

- (void)acceptInvitationWithInviteID:(NSString *)inviteID data:(NSString *)data {

 [[V2TIMManager sharedInstance] accept:inviteID data:data succ:^{

 NSLog(@"acceptInvitation success");

 } fail:^(int code, NSString *desc) {

 NSLog(@"acceptInvitation error %d", code);

 }];

}

// Reject the request to speak.

- (void)rejectInvitationWithInviteID:(NSString *)inviteID data:(NSString *)data {

 [[V2TIMManager sharedInstance] reject:inviteID data:data succ:^{

 NSLog(@"rejectInvitation success");

 } fail:^(int code, NSString *desc) {

 NSLog(@"rejectInvitation error %d", code);

 }];

}

Audience to speak.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 107 of 588

If the anchor agrees to the audience's request to speak, the audience can add seat information by modifying group
attributes. Other users will receive a callback for the change in group attributes. Update the local seat information.

// Locally saved full list of seats.

@property (nonatomic, copy) NSArray<SeatInfoModel *> *seatInfoArray;

// Callback for agreeing to the request to speak.

- (void)onInviteeAccepted:(NSString *)inviteID invitee:(NSString *)invitee data:(NS

 NSLog(@"received accept invitation: %@ from %@", inviteID, invitee);

 NSInteger seatIndex = [self findSeatIndex:inviteID];

 [self takeSeatWithIndex:seatIndex];

}

// Audience begins to speak.

- (void)takeSeatWithIndex:(NSInteger)seatIndex {

 // Create a seat information instance. Store the modified seat information.

 SeatInfoModel *localInfo = self.seatInfoArray[seatIndex];

 SeatInfoModel *seatInfo = [[SeatInfoModel alloc] init];

 seatInfo.status = SeatInfoStatusUsed;

 seatInfo.mute = localInfo.mute;

 seatInfo.userId = self.userId;

 // Serialize the seat information object into JSON format.

 NSString *jsonStr = seatInfo.toJSONString;

 NSDictionary *dict = @{ [NSString stringWithFormat:@"seat%ld", seatIndex]: json

 // Set group attributes. If the group attribute already exists, its value is up

 [[V2TIMManager sharedInstance] setGroupAttributes:self.groupId attributes:dict

 // Successfully modified group attributes. Switch TRTC role and start strea

 [self.trtcCloud switchRole:TRTCRoleAnchor];

 [self.trtcCloud startLocalAudio:TRTCAudioQualityDefault];

 } fail:^(int code, NSString *desc) {

 // Failed to modify group attributes. Failed to become a speaker.

 }];

}

2. Invite a listener to speak.
Anchor invites a listener to speak (without the need for audience's consent). Directly modify group attributes saved for
seats, and corresponding audiences will receive a callback for the change in group attributes. After matching the
userId successfully, they can switch TRTC role and start streaming. In an invite-to-speak mode, see the

implementation logic of becoming a speaker. Just switch the sender and receiver of the signaling.

// Locally saved full list of seats.

@property (nonatomic, copy) NSArray<SeatInfoModel *> *seatInfoArray;

// Anchor calls this API to modify the seat information saved in group attributes.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 108 of 588

- (void)pickSeatWithUserId:(NSString *)userId seatIndex:(NSInteger)seatIndex {

 // Create a seat information instance. Store the modified seat information.

 SeatInfoModel *localInfo = self.seatInfoArray[seatIndex];

 SeatInfoModel *seatInfo = [[SeatInfoModel alloc] init];

 seatInfo.status = SeatInfoStatusUsed;

 seatInfo.mute = localInfo.mute;

 seatInfo.userId = self.userId;

 // Serialize the seat information object into JSON format.

 NSString *jsonStr = seatInfo.toJSONString;

 NSDictionary *dict = @{ [NSString stringWithFormat:@"seat%ld", seatIndex]: json

 // Set group attributes. If the group attribute already exists, its value is up

 [[V2TIMManager sharedInstance] setGroupAttributes:self.groupId attributes:dict

 // Successfully modified group attributes and it triggers onGroupAttributeC

 } fail:^(int code, NSString *desc) {

 // Failed to modify group attributes. Failed to become a speaker.

 }];

}

// Audience receives group attribute change callback. Audience starts streaming aft

[[V2TIMManager sharedInstance] addGroupListener:self];

- (void)onGroupAttributeChanged:(NSString *)groupID attributes:(NSMutableDictionary

 // Last locally saved full list of seats.

 NSArray *oldSeatArray = self.seatInfoArray;

 // The most recent full list of seats parsed from groupAttributeMap.

 NSArray *newSeatArray = [self getSeatListFromAttr:attributes seatSize:self.seat

 // Iterate through the full list of seats. Compare old and new seat information

 for (int i = 0; i < self.seatSize; i++) {

 SeatInfoModel *oldInfo = oldSeatArray[i];

 SeatInfoModel *newInfo = newSeatArray[i];

 if (oldInfo.status != newInfo.status && newInfo.status == SeatInfoStatusUse

 if ([newInfo.userId isEqualToString:self.userId]) {

 // Match own information successfully. Switch TRTC role and start s

 [self.trtcCloud switchRole:TRTCRoleAnchor];

 [self.trtcCloud startLocalAudio:TRTCAudioQualityDefault];

 } else {

 // Update local seat list. Render local seat view.

 }

 }

 }

}

3. Become a listener.

Mic-connecting audiences can reset seat information by modifying group attributes. Other users will receive a group
attribute change callback. Update local seat information.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 109 of 588

// Locally saved full list of seats.

@property (nonatomic, copy) NSArray<SeatInfoModel *> *seatInfoArray;

- (void)leaveSeatWithIndex:(NSInteger)seatIndex {

 // Create a seat information instance. Store the modified seat information.

 SeatInfoModel *localInfo = self.seatInfoArray[seatIndex];

 SeatInfoModel *seatInfo = [[SeatInfoModel alloc] init];

 seatInfo.status = SeatInfoStatusUnused;

 seatInfo.mute = localInfo.mute;

 seatInfo.userId = @"";

 // Serialize the seat information object into JSON format.

 NSString *jsonStr = seatInfo.toJSONString;

 NSDictionary *dict = @{ [NSString stringWithFormat:@"seat%ld", seatIndex]: json

 // Set group attributes. If the group attribute already exists, its value is up

 [[V2TIMManager sharedInstance] setGroupAttributes:self.groupId attributes:dict

 // Successfully modified group attributes. Switch TRTC role and stop stream

 [self.trtcCloud switchRole:TRTCRoleAudience];

 [self.trtcCloud stopLocalAudio];

 } fail:^(int code, NSString *desc) {

 // Failed to modify group attributes. Failed to become a listener.

 }];

}

4. Remove a speaker.
Anchor removes a speaker. Directly modify the seat information saved in group attributes. Corresponding mic-

connecting audience receives group attribute change callback. After successfully matching userId, they switch TRTC
role and stop streaming.

// Locally saved full list of seats.

@property (nonatomic, copy) NSArray<SeatInfoModel *> *seatInfoArray;

// Anchor calls this API to modify the seat information saved in group attributes.

- (void)kickSeatWithIndex:(NSInteger)seatIndex {

 // Create a seat information instance. Store the modified seat information.

 SeatInfoModel *localInfo = self.seatInfoArray[seatIndex];

 SeatInfoModel *seatInfo = [[SeatInfoModel alloc] init];

 seatInfo.status = SeatInfoStatusUnused;

 seatInfo.mute = localInfo.mute;

 seatInfo.userId = @"";

 // Serialize the seat information object into JSON format.

 NSString *jsonStr = seatInfo.toJSONString;

 NSDictionary *dict = @{ [NSString stringWithFormat:@"seat%ld", seatIndex]: json

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 110 of 588

 // Set group attributes. If the group attribute already exists, its value is up

 [[V2TIMManager sharedInstance] setGroupAttributes:self.groupId attributes:dict

 // Successfully modified group attributes and it triggers onGroupAttributeC

 } fail:^(int code, NSString *desc) {

 // Failed to modify group attributes. Failed to remove the speaker.

 }];

}

// Mic-connecting audience receives group attribute change callback. It stops strea

[[V2TIMManager sharedInstance] addGroupListener:self];

- (void)onGroupAttributeChanged:(NSString *)groupID attributes:(NSMutableDictionary

 // Last locally saved full list of seats.

 NSArray *oldSeatArray = self.seatInfoArray;

 // The most recent full list of seats parsed from groupAttributeMap.

 NSArray *newSeatArray = [self getSeatListFromAttr:attributes seatSize:self.seat

 // Iterate through the full list of seats. Compare old and new seat information

 for (int i = 0; i < self.seatSize; i++) {

 SeatInfoModel *oldInfo = oldSeatArray[i];

 SeatInfoModel *newInfo = newSeatArray[i];

 if (oldInfo.status != newInfo.status && newInfo.status == SeatInfoStatusUnu

 if ([newInfo.userId isEqualToString:self.userId]) {

 // Match own information successfully. Switch TRTC role and stop st

 [self.trtcCloud switchRole:TRTCRoleAudience];

 [self.trtcCloud stopLocalAudio];

 } else {

 // Update local seat list. Render local seat view.

 }

 }

 }

}

5. Mute a seat.
Anchor mutes/unmutes a specific seat. Directly modify the seat information saved in group attributes. Corresponding
mic-connecting audience receives group attribute change callback. After successfully matching userId, they
pause/resume local streaming.

// Locally saved full list of seats.

@property (nonatomic, copy) NSArray<SeatInfoModel *> *seatInfoArray;

// Anchor calls this API to modify the seat information saved in group attributes.

- (void)muteSeatWithIndex:(NSInteger)seatIndex mute:(BOOL)mute {

 // Create a seat information instance. Store the modified seat information.

 SeatInfoModel *localInfo = self.seatInfoArray[seatIndex];

 SeatInfoModel *seatInfo = [[SeatInfoModel alloc] init];

 seatInfo.status = localInfo.status;

 seatInfo.mute = mute;

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 111 of 588

 seatInfo.userId = localInfo.userId;

 // Serialize the seat information object into JSON format.

 NSString *jsonStr = seatInfo.toJSONString;

 NSDictionary *dict = @{ [NSString stringWithFormat:@"seat%ld", seatIndex]: json

 // Set group attributes. If the group attribute already exists, its value is up

 [[V2TIMManager sharedInstance] setGroupAttributes:self.groupId attributes:dict

 // Successfully modified group attributes and it triggers onGroupAttributeC

 } fail:^(int code, NSString *desc) {

 // Failed to modify group attributes. Failed to mute the seat.

 }];

}

// The mic-connecting audience receives the group attribute change callback. The au

[[V2TIMManager sharedInstance] addGroupListener:self];

- (void)onGroupAttributeChanged:(NSString *)groupID attributes:(NSMutableDictionary

 // Last locally saved full list of seats.

 NSArray *oldSeatArray = self.seatInfoArray;

 // The most recent full list of seats parsed from groupAttributeMap.

 NSArray *newSeatArray = [self getSeatListFromAttr:attributes seatSize:self.seat

 // Iterate through the full list of seats. Compare old and new seat information

 for (int i = 0; i < self.seatSize; i++) {

 SeatInfoModel *oldInfo = oldSeatArray[i];

 SeatInfoModel *newInfo = newSeatArray[i];

 if (oldInfo.mute != newInfo.mute) {

 if ([newInfo.userId isEqualToString:self.userId]) {

 // Match own information successfully. Pause/resume local streaming

 [self.trtcCloud muteLocalAudio:newInfo.mute];

 } else {

 // Update local seat list. Render local seat view.

 }

 }

 }

}

6. Lock a seat.

Anchor locks/unlocks a seat by directly modifying the seat information saved in group attributes. Audience updates the
corresponding seat view after receiving the group attribute change callback.

// Locally saved full list of seats.

@property (nonatomic, copy) NSArray<SeatInfoModel *> *seatInfoArray;

// Anchor calls this API to modify the seat information saved in group attributes.

- (void)lockSeatWithIndex:(NSInteger)seatIndex isLock:(BOOL)isLock {

 // Create a seat information instance. Store the modified seat information.

 SeatInfoModel *localInfo = self.seatInfoArray[seatIndex];

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 112 of 588

 SeatInfoModel *seatInfo = [[SeatInfoModel alloc] init];

 seatInfo.status = isLock? SeatInfoStatusLocked : SeatInfoStatusUnused;

 seatInfo.mute = localInfo.mute;

 seatInfo.userId = @"";

 // Serialize the seat information object into JSON format.

 NSString *jsonStr = seatInfo.toJSONString;

 NSDictionary *dict = @{ [NSString stringWithFormat:@"seat%ld", seatIndex]: json

 // Set group attributes. If the group attribute already exists, its value is up

 [[V2TIMManager sharedInstance] setGroupAttributes:self.groupId attributes:dict

 // Successfully modified group attributes and it triggers onGroupAttributeC

 } fail:^(int code, NSString *desc) {

 // Failed to modify group attributes. Failed to lock the seat.

 }];

}

// The audience receives the group attribute change callback. Update the correspond

[[V2TIMManager sharedInstance] addGroupListener:self];

- (void)onGroupAttributeChanged:(NSString *)groupID attributes:(NSMutableDictionary

 // Last locally saved full list of seats.

 NSArray *oldSeatArray = self.seatInfoArray;

 // The most recent full list of seats parsed from groupAttributeMap.

 NSArray *newSeatArray = [self getSeatListFromAttr:attributes seatSize:self.seat

 // Iterate through the full list of seats. Compare old and new seat information

 for (int i = 0; i < self.seatSize; i++) {

 SeatInfoModel *oldInfo = oldSeatArray[i];

 SeatInfoModel *newInfo = newSeatArray[i];

 if (oldInfo.status == SeatInfoStatusLocked && newInfo.status == SeatInfoSta

 // Unlock a seat.

 } else if (oldInfo.status != newInfo.status && newInfo.status == SeatInfoSt

 // Lock a seat.

 }

 }

}

7. Move a seat.

On-mic anchor moves a seat by necessarily and separately modifying the source and target seat information saved in
group attributes. Audience updates the corresponding seat view after receiving the group attribute change callback.

// Locally saved full list of seats.

@property (nonatomic, copy) NSArray<SeatInfoModel *> *seatInfoArray;

// On-mic anchor calls this API to modify the seat information saved in group attri

- (void)moveSeatToIndex:(NSInteger)dstIndex {

 // Obtain the source seat ID by userId.

 __block NSInteger srcIndex = -1;

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 113 of 588

 [self.seatInfoArray enumerateObjectsUsingBlock:^(SeatInfoModel * _Nonnull seatI

 if ([seatInfo.userId isEqualToString:self.userId]) {

 srcIndex = idx;

 *stop = YES;

 }

 }];

 if (srcIndex < 0 || dstIndex < 0 || dstIndex >= self.seatInfoArray.count) {

 return;

 }

 // Obtain the corresponding seat information by its ID.

 SeatInfoModel *srcSeatInfo = self.seatInfoArray[srcIndex];

 SeatInfoModel *dstSeatInfo = self.seatInfoArray[dstIndex];

 // Create a seat information instance to store the modified source seat data.

 SeatInfoModel *srcChangeInfo = [[SeatInfoModel alloc] init];

 srcChangeInfo.status = SeatInfoStatusUnused;

 srcChangeInfo.mute = srcSeatInfo.mute;

 srcChangeInfo.userId = @"";

 // Create a seat information instance to store the modified target seat data.

 SeatInfoModel *dstChangeInfo = [[SeatInfoModel alloc] init];

 dstChangeInfo.status = SeatInfoStatusUsed;

 dstChangeInfo.mute = dstSeatInfo.mute;

 dstChangeInfo.userId = self.userId;

 // Serialize the seat information object into JSON format.

 NSString *srcJsonStr = srcChangeInfo.toJSONString;

 NSString *dstJsonStr = dstChangeInfo.toJSONString;

 NSDictionary *dict = @{ [NSString stringWithFormat:@"seat%ld", srcIndex]: srcJs

 [NSString stringWithFormat:@"seat%ld", dstIndex]: dstJs

 };

 // Set group attributes. If the group attribute already exists, its value is up

 [[V2TIMManager sharedInstance] setGroupAttributes:self.groupId attributes:dict

 // Modify group attributes successfully. Move the seat successfully.

 } fail:^(int code, NSString *desc) {

 // Failed to modify group attributes. Failed to move the seat.

 }];

}

Step 6: Audio management.

Sequence diagram

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 114 of 588

Co_Anchor

Co_Anchor

TRTCCloud

TRTCCloud

Audience

Audience

Pre-Operation

opt [Setting Subscription Mode]

setDefaultStreamRecvMode

enterRoom:role:Audience It's suggested that all users initially enter the room as audience role

onEnterRoom

opt [Enable Volume Callback]

enableAudioVolumeEvaluation

opt [Set Audio Routing]

setAudioRoute

opt [Set Volume Type]

setSystemVolumeType

Pre-Operation as a Co-Anchor

Audio Management

switchRole:Anchor Switch to Anchor Role

onSwitchRole

onRemoteUserEnterRoom

startLocalAudio Start Capturing and Publishing Local Audio Stream

onSendFirstLocalAudioFrame

onUserAudioAvailable:true

alt [Manual Subscription Mode]

muteRemoteAudio:userid:falseManually Start Playing Remote Audio

onFirstAudioFrame

muteLocalAudio:true Pause Publishing Local Audio Stream

onUserAudioAvailable:false

alt [Manual Subscription Mode]

muteRemoteAudio:userid:trueManually Stop Playing Remote Audio

switchRole:Audience Switch to Audience Role

onSwitchRole

onRemoteUserLeaveRoom

stopLocalAudio Stop Capturing and Publishing Local Audio Stream

onUserAudioAvailable:false

alt [Manual Subscription Mode]

muteRemoteAudio:userid:trueManually Stop Playing Remote Audio

1. Subscription mode.
By default, the TRTC SDK uses an automatic subscription mode for audio streams. When users enter the room, the
system will automatically play remote users' voice. If manual subscription to audio streams is needed, calling

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 115 of 588

 muteRemoteAudio(userId, mute) to subscribe to and play remote users' audio streams is required.

// Automatic subscription mode (default).

[self.trtcCloud setDefaultStreamRecvMode:YES video:YES];

// Manual subscription mode (custom).

[self.trtcCloud setDefaultStreamRecvMode:NO video:NO];

Note:
Set the subscription mode setDefaultStreamRecvMode before entering the room enterRoom to ensure to

take effect.
2. Capture and publish.

// Enable local audio capture and publishing.

[self.trtcCloud startLocalAudio:TRTCAudioQualityDefault];

// Stop local audio capture and publishing.

[self.trtcCloud stopLocalAudio];

Note:
 startLocalAudio requests mic permissions, and stopLocalAudio releases them.

3. Mute and unmute.

// Pause publishing local audio streams (mute).

[self.trtcCloud muteLocalAudio:YES];

// Resume publishing local audio streams (unmute).

[self.trtcCloud muteLocalAudio:NO];

// Pause the subscription and playback of a specific remote user's audio streams.

[self.trtcCloud muteRemoteAudio:userId mute:YES];

// Resume the subscription and playback of a specific remote user's audio streams.

[self.trtcCloud muteRemoteAudio:userId mute:NO];

// Pause the subscription and playback of all remote users' audio streams.

[self.trtcCloud muteAllRemoteAudio:YES];

// Resume the subscription and playback of all remote users' audio streams.

[self.trtcCloud muteAllRemoteAudio:NO];

Note:
In comparison, muteLocalAudio only requires a pause or release of the data stream at the software level, thus it

is more efficient and smoother. And it is better suited for scenarios that require frequent muting and unmuting.
4. Audio Quality and Volume Type
Audio quality setting

// Set audio quality during local audio capture and publishing.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 116 of 588

[self.trtcCloud startLocalAudio:TRTCAudioQualityDefault];

// Dynamically set audio quality during audio streaming.

[self.trtcCloud setAudioQuality:TRTCAudioQualityDefault];

Note:
TRTC's preset audio quality is divided into three levels (Speech/Default/Music), each corresponding to different audio

parameters. See TRTCAudioQuality for details.
Volume type setting.
Each TRTC audio quality level corresponds to a default volume type. If you need to forcibly specify a volume type, you
can use the following API.

// Set volume type.

[self.trtcCloud setSystemVolumeType:TRTCSystemVolumeTypeAuto];

Note:
TRTC volume types are divided into three levels (VOIP/Auto/Media), each corresponding to different volume
channels. See TRTCSystemVolumeType for details.
Audio routing setting.

Mobile devices such as smartphones usually have two playback locations: the speaker and the earpiece. If you need
to forcibly specify the audio routing, you can use the following API.

// Set audio routing.

[self.trtcCloud setAudioRoute:TRTCAudioModeSpeakerphone];

Note:
TRTC audio routing is divided into two types (Speaker/Earpiece), each corresponding to a different sound emission
location. See TRTCAudioRoute for details.

Advanced Features

Bullet screen message interaction.

Voice chat live streaming rooms usually have text-based bullet screen message interactions. This can be achieved
through the sending and receiving of group chat regular text messages via IM.

// Send public screen bullet screen messages.

[[V2TIMManager sharedInstance] sendGroupTextMessage:text to:groupID priority:V2TIM_

 // Successfully sent bullet screen messages.

} fail:^(int code, NSString *desc) {

 // Failed to send bullet screen messages.

}];

https://intl.cloud.tencent.com/document/product/647/50760#f8aeb89d8ef78db15d893e55f68cdb42
https://intl.cloud.tencent.com/document/product/647/50760#231e219e2864cf7145620089c6321c8e
https://intl.cloud.tencent.com/document/product/647/50760#a8a707c18061de6602c7cd7d7fb6b573

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 117 of 588

// Receive public screen bullet screen messages.

[[V2TIMManager sharedInstance] addSimpleMsgListener:self];

- (void)onRecvGroupTextMessage:(NSString *)msgID groupID:(NSString *)groupID sender

 NSLog(@"%@: %@", info.nickName, text);

}

Volume level callback.

TRTC can callback the volume levels of the on-mic anchor at a fixed frequency. It is usually used to display sound

waves and indicate the speaking anchor.

// Enable volume level callback. It is recommended to be enabled immediately after

// interval: Callback interval (ms). enable_vad: Whether to enable voice detection.

[self.trtcCloud enableAudioVolumeEvaluation:interval enable_vad:enable_vad];

self.trtcCloud.delegate = self;

- (void)onUserVoiceVolume:(NSArray<TRTCVolumeInfo *> *)userVolumes totalVolume:(NSI

 // userVolumes is used to hold the volume levels of all speaking users, includi

 // totalVolume is used to report the maximum volume value among remote streamin

 ...

 // Adjust the corresponding visual representation of sound waves on the UI base

 ...

}

Note:

Voice detection only provides local voice detection results. The user's role must be an anchor to make it convenient to
remind users to turn on their mics.
 userVolumes is an array. For each element in the array, when userId is empty, it means the volume captured by

the local mic; when userId is not empty, it means the volume of remote users.

Music and sound effect playback.

Playing background music and sound effects is a high-frequency demand in voice chat room scenarios. Below, we will

explain the use of and precautions for commonly used background music APIs.
1. Start/stop/pause/resume playback.

// Obtain the management class for configuring background music, short sound effect

self.audioEffectManager = [self.trtcCloud getAudioEffectManager];

TXAudioMusicParam *param = [[TXAudioMusicParam alloc] init];

param.ID = musicID;

param.path = musicPath;

// Whether to publish the music to remote (otherwise play locally only).

param.publish = YES;

// Whether the playback is from a short sound effect file.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 118 of 588

param.isShortFile = NO;

// Start background music playback.

__weak typeof(self) weakSelf = self;

[self.audioEffectManager startPlayMusic:param onStart:^(NSInteger errCode) {

 __strong typeof(weakSelf) strongSelf = weakSelf;

 // Playback start callback.

 // -4001: Path opening failed.

 // -4002: Decoding failed.

 // -4003: Invalid URL address.

 // -4004: Playback not stopped.

 if (errCode < 0) {

 // Before replaying after playback failure, you must first stop the current

 [strongSelf.audioEffectManager stopPlayMusic:musicID];

 }

} onProgress:^(NSInteger progressMs, NSInteger durationMs) {

 // Playback progress callback.

 // progressMs: Current playback duration (milliseconds).

 // durationMs: Total duration of the current music (milliseconds).

} onComplete:^(NSInteger errCode) {

 // Playback end callback.

 // Playback failure due to weak network during playback will also throw this ca

 // Pausing or stopping playback midway will not trigger the onComplete callback

}];

// Stop background music playback.

[self.audioEffectManager stopPlayMusic:musicID];

// Pause background music playback.

[self.audioEffectManager pausePlayMusic:musicID];

// Resume background music playback.

[self.audioEffectManager resumePlayMusic:musicID];

Note:
TRTC supports playing multiple pieces of music simultaneously, each identified uniquely by a musicID. If you want to
play only one piece of music at a time, be sure to stop other music before starting playback, or you can use the same
musicID to play different music. In this way, the SDK will stop the old music first, and then play the new one.

TRTC supports playing both local and online audio files, by passing in a local absolute path or URL address through
 musicPath . MP3/AAC/M4A/WAV formats are supported.

2. Adjust the ratio of music and voice volume.

// Set the local playback volume of a piece of background music.

[self.audioEffectManager setMusicPlayoutVolume:musicID volume:volume];

// Set the remote playback volume of a specific background music.

[self.audioEffectManager setMusicPublishVolume:musicID volume:volume];

// Set the local and remote volume of all background music.

[self.audioEffectManager setAllMusicVolume:volume];

// Set the volume of voice capture.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 119 of 588

[self.audioEffectManager setVoiceVolume:volume];

Note:
Volume value's normal range is 0-100, with a default of 60 and a maximum setting of 150, but there is a risk of audio

clipping.
If background music is overwhelming vocals, consider lowering the music playback volume and increasing the voice
capture volume.
Mute the mic without muting background music: Use setVoiceVolume(0) to replace

 muteLocalAudio(true) .

3. Loop playback of background music and sound effects.
Solution 1: Use the AudioMusicParam 's loopCount parameter to set the number of loop playbacks.

The value range is from 0 to any positive integer. The default value is 0. 0 means play the music once; 1 means play
the music twice; and so on.

- (void)startPlayMusicWithId:(int32_t)musicId path:(NSString *)path loopCount:(NSIn

 TXAudioMusicParam *param = [[TXAudioMusicParam alloc] init];

 param.ID = musicId;

 param.path = path;

 param.publish = YES;

 // Whether the playback is from a short sound effect file.

 param.isShortFile = YES;

 // Set the number of loop playbacks. Negative number means an infinite loop.

 param.loopCount = loopCount < 0 ? NSIntegerMax : loopCount;

 [self.audioEffectManager startPlayMusic:param onStart:nil onProgress:nil onComp

}

Note:
Solution 1 will not trigger the onComplete callback after each loop playback. It will only be triggered after all the

set loop counts have been played.
Solution 2: Implement loop playback through the "Background music has finished playing" event callback
 onComplete . It is usually used for list loop or single track loop.

- (void)repeatPlayMusicWithParam:(TXAudioMusicParam *)param {

 __weak typeof(self) weakSelf = self;

 [self.audioEffectManager startPlayMusic:param onStart:nil onProgress:nil onComp

 __strong typeof(weakSelf) strongSelf = weakSelf;

 // Here you can re-call the playback API to achieve loop playback of the mu

 if (errCode >= 0) {

 [strongSelf repeatPlayMusicWithParam:param];

 }

 }];

}

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 120 of 588

Mixed stream relay and push back.

1. Live streaming CDN with mixed stream relay.

- (void)startPublishMediaToCDN:(NSString *)streamName {

 NSDate *date = [NSDate dateWithTimeIntervalSinceNow:0];

 // Expiration time of the streaming URL. By default, it is one day.

 NSTimeInterval time = [date timeIntervalSince1970] + (24 * 60 * 60);

 // LIVE_URL_KEY authentication key. Obtain from the streaming URL configuration

 NSString *secretParam = [self getSafeUrl:LIVE_URL_KEY streamName:streamName tim

 // The target URLs for media stream publication.

 TRTCPublishTarget *target = [[TRTCPublishTarget alloc] init];

 // Publish to CDN after mixing.

 target.mode = TRTCPublishMixStreamToCdn;

 TRTCPublishCdnUrl* cdnUrl = [[TRTCPublishCdnUrl alloc] init];

 // Streaming URL must include parameters. Otherwise, streaming fails.

 cdnUrl.rtmpUrl = [NSString stringWithFormat:@"rtmp://%@/live/%@?%@", PUSH_DOMAI

 // True means Tencent CSS push URLs, and false means third-party services.

 cdnUrl.isInternalLine = YES;

 NSMutableArray* cdnUrlList = [NSMutableArray new];

 // Multiple CDN push URLs can be added.

 [cdnUrlList addObject:cdnUrl];

 target.cdnUrlList = cdnUrlList;

 TRTCStreamEncoderParam* encoderParam = [[TRTCStreamEncoderParam alloc] init];

 // Set the encoding parameters of the transcoded audio stream (can be customize

 encoderParam.audioEncodedSampleRate = 48000;

 encoderParam.audioEncodedChannelNum = 1;

 encoderParam.audioEncodedKbps = 50;

 encoderParam.audioEncodedCodecType = 0;

 // Set the encoding parameters of the transcoded video stream (must be filled i

 encoderParam.videoEncodedWidth = 64;

 encoderParam.videoEncodedHeight = 64;

 encoderParam.videoEncodedFPS = 15;

 encoderParam.videoEncodedGOP = 3;

 encoderParam.videoEncodedKbps = 30;

 // Configuration parameters for media stream transcoding.

 TRTCStreamMixingConfig *config = [[TRTCStreamMixingConfig alloc] init];

 // By default, leave this field empty. It indicates that all audio in the room

 config.audioMixUserList = nil;

 // Must have TRTCVideoLayout parameters if mixing black frames (can be ignored

 TRTCVideoLayout *layout = [[TRTCVideoLayout alloc] init];

 config.videoLayoutList = @[layout];

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 121 of 588

 // Start mixing and relaying mixed streams.

 [self.trtcCloud startPublishMediaStream:target encoderParam:encoderParam mixing

}

2. Push the mixed stream back to the TRTC room.

- (void)startPublishMediaToRoom:(NSString *)roomId userID:(NSString *)userId {

 // The target URLs for media stream publication.

 TRTCPublishTarget *target = [[TRTCPublishTarget alloc] init];

 // After mixing, the stream is relayed back to the room.

 target.mode = TRTCPublishMixStreamToRoom;

 target.mixStreamIdentity.strRoomId = roomId;

 // Mixed stream robot's userid, must not duplicate with other users' userid in

 target.mixStreamIdentity.userId = [NSString stringWithFormat:@"%@%@", userId, M

 TRTCStreamEncoderParam* encoderParam = [[TRTCStreamEncoderParam alloc] init];

 // Set the encoding parameters of the transcoded audio stream (can be customize

 encoderParam.audioEncodedSampleRate = 48000;

 encoderParam.audioEncodedChannelNum = 2;

 encoderParam.audioEncodedKbps = 64;

 encoderParam.audioEncodedCodecType = 2;

 // Set the encoding parameters of the transcoded video stream (can be ignored f

 encoderParam.videoEncodedWidth = 64;

 encoderParam.videoEncodedHeight = 64;

 encoderParam.videoEncodedFPS = 15;

 encoderParam.videoEncodedGOP = 3;

 encoderParam.videoEncodedKbps = 30;

 // Set audio mixing parameters.

 TRTCStreamMixingConfig *config = [[TRTCStreamMixingConfig alloc] init];

 // By default, leave this field empty. It indicates that all audio in the room

 config.audioMixUserList = nil;

 // Configure video mixing template (can be ignored for pure audio mix stream).

 TRTCVideoLayout *layout = [[TRTCVideoLayout alloc] init];

 config.videoLayoutList = @[layout];

 // Start mixing and relaying mixed streams.

 [self.trtcCloud startPublishMediaStream:target encoderParam:encoderParam mixing

}

3. Event callback and update stop task.

Task result event callback.

#pragma mark - TRTCCloudDelegate

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 122 of 588

- (void)onStartPublishMediaStream:(NSString *)taskId code:(int)code message:(NSStri

 // taskId: When the request is successful, TRTC backend will provide the taskId

 // code: Callback result. 0 means success and other values mean failure.

}

- (void)onUpdatePublishMediaStream:(NSString *)taskId code:(int)code message:(NSStr

 // When you call the publish media stream API (updatePublishMediaStream), the t

 // code: Callback result. 0 means success and other values mean failure.

}

- (void)onStopPublishMediaStream:(NSString *)taskId code:(int)code message:(NSStrin

 // When you call the stop publishing media stream API (stopPublishMediaStream),

 // code: Callback result. 0 means success and other values mean failure.

}

Update the published media stream.
This API sends a command to the TRTC server to update the media stream initiated by

 startPublishMediaStream .

// taskId: Task ID returned by the onStartPublishMediaStream callback.

// target: For example, add or remove the published CDN URLs.

// params: It is recommended to maintain consistency in the encoding output paramet

// config: Update the list of users involved in mix stream transcoding, such as cro

[self.trtcCloud updatePublishMediaStream:taskId publishTarget:target encoderParam:t

Note:
Switching between audio only, audio and video, and video only is not supported within the same task.

Stop publishing media stream.
This API sends a command to the TRTC server to stop the media stream initiated by
 startPublishMediaStream .

// taskId: Task ID returned by the onStartPublishMediaStream callback.

[self.trtcCloud stopPublishMediaStream:taskId];

Note:
If taskId is filled with an empty string, it will stop all media streams initiated by the user through
 startPublishMediaStream . If you have only initiated one media stream or want to stop all media streams

initiated by you, this method is recommended.

Real-time network quality callback

You can listen to onNetworkQuality to real-time monitor the network quality of both local and remote users. This

callback is thrown every 2 seconds.

#pragma mark - TRTCCloudDelegate

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 123 of 588

- (void)onNetworkQuality:(TRTCQualityInfo *)localQuality remoteQuality:(NSArray<TRT

 // localQuality userId is empty. It represents the local user's network quality

 // remoteQuality represents the remote user's network quality evaluation result

 switch(localQuality.quality) {

 case TRTCQuality_Unknown:

 NSLog(@"Undefined.");

 break;

 case TRTCQuality_Excellent:

 NSLog(@"The current network is excellent.");

 break;

 case TRTCQuality_Good:

 NSLog(@"The current network is good.");

 break;

 case TRTCQuality_Poor:

 NSLog(@"The current network is moderate.");

 break;

 case TRTCQuality_Bad:

 NSLog(@"The current network is poor.");

 break;

 case TRTCQuality_Vbad:

 NSLog(@"The current network is very poor.");

 break;

 case TRTCQuality_Down:

 NSLog(@"The current network does not meet the minimum requirements of T

 break;

 default:

 break;

 }

}

Advanced permission control

TRTC advanced permission control feature can be used to set different entry permissions for different rooms, such as
for advanced VIP rooms. It can also be used to control the permission for audience to speak, such as handling ghost
mics. The detailed directions are as follows:
1. Enable the Advanced Permission Control Switch in the TRTC console application's feature configuration page.

2. Generate privateMapKey on the backend. For sample code, see privateMapKey computation source code.
3. Room entry verification & speaking permission verification with PrivateMapKey.
Room entry verification

TRTCParams *params = [[TRTCParams alloc] init];

params.sdkAppId = SDKAppID;

params.roomId = self.roomId;

params.userId = self.userId;

https://console.trtc.io/
https://intl.cloud.tencent.com/document/product/1047/34385#.E6.9C.8D.E5.8A.A1.E7.AB.AF.E8.AE.A1.E7.AE.97-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 124 of 588

// UserSig obtained from the business backend.

params.userSig = [self getUserSig];

// PrivateMapKey obtained from the backend.

params.privateMapKey = [self getPrivateMapKey];

params.role = TRTCRoleAudience;

[self.trtcCloud enterRoom:params appScene:TRTCAppSceneVoiceChatRoom];

Speaking permission verification

// Pass in the latest PrivateMapKey obtained from the backend into the role switchi

[self.trtcCloud switchRole:TRTCRoleAnchor privateMapKey:[self getPrivateMapKey]];

Exception Handling

Exception error handling

When the TRTC SDK encounters an unrecoverable error, the error will be thrown in the onError callback. For

details, see Error Code Table.
UserSig related
UserSig verification failure will lead to room-entering failure. You can use the UserSig tool for verification.

Enumeration Value Description

ERR_TRTC_INVALID_USER_SIG -3320
Room entry parameter userSig is incorrect. Check if
 TRTCParams.userSig is empty.

ERR_TRTC_USER_SIG_CHECK_FAILED -100018
UserSig verification failed. Check if the parameter
 TRTCParams.userSig is filled in correctly or
has expired.

Room entry and exit related

If failed to enter the room, you should first verify the correctness of the room entry parameters. It is essential that the
room entry and exit APIs are called in a paired manner. This means that, even in the event of a failed room entry, the
room exit API must still be called.

Enumeration Value Description

ERR_TRTC_CONNECT_SERVER_TIMEOUT -3308
Room entry request timed out. Check if your
internet connection is lost or if a VPN is enabled.
You may also attempt to switch to 4G for testing.

ERR_TRTC_INVALID_SDK_APPID -3317
Room entry parameter sdkAppId is incorrect.
Check if TRTCParams.sdkAppId is empty.

https://intl.cloud.tencent.com/document/product/647/35135
https://console.trtc.io/usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 125 of 588

ERR_TRTC_INVALID_ROOM_ID -3318 Room entry parameter roomId is incorrect. Check
if TRTCParams.roomId or
 TRTCParams.strRoomId is empty. Note that
roomId and strRoomId cannot be used
interchangeably.

ERR_TRTC_INVALID_USER_ID -3319
Room entry parameter userId is incorrect. Check
if TRTCParams.userId is empty.

ERR_TRTC_ENTER_ROOM_REFUSED -3340
Room entry request is denied. Check if
 enterRoom is called consecutively to enter
rooms with the same ID.

Device related
Errors for relevant monitoring devices. Prompt the user via UI in case of relevant errors.

Enumeration Value Description

ERR_MIC_START_FAIL -1302

Failed to open the mic. For example, if there is an exception for the
mic's configuration program (driver) on a Windows or macOS
device, you should try disabling then re-enabling the device,
restarting the machine, or updating the configuration program.

ERR_SPEAKER_START_FAIL -1321

Failed to open the speaker. For example, if there is an exception
for the speaker's configuration program (driver) on a Windows or
macOS device, you should try disabling then re-enabling the
device, restarting the machine, or updating the configuration
program.

ERR_MIC_OCCUPY -1319 The mic is occupied. This occurs when, for example, the user is
currently having a call on the mobile device.

Exception exit handling.

1. Network disconnection detection and timeout room exit.

You can listen for TRTC disconnection and reconnection events through the following callback notifications.
Upon receiving the onConnectionLost callback, display a network disconnection icon on the local seat UI to

notify the user. Simultaneously, initiate a local timer. If the onConnectionRecovery callback is not received after

exceeding the set time threshold, it means the network remains disconnected. Then, locally initiate leaving the seatmic
and room exit process. Pop up a window to inform the user that they have exited the room and the page will be closed.

If the disconnection exceeds 90 seconds (default), a timeout room-exit will be triggered, and the TRTC server will
remove the user from the room. If the user has an anchor role, other users in the room will receive the
 onRemoteUserLeaveRoom callback.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 126 of 588

#pragma mark - TRTCCloudDelegate

- (void)onConnectionLost {

 // The connection between the SDK and the cloud has been disconnected.

}

- (void)onTryToReconnect {

 // The SDK is attempting to reconnect to the cloud.

}

- (void)onConnectionRecovery {

 // The connection between the SDK and the cloud has been restored.

}

2. Automatically remove an offline-status user.
The regular statuses of IM users include online (ONLINE), offline (OFFLINE), and not logged in (UNLOGINED). The
offline status typically results from the user force-stopping the process or experiencing an abnormal network
disruption. You may use the feature of anchors subscribing to the connection status of mic-connecting audiences to

detect offline mic-connecting audiences. And then you may remove them.

// Anchor subscribes to the connection status of mic-connecting audiences.

[[V2TIMManager sharedInstance] subscribeUserStatus:userList succ:^{

 // Subscription of user status succeeded.

} fail:^(int code, NSString *desc) {

 // Subscription of user status failed.

}];

// Anchor unsubscribes from the connection status of audiences leaving the seat.

[[V2TIMManager sharedInstance] unsubscribeUserStatus:userList succ:^{

 // Unsubscription of user status succeeded.

} fail:^(int code, NSString *desc) {

 // Failed to unsubscription of user status.

}];

// User status change notification and processing.

[[V2TIMManager sharedInstance] addIMSDKListener:self];

- (void)onUserStatusChanged:(NSArray<V2TIMUserStatus *> *)userStatusList {

 for (V2TIMUserStatus *userStatus in userStatusList) {

 NSString *userId = userStatus.userID;

 V2TIMUserStatusType status = userStatus.statusType;

 if (status == V2TIM_USER_STATUS_OFFLINE) {

 // Remove an offline-status user.

 [self kickSeatWithIndex:[self getSeatIndexWithUserId:userId]];

 }

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 127 of 588

 }

}

Note:
User-status subscription needs to be upgraded to the advanced package. For details, see Basic Service Details.

User-status subscription needs User status query and status change notification configuration to be enabled in
Instant Messaging (IM) console in advance. Failure to enable will result in an error when calling
 subscribeUserStatus .

Server removes users from and dissolve the room.

1. Server removes users.
First, call the TRTC server user-removing API RemoveUser (for integer room IDs) or RemoveUserByStrRoomId (for
string room IDs) to remove the target user from the TRTC room. The input example is as follows.

https://trtc.tencentcloudapi.com/?Action=RemoveUser

&SdkAppId=1400000001

&RoomId=1234

https://intl.cloud.tencent.com/document/product/1047/34349#.E5.9F.BA.E7.A1.80.E6.9C.8D.E5.8A.A1.E8.AF.A6.E6.83.85
https://console.intl.cloud.tencent.com/im/login-message
https://intl.cloud.tencent.com/document/product/647/34268
https://intl.cloud.tencent.com/document/product/647/39630

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 128 of 588

&UserIds.0=test1

&UserIds.1=test2

&<Common request parameters>

After removing the user successfully, the target user will receive the onExitRoom() callback on the client, with the

 reason value being 1. At this moment, you can handle leaving the seat and exiting the IM group in this callback.

// Exit TRTC room event callback.

- (void)onExitRoom:(NSInteger)reason {

 if (reason == 0) {

 // Actively call exitRoom to exit the room.

 NSLog(@"Exit current room by calling the 'exitRoom' api of sdk ...");

 } else {

 // reason 1: Removed from the current room by the server.

 // reason 2: The current room is dissolved.

 NSLog(@"Kicked out of the current room by server or current room is dissolv

 // Leave the seat.

 [self leaveSeatWithIndex:seatIndex];

 // Exit IM group.

 [[V2TIMManager sharedInstance] quitGroup:groupID succ:^{

 // Exiting the group successful.

 } fail:^(int code, NSString *desc) {

 // Exiting the group failed.

 }];

 }

}

2. Server dissolves the room.
First, call the IM server group dissolvement API destroy_group to dissolve the target group. The example request URL
is as follows.

https://xxxxxx/v4/group_open_http_svc/destroy_group?

sdkappid=88888888&identifier=admin&usersig=xxx&random=99999999&contenttype=json

After the group is dissolved, all members within the target group will receive the onGroupDismissed() callback

on clients. At this point, you can handle operations such as exiting the TRTC room in this callback.

// Group dissolved callback.

[[V2TIMManager sharedInstance] addGroupListener:self];

- (void)onGroupDismissed:(NSString *)groupID opUser:(V2TIMGroupMemberInfo *)opUser

 // Exit TRTC room.

 [self.trtcCloud stopLocalAudio];

 [self.trtcCloud exitRoom];

}

Note:

https://intl.cloud.tencent.com/document/product/1047/34896

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 129 of 588

When all users in the room have completed exiting by calling exitRoom() , the TRTC room will be automatically

dissolved. Of course, you can also mandatorily dissolve the TRTC room by calling the server API DismissRoom (for
integer room IDs) or DismissRoomByStrRoomId (for string room IDs).

View live streaming room's historical messages upon room entry.

By default, using AVChatRoom does not store live streaming room's historical messages. Therefore, when new users
enter the live streaming room, they can only see messages sent after their entry. To optimize the experience for new
users joining the group, you can configure the number of messages new live streaming group users can pull before
joining the group in the console, as shown in the figure:

Pulling historical messages before joining the live streaming group for live group users is the same as pulling historical
messages for other groups, as shown in the sample code:

V2TIMMessageListGetOption *option = [[V2TIMMessageListGetOption alloc] init];

option.getType = V2TIM_GET_CLOUD_OLDER_MSG; // Pull earlier existing messages from

option.getTimeBegin = 1640966400; // Starting from midnight January 1, 2022.

option.getTimePeriod = 1 * 24 * 60 * 60; // Pull messages from a 24-hour period.

option.count = INT_MAX; // Return all messages within the time ran

option.groupID = #your group id#; // Pull messages for the group chat.

[V2TIMManager.sharedInstance getHistoryMessageList:option succ:^(NSArray<V2TIMMessa

 NSLog(@"success");

} fail:^(int code, NSString *desc) {

 NSLog(@"failure, code:%d, desc:%@", code, desc);

}];

Note:

This feature is only available to advanced users. It only supports pulling up to 20 historical messages within 24 hours
from the group.

https://intl.cloud.tencent.com/document/api/647/34269
https://intl.cloud.tencent.com/document/api/647/39631

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 130 of 588

Enter the room to sense the mute status of on-mic anchors.

Solution 1: Default all anchors to mute status upon room entry, then unmute the corresponding anchors based on the
 onUserAudioAvailable(userId, true) callback.

- (void)onUserAudioAvailable:(NSString *)userId available:(BOOL)available {

 if (available) {

 // Unmute the corresponding anchors.

 }

}

Solution 2: Store the mute status of the anchors in the IM group attributes. Audiences entering the room obtain all
group attributes to parse the mute status of on-mic anchors.

[[V2TIMManager sharedInstance] getGroupAttributes:groupID keys:nil succ:^(NSMutable

 // Successfully obtained group attributes. It is assumed that the key used to s

 NSString *muteStatus = groupAttributeList[@"muteStatus"];

 // Parse muteStatus, and obtain the mute status of each on-mic anchor.

} fail:^(int code, NSString *desc) {

 // Failed to obtain the group attributes.

}];

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 131 of 588

Online Karaoke
Scenario Solution
Last updated：2024-07-25 17:01:48

Scenario Introduction

According to data from iiMedia Research, in 2021, the number of online Karaoke users in China was about 510
million, with a penetration rate of approximately 49.7%. Online Karaoke offers a more immersive experience and its
diverse gameplay caters to the personalized needs of different user groups, becoming one of the main projects in the

online pan-entertainment field. Based on network technology innovations, online Karaoke apps continue to launch
diverse singing patterns and gameplay, and the continuously enriched features have enhanced the practicality and
playability of online Karaoke apps. This document will provide a detailed introduction to the online Karaoke scenario-
based solution based on Tencent Real-Time Communication (TRTC) in the following sections.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 132 of 588

Implementation Scheme

Typically, implementing a complete online Karaoke scenario involves multiple functional modules: room management,
seat management, song selection management, karaoke management, scoring management, etc. Key actions and

feature points under each functional module are shown in the following table:

Functional Module Key Actions and Feature Points

Room Management Room list, create a room, enter a room, exit a room, and terminate a
room.

Seat Management Become a speaker/listener, seat control, change a speaker, lock the
seat, invite a listener to speak, and mute a speaker.

https://intl.cloud.tencent.com/document/product/1228/59946#6346cd5f-b619-429c-ad0e-cd202f354755
https://intl.cloud.tencent.com/document/product/1228/59946#6346cd5f-b619-429c-ad0e-cd202f354755#ea1bf30d-d012-42fb-a443-804b8d185949
https://intl.cloud.tencent.com/document/product/1228/59946#6346cd5f-b619-429c-ad0e-cd202f354755#ea1bf30d-d012-42fb-a443-804b8d185949#8cbecb5a-6c49-45fb-9cc9-c21338ac88a7
https://intl.cloud.tencent.com/document/product/1228/59946#6346cd5f-b619-429c-ad0e-cd202f354755#ea1bf30d-d012-42fb-a443-804b8d185949#8cbecb5a-6c49-45fb-9cc9-c21338ac88a7#051fd909-87f0-4d80-9189-ed7698b7e98e
https://intl.cloud.tencent.com/document/product/1228/59946#6346cd5f-b619-429c-ad0e-cd202f354755#ea1bf30d-d012-42fb-a443-804b8d185949#8cbecb5a-6c49-45fb-9cc9-c21338ac88a7#051fd909-87f0-4d80-9189-ed7698b7e98e#d52320a1-6a6d-4c14-92f4-0c442191d873

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 133 of 588

Song Selection Management Song list display, searching songs, song selection, queue
management, and selected song list.

Karaoke Management
Karaoke play mode, start/stop/switch songs, accompaniment and
vocal volume adjustment, reverb/sound effects, original sound and
accompaniment switch, and lyrics synchronization

Scoring Management Singing Scoring and Pitch Line Display

The overall business process of the online Karaoke scene is shown in the following diagram. The room owner creates
a Karaoke room, and users can choose the Karaoke room they are interested in to enter. After entering the room,
users can request to speak to participate in the interaction. After becoming a speaker, they can also choose their
favorite songs to sing and wait in line. When it is their turn, they can sing along with the accompaniment. Of course,
users can also choose to become a speaker directly to participate in a chorus. These are two different Karaoke play

modes. During the singing process, there will be pitch scoring for individual sentences, and there will also be singing
scoring for the entire song after the singing is finished.

Room Management

The Room Management module is primarily responsible for maintaining the room list, which includes functions such
as create a room, enter a room, exit a room, and terminate a room. Additionally, a Karaoke room differs from regular
rooms in that it requires a separate Karaoke room identifier to initiate related component management: Song Selection

Management, Karaoke Management, Scoring Management, etc.

https://intl.cloud.tencent.com/document/product/1228/59946#8cbecb5a-6c49-45fb-9cc9-c21338ac88a7
https://intl.cloud.tencent.com/document/product/1228/59946#8cbecb5a-6c49-45fb-9cc9-c21338ac88a7#051fd909-87f0-4d80-9189-ed7698b7e98e
https://intl.cloud.tencent.com/document/product/1228/59946#8cbecb5a-6c49-45fb-9cc9-c21338ac88a7#051fd909-87f0-4d80-9189-ed7698b7e98e#d52320a1-6a6d-4c14-92f4-0c442191d873

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 134 of 588

Create Room: After users log in to the business system, they can create a room. The room list needs to be updated
after a room is created.
Enter a Room: Users can choose to enter an existing room. Upon entering, the current list of room members should be

updated.
Exit a Room: Users can choose to exit the current room. Upon exiting, the current list of room members needs to be
updated with a delete operation.
Terminate Room: After all users exit the room, it needs to be terminateed. Upon destruction, the room list needs to be
updated with a delete operation.

Note:

Room Management is a necessary functional module for implementing online Karaoke but is not the main functional
module. Specific implementation can be achieved through integration with business systems and IM&TRTC SDKs.
For details, see Voice Chat Room > Room Management.

Seat Management

In a Karaoke room, seats are generally orderly and limited. Seat management primarily involves defining the number
of seats in the room based on the business scenario, as well as managing the status of all seats in the current room.
Seat management includes features such as become a speaker/listener, seat control, change a speaker, lock the

seat, invite a listener to speak, and mute a speaker.
After users enter a room, only idle seats can be applied for.
After the room owner approves a user's speaker request, the corresponding seat status should change to occupied.
When a user stops streaming and becomes a listener, the corresponding seat status should revert to idle.
The room owner has the authority to lock the seat, invite a listener to speak, remove a speaker, mute a speaker, etc.

Note:
Seat management is a necessary functional module for implementing online Karaoke but is not the main functional
module. Specific implementation can be achieved through integration with business systems and IM&TRTC SDKs.
For details, see Voice Chat Room -> Seat Management.

Song Selection Management

Basic Introduction

https://intl.cloud.tencent.com/document/product/1228/59946#45608109-3c99-471b-9911-2ddf76785e47
https://intl.cloud.tencent.com/document/product/1228/59940#f6b567ce-31cc-4bff-bc6b-c26483820a6f

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 135 of 588

Song selection management is an important part of the online Karaoke scenario, mainly including features such as
song list display, search for songs, song selection, and queue management, selected song list. Each Karaoke room
needs to maintain a selected song list and an auto queue management feature, which needs to be implemented by the

business backend. Meanwhile, aspects related to accompaniment resources such as song list display and song
search are recommended to be implemented with accompaniment library products for overseas users.

Implementation Process

The entire song selection management, mainly involves the business-side app, business backend, and music library,
where their respective functions are as follows:

Business-Side App:
Call the song selection API to report song information.
Call the change song-switching API to notify the business backend.
Call the singing confirmation API to notify the business backend.
Business Backend:

Maintain the selected song list.
Send notifications to tell the business-side app to switch the song.
Music Library:
Provide authorized music resources for TRTC to play.
Provide lyric files and pitch files matching the music resources.

Karaoke Management

The Karaoke system primarily includes functions such as: Karaoke play mode, start/stop/switch songs,
accompaniment and vocal volume adjustment, reverb/sound effects, original sound and accompaniment switch, and
lyrics synchronization. Below, we will introduce the implementation process of the Karaoke management module in
detail through two typical Karaoke gameplay: solo singing and real-time chorus.

Solo Singing

Solo singing: Primarily in the interactive Karaoke scenario with multiple participants, after the anchor/audience
members become speakers, they can proceed to select songs. Once a song selection is successful, it will be

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 136 of 588

displayed collectively on the song selection platform. When it's someone's turn to select a song, the corresponding
individual will play the song's accompaniment, start singing, and undergo scoring.
Solution Architecture

The overall solution primarily relies on the music library for song and lyric resources and TRTC for streaming the
singer's vocals, song accompaniment, and streaming. The solution architecture is as follows:

Specific Implementation
In the solo singing scenario, different roles have different implementation processes. There are two roles: singer and

audience. The description and differences of their roles are detailed in the table below:

Roles Description Differences

Singer

The singer in the Karaoke room is evolved from the
anchor/audience who selects songs and sings after
becoming a speaker. After leaving the room, the
room is automatically dissolved and the list of
selected songs is automatically cleared.

The role must be an anchor.
Upstream audio and video (no video
upstream black frame)
Play BGM
Send SEI information (sending lyric
information)
Song Selection

Audience The audience in the Karaoke room plays the media
stream of the singer or other people.

The role is an audience, but can also
become an anchor by becoming a speaker.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 137 of 588

Downstream Audio and Video Streams
Receive SEI information (receive lyric
information)

Implementation Process
Singer

1. The anchor/audience creates/enters a TRTC room, and automatically becomes a singer after selecting a song.
2. After the singer selects a song, the song/lyric is downloaded, and then the song is played through the BGM
interface.

3. If the singer does not bring up the video upstream, they need to enable the video upstream.
4. Synchronize the lyric progress of everyone through SEI information.
5. When the singer becomes a listener, all songs they selected will be cleared, and they revert to their original role.
6. After the anchor/audience exits the room, the TRTC room will be dissolved.
Note:
Anchors/Audiences on the seat can select songs for themselves or others, but the corresponding singer must play the

BGM; otherwise, it may cause asynchrony between the singer and the song due to latency (about 300 ms or more).
Audience

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 138 of 588

1. Anchor/Co-Anchor/Audience can create/enter a TRTC room.
2. Monitor room song changes and load lyrics.
3. Pull the singer's stream.

4. Parse the SEI messages sent by the singer and synchronize the lyrics.

Real-Time Chorus

Real-time chorus refers to playing the song accompaniment simultaneously on all ends based on co-mic, and then
performing the chorus on the mic. In a duo pattern, the lead and backing vocals can hear each other; in a multi-person
pattern, all choristers can hear each other with almost no delay, achieving true real-time chorus.
Solution Architecture

In terms of media streams, the singers publish/playback streams to each other, while one leading singer uploads
accompaniment, and the other singers play accompaniment locally, synchronized via NTP. Additionally, the
accompaniment and all singers' voices are mixed through a mixing bot to form a single stream, which is then pushed
back to the TRTC room, allowing the audience to hear the synchronized voices from all ends by pulling a single
stream, achieving a multi-person chorus effect. The real-time chorus solution architecture is shown in the figure below:

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 139 of 588

The advantages of this solution are:

It reduces end-to-end latency.
It provides a solution for users to join the chorus midway.
It accurately synchronizes accompaniment, lyrics, and vocals between different ends.
It improves the performance of devices on different ends and the accuracy of local time, and reduces the impact of
network environment latency.

Note:

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 140 of 588

Depending on business needs, you can choose a real-time chorus solution for audio-only or audio and video
scenarios. If it is a pure audio scenario, black frames need to be added to send SEI messages for lyric
synchronization.

The lead singer needs to use a sub-instance to upstream both the accompaniment and vocals at the same time; other
singers only need to pull each other's vocal streams and play accompaniment locally; the audience only needs to pull
one mixed stream.
Specific Implementation
In online Karaoke rooms, different roles have different feature permissions and implementation processes, divided into

three roles: lead singer, chorus, and audience, as shown in the table below:

Roles Description Differences

Lead
Singer

The lead singer is responsible for selecting songs,
sending chorus signalings, and sending SEI
messages.

The role must be an Anchor.
Upstream accompaniment and vocals.
Song selection and initiating chorus.
Push Back Mixed Stream.
Send SEI Message

Chorus Chorus can receive and process chorus signalings,
and participate in the chorus on the seat.

The role must be an Anchor.
Upstream Vocals
Play Accompaniment Locally
Receive Chorus Signals

Audience
After entering the Karaoke room, the audience can
pull the stream from the seat and also participate in
the chorus on the seat.

The role must be an audience.
Downstream mixed stream
Receive SEI messages
Request to Become an Anchor

Implementation Process
Lead Singer

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 141 of 588

1. The lead singer needs to select songs on-demand and send chorus signalings.
2. The lead singer creates a sub-instance to push vocals and accompaniment and pulls the vocals of other singers.
3. After streaming, the lead singer is responsible for initiating the mixed stream push task.

4. After starting to sing, play the accompaniment and synchronize the lyrics through the playback progress callback.
5. SEI messages need to be sent to synchronize the song progress on the audience end.
6. Al singers need to calibrate the local song playback progress according to NTP.
Chorus

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 142 of 588

1. The chorus pushes a vocal stream, pulling the vocal stream of chorus users on the seat.
2. The singers need to listen and receive chorus signalings, preloading accompaniment resources.
3. After they start to sing and play accompaniment locally, the singers synchronizes the lyrics through the playback

progress callback.
4. Al singers need to calibrate the local song playback progress according to NTP.
Audience

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 143 of 588

1. Upon entering the TRTC room, the audience receives the mixed chorus stream.
2. Parse the song progress information in the SEI of the mixed stream for lyric synchronization.
3. After the audience becomes a speaker, the mixed stream is stopped and switched to pulling the vocal stream on the
seat, and the chorus mode is started.

Scoring Management

Basic Introduction

The scoring function is also one of the mainstream play methods in the Karaoke scenario, mainly judging the results of

pitch accuracy and sound quality during the actual singing process. It can be used for score comparisons after multi-
person singing.

Implementation Process

In the entire scoring management process, singers and audiences have different implementations based on their user
roles. Scoring is usually done locally by the singer and synchronized with other people in the room.
Singer

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 144 of 588

The anchor/audience creates/enters a TRTC room, and automatically becomes a singer after selecting a song.

After the singer selects a song, the song/lyric is downloaded, and then the song is played through the BGM interface.
The vocals captured by TRTC and the progress of the BGM playback are transmitted in real-time to the rating module.
After the rating module produces the data in real time, it synchronizes with everyone in the room through SEI.
Audience
The audience side process is identical to the solo singing audience role action process; you can refer to the audience

implementation process.

Key Business Logic

Accompaniment Synchronization Solution

In real-time scenarios, it is necessary to synchronize the accompaniment progress in real-time after starting the
performance to avoid increasing end-to-end latency due to accompaniment errors. Synchronizing the accompaniment
requires NTP time-based synchronization because the local clocks of different devices are not consistent, resulting in

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 145 of 588

some errors. Therefore, Tencent Cloud's self-developed NTP service is introduced. Additionally, users who join the
ensemble midway also need to synchronize the accompaniment progress. Only after synchronizing the progress can
they join in the chorus.

The approach to accompaniment synchronization is: the lead singer convention starts to play the accompaniment at a
future point in time (e.g., after a 3-second latency), and other users join in the chorus. All ends' time is based on NTP
time, which is synchronized after the TRTC SDK initialization.

The specific process is as follows:
1. All ends calibrate the NTP time, update, and access the latest NTP time T from the TRTC cloud.
2. The lead singer sends the chorus signalings (custom message), agreeing on the chorus start time T2.
3. Preload the accompaniment locally based on T2, and schedule playback.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 146 of 588

4. Other chorus participants follow step 3 upon receiving the chorus signalings.
5. During the process, verify the local accompaniment playback progress, and perform seek calibration when the
difference between TE and TC exceeds 50 ms.

Note:
The 50 ms deviation here is a typical value, which can be adjusted appropriately based on the business tolerance,
with a recommendation to fluctuate around 50 ms.

Lyrics Synchronization Solution

In the lyrics synchronization solution, the actions of three different roles are as follows:

Lead Singer Chorus Audience

NTP Time Synchronization
Enable Black Frame Insertion
Send SEI Message
Local Lyric Synchronization.
Update Lyrics Control

NTP Time Synchronization
Local Lyric Synchronization.
Update Lyrics Control

NTP Time Synchronization
Receive SEI messages
Update Lyrics Control

Among them, the lead singer and chorus update the lyric progress locally based on the playback progress of the

synchronized accompaniment; the audience needs to receive SEI messages sent from the lead vocalist containing the
latest lyric progress to update the local lyric progress. The overall process of the lyrics synchronization solution is
shown in the following diagram.

Music Scoring Integration Solution

The accompaniment scoring feature is an indispensable feature in the Online Karaoke scenario. You need to access
the standardized audio file and MIDI pitch file of the music resources in advance, and then it is recommended to use

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 147 of 588

the music scoring feature of the Intelligent Music Platform to score the singer's voice from TRTC on-cloud recording.
The overall process of the Music Scoring Integration Solution is shown in the following diagram.

1. The business backend starts the on-cloud recording task when the singer begins to sing, and stops the on-cloud
recording task when the singer finishes singing.

2. The TRTC backend will upload the recorded singing clip media file to the COS bucket specified when initiating the
recording task.
3. After the recording file is uploaded, the TRTC backend will callback the on-cloud recording results to the business
backend.
4. The business backend uses the Intelligent Music Platform's music scoring feature to create a music scoring task.

5. The Intelligent Music Platform reads the singing clip and the standard pitch file from the COS bucket for scoring.
6. The Intelligent Music Platform will write the JSON file containing the scoring results into the specified path in COS.
7. After the music scoring is completed, the Intelligent Music Platform will call back the music scoring results to the
business backend.
8. The business backend reads the music scoring results JSON file from COS according to the callback path.
9. The business backend analyzes the music scoring results and displays the scoring results on the singer's App.

Note:

https://intl.cloud.tencent.com/products/xmusic
https://intl.cloud.tencent.com/document/api/647/46960
https://intl.cloud.tencent.com/document/api/647/46959
https://console.intl.cloud.tencent.com/cos
https://intl.cloud.tencent.com/document/product/647/54914
https://multimedia.tencent.com/docs/smart-music/api/vocal-score

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 148 of 588

The input file format for the Intelligent Music Platform's music scoring should use MP3 or WAV. If the on-cloud
recording file format is HLS or AAC, audio transcoding is required.

Best Practices for Audio Tuning Strategies

In the entire Karaoke scenario, the audio quality is mainly affected by parameters such as sampling rate, number of

channels, bitrate, and 3A. According to different room scenarios, we recommend various audio parameters and
volume mixing schemes, as well as commonly used vocal and accompaniment synchronization alignment solutions.
1. Best Parameter Configuration for Different Scenarios

Room
Scenario

Entry Mode Audio
Quality

Volume Type Hidden Interface

Solo
Singing

Video or CDN Push
Requirements:
LIVE
Audio-only or Pure
RTC Requirements:
VOICE_CHATROOM

MUSIC TRTCSystemVolumeTypeMedia enableBlackStream

Real-
Time
Chorus

Video or CDN Push
Requirements:
LIVE
Audio-only or Pure
RTC Requirements:
VOICE_CHATROOM

MUSIC TRTCSystemVolumeTypeMedia
enableBlackStream
enableChorus
setLowLatencyModeEn

Chat
and
Listen to
Music

VOICE_CHATROOM DEFAULT TRTCSystemVolumeTypeAuto No

2. Best Volume Ratio for Different Scenarios
The TRTC SDK has initial default values for voice collection and music playback. If in the default situation, there is

suppression of voice by accompaniment in the live streaming room, leading to the voice being masked by music, you
can adjust the voice and music volume ratio according to the recommended values in the table below.

Room Scenario Recommended Configuration for Voice/Music/Sound Effects

Solo Singing Voice Capture Volume: 60
Music Playback Volume: 50
Enable Reverb Effect: YesReal-Time Chorus

Chat and Listen to Music Vocal Capture Volume: 100
Music Playback Volume: 30
Enable Reverb Effect: No

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 149 of 588

3. Voice and Accompaniment Synchronization Alignment
Due to the JitterBuffer for local vocal capture, the JitterBuffer for song playback mixing, and the GAP that exists from
when the human ear receives the accompaniment to when singing begins if the singer sings entirely in sync with the
lyrics and accompaniment, the remote audience may perceive a certain latency and misalignment between the vocal,

accompaniment, and lyrics. This issue can be improved through the following two methods.
Enable Chorus Mode
Android
iOS

JSONObject jsonObject = new JSONObject();

try {

 jsonObject.put("api", "enableChorus");

 JSONObject params = new JSONObject();

 params.put("enable", true);

 params.put("audioSource", 0);

 jsonObject.put("params", params);

 mTRTCCloud.callExperimentalAPI(String.format(Locale.ENGLISH, jsonObject.toStrin

} catch (JSONException e) {

 e.printStackTrace();

}

NSDictionary *jsonDic = @{

 @"api": @"enableChorus",

 @"params": @{

 @"enable": @(YES),

 @"audioSource": @(0)

 }

 };

NSData *jsonData = [NSJSONSerialization dataWithJSONObject:jsonDic options:NSJSONWr

NSString *jsonString = [[NSString alloc] initWithData:jsonData encoding:NSUTF8Strin

[trtcCloud callExperimentalAPI:jsonString];

Note:
audioSource: 0 (Vocal), audioSource: 1 (Accompaniment); If using single instance streaming, set audioSource to 0 for
all streams.
Enable Low Latency Mode
Android

iOS

JSONObject jsonObject = new JSONObject();

try {

 jsonObject.put("api", "setLowLatencyModeEnabled");

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 150 of 588

 JSONObject params = new JSONObject();

 params.put("enable", true);

 jsonObject.put("params", params);

 mTRTCCloud.callExperimentalAPI(String.format(Locale.ENGLISH, jsonObject.toStrin

} catch (JSONException e) {

 e.printStackTrace();

}

NSDictionary *jsonDic = @{

 @"api": @"setLowLatencyModeEnabled",

 @"params": @{

 @"enable": @(1)

 }

 };

NSData *jsonData = [NSJSONSerialization dataWithJSONObject:jsonDic options:NSJSONWr

NSString *jsonString = [[NSString alloc] initWithData:jsonData encoding:NSUTF8Strin

[trtcCloud callExperimentalAPI:jsonString];

Scenario Gameplay

Solo Singing

After becoming a speaker, the audience can select songs and wait in line. After the song starts to play, they can sing
solo. This game mode is relatively simple and can be achieved using TRTC single-instance mixing and streaming.

Real-Time Chorus

After becoming a speaker, the audience sings a song with the lead singer at the same time. This game mode is
relatively complex. The lead singer side needs to use TRTC dual-instance streaming, and all ends also need to pay

attention to accompaniment synchronization and lyric synchronization.

Mass Singing Competition

Users can choose song rooms of different categories according to their preferences. The room will randomly play
music clips, and users in the room can grab the microphone at any time to sing the music clips.

Segmental Singing

The same song is divided into segments and assigned to different speakers. After the lead singer sings a segment,
other speakers sing the assigned music clips respectively.

Cross-Room Singing Competition

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 151 of 588

Anchors from different rooms sing, and the audience in their respective rooms helps their anchors. In addition to the
Karaoke scenario, this game mode also involves TRTC cross-room competition, and it is necessary to pay attention to
the subscription logic of audio and video streams in different rooms.

Supporting Products for the Solution

System
Level

Product Name Application Scenarios

Access
Layer

Tencent Real-
Time
Communication
(TRTC)

Provides a low-latency, high-quality real-time interactive live streaming
solution for multiple people's audio, which is the basic foundation for online
Karaoke scenarios.

Access
Layer

Instant Messaging
(IM)

Provides room management and seat management capabilities based on
group features, enables the sending and receiving of rich media messages
such as live streaming room-wide messaging, public screen messages, as
well as custom signaling and other communication needs.

Access
Layer

Intelligent Music
Platform

Based on the self-developed music understanding technology of Tencent
Media Lab, it helps users to deeply understand, analyze and create music,
and provides capabilities such as lyric recognition, intelligent composition,
song recognition, and music scoring.

https://intl.cloud.tencent.com/products/trtc
https://intl.cloud.tencent.com/products/im
https://intl.cloud.tencent.com/products/xmusic

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 152 of 588

Quick Integration Guide
Android
Last updated：2024-07-18 14:26:14

Business Process

This section summarizes some common business processes in online karaoke, helping you better understand the
implementation process of the entire scenario.
Song request process

Solo singing process
Lead singer process
Chorus process
Audience process
The following figure shows the process of requesting songs from a music repository on the business side and playing

them using the TRTC SDK.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 153 of 588

The following figure shows the process of a solo singing turn-taking game, that is, the performer enters a room to
perform, stops performing, and exits the room.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 154 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 155 of 588

The following figure shows the process of a real-time chorus game, that is, the lead singer initiates a chorus, stops the
chorus, and exits the room.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 156 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 157 of 588

The following figure shows the process of a real-time chorus game, that is, the chorus members join the chorus, stop

the chorus, and exit the room.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 158 of 588

The following figure shows the process of an online karaoke scenario, that is, the audience enters the room to listen to
songs and synchronizes lyrics.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 159 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 160 of 588

Integration Preparation

Step 1. Activating the service.

The online karaoke scenarios usually require two paid PaaS services from Tencent Cloud: Tencent Real-Time
Communication (TRTC) and Intelligent Music Solution for construction. TRTC is responsible for providing real-time

audio and video interaction capabilities. Intelligent Music Solution is responsible for providing lyric recognition, smart
composition, music recognition, and music scoring capabilities.
Activate TRTC service.
Activate the Intelligent Music service.
1. First, you need to log in to the Tencent Real-Time Communication (TRTC) console to create an application. You
can choose to upgrade the TRTC application version according to your needs. For example, the professional edition

unlocks more value-added feature services.

https://intl.cloud.tencent.com/products/trtc
https://intl.cloud.tencent.com/zh/products/xmusic
https://console.trtc.io/

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 161 of 588

Note:
It is recommended to create two applications for testing and production environments, respectively. Each Tencent
Cloud account (UIN) is given 10,000 minutes of free duration every month for one year.
TRTC offers monthly subscription plans including the experience edition (default), basic edition, and professional

edition. Different value-added feature services can be unlocked. For details, see Version Features and Monthly
Subscription Plan Instructions.
2. After an application is created, you can see the basic information of the application in the Application Management -
Application Overview section. It is important to keep the SDKAppID and SDKSecretKey safe for later use and to
avoid key leakage that could lead to traffic theft.

https://intl.cloud.tencent.com/document/product/647/52816#f10b65d1-6e8d-41e3-8686-84909b00a1a2

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 162 of 588

Preparation

1. Go to the Purchase Page to activate the music service, and choose the appropriate features such as music scoring
to activate.
2. Create an AK/SK Key Pair in CAM (namely, a programmable access user that does not require log-in or any user

permissions).
3. Create a COS Bucket, and in the COS Bucket Management interface, authorize the read and write permissions of
the COS Bucket to the created programmable access user.
4. Prepare the parameters.
operateUin: Tencent Cloud sub-user's account ID.
cosConfig: COS related parameters.

secretId: Bucket's secretId.
secretKey: Bucket's secretKey.
bucket: Bucket's name.
region: Bucket's region, for example, ap-guangzhou.

Activation and registration.

After the preparation is completed, proceed with registration activation by initiating a request, with an estimated wait

time of about 2 minutes.
Initiate request.
Request result:

curl -X POST \\

 http://service-mqk0mc83-1257411467.bj.apigw.tencentcs.com/release/register \\

 -H 'Content-Type: application/json' \\

 -H 'Cache-control: no-cache' \\

 -d '{

 "requestId": "test-regisiter-service",

https://buy.intl.cloud.tencent.com/imusic
https://console.intl.cloud.tencent.com/cam
https://console.intl.cloud.tencent.com/cos/bucket

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 163 of 588

 "action": "Register",

 "registerRequest": {

 "operateUin": <operateUin>,

 "userName": <customedName>,

 "cosConfig": {

 "secretId": <CosConfig.secretId>,

 "secretKey": <CosConfig.secretKey>,

 "bucket": <CosConfig.bucket>,

 "region": <CosConfig.region>

 }

 }

 }'

{

 "requestId": "test-regisiter-service",

 "registerInfo": {

 "tmpContentId": <tmpContentId>,

 "tmpSecretId": <tmpSecretId>,

 "tmpSecretKey": <tmpSecretKey>,

 "apiGateSecretId": <apiGateSecretId>,

 "apiGateSecretKey": <apiGateSecretKey>,

 "demoCosPath": "UIN_demo/run_musicBeat.py",

 "usageDescription": "Download the python version demo file [UIN_demo/run_mu

 "message": "Registration successful, and thank you for registering.",

 "createdAt": <createdAt>,

 "updatedAt": <updatedAt>

 }

}

Run verification.

After the above activation and registration service are completed, a python version executable demo example based
on music beat recognition capability will be generated in the demoCosPath directory. Execute the command

 python run_musicBeat.py in a networked environment for verification.

Note:
For more detailed intelligent music solution integration instructions, see Integration Guide.

Step 2: Importing SDK.

The TRTC SDK has been released to the mavenCentral repository, and you can configure Gradle to download and
update automatically.
1. Add the dependency for the appropriate version of the SDK in dependencies.

dependencies {

https://multimedia.tencent.com/docs/smart-music/user-guide/5-minute-access-guide

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 164 of 588

 // TRTC Lite SDK. It includes TRTC and live streaming playback features and

is compact in size.

 implementation 'com.tencent.liteav:LiteAVSDK_TRTC:latest.release'

 // TRTC Professional SDK. It also includes live streaming, short video,

video on demand, and other features, and is slightly larger in size.

 // implementation

'com.tencent.liteav:LiteAVSDK_Professional:latest.release'

}

Note:
Besides the recommended automatic loading method, you can also choose to download the SDK and manually import
it. For details, see Manually Integrating the TRTC SDK.
2. Specify the CPU architecture used by the app in defaultConfig.

defaultConfig {

 ndk {

 abiFilters "armeabi-v7a", "arm64-v8a"

 }

}

Note:
The TRTC SDK supports architectures including armeabi, armeabi-v7a and arm64-v8a. Additionally, it supports
architectures for simulators including x86 and x86_64.

Step 3: Project configuration.

1. Configure permissions.

To configure app permissions in AndroidManifest.xml, for karaoke scenarios, the TRTC SDK requires the following
permissions:

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />

<uses-permission android:name="android.permission.RECORD_AUDIO" />

<uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" />

<uses-permission android:name="android.permission.BLUETOOTH" />

Note:
The TRTC SDK does not have built-in permission request logic. You need to declare the corresponding permissions
and features yourself. Some permissions (such as storage and recording), also require runtime dynamic requests.
If the Android project's targetSdkVersion is 31 or higher, or if the target device runs Android 12 or a newer

version, the official requirement is to dynamically request android.permission.BLUETOOTH_CONNECT

permission in the code to use the Bluetooth feature properly. For more information, see Bluetooth Permissions.

https://intl.cloud.tencent.com/document/product/647/35093#.E6.96.B9.E6.A1.88.E4.BA.8C.EF.BC.9A.E4.B8.8B.E8.BD.BD-sdk-.E5.B9.B6.E6.89.8B.E5.8A.A8.E5.AF.BC.E5.85.A5
https://developer.android.google.cn/develop/connectivity/bluetooth/bt-permissions?hl=zh-cn

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 165 of 588

2. Obfuscation configuration.
Since we use Java's reflection features inside the SDK, you need to add relevant SDK classes to the non-obfuscation
list in the proguard-rules.pro file:

-keep class com.tencent.** { *; }

Step 4: Authentication and authorization.

UserSig is a security protection signature designed by Tencent Cloud to prevent malicious attackers from
misappropriating your cloud service usage rights. TRTC validates this authentication credential when it enters the
room.
Debugging Stage: UserSig can be generated through two methods for debugging and testing purposes only: client

sample code and console access.
Formal Operation Stage: It is recommended to use a higher security level server computation for generating UserSig.
This is to prevent key leakage due to client reverse engineering.
The specific implementation process is as follows:
1. Before calling the SDK's initialization function, your app must first request UserSig from your server.

2. Your server computes the UserSig based on the SDKAppID and UserID.
3. The server returns the computed UserSig to your app.
4. Your app passes the obtained UserSig into the SDK through a specific API.
5. The SDK submits the SDKAppID + UserID + UserSig to Tencent Cloud CVM for verification.
6. Tencent Cloud verifies the UserSig and confirms its validity.
7. After the verification is passed, real-time audio and video services will be provided to the TRTC SDK.

https://intl.cloud.tencent.com/document/product/647/35166#.E5.AE.A2.E6.88.B7.E7.AB.AF.E7.A4.BA.E4.BE.8B.E4.BB.A3.E7.A0.81.E8.AE.A1.E7.AE.97-usersig
https://intl.cloud.tencent.com/document/product/647/35166#.E6.8E.A7.E5.88.B6.E5.8F.B0.E8.8E.B7.E5.8F.96-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 166 of 588

Note:

The local computation method of UserSig during the debugging stage is not recommended for application in an online
environment. It is prone to reverse engineering, leading to key leakage.
We provide server computation source code for UserSig in multiple programming languages
(Java/GO/PHP/Nodejs/Python/C#/C++). For details, see Server Computation of UserSig.

Step 5: Initializing the SDK.

// Create TRTC SDK instance (Single Instance Pattern).

TRTCCloud mTRTCCloud = TRTCCloud.sharedInstance(context);

// Set event listeners.

mTRTCCloud.addListener(trtcSdkListener);

// Notifications from various SDK events (e.g., error codes, warning codes, audio a

private TRTCCloudListener trtcSdkListener = new TRTCCloudListener() {

 @Override

 public void onError(int errCode, String errMsg, Bundle extraInfo) {

 Log.d(TAG, errCode + errMsg);

https://intl.cloud.tencent.com/document/product/1047/34385#.E6.9C.8D.E5.8A.A1.E7.AB.AF.E8.AE.A1.E7.AE.97-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 167 of 588

 }

 @Override

 public void onWarning(int warningCode, String warningMsg, Bundle extraInfo) {

 Log.d(TAG, warningCode + warningMsg);

 }

};

// Remove event listener.

mTRTCCloud.removeListener(trtcSdkListener);

// Terminate TRTC SDK instance (Singleton Pattern).

TRTCCloud.destroySharedInstance();

Note:
It is recommended to listen to SDK event notifications. Perform log printing and handling for some common errors. For
details, see Error Code Table.

Scenario 1: Solo singing turn-taking

Perspective 1: Performer actions

Sequence diagram

https://intl.cloud.tencent.com/document/product/647/35130

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 168 of 588

Singer

Singer

TRTCCloud

TRTCCloud

Business_Backend

Business_Backend

Enter Room

enterRoom:scene:LIVE Enter Room in LIVE Scenario

onEnterRoom

enableBlackStream Enable Black Frame Supplement to Transmit SEI

Become a Speaker and Start Publishing

switchRole:Anchor

onSwitchRole

setSystemVolumeType:Media

startLocalAudio:MUSIC

onSendFirstLocalAudioFrame

Select a Song and Sing

Search Songs

Song List

Song Selection

MusicId/MusicUrl/LyricsUrl

setMusicObserver Set Playback Event Callback

startPlayMusic:MusicId:MusicUrl Play Music

onStart Music Start Playing

Lyrics Synchronization

Download Lyrics:LyricsUrl

onPlayProgress Music Playback Progress Callback

Synchronize Local Lyrics Progress

sendSEIMsg:musicId:curPtsMs:durationMs Send SEI Message

Become a Listener and Exit the Room

switchRole:Audience

onSwitchRole

stopPlayMusic

stopLocalAudio

exitRoom

onExitRoom

1. Enter the room.

public void enterRoom(String roomId, String userId) {

 TRTCCloudDef.TRTCParams params = new TRTCCloudDef.TRTCParams();

 // Take the room ID string as an example.

 params.strRoomId = roomId;

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 169 of 588

 params.userId = userId;

 // UserSig obtained from the business backend.

 params.userSig = getUserSig(userId);

 // Replace with your SDKAppID.

 params.sdkAppId = SDKAppID;

 // It is recommended to enter the room as an audience role.

 params.role = TRTCCloudDef.TRTCRoleAudience;

 // LIVE should be selected for the room entry scenario.

 mTRTCCloud.enterRoom(params, TRTCCloudDef.TRTC_APP_SCENE_LIVE);

}

Note:
To better transmit SEI messages for lyrics synchronization, it is recommended to choose
 TRTC_APP_SCENE_LIVE for room-entry scenarios.

// Event callback for the result of entering the room.

@Override

public void onEnterRoom(long result) {

 if (result > 0) {

 // result indicates the time taken (in milliseconds) to join the room.

 Log.d(TAG, "Enter room succeed");

 // Enable the experimental API for black frame insertion.

 mTRTCCloud.callExperimentalAPI("{\\"api\\":\\"enableBlackStream\\",\\"param

 } else {

 // result indicates the error code when you fail to enter the room.

 Log.d(TAG, "Enter room failed");

 }

}

Note:

Under the pure audio mode, the performer needs to enable the insertion of black frames to carry SEI messages. This
API should be called after successfully entering the room.
2. Go live on streams.

// Switched to the anchor role.

mTRTCCloud.switchRole(TRTCCloudDef.TRTCRoleAnchor);

// Event callback for switching the role.

@Override

public void onSwitchRole(int errCode, String errMsg) {

 if (errCode == TXLiteAVCode.ERR_NULL) {

 // Set media volume type.

 mTRTCCloud.setSystemVolumeType(TRTCCloudDef.TRTCSystemVolumeTypeMedia);

 // Upstream local audio streams and set audio quality.

 mTRTCCloud.startLocalAudio(TRTCCloudDef.TRTC_AUDIO_QUALITY_MUSIC);

 }

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 170 of 588

}

Note:
In karaoke scenarios, it is recommended to set the full-range media volume and music quality to achieve a high-fidelity

listening experience.
3. Song selection and performance.
Search for songs, and obtain music resources.
Search for songs and acquire music resources through the business backend. Obtain identifiers such as the MusicId,
the song's URL (MusicUrl), and the lyrics URL (LyricsUrl).

It is recommended that the business side select an appropriate music repository production to provide licensed music
resources.
Play accompaniment and start singing.

// Obtain audio effects management.

TXAudioEffectManager mTXAudioEffectManager = mTRTCCloud.getAudioEffectManager();

// originMusicId: Custom identifier for the original vocal music. originMusicUrl: U

TXAudioEffectManager.AudioMusicParam originMusicParam = new TXAudioEffectManager.Au

// Whether to publish the original vocal music to remote (otherwise play locally on

originMusicParam.publish = true;

// accompMusicId: Custom identifier for the accompaniment music. accompMusicUrl: UR

TXAudioEffectManager.AudioMusicParam accompMusicParam = new TXAudioEffectManager.Au

// Whether to publish the accompaniment to remote (otherwise play locally only).

accompMusicParam.publish = true;

// Start playing the original vocal music.

mTXAudioEffectManager.startPlayMusic(originMusicParam);

// Start playing the accompaniment music.

mTXAudioEffectManager.startPlayMusic(accompMusicParam);

// Switch to the original vocal music.

mTXAudioEffectManager.setMusicPlayoutVolume(originMusicId, 100);

mTXAudioEffectManager.setMusicPlayoutVolume(accompMusicId, 0);

mTXAudioEffectManager.setMusicPublishVolume(originMusicId, 100);

mTXAudioEffectManager.setMusicPublishVolume(accompMusicId, 0);

// Switch to the accompaniment music.

mTXAudioEffectManager.setMusicPlayoutVolume(originMusicId, 0);

mTXAudioEffectManager.setMusicPlayoutVolume(accompMusicId, 100);

mTXAudioEffectManager.setMusicPublishVolume(originMusicId, 0);

mTXAudioEffectManager.setMusicPublishVolume(accompMusicId, 100);

Note:

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 171 of 588

In karaoke scenarios, both the original vocal and accompaniment need to be played simultaneously (distinguished by
MusicID). The switch between the original vocal and accompaniment is achieved by adjusting the local and remote
playback volumes.

If the music being played has dual audio tracks (including both the original vocal and accompaniment), switching
between them can be achieved by specifying the music's playback track using setMusicTrack.
4. Lyric synchronization
Download lyrics.
Obtain the target lyrics download link, LyricsUrl, from the business backend, and cache the target lyrics locally.

Synchronize local lyrics, and transmit song progress via SEI.

mTXAudioEffectManager.setMusicObserver(musicId, new TXAudioEffectManager.TXMusicPla

 @Override

 public void onStart(int id, int errCode) {

 // Start playing music.

 }

 @Override

 public void onPlayProgress(int id, long curPtsMs, long durationMs) {

 // Determine whether seek is needed based on the latest progress and the lo

 // Song progress is transmitted by sending an SEI message.

 try {

 JSONObject jsonObject = new JSONObject();

 jsonObject.put("musicId", id);

 jsonObject.put("progress", curPtsMs);

 jsonObject.put("duration", durationMs);

 mTRTCCloud.sendSEIMsg(jsonObject.toString().getBytes(), 1);

 } catch (JSONException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void onComplete(int id, int errCode) {

 // Music playback completed.

 }

});

Note:

Ensure to set the playback event callback using this API before playing the background music. This allows to be
aware of the background music's playback progress.
The frequency of the SEI messages sent by the performer is determined by the event callback frequency. Also, the
playback progress can be actively synchronized on a schedule through getMusicCurrentPosInMS.
5. Become a listener and exit the room.

https://intl.cloud.tencent.com/document/product/647/50765#8dc4b355cd2af90de761cec9b9057937
https://intl.cloud.tencent.com/document/product/647/50765#a3c50caad27c04e3f8c5535d4c669ffd

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 172 of 588

// Switched to the audience role.

mTRTCCloud.switchRole(TRTCCloudDef.TRTCRoleAudience);

// Event callback for switching the role.

@Override

public void onSwitchRole(int errCode, String errMsg) {

 if (errCode == TXLiteAVCode.ERR_NULL) {

 // Stop playing accompaniment music.

 mTRTCCloud.getAudioEffectManager().stopPlayMusic(musicId);

 // Stop local audio capture and publishing.

 mTRTCCloud.stopLocalAudio();

 }

}

// Exit the room.

mTRTCCloud.exitRoom();

// Exit room event callback.

@Override

public void onExitRoom(int reason) {

 if (reason == 0) {

 Log.d(TAG, "Actively call exitRoom to exit the room.");

 } else if (reason == 1) {

 Log.d(TAG, "Removed from the current room by the server.");

 } else if (reason == 2) {

 Log.d(TAG, "The current room has been dissolved.");

 }

}

Note:

After all resources occupied by the SDK are released, the SDK will throw the onExitRoom callback notification to

inform you.
If you want to call enterRoom again or switch to another audio and video SDK, wait for the onExitRoom

callback before proceeding. Otherwise, you may encounter various exceptional issues such as the camera,
microphone device being forcibly occupied.

Perspective 2: Listener actions

Sequence diagram

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 173 of 588

Audience

Audience

TRTCCloud

TRTCCloud

Business_Backend

Business_Backend

Enter Room

enterRoom:scene:LIVE Enter Room in LIVE Scenario

onEnterRoom

onRemoteUserEnterRoom

onUserVideoAvailable Singer Published Video Stream (Black Frame)

startRemoteView Subscribe to the Singer's Video Stream (Black Frame)

onFirstVideoFrame

Lyrics Synchronization

Request Lyrics Download Link

LyricsUrl

Download and Display Lyrics

onRecvSEIMsg:musicId:curPtsMs:durationMs Receive SEI Message

Synchronize Local Lyrics Progress

Exit Room

exitRoom

onExitRoom

1. Enter the room.

public void enterRoom(String roomId, String userId) {

 TRTCCloudDef.TRTCParams params = new TRTCCloudDef.TRTCParams();

 // Take the room ID string as an example.

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend.

 params.userSig = getUserSig(userId);

 // Replace with your SDKAppID.

 params.sdkAppId = SDKAppID;

 // It is recommended to enter the room as an audience role.

 params.role = TRTCCloudDef.TRTCRoleAudience;

 // LIVE should be selected for the room entry scenario.

 mTRTCCloud.enterRoom(params, TRTCCloudDef.TRTC_APP_SCENE_LIVE);

}

// Event callback for the result of entering the room.

@Override

public void onEnterRoom(long result) {

 if (result > 0) {

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 174 of 588

 // result indicates the time taken (in milliseconds) to join the room.

 Log.d(TAG, "Enter room succeed");

 } else {

 // result indicates the error code when you fail to enter the room.

 Log.d(TAG, "Enter room failed");

 }

}

Note:
To better transmit SEI messages for lyrics synchronization, it is recommended to choose
 TRTC_APP_SCENE_LIVE for room-entry scenarios.

Under the automatic subscription mode (default), audiences automatically subscribe and play the on-mic anchor's
audio and video streams upon entering the room.
2. Lyric synchronization
Download lyrics.
Obtain the target lyrics download link, LyricsUrl, from the business backend, and cache the target lyrics locally.

Listener end lyric synchronization

@Override

public void onUserVideoAvailable(String userId, boolean available) {

 if (available) {

 mTRTCCloud.startRemoteView(userId, null);

 } else {

 mTRTCCloud.stopRemoteView(userId);

 }

}

@Override

public void onRecvSEIMsg(String userId, byte[] data) {

 String result = new String(data);

 try {

 JSONObject jsonObject = new JSONObject(result);

 int musicId = jsonObject.getInt("musicId");

 long progress = jsonObject.getLong("progress");

 long duration = jsonObject.getLong("duration");

 } catch (JSONException e) {

 e.printStackTrace();

 }

 ...

 // TODO: The logic of updating the lyric control.

 // Based on the received latest progress and the local lyrics progress deviatio

 ...

}

Note:

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 175 of 588

Listeners need to actively subscribe to the performer's video streams in order to receive the SEI messages carried by
black frames.
3. Exit the room.

// Exit the room.

mTRTCCloud.exitRoom();

// Exit room event callback.

@Override

public void onExitRoom(int reason) {

 if (reason == 0) {

 Log.d(TAG, "Actively call exitRoom to exit the room.");

 } else if (reason == 1) {

 Log.d(TAG, "Removed from the current room by the server.");

 } else if (reason == 2) {

 Log.d(TAG, "The current room has been dissolved.");

 }

}

Scenario 2: Real-time chorus

Perspective 1: Lead singer actions

Sequence diagram

Lead_Singer TRTCCloud Business_Backend

Create Dual Instances and Enter the Room

sharedInstance Create Main Instance

mainCloud.enterRoom The Main Instance Enters the Room

onEnterRoom The Main Instance Sucessfully Enters the Room

mainCloud.createSubCloud Create Sub-Instance

subCloud.setDefaultStreamRecvMode Sub-Instance Manual Subscription Mode

subCloud.enterRoom Sub-Instance Enters the Room

onEnterRoom Sub-Instance Sucessfully Enters the Room

Actions After Main Instance Enters the Room

mainCloud.muteRemoteAudio The Main Instance Cancels the Subscription to the Sub-Instance's Audio Stream

mainCloud.enableBlackStream:true The Main Instance Enables the Black Frame Supplement

mainCloud.enableChorus:true The Main Instance Enables Chorus Mode

mainCloud.setLowLatencyModeEnabled:true The Main Instance Enables Low Latency Mode

mainCloud.enableAudioVolumeEvaluation The Main Instance Enables Volume-Level Callback

mainCloud.setSystemVolumeType:Media The Main Instance Sets Full Media Volume

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 176 of 588

mainCloud.startLocalAudio:MUSIC The Main Instance Captures and Publishes the Local Audio Stream Concurrently

onSendFirstLocalAudioFrame The Main Instance's First Frame Audio Has Been Sent

mainCloud.startPublishMediaStream The Main Instance Initiates Pushing the Mixed Stream Back to the Room

onStartPublishMediaStream Start Publishing Media Stream Event Callback

Actions after Sub-Instance Enters the Room

subCloud.enableChorus:true The Sub-Instance Enables Chorus Mode

subCloud.setLowLatencyModeEnabled:true The Sub-Instance Enables Low-Latency Mode

subCloud.setSystemVolumeType:Media The Sub-Instance Sets Full Media Volume

subCloud.setAudioQuality:MUSIC The Sub-Instance Sets the Music Quality

Search and Select a Song

Search Songs

Song List

Song Selection

MusicId/MusicUrl/LyricsUrl

Initiate Chorus

updateNetworkTime NTP Time Synchronization

onUpdateNetworkTime

getNetworkTimestamp Access NTP Time

alt [ntpTime > 0]

sendCustomCmdMsg Send Chorus Signaling

[ntpTime <= 0]
Unable to Initiate Chorus

Play Music

setPreloadObserver

preloadMusic:originMusicParam Preload Original Music

preloadMusic:accompMusicParam Preload Accompaniment

onLoadProgress Preload Progress Callback

setMusicObserver

startPlayMusic:originMusicParam Start Playing Original Music

startPlayMusic:accompMusicParam Start Playing Accompaniment

onStart Callback of Music Start Playing

setMusicPlayoutVolume Adjust the Playback Volume to Switch Between the Original and the Accompaniment

setMusicPublishVolume Adjust the Publishing Volume to Switch Between the Original and the Accompaniment

Accompaniment Synchronization

currentProgress = getMusicCurrentPosInMS Access Actual Playback Progress of Accompaniment

getNetworkTimestamp Access NTP Time

estimatedProgress = ntpTime - startTime
Calculate Ideal Playback Progress of Accompaniment

alt [abs(currentProgress - estimatedProgress) > 50]

seekMusicToPosInMS Adjust if Progress Deviation Exceeds Threshold

Lyrics Synchronization

Download Lyrics:LyricsUrl

onPlayProgress Music Playback Progress Callback

Synchronize Local Lyrics Progress

sendSEIMsg:musicId:curPtsMs:durationMs Send SEI Message

Become a Listener and Exit the Room

subCloud enableChorus:false Th S b I t Di bl Ch M d

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 177 of 588

Lead_Singer TRTCCloud Business_Backend

subCloud.enableChorus:false The Sub-Instance Disables Chorus Mode

subCloud.setLowLatencyModeEnabled:false The Sub-Instance Disables Low-Latency Mode

subCloud.switchRole:Audience The Sub-Instance Switches to the Audience Role

onSwitchRole

TXAudioEffectManager.stopPlayMusic The Sub-Instance Stops Playing Music

subCloud.exitRoom The Sub-Instance Exits Room

onExitRoom

mainCloud.enableBlackStream:false The Main Instance Disables the Black Frame Supplement

mainCloud.enableChorus:false The Main Instance Disables Chorus Mode

mainCloud.setLowLatencyModeEnabled:false The Main Instance Disables Low Latency Mode

mainCloud.switchRole:Audience The Main Instance Switches to the Audience Role

onSwitchRole

mainCloud.stopLocalAudio The Main Instance Stops Audio Capturing and Publishing

mainCloud.exitRoom The Main Instance Exits Room

onExitRoom

1. Dual instances enter the room.

// Create a TRTCCloud primary instance (vocal instance).

TRTCCloud mTRTCCloud = TRTCCloud.sharedInstance(context);

// Create a TRTCCloud sub-instance (music instance).

TRTCCloud subCloud = mTRTCCloud.createSubCloud();

// The primary instance (vocal instance) enters the room.

TRTCCloudDef.TRTCParams params = new TRTCCloudDef.TRTCParams();

params.sdkAppId = SDKAppId;

params.userId = UserId;

params.userSig = UserSig;

params.role = TRTCCloudDef.TRTCRoleAnchor;

params.strRoomId = RoomId;

mTRTCCloud.enterRoom(params, TRTCCloudDef.TRTC_APP_SCENE_LIVE);

// The sub-instance enables manual subscription mode. By default it does not subscr

subCloud.setDefaultStreamRecvMode(false, false);

// The sub-instance (music instance) enters the room.

TRTCCloudDef.TRTCParams bgmParams = new TRTCCloudDef.TRTCParams();

bgmParams.sdkAppId = SDKAppId;

// The sub-instance username must not duplicate with other users in the room.

bgmParams.userId = UserId + "_bgm";

bgmParams.userSig = UserSig;

bgmParams.role = TRTCCloudDef.TRTCRoleAnchor;

bgmParams.strRoomId = RoomId;

subCloud.enterRoom(bgmParams, TRTCCloudDef.TRTC_APP_SCENE_LIVE);

Note:

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 178 of 588

In a real-time chorus solution, the lead singer end must create primary instance and sub-instance for upstream voice
and accompaniment music, respectively.
Sub-instances do not need to subscribe to other users' audio streams in the room. Therefore, it is recommended to

enable manual subscription mode, and it must be activated before entering the room.
2. Set the settings after entering the room.

// Event callback for the result of primary instance entering the room.

@Override

public void onEnterRoom(long result) {

 if (result > 0) {

 // The primary instance unsubscribe from music streams published by sub-ins

 mTRTCCloud.muteRemoteAudio(UserId + "_bgm", true);

 // The primary instance uses the experimental API to enable black frame ins

 mTRTCCloud.callExperimentalAPI(

 "{\\"api\\":\\"enableBlackStream\\",\\"params\\": {\\"enable\\":true}}");

 // The primary instance uses the experimental API to enable chorus mode.

 mTRTCCloud.callExperimentalAPI(

 "{\\"api\\":\\"enableChorus\\",\\"params\\":{\\"enable\\":true,\\"audioSour

 // The primary instance uses the experimental API to enable low-latency mod

 mTRTCCloud.callExperimentalAPI(

 "{\\"api\\":\\"setLowLatencyModeEnabled\\",\\"params\\":{\\"enable\\":true}

 // The primary instance enables volume level callback.

 mTRTCCloud.enableAudioVolumeEvaluation(300, false);

 // The primary instance sets the global media volume type.

 mTRTCCloud.setSystemVolumeType(TRTCCloudDef.TRTCSystemVolumeTypeMedia);

 // The primary instance captures and publishes local audio, and sets audio

 mTRTCCloud.startLocalAudio(TRTCCloudDef.TRTC_AUDIO_QUALITY_MUSIC);

 } else {

 // result indicates the error code when you fail to enter the room.

 Log.d(TAG, "Enter room failed");

 }

}

// Event callback for the result of sub-instance entering the room.

@Override

public void onEnterRoom(long result) {

 if (result > 0) {

 // The sub-instance uses the experimental API to enable chorus mode.

 subCloud.callExperimentalAPI(

 "{\\"api\\":\\"enableChorus\\",\\"params\\":{\\"enable\\":true,\\"audioSour

 // The sub-instance uses the experimental API to enable low-latency mode.

 subCloud.callExperimentalAPI(

 "{\\"api\\":\\"setLowLatencyModeEnabled\\",\\"params\\":{\\"enable\\":true}

 // The sub-instance sets global media volume type.

 subCloud.setSystemVolumeType(TRTCCloudDef.TRTCSystemVolumeTypeMedia);

 // The sub-instance sets audio quality.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 179 of 588

 subCloud.setAudioQuality(TRTCCloudDef.TRTC_AUDIO_QUALITY_MUSIC);

 } else {

 // result indicates the error code when you fail to enter the room.

 Log.d(TAG, "Enter room failed");

 }

}

Note:
Both the primary instance and sub-instance must use the experimental APIs to enable chorus mode and low-latency
mode to optimize the chorus experience. Note the difference in the audioSource parameter.

3. Push the mixed stream back to the room.

private void startPublishMediaToRoom(String roomId, String userId) {

 // Create TRTCPublishTarget object.

 TRTCCloudDef.TRTCPublishTarget target = new TRTCCloudDef.TRTCPublishTarget();

 // After mixing, the stream is relayed back to the room.

 target.mode = TRTCCloudDef.TRTC_PublishMixStream_ToRoom;

 target.mixStreamIdentity.strRoomId = roomId;

 // The mixing stream robot's username must not duplicate with other users in th

 target.mixStreamIdentity.userId = userId + "_robot";

 // Set the encoding parameters of the transcoded audio stream (can be customize

 TRTCCloudDef.TRTCStreamEncoderParam trtcStreamEncoderParam = new TRTCCloudDef.T

 trtcStreamEncoderParam.audioEncodedChannelNum = 2;

 trtcStreamEncoderParam.audioEncodedKbps = 64;

 trtcStreamEncoderParam.audioEncodedCodecType = 2;

 trtcStreamEncoderParam.audioEncodedSampleRate = 48000;

 // Set the encoding parameters of the transcoded video stream (black frame mixi

 trtcStreamEncoderParam.videoEncodedFPS = 15;

 trtcStreamEncoderParam.videoEncodedGOP = 3;

 trtcStreamEncoderParam.videoEncodedKbps = 30;

 trtcStreamEncoderParam.videoEncodedWidth = 64;

 trtcStreamEncoderParam.videoEncodedHeight = 64;

 // Set audio mixing parameters.

 TRTCCloudDef.TRTCStreamMixingConfig trtcStreamMixingConfig = new TRTCCloudDef.T

 // By default, leave this field empty. It indicates that all audio in the room

 trtcStreamMixingConfig.audioMixUserList = null;

 // Configure video mixed-stream template (black frame mixing required).

 TRTCCloudDef.TRTCVideoLayout videoLayout = new TRTCCloudDef.TRTCVideoLayout();

 trtcStreamMixingConfig.videoLayoutList.add(videoLayout);

 // Start mixing and pushing back.

 mTRTCCloud.startPublishMediaStream(target, trtcStreamEncoderParam, trtcStreamMi

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 180 of 588

}

Note:
To maintain alignment between chorus vocals and accompaniment music, it is recommended to enable pushing the

mixed stream back to the room. The on-mic chorus members mutually subscribe to single streams, and off-mic
audiences by default only subscribe to mixed streams.
The mixing stream robot, acting as an independent user, enters the room to pull, mix, and push streams. Its username
must not duplicate with other usernames in the room. Otherwise, it may lead to mutual deletion from the room.
4. Search for and request songs.

Search for songs and acquire music resources through the business backend. Obtain identifiers such as the MusicId,
the song's URL (MusicUrl), and the lyrics URL (LyricsUrl).
It is recommended that the business side select an appropriate music repository production to provide licensed music
resources.
5. NTP synchronization.

TXLiveBase.setListener(new TXLiveBaseListener() {

 @Override

 public void onUpdateNetworkTime(int errCode, String errMsg) {

 super.onUpdateNetworkTime(errCode, errMsg);

 // errCode 0: Time synchronization successful and deviation within 30 ms. 1

 if (errCode == 0) {

 // Time synchronization successful and NTP timestamp obtained.

 long ntpTime = TXLiveBase.getNetworkTimestamp();

 } else {

 // If time synchronization fails, an attempt to resynchronize can be ma

 TXLiveBase.updateNetworkTime();

 }

 }

});

TXLiveBase.updateNetworkTime();

Note:
NTP time synchronization results can reflect the current network quality of the application user. To ensure a good

chorus experience, it is recommended not to allow users to initiate chorus if time synchronization fails.
6. Send chorus signaling.

Timer mTimer = new Timer();

mTimer.schedule(new TimerTask() {

 @Override

 public void run() {

 try {

 JSONObject jsonObject = new JSONObject();

 jsonObject.put("cmd", "startChorus");

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 181 of 588

 // Agreed chorus start time: Current NTP time + delayed playback time (

 jsonObject.put("startPlayMusicTS", TXLiveBase.getNetworkTimestamp() + 3

 jsonObject.put("musicId", musicId);

 jsonObject.put("musicDuration", subCloud.getAudioEffectManager().getMus

 mTRTCCloud.sendCustomCmdMsg(1, jsonObject.toString().getBytes(), false,

 } catch (JSONException e) {

 e.printStackTrace();

 }

 }

}, 0, 1000);

Note:
The lead singer needs to cyclically broadcast chorus signaling to the room at a fixed time interval (e.g., every 1
second), so that new users who join mid-session can also participate in the chorus.

7. Load and play accompaniment.

// Obtain audio effects management.

TXAudioEffectManager mTXAudioEffectManager = subCloud.getAudioEffectManager();

// originMusicId: Custom identifier for the original vocal music. originMusicUrl: U

TXAudioEffectManager.AudioMusicParam originMusicParam = new TXAudioEffectManager.Au

// Publish original music to the remote.

originMusicParam.publish = true;

// Music start playing time point (in milliseconds).

originMusicParam.startTimeMS = 0;

// accompMusicId: Custom identifier for the accompaniment music. accompMusicUrl: UR

TXAudioEffectManager.AudioMusicParam accompMusicParam = new TXAudioEffectManager.Au

// Publish accompaniment music to the remote.

accompMusicParam.publish = true;

// Music start playing time point (in milliseconds).

accompMusicParam.startTimeMS = 0;

// Preload the original vocal music.

mTXAudioEffectManager.preloadMusic(originMusicParam);

// Preload the accompaniment music.

mTXAudioEffectManager.preloadMusic(accompMusicParam);

// Start playing the original vocal music after a delayed playback time (for exampl

mTXAudioEffectManager.startPlayMusic(originMusicParam);

// Start playing the accompaniment music after a delayed playback time (for example

mTXAudioEffectManager.startPlayMusic(accompMusicParam);

// Switch to the original vocal music.

mTXAudioEffectManager.setMusicPlayoutVolume(originMusicId, 100);

mTXAudioEffectManager.setMusicPlayoutVolume(accompMusicId, 0);

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 182 of 588

mTXAudioEffectManager.setMusicPublishVolume(originMusicId, 100);

mTXAudioEffectManager.setMusicPublishVolume(accompMusicId, 0);

// Switch to the accompaniment music.

mTXAudioEffectManager.setMusicPlayoutVolume(originMusicId, 0);

mTXAudioEffectManager.setMusicPlayoutVolume(accompMusicId, 100);

mTXAudioEffectManager.setMusicPublishVolume(originMusicId, 0);

mTXAudioEffectManager.setMusicPublishVolume(accompMusicId, 100);

Note:

It is recommended to preload music before starting playback. By loading music resources into memory in advance,
you can effectively reduce the load delay of music playback.
In karaoke scenarios, both the original vocal and accompaniment need to be played simultaneously (distinguished by
MusicID). The switch between the original vocal and accompaniment is achieved by adjusting the local and remote
playback volumes.

If the music being played has dual audio tracks (including both the original vocal and accompaniment), switching
between them can be achieved by specifying the music's playback track using setMusicTrack.
8. Accompaniment Synchronization

// Agreed chorus start time.

long mStartPlayMusicTs = jsonObject.getLong("startPlayMusicTS");

// Actual playback progress of the current accompaniment music.

long currentProgress = subCloud.getAudioEffectManager().getMusicCurrentPosInMS(musi

// Ideal playback progress of the current accompaniment music.

long estimatedProgress = TXLiveBase.getNetworkTimestamp() - mStartPlayMusicTs;

// When the progress difference exceeds 50 ms, corrections are made.

if (estimatedProgress >= 0 && Math.abs(currentProgress - estimatedProgress) > 50) {

 subCloud.getAudioEffectManager().seekMusicToPosInMS(musicId, (int) estimatedPro

}

9. Lyric synchronization
Download lyrics.
Obtain the target lyrics download link, LyricsUrl, from the business backend, and cache the target lyrics locally.

Synchronize local lyrics, and transmit song progress via SEI.

mTXAudioEffectManager.setMusicObserver(musicId, new TXAudioEffectManager.TXMusicPla

 @Override

 public void onStart(int id, int errCode) {

 // Start playing music.

 }

 @Override

 public void onPlayProgress(int id, long curPtsMs, long durationMs) {

 // Determine whether seek is needed based on the latest progress and the lo

 // Song progress is transmitted by sending an SEI message.

https://intl.cloud.tencent.com/document/product/647/50765#8dc4b355cd2af90de761cec9b9057937

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 183 of 588

 try {

 JSONObject jsonObject = new JSONObject();

 jsonObject.put("musicId", id);

 jsonObject.put("progress", curPtsMs);

 jsonObject.put("duration", durationMs);

 mTRTCCloud.sendSEIMsg(jsonObject.toString().getBytes(), 1);

 } catch (JSONException e) {

 e.printStackTrace();

 }

 }

 @Override

 public void onComplete(int id, int errCode) {

 // Music playback completed.

 }

});

Note:
Ensure to set the playback event callback using this API before playing the background music. This allows to be
aware of the background music's playback progress.
The frequency of the SEI messages sent by the performer is determined by the event callback frequency. Also, the

playback progress can be actively synchronized on a schedule through getMusicCurrentPosInMS.
10. Become a listener and exit the room.

// The sub-instance uses the experimental API to disable chorus mode.

subCloud.callExperimentalAPI(

"{\\"api\\":\\"enableChorus\\",\\"params\\":{\\"enable\\":false,\\"audioSource\\":1

// The sub-instance uses the experimental API to disable low-latency mode.

subCloud.callExperimentalAPI(

"{\\"api\\":\\"setLowLatencyModeEnabled\\",\\"params\\":{\\"enable\\":false}}");

// The sub-instance switches to the audience role.

subCloud.switchRole(TRTCCloudDef.TRTCRoleAudience);

// The sub-instance stops playing accompaniment music.

subCloud.getAudioEffectManager().stopPlayMusic(musicId);

// The sub-instance exits the room.

subCloud.exitRoom();

// The primary instance uses the experimental API to disable black frame insertion.

mTRTCCloud.callExperimentalAPI(

"{\\"api\\":\\"enableBlackStream\\",\\"params\\": {\\"enable\\":false}}");

// The primary instance uses the experimental API to disable chorus mode.

mTRTCCloud.callExperimentalAPI(

"{\\"api\\":\\"enableChorus\\",\\"params\\":{\\"enable\\":false,\\"audioSource\\":0

// The primary instance uses the experimental API to disable low-latency mode.

mTRTCCloud.callExperimentalAPI(

"{\\"api\\":\\"setLowLatencyModeEnabled\\",\\"params\\":{\\"enable\\":false}}");

https://intl.cloud.tencent.com/document/product/647/50765#a3c50caad27c04e3f8c5535d4c669ffd

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 184 of 588

// The primary instance switches to the audience role.

mTRTCCloud.switchRole(TRTCCloudDef.TRTCRoleAudience);

// The primary instance stops local audio capture and publishing.

mTRTCCloud.stopLocalAudio();

// The primary instance exits the room.

mTRTCCloud.exitRoom();

Perspective 2: Chorus actions

Sequence diagram

Chorus TRTCCloud Business_Backend

Enter Room and Become a Speaker

enterRoom:scene:LIVE Enter Room in LIVE Scenario

onEnterRoom

switchRole:Anchor Switch to Anchor Role

onSwitchRole

muteRemoteAudio Cancel Subscription to the Lead Singer's Music Stream

enableChorus:true Enable Chorus Mode

setLowLatencyModeEnabled:true Enable Low Latency Mode

setSystemVolumeType:Media Set Full Media Volume

startLocalAudio:MUSIC Capture and Publish Local Audio Stream

onSendFirstLocalAudioFrame The First Frame of Audio Has Been Sent

Join in Chorus

updateNetworkTime NTP Time Synchronization

onUpdateNetworkTime

getNetworkTimestamp Access NTP Time

alt [ntpTime > 0]

onRecvCustomCmdMsg

delayMs = startTime - ntpTime
Receive and Process Chorus Signaling

[ntpTime <= 0]
Unable to Join in Chorus

Play Accompaniment

alt [delayMs < 0 && abs(delayMs) > musicDuration]

Chorus Completed

[Chorus Not Yet Started or in Progress]
setPreloadObserver

preloadMusic:originMusicParam Preload Original Music

preloadMusic:accompMusicParam Preload Accompaniment

onLoadProgress Preload Progress Callback

setMusicObserver

startPlayMusic:originMusicParam Start Playing Original Music

startPlayMusic:accompMusicParam Start Playing Accompaniment

onStart Callback of Music Start Playing

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 185 of 588

Chorus TRTCCloud Business_Backend

setMusicPlayoutVolume Adjust the Playback Volume to Switch Between the Original and the Accompaniment

setMusicPublishVolume Adjust the Publishing Volume to Switch Between the Original and the Accompaniment

Accompaniment Synchronization

currentProgress = getMusicCurrentPosInMS Access Actual Playback Progress of Accompaniment

getNetworkTimestamp Access NTP Time

estimatedProgress = ntpTime - startTime
Calculate Ideal Playback Progress of Accompaniment

alt [abs(currentProgress - estimatedProgress) > 50]

seekMusicToPosInMS Adjust if Progress Deviation Exceeds Threshold

Lyrics Synchronization

Request Lyrics Download Link

LyricsUrl

Download and Display Lyrics

onPlayProgress Music Playback Progress Callback

Synchronize Local Lyrics Progress

Become a Listener and Exit Room

enableChorus:false Disable Chorus Mode

setLowLatencyModeEnabled:false Disable Low-Latency Mode

switchRole:Audience Switch to Audience Role

onSwitchRole

stopPlayMusic Stop Playing Music

stopLocalAudio Stop Audio Capturing and Publishing

exitRoom Exit Room

onExitRoom

1. Enter the room.

public void enterRoom(String roomId, String userId) {

 TRTCCloudDef.TRTCParams params = new TRTCCloudDef.TRTCParams();

 // Take the room ID string as an example.

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend.

 params.userSig = getUserSig(userId);

 // Replace with your SDKAppID.

 params.sdkAppId = SDKAppID;

 // Example of entering the room as an audience role.

 params.role = TRTCCloudDef.TRTCRoleAudience;

 // LIVE should be selected for the room entry scenario.

 mTRTCCloud.enterRoom(params, TRTCCloudDef.TRTC_APP_SCENE_LIVE);

}

// Event callback for the result of entering the room.

@Override

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 186 of 588

public void onEnterRoom(long result) {

 if (result > 0) {

 // result indicates the time taken (in milliseconds) to join the room.

 Log.d(TAG, "Enter room succeed");

 } else {

 // result indicates the error code when you fail to enter the room.

 Log.d(TAG, "Enter room failed");

 }

}

2. Go live on streams.

// Switched to the anchor role.

mTRTCCloud.switchRole(TRTCCloudDef.TRTCRoleAnchor);

// Event callback for switching the role.

@Override

public void onSwitchRole(int errCode, String errMsg) {

 if (errCode == TXLiteAVCode.ERR_NULL) {

 // Cancel subscription to music streams published by the lead singer sub-in

 mTRTCCloud.muteRemoteAudio(mBgmUserId, true);

 // Use the experimental API to enable chorus mode.

 mTRTCCloud.callExperimentalAPI(

 "{\\"api\\":\\"enableChorus\\",\\"params\\":{\\"enable\\":true,\\"audioSour

 // Use the experimental API to enable low-latency mode.

 mTRTCCloud.callExperimentalAPI(

 "{\\"api\\":\\"setLowLatencyModeEnabled\\",\\"params\\":{\\"enable\\":true}

 // Set media volume type.

 mTRTCCloud.setSystemVolumeType(TRTCCloudDef.TRTCSystemVolumeTypeMedia);

 // Upstream local audio streams and set audio quality.

 mTRTCCloud.startLocalAudio(TRTCCloudDef.TRTC_AUDIO_QUALITY_MUSIC);

 }

}

Note:
To minimize delay, all chorus members play the accompaniment music locally. Therefore, it is necessary to cancel
subscriptions to music streams published by the lead singer.

Chorus members also need to use the experimental API to enable chorus mode and low-latency mode to optimize the
chorus experience.
In karaoke scenarios, it is recommended to set the full-range media volume and music quality to achieve a high-fidelity
listening experience.
3. NTP synchronization.

TXLiveBase.setListener(new TXLiveBaseListener() {

 @Override

 public void onUpdateNetworkTime(int errCode, String errMsg) {

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 187 of 588

 super.onUpdateNetworkTime(errCode, errMsg);

 // errCode 0: Time synchronization successful and deviation within 30 ms. 1

 if (errCode == 0) {

 // Time synchronization successful and NTP timestamp obtained.

 long ntpTime = TXLiveBase.getNetworkTimestamp();

 } else {

 // If time synchronization fails, an attempt to resynchronize can be ma

 TXLiveBase.updateNetworkTime();

 }

 }

});

TXLiveBase.updateNetworkTime();

Note:
NTP time synchronization results can reflect the current network quality of the application user. To ensure a good
chorus experience, it is recommended not to allow users to participate in the chorus if time synchronization fails.
4. Receive chorus signaling.

@Override

public void onRecvCustomCmdMsg(String userId, int cmdID, int seq, byte[] message) {

 try {

 JSONObject json = new JSONObject(new String(message, "UTF-8"));

 // Match the chorus signaling.

 if (json.getString("cmd").equals("startChorus")) {

 long startPlayMusicTs = json.getLong("startPlayMusicTS");

 int musicId = json.getInt("musicId");

 long musicDuration = json.getLong("musicDuration");

 // Agree on the time difference between chorus time and current time.

 long delayMs = startPlayMusicTs - TXLiveBase.getNetworkTimestamp();

 }

 } catch (JSONException e) {

 e.printStackTrace();

 }

}

Note:

Once the chorus members receive the chorus signaling and join in, the status should be changed to Chorus In
Progress. Chorus signaling would not be responded to again before the end of this chorus round.
5. Play accompaniment, and start the chorus.

if (delayMs > 0) { // The chorus has not started.

 // Begin to preload music.

 preloadMusic(musicId, 0L);

 // Play music after a delay of delayMs.

 startPlayMusic(musicId, 0L);

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 188 of 588

} else if (Math.abs(delayMs) < musicDuration) { // The chorus is in progress.

 // Play start time: Absolute value of the time difference + preload delay (e.g.

 long startTimeMS = Math.abs(delayMs) + 400;

 // Begin to preload music.

 preloadMusic(musicId, startTimeMS);

 // Start playing music after a preload delay (e.g., 400 ms).

 startPlayMusic(musicId, startTimeMS);

} else { // The chorus has ended.

 // Joining the chorus is not allowed.

}

// Preload music.

public void preloadMusic(int musicId, long startTimeMS) {

 // musicId: Obtained from chorus signaling. musicUrl: Corresponding music resou

 TXAudioEffectManager.AudioMusicParam musicParam = new

 TXAudioEffectManager.AudioMusicParam(musicId, musicUrl);

 // Only local music playback.

 musicParam.publish = false;

 // Music start playing time point (in milliseconds).

 musicParam.startTimeMS = startTimeMS;

 mTRTCCloud.getAudioEffectManager().preloadMusic(musicParam);

}

// Begin to play music.

public void startPlayMusic(int musicId, long startTimeMS) {

 // musicId: Obtained from chorus signaling. musicUrl: Corresponding music resou

 TXAudioEffectManager.AudioMusicParam musicParam = new

 TXAudioEffectManager.AudioMusicParam(musicId, musicUrl);

 // Only local music playback.

 musicParam.publish = false;

 // Music start playing time point (in milliseconds).

 musicParam.startTimeMS = startTimeMS;

 mTRTCCloud.getAudioEffectManager().startPlayMusic(musicParam);

}

Note:
To minimize transmission delay as much as possible, chorus members perform along with the local playback of
accompaniment music, and they do not need to publish or receive remote music.
Based on delayMs , the current chorus status can be determined. Developers must implement the

 startPlayMusic delayed call for different statuses on their own.

6. Accompaniment Synchronization

// Agreed chorus start time.

long mStartPlayMusicTs = jsonObject.getLong("startPlayMusicTS");

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 189 of 588

// Actual playback progress of the current accompaniment music.

long currentProgress = mTRTCCloud.getAudioEffectManager().getMusicCurrentPosInMS(mu

// Ideal playback progress of the current accompaniment music.

long estimatedProgress = TXLiveBase.getNetworkTimestamp() - mStartPlayMusicTs;

// When the progress difference exceeds 50 ms, corrections are made.

if (estimatedProgress >= 0 && Math.abs(currentProgress - estimatedProgress) > 50) {

 mTRTCCloud.getAudioEffectManager().seekMusicToPosInMS(musicId, (int) estimatedP

}

7. Lyric synchronization

Download lyrics.
Obtain the target lyrics download link, LyricsUrl, from the business backend, and cache the target lyrics locally.
Local lyric synchronization.

mTXAudioEffectManager.setMusicObserver(musicId, new TXAudioEffectManager.TXMusicPla

 @Override

 public void onStart(int id, int errCode) {

 // Start playing music.

 }

 @Override

 public void onPlayProgress(int id, long curPtsMs, long durationMs) {

 // TODO: The logic of updating the lyric control.

 // Determine whether seek in the lyrics control is needed based on the late

 }

 @Override

 public void onComplete(int id, int errCode) {

 // Music playback completed.

 }

});

Note:

Ensure to set the playback event callback using this API before playing the background music. This allows to be
aware of the background music's playback progress.
8. Become a listener and exit the room.

// Use the experimental API to disable chorus mode.

mTRTCCloud.callExperimentalAPI(

"{\\"api\\":\\"enableChorus\\",\\"params\\":{\\"enable\\":false,\\"audioSource\\":0

// Use the experimental API to disable low-latency mode.

mTRTCCloud.callExperimentalAPI(

"{\\"api\\":\\"setLowLatencyModeEnabled\\",\\"params\\":{\\"enable\\":false}}");

// Switched to the audience role.

mTRTCCloud.switchRole(TRTCCloudDef.TRTCRoleAudience);

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 190 of 588

// Stop playing accompaniment music.

mTRTCCloud.getAudioEffectManager().stopPlayMusic(musicId);

// Stop local audio capture and publishing.

mTRTCCloud.stopLocalAudio();

// Exit the room.

mTRTCCloud.exitRoom();

Perspective 3: Listener actions

Sequence diagram

Audience

Audience

TRTCCloud

TRTCCloud

Business_Backend

Business_Backend

Enter Room

enterRoom:scene:LIVE Enter Room in LIVE Scenario

onEnterRoom

onRemoteUserEnterRoom

onUserVideoAvailable Lead Singer Published Video Stream (Black Frame)

startRemoteView Subscribe to the Lead Singer's Video Stream (Black Frame)

onFirstVideoFrame

Lyrics Synchronization

Request Lyrics Download Link

LyricsUrl

Download and Display Lyrics

onRecvSEIMsg:musicId:curPtsMs:durationMs Receive SEI Message

Synchronize Local Lyrics Progress

Exit Room

exitRoom

onExitRoom

1. Enter the room.

public void enterRoom(String roomId, String userId) {

 TRTCCloudDef.TRTCParams params = new TRTCCloudDef.TRTCParams();

 // Take the room ID string as an example.

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend.

 params.userSig = getUserSig(userId);

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 191 of 588

 // Replace with your SDKAppID.

 params.sdkAppId = SDKAppID;

 // It is recommended to enter the room as an audience role.

 params.role = TRTCCloudDef.TRTCRoleAudience;

 // LIVE should be selected for the room entry scenario.

 mTRTCCloud.enterRoom(params, TRTCCloudDef.TRTC_APP_SCENE_LIVE);

}

// Event callback for the result of entering the room.

@Override

public void onEnterRoom(long result) {

 if (result > 0) {

 // result indicates the time taken (in milliseconds) to join the room.

 Log.d(TAG, "Enter room succeed");

 } else {

 // result indicates the error code when you fail to enter the room.

 Log.d(TAG, "Enter room failed");

 }

}

Note:
To better transmit SEI messages for lyrics synchronization, it is recommended to choose
 TRTC_APP_SCENE_LIVE for room-entry scenarios.

Under the automatic subscription mode (default), audiences automatically subscribe and play the on-mic anchor's
audio and video streams upon entering the room.

2. Lyric synchronization
Download lyrics.
Obtain the target lyrics download link, LyricsUrl, from the business backend, and cache the target lyrics locally.
Listener end lyric synchronization

@Override

public void onUserVideoAvailable(String userId, boolean available) {

 if (available) {

 mTRTCCloud.startRemoteView(userId, null);

 } else {

 mTRTCCloud.stopRemoteView(userId);

 }

}

@Override

public void onRecvSEIMsg(String userId, byte[] data) {

 String result = new String(data);

 try {

 JSONObject jsonObject = new JSONObject(result);

 int musicId = jsonObject.getInt("musicId");

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 192 of 588

 long progress = jsonObject.getLong("progress");

 long duration = jsonObject.getLong("duration");

 } catch (JSONException e) {

 e.printStackTrace();

 }

 ...

 // TODO: The logic of updating the lyric control.

 // Based on the received latest progress and the local lyrics progress deviatio

 ...

}

Note:
Listeners need to actively subscribe to the lead singer's video streams in order to receive the SEI messages carried by
black frames.

If the lead singer's mixed stream also mixes in black frames, then only subscribing to the mixing stream robot's video
stream is required.
3. Exit the room.

// Exit the room.

mTRTCCloud.exitRoom();

// Exit room event callback.

@Override

public void onExitRoom(int reason) {

 if (reason == 0) {

 Log.d(TAG, "Actively call exitRoom to exit the room.");

 } else if (reason == 1) {

 Log.d(TAG, "Removed from the current room by the server.");

 } else if (reason == 2) {

 Log.d(TAG, "The current room has been dissolved.");

 }

}

Advanced Features

Music scoring module integration

Music scoring provides users with multi-dimensional singing scoring capabilities. Currently, supported scoring
dimensions include intonation and rhythm.

1. Prepare scoring-related files.
Prepare in advance the performance recording files to be scored, original music standard files, MIDI pitch files, and
upload them to COS storage.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 193 of 588

2. Create a music scoring task.
Request Method: POST(HTTP).
Request Address: http://service-mqk0mc83-1257411467.bj.apigw.tencentcs.com/release/job.

Request Header: Content-Type: application/json.
A request sample is as follows:
Request sample:
Response sample:

{

 "action": "CreateJob",

 "secretId": "{secretId}",

 "secretKey": "{secretKey}",

 "createJobRequest": {

 "customId": "{customId}",

 "callback": "{callback}",

 "inputs": [{ "url": "{url}" }],

 "outputs": [

 {

 "contentId": "{contentId}",

 "destination": "{destination}",

 "inputSelectors": [0],

 "smartContentDescriptor": {

 "outputPrefix": "{outputPrefix}",

 "vocalScore": {

 "standardAudio": {

 "midi": {"url":"{url}"},

 "standardWav": {"url":"{url}"},

 "alignWav": {"url":"{url}"}

 }

 }

 }

 }

]

 }

}

{

 "requestId": "ac004192-110b-46e3-ade8-4e449df84d60",

 "createJobResponse": {

 "job": {

 "id": "13f342e4-6866-450e-b44e-3151431c578b",

 "state": 1,

 "customId": "{customId}",

 "callback": "{callback}",

 "inputs": [{ "url": "{url}" }],

http://service-mqk0mc83-1257411467.bj.apigw.tencentcs.com/release/job

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 194 of 588

 "outputs": [

 {

 "contentId": "{contentId}",

 "destination": "{destination}",

 "inputSelectors": [0],

 "smartContentDescriptor": {

 "outputPrefix": "{outputPrefix}",

 "vocalScore": {

 "standardAudio": {

 "midi": {"url":"{url}"},

 "standardWav": {"url":"{url}"},

 "alignWav": {"url":"{url}"}

 }

 }

 }

 }

],

 "timing": {

 "createdAt": "1603432763000",

 "startedAt": "0",

 "completedAt": "0"

 }

 }

 }

}

3. Obtain music scoring results.

Obtain Method: Divided into active acquisition and passive callback.
By querying with the ID obtained from the response packet after creating the task, if the queried task is successful
(state=3), the task's Output will carry the smartContentResult structure, in which the vocalScore field stores the result
JSON file name. Users can construct the output file's COS path based on the information in Output's COS and
destination.

Request sample:
Response sample:

{

 "action": "GetJob",

 "secretId": "{secretId}",

 "secretKey": "{secretKey}",

 "getJobRequest": {

 "id": "{id}"

 }

}

{

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 195 of 588

 "requestId": "c9845a99-34e3-4b0f-80f5-f0a2a0ee8896",

 "getJobResponse": {

 "job": {

 "id": "a95e9d74-6602-4405-a3fc-6408a76bcc98",

 "state": 3,

 "customId": "{customId}",

 "callback": "{callback}",

 "timing": {

 "createdAt": "1610513575000",

 "startedAt": "1610513575000",

 "completedAt": "1610513618000"

 },

 "inputs": [{ "url": "{url}" }],

 "outputs": [

 {

 "contentId": "{contentId}",

 "destination": "{destination}",

 "inputSelectors": [0],

 "smartContentDescriptor": {

 "outputPrefix": "{outputPrefix}",

 "vocalScore": {

 "standardAudio": {

 "midi": {"url":"{url}"},

 "standardWav": {"url":"{url}"},

 "alignWav": {"url":"{url}"}

 }

 }

 },

 "smartContentResult": {

 "vocalScore": "out.json"

 }

 }

]

 }

 }

}

Passive callbacks need to fill in the callback field when creating a task. The platform will send the entire Job structure
to the address specified by the callback after the task reaches the Completed state (COMPLETED/ERROR). It is
recommended to obtain task results using passive callbacks. The entire Job structure of tasks that have reached the
Completed state (COMPLETED/ERROR) will be sent to the address corresponding to the callback field specified
when the task was created. See the active query sample for the Job structure (under getJobResponse).

Note:
For more detailed intelligent music solution integration instructions for the music scoring module, see Music Scoring
Integration.

https://multimedia.tencent.com/docs/smart-music/api/vocal-score

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 196 of 588

Transparent transmission of single stream volume in mixed streams.

After the mixed streaming is enabled, the audience cannot directly obtain the on-mic anchor's single stream volume. In
order to transparently transmit the single stream volume, the room owner may employ SEI to transmit the callback
volume values of all on-mic anchors.

@Override

public void onUserVoiceVolume(ArrayList<TRTCCloudDef.TRTCVolumeInfo> userVolumes, i

 super.onUserVoiceVolume(userVolumes, totalVolume);

 if (userVolumes != null && userVolumes.size() > 0) {

 // For storing volume values corresponding to on-mic users.

 HashMap<String, Integer> volumesMap = new HashMap<>();

 for (TRTCCloudDef.TRTCVolumeInfo user : userVolumes) {

 // Can set an appropriate volume threshold.

 if (user.volume > 10) {

 volumesMap.put(user.userId, user.volume);

 }

 }

 Gson gson = new Gson();

 String body = gson.toJson(volumesMap);

 // Transmit a collection of on-mic users' volume via SEI messages.

 mTRTCCloud.sendSEIMsg(body.getBytes(), 1);

 }

}

@Override

public void onRecvSEIMsg(String userId, byte[] data) {

 Gson gson = new Gson();

 HashMap<String, Integer> volumesMap = new HashMap<>();

 try {

 String message = new String(data, "UTF-8");

 volumesMap = gson.fromJson(message, volumesMap.getClass());

 for (String userId : volumesMap.keySet()) {

 // Print the volume levels of single streams of all on-mic users.

 Log.i(userId, String.valueOf(volumesMap.get(userId)));

 }

 } catch (UnsupportedEncodingException e) {

 e.printStackTrace();

 }

}

Note:
The prerequisite for using SEI messages to transparently transmit single stream volume through a mixed stream is
that the room owner must either be video streaming or have black frame insertion enabled and furthermore, the
audiences must actively subscribe to the room owner's video stream.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 197 of 588

Real-time network quality callback

You can listen to onNetworkQuality to real-time monitor the network quality of both local and remote users. This

callback is thrown every 2 seconds.

private class TRTCCloudImplListener extends TRTCCloudListener {

 @Override

 public void onNetworkQuality(TRTCCloudDef.TRTCQuality localQuality,

 ArrayList<TRTCCloudDef.TRTCQuality> remoteQuality)

 // localQuality userId is empty. It represents the local user's network qua

 // remoteQuality represents the remote user's network quality evaluation re

 switch (localQuality.quality) {

 case TRTCCloudDef.TRTC_QUALITY_Excellent:

 Log.i(TAG, "The current network is excellent.");

 break;

 case TRTCCloudDef.TRTC_QUALITY_Good:

 Log.i(TAG, "The current network is good.");

 break;

 case TRTCCloudDef.TRTC_QUALITY_Poor:

 Log.i(TAG, "The current network is moderate.");

 break;

 case TRTCCloudDef.TRTC_QUALITY_Bad:

 Log.i(TAG, "The current network is poor.");

 break;

 case TRTCCloudDef.TRTC_QUALITY_Vbad:

 Log.i(TAG, "The current network is very poor.");

 break;

 case TRTCCloudDef.TRTC_QUALITY_Down:

 Log.i(TAG, "The current network does not meet the minimum requireme

 break;

 default:

 Log.i(TAG, "Undefined.");

 break;

 }

 }

}

Advanced permission control

TRTC advanced permission control can be used to set different entry permissions for different rooms, such as
advanced VIP rooms. It can also be used to control the permission for the audience to speak, such as handling ghost
microphones.
Step 1: Enable the Advanced Permission Control Switch in the TRTC console application's advanced features page.

https://console.trtc.io/

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 198 of 588

Note:
Once advanced permission control is enabled for a certain SDKAppID, all users using that SDKAppID need to pass in

the privateMapKey parameter in TRTCParams to successfully enter the room. Therefore, if you have users

online using this SDKAppID, do not enable this feature.
Step 2: Generate privateMapKey on the backend. For sample code, see privateMapKey computation source code.
Step 3: Room entry verification & speaking permission verification with PrivateMapKey.
Room entry verification

TRTCCloudDef.TRTCParams mTRTCParams = new TRTCCloudDef.TRTCParams();

mTRTCParams.sdkAppId = SDKAPPID;

mTRTCParams.userId = mUserId;

mTRTCParams.strRoomId = mRoomId;

// UserSig obtained from the business backend.

mTRTCParams.userSig = getUserSig();

// PrivateMapKey obtained from the backend.

mTRTCParams.privateMapKey = getPrivateMapKey();

mTRTCParams.role = TRTCCloudDef.TRTCRoleAudience;

mTRTCCloud.enterRoom(mTRTCParams, TRTCCloudDef.TRTC_APP_SCENE_LIVE);

Speaking permission verification

// Pass in the latest PrivateMapKey obtained from the backend into the role switchi

mTRTCCloud.switchRole(TRTCCloudDef.TRTCRoleAnchor, getPrivateMapKey());

https://intl.cloud.tencent.com/document/product/1047/34385#.E6.9C.8D.E5.8A.A1.E7.AB.AF.E8.AE.A1.E7.AE.97-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 199 of 588

Exception Handling

Exception error handling

When the TRTC SDK encounters an unrecoverable error, the error will be thrown in the onError callback. For

details, see Error Code Table.
1. UserSig related

UserSig verification failure will lead to room-entering failure. You can use the UserSig tool for verification.

Enumeration Value Description

ERR_TRTC_INVALID_USER_SIG -3320
Room entry parameter userSig is incorrect. Check if
 TRTCParams.userSig is empty.

ERR_TRTC_USER_SIG_CHECK_FAILED -100018
UserSig verification failed. Check if the parameter
 TRTCParams.userSig is filled in correctly or
has expired.

2. Room entry and exit related
If failed to enter the room, you should first verify the correctness of the room entry parameters. It is essential that the
room entry and exit APIs are called in a paired manner. This means that, even in the event of a failed room entry, the
room exit API must still be called.

Enumeration Value Description

ERR_TRTC_CONNECT_SERVER_TIMEOUT -3308
Room entry request timed out. Check if your
internet connection is lost or if a VPN is enabled.
You may also attempt to switch to 4G for testing.

ERR_TRTC_INVALID_SDK_APPID -3317
Room entry parameter sdkAppId is incorrect.
Check if TRTCParams.sdkAppId is empty.

ERR_TRTC_INVALID_ROOM_ID -3318

Room entry parameter roomId is incorrect. Check
if TRTCParams.roomId or
 TRTCParams.strRoomId is empty. Note that
roomId and strRoomId cannot be used
interchangeably.

ERR_TRTC_INVALID_USER_ID -3319
Room entry parameter userId is incorrect. Check if
 TRTCParams.userId is empty.

ERR_TRTC_ENTER_ROOM_REFUSED -3340
Room entry request is denied. Check if
 enterRoom is called consecutively to enter
rooms with the same ID.

https://intl.cloud.tencent.com/document/product/647/35130
https://console.trtc.io/usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 200 of 588

3. Device related
Errors for relevant monitoring devices. Prompt the user via UI in case of relevant errors.

Enumeration Value Description

ERR_MIC_START_FAIL -1302

Failed to open the mic. For example, if there is an exception for
the mic's configuration program (driver) on a Windows or
macOS device, you should try disabling then re-enabling the
device, restarting the machine, or updating the configuration
program.

ERR_SPEAKER_START_FAIL -1321

Failed to open the speaker. For example, if there is an
exception for the speaker's configuration program (driver) on a
Windows or macOS device, you should try disabling then re-
enabling the device, restarting the machine, or updating the
configuration program.

ERR_MIC_OCCUPY -1319 The mic is occupied. This occurs when, for example, the user
is currently having a call on the mobile device.

Issues with IEMs

1. How to enable IEMs feature and set the volume?

// Enable IEMs.

mTRTCCloud.getAudioEffectManager().enableVoiceEarMonitor(true);

// Set the volume of IEMs.

mTRTCCloud.getAudioEffectManager().setVoiceEarMonitorVolume(int volume);

Note:
The IEMs can be set in advance without having to monitor audio routing changes. Once headphones are connected,
the IEMs feature will automatically take effect.
2. The IEMs feature does not take effect after enabled.

Due to the high hardware delay of Bluetooth headphones, it is recommended to prompt the anchor to wear wired
headphones on the user interface. Also, it should be noted that not all smartphones will achieve excellent IEMs effect
after this feature is enabled. TRTC SDK has already blocked this feature on some smartphones with poor effect.
3. High IEM delay
Check if Bluetooth headphones are in use. Due to the high hardware delay of Bluetooth headphones, wired
headphones are recommended. Additionally, you can try improving the issue of high IEM delay by enabling hardware

IEM through the experimental API setSystemAudioKitEnabled . Hardware IEMs have better performance and

lower delay. Software IEMs have higher delay but better compatibility. Currently, for Huawei and VIVO devices, SDK
defaults to hardware IEMs. Other devices default to software IEMs. If there are compatibility issues with hardware
IEMs, contact us to configure forced use of software IEMs.

https://intl.cloud.tencent.com/document/product/1228/59971

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 201 of 588

Issues with NTP sync

1. NTP time sync finished, but result maybe inaccurate
NTP sync is successful, but the deviation may still be more than 30 milliseconds. This indicates a poor client network
environment with persistent RTT jitter.

2. Error in AddressResolver: No address associated with hostname
NTP sync has failed, possibly due to a temporary exception in local ISP DNS resolution under the current network
environment. Try again later.
3. NTP service retry processing logic.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 202 of 588

Issue with resource paths for playing music

In karaoke scenarios, when using TRTC SDK to play accompaniment music, you can choose to play from local or

online music resources. Currently, playback paths only support URLs of online resources, absolute paths of music

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 203 of 588

files in device external storage, and application private directories. It does not support paths in directories like assets
in Android development.
You can work around this issue by copying resource files from the assets directory to either the device external

storage or the application private directory beforehand. Sample code is as follows:

public static void copyAssetsToFile(Context context, String name) {

 // The files directory under the application's directory.

 String savePath = ContextCompat.getExternalFilesDirs(context, null)[0].getAbsol

 // The cache directory under the application's directory.

 // String savePath = getApplication().getExternalCacheDir().getAbsolutePath();

 // The files directory under the application's private storage directory.

 // String savePath = getApplication().getFilesDir().getAbsolutePath();

 String filename = savePath + "/" + name;

 File dir = new File(savePath);

 // Create the directory if it does not exist.

 if (!dir.exists()) {

 dir.mkdir();

 }

 try {

 if (!(new File(filename)).exists()) {

 InputStream is = context.getResources().getAssets().open(name);

 FileOutputStream fos = new FileOutputStream(filename);

 byte[] buffer = new byte[1024];

 int count = 0;

 while ((count = is.read(buffer)) > 0) {

 fos.write(buffer, 0, count);

 }

 fos.close();

 is.close();

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

}

Application External Storage Files Directory Path:

/storage/emulated/0/Android/data/<package_name>/files/<file_name>.
Application External Storage Cache Directory Path:
/storage/emulated/0/Android/data/<package_name>/cache/file_name>.
Application Private Storage Files Directory Path: /data/user/0/<package_name>/files/<file_name>.
Note:
If you provide a path that is an external storage path outside of the application's specific directories, on Android 10

and above devices, you may face denial of access to the resource. This is due to Google introducing Partition
Storage, a new storage management system. You can temporarily bypass this by adding the following code inside the

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 204 of 588

<application> tag in the AndroidManifest.xml file: android:requestLegacyExternalStorage="true" . This

attribute only takes effect on applications with targetSdkVersion 29 (Android 10), and applications with a higher
version targetSdkVersion are still recommended to use the application's private or external storage paths.

For TRTC SDK v11.5 and later, playback of local music resources on Android devices via Content URI from Content
Provider components is supported.
On Android 11 and HarmonyOS 3.0 or later, if you cannot access resource files in the external storage directory, you
need to request the MANAGE_EXTERNAL_STORAGE permission:

First, you need to add the following entry in your application's AndroidManifest file.

<manifest ...>

 <!-- This is the permission itself -->

 <uses-permission android:name="android.permission.MANAGE_EXTERNAL_STORAGE" />

 <application ...>

 ...

 </application>

</manifest>

Then, guide users to manually grant this permission at the point in your application where it is needed.

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.R) {

 if (!Environment.isExternalStorageManager()) {

 Intent intent = new Intent(Settings.ACTION_MANAGE_APP_ALL_FILES_ACCESS_PERM

 Uri uri = Uri.fromParts("package", getPackageName(), null);

 intent.setData(uri);

 startActivity(intent);

 }

} else {

 // For Android versions less than Android 11, you can use the old permissions m

 ActivityCompat.requestPermissions(this, new String[]{Manifest.permission.WRITE_

}

Issues with real-time chorus usage

1. Why does the lead singer in real-time chorus scenarios need to use dual-instance streaming?

In real-time chorus scenarios, to minimize end-to-end delay and achieve sync between vocals and accompaniment, a
common approach is to use dual instances at the lead singer's end to separately upload vocal and accompaniment
streams, while other chorus participants only upload their vocal streams and locally play the accompaniment. In this
case, each chorus participant needs to subscribe to the lead singer's vocal stream, while refraining from subscribing
to the lead singer's music stream. This setup can only be achieved by implementing dual-instance separate streaming.
2. Why is it recommended to enable mixing pushback in real-time chorus scenarios?

Having the audience pull multiple single streams at the same time is likely to result in misalignment between multiple
vocal streams and accompaniment streams. Pulling a mixed stream can ensure absolute alignment of all streams and

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 205 of 588

reduce downstream bandwidth.
3. What are the uses of SEI in real-time chorus scenarios?
Transmitting accompaniment music progress, for lyric sync on the audience's end.

Transparently transmitting single stream volume through a mixed stream, for display as sound waves on the listener's
end.
4. Loading accompaniment music takes a long duration, causing significant playback delay?
Loading network music resources via the SDK incurs a certain delay. It is recommended to initiate music pre-loading
before starting playback.

mTRTCCloud.getAudioEffectManager().preloadMusic(musicParam);

5. When singing along with accompaniment, the vocals are barely audible. Is the music overwhelming the
vocals?
If the default volume settings result in the accompaniment overwhelming the vocals, it is recommended to adjust the
volume balance between the music and vocals accordingly.

// Set the local playback volume of a piece of background music.

mTRTCCloud.getAudioEffectManager().setMusicPlayoutVolume(musicID, volume);

// Set the remote playback volume of a specific background music.

mTRTCCloud.getAudioEffectManager().setMusicPublishVolume(musicID, volume);

// Set the local and remote volume of all background music.

mTRTCCloud.getAudioEffectManager().setAllMusicVolume(volume);

// Set the volume of voice capture.

mTRTCCloud.getAudioEffectManager().setVoiceCaptureVolume(volume);

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 206 of 588

iOS
Last updated：2024-07-18 14:26:14

Business Process

This section summarizes some common business processes in online karaoke, helping you better understand the
implementation process of the entire scenario.
Song request process

Solo singing process
Lead singer process
Chorus process
Audience process
The following figure shows the process of requesting songs from a music repository on the business side and playing

them using the TRTC SDK.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 207 of 588

The following figure shows the process of a solo singing turn-taking game, that is, the performer enters a room to
perform, stops performing, and exits the room.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 208 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 209 of 588

The following figure shows the process of a real-time chorus game, that is, the lead singer initiates a chorus, stops the
chorus, and exits the room.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 210 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 211 of 588

The following figure shows the process of a real-time chorus game, that is, the chorus members join the chorus, stop

the chorus, and exit the room.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 212 of 588

The following figure shows the process of an online karaoke scenario, that is, the audience enters the room to listen to
songs and synchronizes lyrics.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 213 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 214 of 588

Integration Preparation

Step 1. Activating the service.

The online karaoke scenarios usually require two paid PaaS services from Tencent Cloud: Tencent Real-Time
Communication (TRTC) and Intelligent Music Solution for construction. TRTC is responsible for providing real-time

audio and video interaction capabilities. Intelligent Music Solution is responsible for providing lyric recognition, smart
composition, music recognition, and music scoring capabilities.
Activate TRTC service.
Activate the Intelligent Music service.
1. First, you need to log in to the Tencent Real-Time Communication (TRTC) console to create an application. You
can choose to upgrade the TRTC application version according to your needs. For example, the professional edition

unlocks more value-added feature services.

https://intl.cloud.tencent.com/products/trtc
https://intl.cloud.tencent.com/products/xmusic
https://console.trtc.io/

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 215 of 588

Note:

It is recommended to create two applications for testing and production environments, respectively. Each Tencent
Cloud account (UIN) is given 10,000 minutes of free duration every month for one year.
TRTC offers monthly subscription plans including the experience edition (default), basic edition, and professional
edition. Different value-added feature services can be unlocked. For details, see Version Features and Monthly
Subscription Plan Instructions.

2. After an application is created, you can see the basic information of the application in the Application Management -
Application Overview section. It is important to keep the SDKAppID and SDKSecretKey safe for later use and to
avoid key leakage that could lead to traffic theft.

https://intl.cloud.tencent.com/document/product/647/52816#f10b65d1-6e8d-41e3-8686-84909b00a1a2

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 216 of 588

Preparation

1. Go to the Purchase Page to activate the music service, and choose the appropriate features such as music scoring

to activate.
2. Create an AK/SK Key Pair in CAM (namely, a programmable access user that does not require log-in or any user
permissions).
3. Create a COS Bucket, and in the COS Bucket Management interface, authorize the read and write permissions of
the COS Bucket to the created programmable access user.

4. Prepare the parameters.
operateUin: Tencent Cloud sub-user's account ID.
cosConfig: COS related parameters.
secretId: Bucket's secretId.
secretKey: Bucket's secretKey.

bucket: Bucket's name.
region: Bucket's region, for example, ap-guangzhou.

Activation and registration.

After the preparation is completed, proceed with registration activation by initiating a request, with an estimated wait
time of about 2 minutes.
Initiate request.
Request result:

curl -X POST \\

 http://service-mqk0mc83-1257411467.bj.apigw.tencentcs.com/release/register \\

 -H 'Content-Type: application/json' \\

 -H 'Cache-control: no-cache' \\

 -d '{

 "requestId": "test-regisiter-service",

 "action": "Register",

 "registerRequest": {

 "operateUin": <operateUin>,

https://buy.intl.cloud.tencent.com/imusic
https://console.intl.cloud.tencent.com/cam
https://console.intl.cloud.tencent.com/cos/bucket

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 217 of 588

 "userName": <customedName>,

 "cosConfig": {

 "secretId": <CosConfig.secretId>,

 "secretKey": <CosConfig.secretKey>,

 "bucket": <CosConfig.bucket>,

 "region": <CosConfig.region>

 }

 }

 }'

{

 "requestId": "test-regisiter-service",

 "registerInfo": {

 "tmpContentId": <tmpContentId>,

 "tmpSecretId": <tmpSecretId>,

 "tmpSecretKey": <tmpSecretKey>,

 "apiGateSecretId": <apiGateSecretId>,

 "apiGateSecretKey": <apiGateSecretKey>,

 "demoCosPath": "UIN_demo/run_musicBeat.py",

 "usageDescription": "Download the python version demo file [UIN_demo/run_mu

 "message": "Registration successful, and thank you for registering.",

 "createdAt": <createdAt>,

 "updatedAt": <updatedAt>

 }

}

Run verification.

After the above activation and registration service are completed, a python version executable demo example based
on music beat recognition capability will be generated in the demoCosPath directory. Execute the command

 python run_musicBeat.py in a networked environment for verification.

Note:
For more detailed intelligent music solution integration instructions, see Integration Guide.

Step 2: Importing SDK.

The TRTC SDK is now available on CocoaPods. We recommend integrating the SDK via CocoaPods.
1. Install CocoaPods.
Enter the following command in a terminal window (you need to install Ruby on your Mac first):

sudo gem install cocoapods

2. Create a Podfile.
Go to the project directory, and enter the following command. A Podfile file will then be created in the project directory.

https://multimedia.tencent.com/docs/smart-music/user-guide/5-minute-access-guide

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 218 of 588

pod init

3. Edit the Podfile.
Choose the appropriate version for your project and edit the Podfile.

platform :ios, '8.0'

 target 'App' do

 # TRTC Lite Edition

 # The installation package has the minimum incremental size. But it only

supports two features of Real-Time Communication (TRTC) and TXLivePlayer for

live streaming playback.

 pod 'TXLiteAVSDK_TRTC', :podspec =>

'https://liteav.sdk.qcloud.com/pod/liteavsdkspec/TXLiteAVSDK_TRTC.podspec'

 # Pro Edition

 # Includes a wide range of features such as Real-Time Communication (TRTC),

TXLivePlayer for live streaming playback, TXLivePusher for RTMP push streams,

TXVodPlayer for on-demand playback, and UGSV for short video recording and

editing.

 # pod 'TXLiteAVSDK_Professional', :podspec =>

'https://liteav.sdk.qcloud.com/pod/liteavsdkspec/TXLiteAVSDK_Professional.podsp

ec'

end

4. Update and install the SDK.
Enter the following command in a terminal window to update the local repository files and install the SDK.

pod install

Or use the following command to update the local repository.

pod update

Upon the completion of pod command execution, an .xcworkspace project file integrated with the SDK will be
generated. Double-click to open it.
Note:
If the pod search fails, it is recommended to try updating the local repo cache of pod. The update command is as

follows.

pod setup

pod repo update

rm ~/Library/Caches/CocoaPods/search_index.json

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 219 of 588

Besides CocoaPods integration, you can also choose to download the SDK and manually import it. For details, see
Manually Integrating the TRTC SDK.

Step 3: Project configuration.

1. In karaoke scenarios, the TRTC SDK needs to be authorized for microphone permissions. Add the following content

to your app's Info.plist. It corresponds to the system's prompt message when microphone permission is requested.

Privacy - Microphone Usage Description. Also enter a prompt specifying the purpose

2. If you need your App to continue running certain features in the background, go to XCode. Choose your current
project. Under Capabilities, set the settings for Background Modes to ON, and check Audio, AirPlay, and Picture in
Picture, as shown below:

https://intl.cloud.tencent.com/document/product/647/35092#.E6.96.B9.E6.A1.88.E4.BA.8C.EF.BC.9A.E4.B8.8B.E8.BD.BD-sdk-.E5.B9.B6.E6.89.8B.E5.8A.A8.E5.AF.BC.E5.85.A5

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 220 of 588

Step 4: Authentication and authorization.

UserSig is a security protection signature designed by Tencent Cloud to prevent malicious attackers from
misappropriating your cloud service usage rights. TRTC validates this authentication credential when it enters the

room.
Debugging Stage: UserSig can be generated through two methods for debugging and testing purposes only: client
sample code and console access.
Formal Operation Stage: It is recommended to use a higher security level server computation for generating UserSig.
This is to prevent key leakage due to client reverse engineering.

The specific implementation process is as follows:
1. Before calling the SDK's initialization function, your app must first request UserSig from your server.
2. Your server computes the UserSig based on the SDKAppID and UserID.
3. The server returns the computed UserSig to your app.
4. Your app passes the obtained UserSig into the SDK through a specific API.

https://intl.cloud.tencent.com/document/product/647/35166#.E5.AE.A2.E6.88.B7.E7.AB.AF.E7.A4.BA.E4.BE.8B.E4.BB.A3.E7.A0.81.E8.AE.A1.E7.AE.97-usersig
https://intl.cloud.tencent.com/document/product/647/35166#.E6.8E.A7.E5.88.B6.E5.8F.B0.E8.8E.B7.E5.8F.96-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 221 of 588

5. The SDK submits the SDKAppID + UserID + UserSig to Tencent Cloud CVM for verification.
6. Tencent Cloud verifies the UserSig and confirms its validity.
7. After the verification is passed, real-time audio and video services will be provided to the TRTC SDK.

Note:

The local computation method of UserSig during the debugging stage is not recommended for application in an online
environment. It is prone to reverse engineering, leading to key leakage.
We provide server computation source code for UserSig in multiple programming languages
(Java/GO/PHP/Nodejs/Python/C#/C++). For details, see Server Computation of UserSig.

Step 5: Initializing the SDK.

// Create TRTC SDK instance (Single Instance Pattern).

self.trtcCloud = [TRTCCloud sharedInstance];

// Set event listeners.

self.trtcCloud.delegate = self;

// Notifications from various SDK events (e.g., error codes, warning codes, audio a

https://intl.cloud.tencent.com/document/product/1047/34385#.E6.9C.8D.E5.8A.A1.E7.AB.AF.E8.AE.A1.E7.AE.97-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 222 of 588

- (void)onError:(TXLiteAVError)errCode errMsg:(nullable NSString *)errMsg extInfo:(

 NSLog(@"%d: %@", errCode, errMsg);

}

- (void)onWarning:(TXLiteAVWarning)warningCode warningMsg:(nullable NSString *)warn

 NSLog(@"%d: %@", warningCode, warningMsg);

}

// Remove event listener.

self.trtcCloud.delegate = nil;

// Terminate TRTC SDK instance (Singleton Pattern).

[TRTCCloud destroySharedIntance];

Note:
It is recommended to listen to SDK event notifications. Perform log printing and handling for some common errors. For
details, see Error Code Table.

Scenario 1: Solo singing turn-taking

Perspective 1: Performer actions

Sequence diagram

https://intl.cloud.tencent.com/document/product/647/35135

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 223 of 588

Singer

Singer

TRTCCloud

TRTCCloud

Business_Backend

Business_Backend

Enter Room

enterRoom:scene:LIVE Enter Room in LIVE Scenario

onEnterRoom

enableBlackStream Enable Black Frame Supplement to Transmit SEI

Become a Speaker and Start Publishing

switchRole:Anchor

onSwitchRole

setSystemVolumeType:Media

startLocalAudio:MUSIC

onSendFirstLocalAudioFrame

Select a Song and Sing

Search Songs

Song List

Song Selection

MusicId/MusicUrl/LyricsUrl

setMusicObserver Set Playback Event Callback

startPlayMusic:MusicId:MusicUrl Play Music

onStart Music Start Playing

Lyrics Synchronization

Download Lyrics:LyricsUrl

onPlayProgress Music Playback Progress Callback

Synchronize Local Lyrics Progress

sendSEIMsg:musicId:curPtsMs:durationMs Send SEI Message

Become a Listener and Exit the Room

switchRole:Audience

onSwitchRole

stopPlayMusic

stopLocalAudio

exitRoom

onExitRoom

1. Enter the room.

- (void)enterRoomWithRoomId:(NSString *)roomId userID:(NSString *)userId {

 TRTCParams *params = [[TRTCParams alloc] init];

 // Take the room ID string as an example.

 params.strRoomId = roomId;

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 224 of 588

 params.userId = userId;

 // UserSig obtained from the business backend.

 params.userSig = [self generateUserSig:userId];

 // Replace with your SDKAppID.

 params.sdkAppId = SDKAppID;

 // It is recommended to enter the room as an audience role.

 params.role = TRTCRoleAudience;

 // LIVE should be selected for the room entry scenario.

 [self.trtcCloud enterRoom:params appScene:TRTCAppSceneLIVE];

}

Note:
To better transmit SEI messages for lyric synchronization, it is recommended to choose TRTCAppSceneLIVE for

room entry scenarios.

// Event callback for the result of entering the room.

- (void)onEnterRoom:(NSInteger)result {

 if (result > 0) {

 // result indicates the time taken (in milliseconds) to join the room.

 NSLog(@"Enter room succeed!");

 // Enable the experimental API for black frame insertion.

 [self.trtcCloud callExperimentalAPI:@"{\\"api\\":\\"enableBlackStream\\",\\

 } else {

 // result indicates the error code when you fail to enter the room.

 NSLog(@"Enter room failed!");

 }

}

Note:
Under the pure audio mode, the performer needs to enable the insertion of black frames to carry SEI messages. This
API should be called after successfully entering the room.

2. Go live on streams.

// Switched to the anchor role.

[self.trtcCloud switchRole:TRTCRoleAnchor];

// Event callback for switching the role.

- (void)onSwitchRole:(TXLiteAVError)errCode errMsg:(NSString *)errMsg {

 if (errCode == ERR_NULL) {

 // Set media volume type.

 [self.trtcCloud setSystemVolumeType:TRTCSystemVolumeTypeMedia];

 // Upstream local audio streams and set audio quality.

 [self.trtcCloud startLocalAudio:TRTCAudioQualityMusic];

 }

}

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 225 of 588

Note:
In karaoke scenarios, it is recommended to set the full-range media volume and music quality to achieve a high-fidelity
listening experience.

3. Song selection and performance.
Search for songs, and obtain music resources.
Search for songs and acquire music resources through the business backend. Obtain identifiers such as the MusicId,
the song's URL (MusicUrl), and the lyrics URL (LyricsUrl).
It is recommended that the business side select an appropriate music repository production to provide licensed music

resources.
Play accompaniment and start singing.

// Obtain audio effects management.

self.audioEffectManager = [self.trtcCloud getAudioEffectManager];

// originMusicId: Custom identifier for the original vocal music. originMusicUrl: U

TXAudioMusicParam *originMusicParam = [[TXAudioMusicParam alloc] init];

originMusicParam.ID = originMusicId;

originMusicParam.path = originMusicUrl;

// Whether to publish the original vocal music to remote (otherwise play locally on

originMusicParam.publish = YES;

// accompMusicId: Custom identifier for the accompaniment music. accompMusicUrl: UR

TXAudioMusicParam *accompMusicParam = [[TXAudioMusicParam alloc] init];

accompMusicParam.ID = accompMusicId;

accompMusicParam.path = accompMusicUrl;

// Whether to publish the accompaniment to remote (otherwise play locally only).

accompMusicParam.publish = YES;

// Start playing the original vocal music.

[self.audioEffectManager startPlayMusic:originMusicParam onStart:^(NSInteger errCod

 // onStart

} onProgress:^(NSInteger progressMs, NSInteger durationMs) {

 // onProgress

} onComplete:^(NSInteger errCode) {

 // onComplete

}];

// Start playing the accompaniment music.

[self.audioEffectManager startPlayMusic:originMusicParam onStart:^(NSInteger errCod

 // onStart

} onProgress:^(NSInteger progressMs, NSInteger durationMs) {

 // onProgress

} onComplete:^(NSInteger errCode) {

 // onComplete

}];

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 226 of 588

// Switch to the original vocal music.

[self.audioEffectManager setMusicPlayoutVolume:originMusicId volume:100];

[self.audioEffectManager setMusicPublishVolume:originMusicId volume:100];

[self.audioEffectManager setMusicPlayoutVolume:accompMusicId volume:0];

[self.audioEffectManager setMusicPublishVolume:accompMusicId volume:0];

// Switch to the accompaniment music.

[self.audioEffectManager setMusicPlayoutVolume:originMusicId volume:0];

[self.audioEffectManager setMusicPublishVolume:originMusicId volume:0];

[self.audioEffectManager setMusicPlayoutVolume:accompMusicId volume:100];

[self.audioEffectManager setMusicPublishVolume:accompMusicId volume:100];

Note:
In karaoke scenarios, both the original vocal and accompaniment need to be played simultaneously (distinguished by
MusicID). The switch between the original vocal and accompaniment is achieved by adjusting the local and remote
playback volumes.
If the music being played has dual audio tracks (including both the original vocal and accompaniment), switching

between them can be achieved by specifying the music's playback track using setMusicTrack.
4. Lyric synchronization
Download lyrics.
Obtain the target lyrics download link, LyricsUrl, from the business backend, and cache the target lyrics locally.
Synchronize local lyrics, and transmit song progress via SEI.

[self.audioEffectManager startPlayMusic:musicParam onStart:^(NSInteger errCode) {

 // Start playing music.

} onProgress:^(NSInteger progressMs, NSInteger durationMs) {

 // Determine whether seek is needed based on the latest progress and the local

 // Song progress is transmitted by sending an SEI message.

 NSDictionary *dic = @{

 @"musicId": @(self.musicId),

 @"progress": @(progressMs),

 @"duration": @(durationMs),

 };

 JSONModel *json = [[JSONModel alloc] initWithDictionary:dic error:nil];

 [self.trtcCloud sendSEIMsg:json.toJSONData repeatCount:1];

} onComplete:^(NSInteger errCode) {

 // Music playback completed.

}];

Note:
The frequency of the SEI messages sent by the performer is determined by the event callback frequency. Also, the
playback progress can be actively synchronized on a schedule through getMusicCurrentPosInMS.
5. Become a listener and exit the room.

https://intl.cloud.tencent.com/document/product/647/50757#bcac516dcc63f775829e34f75646fdf4
https://intl.cloud.tencent.com/document/product/647/50757#4d6f9629f7623102e3e04f5e05bdea1e

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 227 of 588

// Switched to the audience role.

[self.trtcCloud switchRole:TRTCRoleAudience];

// Event callback for switching the role.

- (void)onSwitchRole:(TXLiteAVError)errCode errMsg:(NSString *)errMsg {

 if (errCode == ERR_NULL) {

 // Stop playing accompaniment music.

 [[self.trtcCloud getAudioEffectManager] stopPlayMusic:self.musicId];

 // Stop local audio capture and publishing.

 [self.trtcCloud stopLocalAudio];

 }

}

// Exit the room.

[self.trtcCloud exitRoom];

// Exit room event callback.

- (void)onExitRoom:(NSInteger)reason {

 if (reason == 0) {

 NSLog(@"Proactively call exitRoom to exit the room.");

 } else if (reason == 1) {

 NSLog(@"Removed from the current room by the server.");

 } else if (reason == 2) {

 NSLog(@"The current room is dissolved.");

 }

}

Note:

After all resources occupied by the SDK are released, the SDK will throw the onExitRoom callback notification to

inform you.
If you want to call enterRoom again or switch to another audio and video SDK, wait for the onExitRoom

callback before proceeding. Otherwise, you may encounter various exceptional issues such as the camera,
microphone device being forcibly occupied.

Perspective 2: Listener actions

Sequence diagram

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 228 of 588

Audience

Audience

TRTCCloud

TRTCCloud

Business_Backend

Business_Backend

Enter Room

enterRoom:scene:LIVE Enter Room in LIVE Scenario

onEnterRoom

onRemoteUserEnterRoom

onUserVideoAvailable Singer Published Video Stream (Black Frame)

startRemoteView Subscribe to the Singer's Video Stream (Black Frame)

onFirstVideoFrame

Lyrics Synchronization

Request Lyrics Download Link

LyricsUrl

Download and Display Lyrics

onRecvSEIMsg:musicId:curPtsMs:durationMs Receive SEI Message

Synchronize Local Lyrics Progress

Exit Room

exitRoom

onExitRoom

1. Enter the room.

// Enter the room.

- (void)enterRoomWithRoomId:(NSString *)roomId userID:(NSString *)userId {

 TRTCParams *params = [[TRTCParams alloc] init];

 // Take the room ID string as an example.

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend.

 params.userSig = [self generateUserSig:userId];

 // Replace with your SDKAppID.

 params.sdkAppId = SDKAppID;

 // It is recommended to enter the room as an audience role.

 params.role = TRTCRoleAudience;

 // LIVE should be selected for the room entry scenario.

 [self.trtcCloud enterRoom:params appScene:TRTCAppSceneLIVE];

}

// Event callback for the result of entering the room.

- (void)onEnterRoom:(NSInteger)result {

 if (result > 0) {

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 229 of 588

 // result indicates the time taken (in milliseconds) to join the room.

 NSLog(@"Enter room succeed!");

 } else {

 // result indicates the error code when you fail to enter the room.

 NSLog(@"Enter room failed!");

 }

}

Note:
To better transmit SEI messages for lyric synchronization, it is recommended to choose TRTCAppSceneLIVE for

room entry scenarios.

Under the automatic subscription mode (default), audiences automatically subscribe and play the on-mic anchor's
audio and video streams upon entering the room.
2. Lyric synchronization
Download lyrics.
Obtain the target lyrics download link, LyricsUrl, from the business backend, and cache the target lyrics locally.

Listener end lyric synchronization

- (void)onUserVideoAvailable:(NSString *)userId available:(BOOL)available {

 if (available) {

 [self.trtcCloud startRemoteView:userId view:nil];

 } else {

 [self.trtcCloud stopRemoteView:userId];

 }

}

- (void)onRecvSEIMsg:(NSString *)userId message:(NSData *)message {

 JSONModel *json = [[JSONModel alloc] initWithData:message error:nil];

 NSDictionary *dic = json.toDictionary;

 int32_t musicId = [dic[@"musicId"] intValue];

 NSInteger progress = [dic[@"progress"] integerValue];

 NSInteger duration = [dic[@"duration"] integerValue];

 //

 // TODO: The logic of updating the lyric control.

 // Based on the received latest progress and the local lyrics progress deviatio

 //

}

Note:

Listeners need to actively subscribe to the performer's video streams in order to receive the SEI messages carried by
black frames.
3. Exit the room.

// Exit the room.

[self.trtcCloud exitRoom];

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 230 of 588

// Exit room event callback.

- (void)onExitRoom:(NSInteger)reason {

 if (reason == 0) {

 NSLog(@"Proactively call exitRoom to exit the room.");

 } else if (reason == 1) {

 NSLog(@"Removed from the current room by the server.");

 } else if (reason == 2) {

 NSLog(@"The current room is dissolved.");

 }

}

Scenario 2: Real-time chorus

Perspective 1: Lead singer actions

Sequence diagram

Lead_Singer TRTCCloud Business_Backend

Create Dual Instances and Enter the Room

sharedInstance Create Main Instance

mainCloud.enterRoom The Main Instance Enters the Room

onEnterRoom The Main Instance Sucessfully Enters the Room

mainCloud.createSubCloud Create Sub-Instance

subCloud.setDefaultStreamRecvMode Sub-Instance Manual Subscription Mode

subCloud.enterRoom Sub-Instance Enters the Room

onEnterRoom Sub-Instance Sucessfully Enters the Room

Actions After Main Instance Enters the Room

mainCloud.muteRemoteAudio The Main Instance Cancels the Subscription to the Sub-Instance's Audio Stream

mainCloud.enableBlackStream:true The Main Instance Enables the Black Frame Supplement

mainCloud.enableChorus:true The Main Instance Enables Chorus Mode

mainCloud.setLowLatencyModeEnabled:true The Main Instance Enables Low Latency Mode

mainCloud.enableAudioVolumeEvaluation The Main Instance Enables Volume-Level Callback

mainCloud.setSystemVolumeType:Media The Main Instance Sets Full Media Volume

mainCloud.startLocalAudio:MUSIC The Main Instance Captures and Publishes the Local Audio Stream Concurrently

onSendFirstLocalAudioFrame The Main Instance's First Frame Audio Has Been Sent

mainCloud.startPublishMediaStream The Main Instance Initiates Pushing the Mixed Stream Back to the Room

onStartPublishMediaStream Start Publishing Media Stream Event Callback

Actions after Sub-Instance Enters the Room

subCloud.enableChorus:true The Sub-Instance Enables Chorus Mode

subCloud.setLowLatencyModeEnabled:true The Sub-Instance Enables Low-Latency Mode

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 231 of 588

subCloud.setSystemVolumeType:Media The Sub-Instance Sets Full Media Volume

subCloud.setAudioQuality:MUSIC The Sub-Instance Sets the Music Quality

Search and Select a Song

Search Songs

Song List

Song Selection

MusicId/MusicUrl/LyricsUrl

Initiate Chorus

updateNetworkTime NTP Time Synchronization

onUpdateNetworkTime

getNetworkTimestamp Access NTP Time

alt [ntpTime > 0]

sendCustomCmdMsg Send Chorus Signaling

[ntpTime <= 0]
Unable to Initiate Chorus

Play Music

setPreloadObserver

preloadMusic:originMusicParam Preload Original Music

preloadMusic:accompMusicParam Preload Accompaniment

onLoadProgress Preload Progress Callback

setMusicObserver

startPlayMusic:originMusicParam Start Playing Original Music

startPlayMusic:accompMusicParam Start Playing Accompaniment

onStart Callback of Music Start Playing

setMusicPlayoutVolume Adjust the Playback Volume to Switch Between the Original and the Accompaniment

setMusicPublishVolume Adjust the Publishing Volume to Switch Between the Original and the Accompaniment

Accompaniment Synchronization

currentProgress = getMusicCurrentPosInMS Access Actual Playback Progress of Accompaniment

getNetworkTimestamp Access NTP Time

estimatedProgress = ntpTime - startTime
Calculate Ideal Playback Progress of Accompaniment

alt [abs(currentProgress - estimatedProgress) > 50]

seekMusicToPosInMS Adjust if Progress Deviation Exceeds Threshold

Lyrics Synchronization

Download Lyrics:LyricsUrl

onPlayProgress Music Playback Progress Callback

Synchronize Local Lyrics Progress

sendSEIMsg:musicId:curPtsMs:durationMs Send SEI Message

Become a Listener and Exit the Room

subCloud.enableChorus:false The Sub-Instance Disables Chorus Mode

subCloud.setLowLatencyModeEnabled:false The Sub-Instance Disables Low-Latency Mode

subCloud.switchRole:Audience The Sub-Instance Switches to the Audience Role

onSwitchRole

TXAudioEffectManager.stopPlayMusic The Sub-Instance Stops Playing Music

subCloud.exitRoom The Sub-Instance Exits Room

onExitRoom

mainCloud.enableBlackStream:false The Main Instance Disables the Black Frame Supplement

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 232 of 588

Lead_Singer TRTCCloud Business_Backend

mainCloud.enableChorus:false The Main Instance Disables Chorus Mode

mainCloud.setLowLatencyModeEnabled:false The Main Instance Disables Low Latency Mode

mainCloud.switchRole:Audience The Main Instance Switches to the Audience Role

onSwitchRole

mainCloud.stopLocalAudio The Main Instance Stops Audio Capturing and Publishing

mainCloud.exitRoom The Main Instance Exits Room

onExitRoom

1. Dual instances enter the room.

- (void)enterRoomWithRoomId:(NSString *)roomId userID:(NSString *)userId {

 // Create a TRTCCloud primary instance (vocal instance).

 TRTCCloud *mainCloud = [TRTCCloud sharedInstance];

 // Create a TRTCCloud sub-instance (music instance).

 TRTCCloud *subCloud = [mainCloud createSubCloud];

 // The primary instance (vocal instance) enters the room.

 TRTCParams *params = [[TRTCParams alloc] init];

 params.strRoomId = roomId;

 params.userId = userId;

 params.userSig = userSig;

 params.sdkAppId = SDKAppID;

 params.role = TRTCRoleAnchor;

 [mainCloud enterRoom:params appScene:TRTCAppSceneLIVE];

 // The sub-instance enables manual subscription mode. By default it does not su

 [subCloud setDefaultStreamRecvMode:NO video:NO];

 // The sub-instance (music instance) enters the room.

 TRTCParams *bgmParams = [[TRTCParams alloc] init];

 bgmParams.strRoomId = roomId;

 // The sub-instance username must not duplicate with other users in the room.

 bgmParams.userId = [userId stringByAppendingString:@"_bgm"];

 bgmParams.userSig = userSig;

 bgmParams.sdkAppId = SDKAppID;

 bgmParams.role = TRTCRoleAnchor;

 [subCloud enterRoom:bgmParams appScene:TRTCAppSceneLIVE];

}

Note:
In a real-time chorus solution, the lead singer end must create primary instance and sub-instance for upstream voice
and accompaniment music, respectively.
Sub-instances do not need to subscribe to other users' audio streams in the room. Therefore, it is recommended to
enable manual subscription mode, and it must be activated before entering the room.
2. Set the settings after entering the room.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 233 of 588

// Event callback for the result of primary instance entering the room.

- (void)onEnterRoom:(NSInteger)result {

 if (result > 0) {

 // The primary instance unsubscribe from music streams published by sub-ins

 [self.trtcCloud muteRemoteAudio:[self.userId stringByAppendingString:@"_bgm

 // The primary instance uses the experimental API to enable black frame ins

 [self.trtcCloud callExperimentalAPI:@"{\\"api\\":\\"enableBlackStream\\",\\

 // The primary instance uses the experimental API to enable chorus mode.

 [self.trtcCloud callExperimentalAPI:@"{\\"api\\":\\"enableChorus\\",\\"para

 // The primary instance uses the experimental API to enable low-latency mod

 [self.trtcCloud callExperimentalAPI:@"{\\"api\\":\\"setLowLatencyModeEnable

 // The primary instance enables volume level callback.

 TRTCAudioVolumeEvaluateParams *aveParams = [[TRTCAudioVolumeEvaluateParams

 aveParams.interval = 300;

 [self.trtcCloud enableAudioVolumeEvaluation:YES withParams:aveParams];

 // The primary instance sets the global media volume type.

 [self.trtcCloud setSystemVolumeType:TRTCSystemVolumeTypeMedia];

 // The primary instance captures and publishes local audio, and sets audio

 [self.trtcCloud startLocalAudio:TRTCAudioQualityMusic];

 } else {

 // result indicates the error code when you fail to enter the room.

 NSLog(@"Enter room failed");

 }

}

// Event callback for the result of sub-instance entering the room.

- (void)onEnterRoom:(NSInteger)result {

 if (result > 0) {

 // The sub-instance uses the experimental API to enable chorus mode.

 [self.subCloud callExperimentalAPI:@"{\\"api\\":\\"enableChorus\\",\\"param

 // The sub-instance uses the experimental API to enable low-latency mode.

 [self.subCloud callExperimentalAPI:@"{\\"api\\":\\"setLowLatencyModeEnabled

 // The sub-instance sets global media volume type.

 [self.subCloud setSystemVolumeType:TRTCSystemVolumeTypeMedia];

 // The sub-instance sets audio quality.

 [self.subCloud setAudioQuality:TRTCAudioQualityMusic];

 } else {

 // result indicates the error code when you fail to enter the room.

 NSLog(@"Enter room failed");

 }

}

Note:
Both the primary instance and sub-instance must use the experimental APIs to enable chorus mode and low-latency

mode to optimize the chorus experience. Note the difference in the audioSource parameter.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 234 of 588

3. Push the mixed stream back to the room.

- (void)startPublishMediaToRoomWithRoomId:(NSString *)roomId userId:(NSString *)use

 // Create TRTCPublishTarget object.

 TRTCPublishTarget *target = [[TRTCPublishTarget alloc] init];

 // After mixing, the stream is relayed back to the room.

 target.mode = TRTCPublishMixStreamToRoom;

 TRTCUser *mixStreamIdentity = [[TRTCUser alloc] init];

 mixStreamIdentity.strRoomId = roomId;

 // The mixing stream robot's username must not duplicate with other users in th

 mixStreamIdentity.userId = [userId stringByAppendingString:@"_robot"];

 target.mixStreamIdentity = mixStreamIdentity;

 // Set the encoding parameters of the transcoded audio stream (can be customize

 TRTCStreamEncoderParam *encoderParam = [[TRTCStreamEncoderParam alloc] init];

 encoderParam.audioEncodedChannelNum = 2;

 encoderParam.audioEncodedKbps = 64;

 encoderParam.audioEncodedCodecType = 2;

 encoderParam.audioEncodedSampleRate = 48000;

 // Set the encoding parameters of the transcoded video stream (black frame mixi

 encoderParam.videoEncodedFPS = 15;

 encoderParam.videoEncodedGOP = 3;

 encoderParam.videoEncodedKbps = 30;

 encoderParam.videoEncodedWidth = 64;

 encoderParam.videoEncodedHeight = 64;

 // Set audio mixing parameters.

 TRTCStreamMixingConfig *mixingConfig = [[TRTCStreamMixingConfig alloc] init];

 // By default, leave this field empty. It indicates that all audio in the room

 mixingConfig.audioMixUserList = nil;

 // Configure video mixed-stream template (black frame mixing required).

 TRTCVideoLayout *layout = [[TRTCVideoLayout alloc] init];

 mixingConfig.videoLayoutList = @[layout];

 // Start mixing and pushing back.

 [self.trtcCloud startPublishMediaStream:target encoderParam:encoderParam mixing

}

Note:
To maintain alignment between chorus vocals and accompaniment music, it is recommended to enable pushing the

mixed stream back to the room. The on-mic chorus members mutually subscribe to single streams, and off-mic
audiences by default only subscribe to mixed streams.
The mixing stream robot, acting as an independent user, enters the room to pull, mix, and push streams. Its username
must not duplicate with other usernames in the room. Otherwise, it may lead to mutual deletion from the room.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 235 of 588

4. Search for and request songs.
Search for songs and acquire music resources through the business backend. Obtain identifiers such as the MusicId,
the song's URL (MusicUrl), and the lyrics URL (LyricsUrl).

It is recommended that the business side select an appropriate music repository production to provide licensed music
resources.
5. NTP synchronization.

- (void)updateNetworkTimeExample {

 [TXLiveBase sharedInstance].delegate = self;

 [TXLiveBase updateNetworkTime];

}

- (void)onUpdateNetworkTime:(int)errCode message:(NSString *)errMsg {

 // errCode 0: Time synchronization successful and deviation within 30 ms. 1: Ti

 if (errCode == 0) {

 // Time synchronization successful and NTP timestamp obtained.

 NSInteger ntpTime = [TXLiveBase getNetworkTimestamp];

 } else {

 NSLog(@"Time synchronization failed, and you can try re-synchronization.");

 }

}

Note:
NTP time synchronization results can reflect the current network quality of the application user. To ensure a good

chorus experience, it is recommended not to allow users to initiate chorus if time synchronization fails.
6. Send chorus signaling.

- (void)sendChorusSignalExample {

 __weak typeof(self) weakSelf = self;

 NSTimer *timer = [NSTimer timerWithTimeInterval:1.0 repeats:YES block:^(NSTimer

 __strong typeof(weakSelf) strongSelf = weakSelf;

 NSDictionary *dic = @{

 @"cmd": @"startChorus",

 // Agreed chorus start time: Current NTP time + delayed playback time (

 @"startPlayMusicTS": @([TXLiveBase getNetworkTimestamp] + 3000),

 @"musicId": @(self.musicId),

 @"musicDuration": @([[strongSelf.subCloud getAudioEffectManager] getMus

 };

 JSONModel *json = [[JSONModel alloc] initWithDictionary:dic error:nil];

 [strongSelf.trtcCloud sendCustomCmdMsg:1 data:json.toJSONData reliable:NO o

 }];

 [[NSRunLoop currentRunLoop] addTimer:timer forMode:NSRunLoopCommonModes];

}

Note:

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 236 of 588

The lead singer needs to cyclically broadcast chorus signaling to the room at a fixed time interval (e.g., every 1
second), so that new users who join mid-session can also participate in the chorus.
7. Load and play accompaniment.

// Obtain audio effects management.

TXAudioEffectManager *audioEffectManager = [self.subCloud getAudioEffectManager];

// originMusicId: Custom identifier for the original vocal music. originMusicUrl: U

TXAudioMusicParam *originMusicParam = [[TXAudioMusicParam alloc] init];

originMusicParam.ID = originMusicId;

originMusicParam.path = originMusicUrl;

// Whether to publish the original vocal music to remote (otherwise play locally on

originMusicParam.publish = YES;

// Music start playing time point (in milliseconds).

originMusicParam.startTimeMS = 0;

// accompMusicId: Custom identifier for the accompaniment music. accompMusicUrl: UR

TXAudioMusicParam *accompMusicParam = [[TXAudioMusicParam alloc] init];

accompMusicParam.ID = accompMusicId;

accompMusicParam.path = accompMusicUrl;

// Whether to publish the accompaniment to remote (otherwise play locally only).

accompMusicParam.publish = YES;

// Music start playing time point (in milliseconds).

accompMusicParam.startTimeMS = 0;

// Preload the original vocal music.

[audioEffectManager preloadMusic:originMusicParam onProgress:nil onError:nil];

// Preload the accompaniment music.

[audioEffectManager preloadMusic:accompMusicParam onProgress:nil onError:nil];

// Start playing the original vocal music after a delayed playback time (for exampl

[self.audioEffectManager startPlayMusic:originMusicParam onStart:^(NSInteger errCod

 // onStart

} onProgress:^(NSInteger progressMs, NSInteger durationMs) {

 // onProgress

} onComplete:^(NSInteger errCode) {

 // onComplete

}];

// Start playing the accompaniment music after a delayed playback time (for example

[self.audioEffectManager startPlayMusic:originMusicParam onStart:^(NSInteger errCod

 // onStart

} onProgress:^(NSInteger progressMs, NSInteger durationMs) {

 // onProgress

} onComplete:^(NSInteger errCode) {

 // onComplete

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 237 of 588

}];

// Switch to the original vocal music.

[self.audioEffectManager setMusicPlayoutVolume:originMusicId volume:100];

[self.audioEffectManager setMusicPublishVolume:originMusicId volume:100];

[self.audioEffectManager setMusicPlayoutVolume:accompMusicId volume:0];

[self.audioEffectManager setMusicPublishVolume:accompMusicId volume:0];

// Switch to the accompaniment music.

[self.audioEffectManager setMusicPlayoutVolume:originMusicId volume:0];

[self.audioEffectManager setMusicPublishVolume:originMusicId volume:0];

[self.audioEffectManager setMusicPlayoutVolume:accompMusicId volume:100];

[self.audioEffectManager setMusicPublishVolume:accompMusicId volume:100];

Note:
It is recommended to preload music before starting playback. By loading music resources into memory in advance,
you can effectively reduce the load delay of music playback.
In karaoke scenarios, both the original vocal and accompaniment need to be played simultaneously (distinguished by

MusicID). The switch between the original vocal and accompaniment is achieved by adjusting the local and remote
playback volumes.
If the music being played has dual audio tracks (including both the original vocal and accompaniment), switching
between them can be achieved by specifying the music's playback track using setMusicTrack.
8. Accompaniment Synchronization

// Agreed chorus start time.

@property (nonatomic, assign) NSInteger startPlayMusicTS;

- (void)syncBgmExample {

 // Actual playback progress of the current accompaniment music.

 NSInteger currentProgress = [[self.subCloud getAudioEffectManager] getMusicCurr

 // Ideal playback progress of the current accompaniment music.

 NSInteger estimatedProgress = [TXLiveBase getNetworkTimestamp] - self.startPlay

 // When the progress difference exceeds 50 ms, corrections are made.

 if (estimatedProgress >= 0 && labs(currentProgress - estimatedProgress) > 50) {

 [[self.subCloud getAudioEffectManager] seekMusicToPosInMS:self.musicId pts:

 }

}

9. Lyric synchronization

Download lyrics.
Obtain the target lyrics download link, LyricsUrl, from the business backend, and cache the target lyrics locally.
Synchronize local lyrics, and transmit song progress via SEI.

[[self.subCloud getAudioEffectManager] startPlayMusic:musicParam onStart:^(NSIntege

 // Start playing music.

https://intl.cloud.tencent.com/document/product/647/50757#bcac516dcc63f775829e34f75646fdf4

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 238 of 588

} onProgress:^(NSInteger progressMs, NSInteger durationMs) {

 // Determine whether seek is needed based on the latest progress and the local

 // Song progress is transmitted by sending an SEI message.

 NSDictionary *dic = @{

 @"musicId": @(self.musicId),

 @"progress": @(progressMs),

 @"duration": @(durationMs),

 };

 JSONModel *json = [[JSONModel alloc] initWithDictionary:dic error:nil];

 [self.trtcCloud sendSEIMsg:json.toJSONData repeatCount:1];

} onComplete:^(NSInteger errCode) {

 // Music playback completed.

}];

Note:
The frequency of the SEI messages sent by the performer is determined by the event callback frequency. Also, the
playback progress can be actively synchronized on a schedule through getMusicCurrentPosInMS.
10. Become a listener and exit the room.

- (void)exitRoomExample {

 // The sub-instance uses the experimental API to disable chorus mode.

 [self.subCloud callExperimentalAPI:@"{\\"api\\":\\"enableChorus\\",\\"params\\"

 // The sub-instance uses the experimental API to disable low-latency mode.

 [self.subCloud callExperimentalAPI:@"{\\"api\\":\\"setLowLatencyModeEnabled\\",

 // The sub-instance switches to the audience role.

 [self.subCloud switchRole:TRTCRoleAudience];

 // The sub-instance stops playing accompaniment music.

 [[self.subCloud getAudioEffectManager] stopPlayMusic:self.musicId];

 // The sub-instance exits the room.

 [self.subCloud exitRoom];

 // The primary instance uses the experimental API to disable black frame insert

 [self.trtcCloud callExperimentalAPI:@"{\\"api\\":\\"enableBlackStream\\",\\"par

 // The primary instance uses the experimental API to disable chorus mode.

 [self.trtcCloud callExperimentalAPI:@"{\\"api\\":\\"enableChorus\\",\\"params\\

 // The primary instance uses the experimental API to disable low-latency mode.

 [self.trtcCloud callExperimentalAPI:@"{\\"api\\":\\"setLowLatencyModeEnabled\\"

 // The primary instance switches to the audience role.

 [self.trtcCloud switchRole:TRTCRoleAudience];

 // The primary instance stops local audio capture and publishing.

 [self.trtcCloud stopLocalAudio];

 // The primary instance exits the room.

 [self.trtcCloud exitRoom];

}

Perspective 2: Chorus actions

https://intl.cloud.tencent.com/document/product/647/50757#4d6f9629f7623102e3e04f5e05bdea1e

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 239 of 588

Sequence diagram

Chorus TRTCCloud Business_Backend

Enter Room and Become a Speaker

enterRoom:scene:LIVE Enter Room in LIVE Scenario

onEnterRoom

switchRole:Anchor Switch to Anchor Role

onSwitchRole

muteRemoteAudio Cancel Subscription to the Lead Singer's Music Stream

enableChorus:true Enable Chorus Mode

setLowLatencyModeEnabled:true Enable Low Latency Mode

setSystemVolumeType:Media Set Full Media Volume

startLocalAudio:MUSIC Capture and Publish Local Audio Stream

onSendFirstLocalAudioFrame The First Frame of Audio Has Been Sent

Join in Chorus

updateNetworkTime NTP Time Synchronization

onUpdateNetworkTime

getNetworkTimestamp Access NTP Time

alt [ntpTime > 0]

onRecvCustomCmdMsg

delayMs = startTime - ntpTime
Receive and Process Chorus Signaling

[ntpTime <= 0]
Unable to Join in Chorus

Play Accompaniment

alt [delayMs < 0 && abs(delayMs) > musicDuration]

Chorus Completed

[Chorus Not Yet Started or in Progress]
setPreloadObserver

preloadMusic:originMusicParam Preload Original Music

preloadMusic:accompMusicParam Preload Accompaniment

onLoadProgress Preload Progress Callback

setMusicObserver

startPlayMusic:originMusicParam Start Playing Original Music

startPlayMusic:accompMusicParam Start Playing Accompaniment

onStart Callback of Music Start Playing

setMusicPlayoutVolume Adjust the Playback Volume to Switch Between the Original and the Accompaniment

setMusicPublishVolume Adjust the Publishing Volume to Switch Between the Original and the Accompaniment

Accompaniment Synchronization

currentProgress = getMusicCurrentPosInMS Access Actual Playback Progress of Accompaniment

getNetworkTimestamp Access NTP Time

estimatedProgress = ntpTime - startTime
Calculate Ideal Playback Progress of Accompaniment

alt [abs(currentProgress - estimatedProgress) > 50]

seekMusicToPosInMS Adjust if Progress Deviation Exceeds Threshold

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 240 of 588

Chorus TRTCCloud Business_Backend

Lyrics Synchronization

Request Lyrics Download Link

LyricsUrl

Download and Display Lyrics

onPlayProgress Music Playback Progress Callback

Synchronize Local Lyrics Progress

Become a Listener and Exit Room

enableChorus:false Disable Chorus Mode

setLowLatencyModeEnabled:false Disable Low-Latency Mode

switchRole:Audience Switch to Audience Role

onSwitchRole

stopPlayMusic Stop Playing Music

stopLocalAudio Stop Audio Capturing and Publishing

exitRoom Exit Room

onExitRoom

1. Enter the room.

- (void)enterRoomWithRoomId:(NSString *)roomId userID:(NSString *)userId {

 TRTCParams *params = [[TRTCParams alloc] init];

 // Take the room ID string as an example.

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend.

 params.userSig = [self generateUserSig:userId];

 // Replace with your SDKAppID.

 params.sdkAppId = SDKAppID;

 // Example of entering the room as an audience role.

 params.role = TRTCRoleAudience;

 // LIVE should be selected for the room entry scenario.

 [self.trtcCloud enterRoom:params appScene:TRTCAppSceneLIVE];

}

// Event callback for the result of entering the room.

- (void)onEnterRoom:(NSInteger)result {

 if (result > 0) {

 // result indicates the time taken (in milliseconds) to join the room.

 NSLog(@"Enter room succeed!");

 } else {

 // result indicates the error code when you fail to enter the room.

 NSLog(@"Enter room failed!");

 }

}

2. Go live on streams.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 241 of 588

// Switched to the anchor role.

[self.trtcCloud switchRole:TRTCRoleAnchor];

// Event callback for switching the role.

- (void)onSwitchRole:(TXLiteAVError)errCode errMsg:(NSString *)errMsg {

 if (errCode == ERR_NULL) {

 // Cancel subscription to music streams published by the lead singer sub-in

 [self.trtcCloud muteRemoteAudio:self.bgmUserId mute:YES];

 // Use the experimental API to enable chorus mode.

 [self.trtcCloud callExperimentalAPI:@"{\\"api\\":\\"enableChorus\\",\\"para

 // Use the experimental API to enable low-latency mode.

 [self.trtcCloud callExperimentalAPI:@"{\\"api\\":\\"setLowLatencyModeEnable

 // Set media volume type.

 [self.trtcCloud setSystemVolumeType:TRTCSystemVolumeTypeMedia];

 // Upstream local audio streams and set audio quality.

 [self.trtcCloud startLocalAudio:TRTCAudioQualityMusic];

 }

}

Note:
To minimize delay, all chorus members play the accompaniment music locally. Therefore, it is necessary to cancel
subscriptions to music streams published by the lead singer.
Chorus members also need to use the experimental API to enable chorus mode and low-latency mode to optimize the

chorus experience.
In karaoke scenarios, it is recommended to set the full-range media volume and music quality to achieve a high-fidelity
listening experience.
3. NTP synchronization.

- (void)updateNetworkTimeExample {

 [TXLiveBase sharedInstance].delegate = self;

 [TXLiveBase updateNetworkTime];

}

- (void)onUpdateNetworkTime:(int)errCode message:(NSString *)errMsg {

 // errCode 0: Time synchronization successful and deviation within 30 ms. 1: Ti

 if (errCode == 0) {

 // Time synchronization successful and NTP timestamp obtained.

 NSInteger ntpTime = [TXLiveBase getNetworkTimestamp];

 } else {

 NSLog(@"Time synchronization failed, and you can try re-synchronization.");

 }

}

Note:

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 242 of 588

NTP time synchronization results can reflect the current network quality of the application user. To ensure a good
chorus experience, it is recommended not to allow users to participate in the chorus if time synchronization fails.
4. Receive chorus signaling.

- (void)onRecvCustomCmdMsgUserId:(NSString *)userId cmdID:(NSInteger)cmdID seq:(UIn

 JSONModel *json = [[JSONModel alloc] initWithData:message error:nil];

 NSDictionary *dic = json.toDictionary;

 // Match the chorus signaling.

 if ([dic[@"cmd"] isEqualToString:@"startChorus"]) {

 self.startPlayMusicTS = [dic[@"startPlayMusicTS"] integerValue];

 self.musicId = [dic[@"musicId"] intValue];

 self.musicDuration = [dic[@"musicDuration"] intValue];

 // Agree on the time difference between chorus time and current time.

 self.delayMs = self.startPlayMusicTS - [TXLiveBase getNetworkTimestamp];

 }

}

Note:
Once the chorus members receive the chorus signaling and join in, the status should be changed to Chorus In

Progress. Chorus signaling would not be responded to again before the end of this chorus round.
5. Play accompaniment, and start chorus.

- (void)playBmgExample {

 // Chorus has not started.

 if (self.delayMs > 0) {

 // Begin to preload music.

 [self preloadMusicWithStartTimeMS:0];

 // Play music after a delay of delayMs.

 [self startPlayMusicWithStartTimeMS:0];

 } else if (labs(self.delayMs) < self.musicDuration) {

 // Chorus is in progress.

 // Play start time: Absolute value of the time difference + preload delay (

 NSInteger startTimeMS = labs(self.delayMs) + 400;

 // Begin to preload music.

 [self preloadMusicWithStartTimeMS:startTimeMS];

 // Start playing music after a preload delay (e.g., 400 ms).

 [self startPlayMusicWithStartTimeMS:startTimeMS];

 } else {

 // Chorus has ended.

 // Joining the chorus is not allowed.

 }

}

// Preload music.

- (void)preloadMusicWithStartTimeMS:(NSInteger)startTimeMS {

 // musicId: Obtained from chorus signaling. musicUrl: Corresponding music resou

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 243 of 588

 TXAudioMusicParam *musicParam = [[TXAudioMusicParam alloc] init];

 musicParam.ID = self.musicId;

 musicParam.path = self.musicUrl;

 // Only local music playback.

 musicParam.publish = NO;

 musicParam.startTimeMS = startTimeMS;

 [self.audioEffectManager preloadMusic:musicParam onProgress:nil onError:nil];

}

// Begin to play music.

- (void)startPlayMusicWithStartTimeMS:(NSInteger)startTimeMS {

 // musicId: Obtained from chorus signaling. musicUrl: Corresponding music resou

 TXAudioMusicParam *musicParam = [[TXAudioMusicParam alloc] init];

 musicParam.ID = self.musicId;

 musicParam.path = self.musicUrl;

 // Only local music playback.

 musicParam.publish = NO;

 musicParam.startTimeMS = startTimeMS;

 [self.audioEffectManager startPlayMusic:musicParam onStart:nil onProgress:nil o

}

Note:
To minimize transmission delay as much as possible, chorus members perform along with the local playback of
accompaniment music, and they do not need to publish or receive remote music.

Based on delayMs , the current chorus status can be determined. Developers must implement the

 startPlayMusic delayed call for different statuses on their own.

6. Accompaniment Synchronization

// Agreed chorus start time.

@property (nonatomic, assign) NSInteger startPlayMusicTS;

- (void)syncBgmExample {

 // Actual playback progress of the current accompaniment music.

 NSInteger currentProgress = [[self.trtcCloud getAudioEffectManager] getMusicCur

 // Ideal playback progress of the current accompaniment music.

 NSInteger estimatedProgress = [TXLiveBase getNetworkTimestamp] - self.startPlay

 // When the progress difference exceeds 50 ms, corrections are made.

 if (estimatedProgress >= 0 && labs(currentProgress - estimatedProgress) > 50) {

 [[self.trtcCloud getAudioEffectManager] seekMusicToPosInMS:self.musicId pts

 }

}

7. Lyric synchronization
Download lyrics.
Obtain the target lyrics download link, LyricsUrl, from the business backend, and cache the target lyrics locally.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 244 of 588

Local lyric synchronization.

[self.audioEffectManager startPlayMusic:musicParam onStart:^(NSInteger errCode) {

 // Start playing music.

} onProgress:^(NSInteger progressMs, NSInteger durationMs) {

 // TODO: The logic of updating the lyric control.

 // Determine whether seek in the lyrics control is needed based on the latest p

} onComplete:^(NSInteger errCode) {

 // Music playback completed.

}];

8. Become a listener and exit the room.

- (void)exitRoomExample {

 // Use the experimental API to disable chorus mode.

 [self.trtcCloud callExperimentalAPI:@"{\\"api\\":\\"enableChorus\\",\\"params\\

 // Use the experimental API to disable low-latency mode.

 [self.trtcCloud callExperimentalAPI:@"{\\"api\\":\\"setLowLatencyModeEnabled\\"

 // Switched to the audience role.

 [self.trtcCloud switchRole:TRTCRoleAudience];

 // Stop playing accompaniment music.

 [[self.trtcCloud getAudioEffectManager] stopPlayMusic:self.musicId];

 // Stop local audio capture and publishing.

 [self.trtcCloud stopLocalAudio];

 // Exit the room.

 [self.trtcCloud exitRoom];

}

Perspective 3: Listener actions

Sequence diagram

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 245 of 588

Audience

Audience

TRTCCloud

TRTCCloud

Business_Backend

Business_Backend

Enter Room

enterRoom:scene:LIVE Enter Room in LIVE Scenario

onEnterRoom

onRemoteUserEnterRoom

onUserVideoAvailable Lead Singer Published Video Stream (Black Frame)

startRemoteView Subscribe to the Lead Singer's Video Stream (Black Frame)

onFirstVideoFrame

Lyrics Synchronization

Request Lyrics Download Link

LyricsUrl

Download and Display Lyrics

onRecvSEIMsg:musicId:curPtsMs:durationMs Receive SEI Message

Synchronize Local Lyrics Progress

Exit Room

exitRoom

onExitRoom

1. Enter the room.

- (void)enterRoomWithRoomId:(NSString *)roomId userID:(NSString *)userId {

 TRTCParams *params = [[TRTCParams alloc] init];

 // Take the room ID string as an example.

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend.

 params.userSig = [self generateUserSig:userId];

 // Replace with your SDKAppID.

 params.sdkAppId = SDKAppID;

 // It is recommended to enter the room as an audience role.

 params.role = TRTCRoleAudience;

 // LIVE should be selected for the room entry scenario.

 [self.trtcCloud enterRoom:params appScene:TRTCAppSceneLIVE];

}

// Event callback for the result of entering the room.

- (void)onEnterRoom:(NSInteger)result {

 if (result > 0) {

 // result indicates the time taken (in milliseconds) to join the room.

 NSLog(@"Enter room succeed!");

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 246 of 588

 } else {

 // result indicates the error code when you fail to enter the room.

 NSLog(@"Enter room failed!");

 }

}

Note:

To better transmit SEI messages for lyric synchronization, it is recommended to choose TRTCAppSceneLIVE for

room entry scenarios.
Under the automatic subscription mode (default), audiences automatically subscribe and play the on-mic anchor's
audio and video streams upon entering the room.
2. Lyric synchronization

Download lyrics.
Obtain the target lyrics download link, LyricsUrl, from the business backend, and cache the target lyrics locally.
Listener end lyric synchronization

- (void)onUserVideoAvailable:(NSString *)userId available:(BOOL)available {

 if (available) {

 [self.trtcCloud startRemoteView:userId view:nil];

 } else {

 [self.trtcCloud stopRemoteView:userId];

 }

}

- (void)onRecvSEIMsg:(NSString *)userId message:(NSData *)message {

 JSONModel *json = [[JSONModel alloc] initWithData:message error:nil];

 NSDictionary *dic = json.toDictionary;

 int32_t musicId = [dic[@"musicId"] intValue];

 NSInteger progress = [dic[@"progress"] integerValue];

 NSInteger duration = [dic[@"duration"] integerValue];

 //

 // TODO: The logic of updating the lyric control.

 // Based on the received latest progress and the local lyrics progress deviatio

 //

}

Note:
Listeners need to actively subscribe to the lead singer's video streams in order to receive the SEI messages carried by
black frames.
If the lead singer's mixed stream also mixes in black frames, then only subscribing to the mixing stream robot's video

stream is required.
3. Exit the room.

// Exit the room.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 247 of 588

[self.trtcCloud exitRoom];

// Exit room event callback.

- (void)onExitRoom:(NSInteger)reason {

 if (reason == 0) {

 NSLog(@"Proactively call exitRoom to exit the room.");

 } else if (reason == 1) {

 NSLog(@"Removed from the current room by the server.");

 } else if (reason == 2) {

 NSLog(@"The current room is dissolved.");

 }

}

Advanced Features

Music scoring module integration

Music scoring provides users with multi-dimensional singing scoring capabilities. Currently, supported scoring
dimensions include intonation and rhythm.
1. Prepare scoring-related files.
Prepare in advance the performance recording files to be scored, original music standard files, MIDI pitch files, and
upload them to COS storage.

2. Create a music scoring task.
Request Method: POST(HTTP).
Request Address: http://service-mqk0mc83-1257411467.bj.apigw.tencentcs.com/release/job.
Request Header: Content-Type: application/json.
A request sample is as follows:
Request sample:

Response sample:

{

 "action": "CreateJob",

 "secretId": "{secretId}",

 "secretKey": "{secretKey}",

 "createJobRequest": {

 "customId": "{customId}",

 "callback": "{callback}",

 "inputs": [{ "url": "{url}" }],

 "outputs": [

 {

 "contentId": "{contentId}",

 "destination": "{destination}",

http://service-mqk0mc83-1257411467.bj.apigw.tencentcs.com/release/job

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 248 of 588

 "inputSelectors": [0],

 "smartContentDescriptor": {

 "outputPrefix": "{outputPrefix}",

 "vocalScore": {

 "standardAudio": {

 "midi": {"url":"{url}"},

 "standardWav": {"url":"{url}"},

 "alignWav": {"url":"{url}"}

 }

 }

 }

 }

]

 }

}

{

 "requestId": "ac004192-110b-46e3-ade8-4e449df84d60",

 "createJobResponse": {

 "job": {

 "id": "13f342e4-6866-450e-b44e-3151431c578b",

 "state": 1,

 "customId": "{customId}",

 "callback": "{callback}",

 "inputs": [{ "url": "{url}" }],

 "outputs": [

 {

 "contentId": "{contentId}",

 "destination": "{destination}",

 "inputSelectors": [0],

 "smartContentDescriptor": {

 "outputPrefix": "{outputPrefix}",

 "vocalScore": {

 "standardAudio": {

 "midi": {"url":"{url}"},

 "standardWav": {"url":"{url}"},

 "alignWav": {"url":"{url}"}

 }

 }

 }

 }

],

 "timing": {

 "createdAt": "1603432763000",

 "startedAt": "0",

 "completedAt": "0"

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 249 of 588

 }

 }

 }

}

3. Obtain music scoring results.
Obtain Method: Divided into active acquisition and passive callback.

By querying with the ID obtained from the response packet after creating the task, if the queried task is successful
(state=3), the task's Output will carry the smartContentResult structure, in which the vocalScore field stores the result
JSON file name. Users can construct the output file's COS path based on the information in Output's COS and
destination.
Request sample:

Response sample:

{

 "action": "GetJob",

 "secretId": "{secretId}",

 "secretKey": "{secretKey}",

 "getJobRequest": {

 "id": "{id}"

 }

}

{

 "requestId": "c9845a99-34e3-4b0f-80f5-f0a2a0ee8896",

 "getJobResponse": {

 "job": {

 "id": "a95e9d74-6602-4405-a3fc-6408a76bcc98",

 "state": 3,

 "customId": "{customId}",

 "callback": "{callback}",

 "timing": {

 "createdAt": "1610513575000",

 "startedAt": "1610513575000",

 "completedAt": "1610513618000"

 },

 "inputs": [{ "url": "{url}" }],

 "outputs": [

 {

 "contentId": "{contentId}",

 "destination": "{destination}",

 "inputSelectors": [0],

 "smartContentDescriptor": {

 "outputPrefix": "{outputPrefix}",

 "vocalScore": {

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 250 of 588

 "standardAudio": {

 "midi": {"url":"{url}"},

 "standardWav": {"url":"{url}"},

 "alignWav": {"url":"{url}"}

 }

 }

 },

 "smartContentResult": {

 "vocalScore": "out.json"

 }

 }

]

 }

 }

}

Passive callbacks need to fill in the callback field when creating a task. The platform will send the entire Job structure

to the address specified by the callback after the task reaches the Completed state (COMPLETED/ERROR). It is
recommended to obtain task results using passive callbacks. The entire Job structure of tasks that have reached the
Completed state (COMPLETED/ERROR) will be sent to the address corresponding to the callback field specified
when the task was created. See the active query sample for the Job structure (under getJobResponse).
Note:

For more detailed intelligent music solution integration instructions for the music scoring module, see Music Scoring
Integration.

Transparent transmission of single stream volume in mixed streams.

After the mixed streaming is enabled, the audience cannot directly obtain the on-mic anchor's single stream volume. In
order to transparently transmit the single stream volume, the room owner may employ SEI to transmit the callback
volume values of all on-mic anchors.

- (void)onUserVoiceVolume:(NSArray<TRTCVolumeInfo *> *)userVolumes totalVolume:(NSI

 if (userVolumes.count) {

 // For storing volume values corresponding to on-mic users.

 NSMutableDictionary *volumesMap = [NSMutableDictionary dictionary];

 for (TRTCVolumeInfo *user in userVolumes) {

 // Can set an appropriate volume threshold.

 if (user.volume > 10) {

 volumesMap[user.userId] = @(user.volume);

 }

 }

 JSONModel *json = [[JSONModel alloc] initWithDictionary:volumesMap error:ni

 // Transmit a collection of on-mic users' volume via SEI messages.

 [self.trtcCloud sendSEIMsg:json.toJSONData repeatCount:1];

 }

https://multimedia.tencent.com/docs/smart-music/api/vocal-score

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 251 of 588

}

- (void)onRecvSEIMsg:(NSString *)userId message:(NSData *)message {

 JSONModel *json = [[JSONModel alloc] initWithData:message error:nil];

 NSDictionary *dic = json.toDictionary;

 for (NSString *userId in dic.allKeys) {

 // Print the volume levels of single streams of all on-mic users.

 NSLog(@"%@: %@", userId, dic[userId]);

 }

}

Note:
The prerequisite for using SEI messages to transparently transmit single stream volume through a mixed stream is
that the room owner must either be video streaming or have black frame insertion enabled and furthermore, the

audiences must actively subscribe to the room owner's video stream.

Real-time network quality callback

You can listen to onNetworkQuality to real-time monitor the network quality of both local and remote users. This

callback is thrown every 2 seconds.

#pragma mark - TRTCCloudDelegate

- (void)onNetworkQuality:(TRTCQualityInfo *)localQuality remoteQuality:(NSArray<TRT

 // localQuality represents the local user's network quality evaluation result.

 // remoteQuality represents the remote user's network quality evaluation result

 switch(localQuality.quality) {

 case TRTCQuality_Unknown:

 NSLog(@"Undefined.");

 break;

 case TRTCQuality_Excellent:

 NSLog(@"The current network is excellent.");

 break;

 case TRTCQuality_Good:

 NSLog(@"The current network is good.");

 break;

 case TRTCQuality_Poor:

 NSLog(@"The current network is moderate.");

 break;

 case TRTCQuality_Bad:

 NSLog(@"The current network is poor.");

 break;

 case TRTCQuality_Vbad:

 NSLog(@"The current network is very poor.");

 break;

 case TRTCQuality_Down:

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 252 of 588

 NSLog(@"The current network does not meet the minimum requirements of T

 break;

 default:

 break;

 }

}

Advanced permission control

TRTC advanced permission control can be used to set different entry permissions for different rooms, such as
advanced VIP rooms. It can also be used to control the permission for the audience to speak, such as handling ghost
microphones.
Step 1: Enable the Advanced Permission Control Switch in the TRTC console application's advanced features page.

Note:
Once advanced permission control is enabled for a certain SDKAppID, all users using that SDKAppID need to pass in
the privateMapKey parameter in TRTCParams to successfully enter the room. Therefore, if you have users

online using this SDKAppID, do not enable this feature.

Step 2: Generate privateMapKey on the backend. For sample code, see privateMapKey computation source code.
Step 3: Room entry verification & speaking permission verification with PrivateMapKey.
Room entry verification

TRTCParams *params = [[TRTCParams alloc] init];

params.sdkAppId = SDKAppID;

params.roomId = self.roomId;

https://console.trtc.io/
https://intl.cloud.tencent.com/document/product/1047/34385#.E6.9C.8D.E5.8A.A1.E7.AB.AF.E8.AE.A1.E7.AE.97-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 253 of 588

params.userId = self.userId;

// UserSig obtained from the business backend.

params.userSig = [self getUserSig];

// PrivateMapKey obtained from the backend.

params.privateMapKey = [self getPrivateMapKey];

params.role = TRTCRoleAudience;

[self.trtcCloud enterRoom:params appScene:TRTCAppSceneLIVE];

Speaking permission verification

// Pass in the latest PrivateMapKey obtained from the backend into the role switchi

[self.trtcCloud switchRole:TRTCRoleAnchor privateMapKey:[self getPrivateMapKey]];

Exception Handling

Exception error handling

When the TRTC SDK encounters an unrecoverable error, the error will be thrown in the onError callback. For

details, see Error Code Table.
1. UserSig related
UserSig verification failure will lead to room-entering failure. You can use the UserSig tool for verification.

Enumeration Value Description

ERR_TRTC_INVALID_USER_SIG -3320
Room entry parameter userSig is incorrect. Check
if TRTCParams.userSig is empty.

ERR_TRTC_USER_SIG_CHECK_FAILED -100018
UserSig verification failed. Check if the parameter
 TRTCParams.userSig is filled in correctly or
has expired.

2. Room entry and exit related
If failed to enter the room, you should first verify the correctness of the room entry parameters. It is essential that the
room entry and exit APIs are called in a paired manner. This means that, even in the event of a failed room entry, the
room exit API must still be called.

Enumeration Value Description

ERR_TRTC_CONNECT_SERVER_TIMEOUT -3308
Room entry request timed out. Check if your
internet connection is lost or if a VPN is enabled.
You may also attempt to switch to 4G for testing.

ERR_TRTC_INVALID_SDK_APPID -3317 Room entry parameter sdkAppId is incorrect.
Check if TRTCParams.sdkAppId is empty.

https://intl.cloud.tencent.com/document/product/647/35135
https://console.trtc.io/usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 254 of 588

ERR_TRTC_INVALID_ROOM_ID -3318

Room entry parameter roomId is incorrect.
Check if TRTCParams.roomId or
 TRTCParams.strRoomId is empty. Note
that roomId and strRoomId cannot be used
interchangeably.

ERR_TRTC_INVALID_USER_ID -3319
Room entry parameter userId is incorrect. Check
if TRTCParams.userId is empty.

ERR_TRTC_ENTER_ROOM_REFUSED -3340
Room entry request is denied. Check if
 enterRoom is called consecutively to enter
rooms with the same ID.

3. Device related

Errors for relevant monitoring devices. Prompt the user via UI in case of relevant errors.

Enumeration Value Description

ERR_MIC_START_FAIL -1302

Failed to open the mic. For example, if there is an exception for
the mic's configuration program (driver) on a Windows or
macOS device, you should try disabling then re-enabling the
device, restarting the machine, or updating the configuration
program.

ERR_SPEAKER_START_FAIL -1321

Failed to open the speaker. For example, if there is an
exception for the speaker's configuration program (driver) on a
Windows or macOS device, you should try disabling then re-
enabling the device, restarting the machine, or updating the
configuration program.

ERR_MIC_OCCUPY -1319 The mic is occupied. This occurs when, for example, the user
is currently having a call on the mobile device.

Issues with IEMs

1. How to enable IEMs feature and set the volume?

// Enable IEMs.

[[self.trtcCloud getAudioEffectManager] enableVoiceEarMonitor:YES];

// Set the volume of IEMs.

[[self.trtcCloud getAudioEffectManager] setVoiceEarMonitorVolume:volume];

Note:
The IEMs can be set in advance without having to monitor audio routing changes. Once headphones are connected,
the IEMs feature will automatically take effect.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 255 of 588

2. The IEMs feature does not take effect after enabled.
Due to the high hardware delay of Bluetooth headphones, it is recommended to prompt the anchor to wear wired
headphones on the user interface. Also, it should be noted that not all smartphones will achieve excellent IEMs effect

after this feature is enabled. TRTC SDK has already blocked this feature on some smartphones with poor effect.
3. High IEM delay
Check if Bluetooth headphones are in use. Due to the high hardware delay of Bluetooth headphones, wired
headphones are recommended. Additionally, you can try improving the issue of high IEM delay by enabling hardware
IEM through the experimental API setSystemAudioKitEnabled . Hardware IEMs have better performance and

lower delay. Software IEMs have higher delay but better compatibility. Currently, for Huawei and VIVO devices, SDK
defaults to hardware IEMs. Other devices default to software IEMs. If there are compatibility issues with hardware
IEMs, contact us to configure forced use of software IEMs.

Issues with NTP sync

1. NTP time sync finished, but result maybe inaccurate.
NTP sync is successful, but the deviation may still be more than 30 milliseconds. This indicates a poor client network
environment with persistent RTT jitter.

2. Error in AddressResolver: No address associated with hostname
NTP sync has failed, possibly due to a temporary exception in local ISP DNS resolution under the current network
environment. Try again later.
3. NTP service retry processing logic.

https://intl.cloud.tencent.com/document/product/1228/59971

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 256 of 588

Issues with real-time chorus usage

1. Why does the lead singer in real-time chorus scenarios need to use dual-instance streaming?

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 257 of 588

In real-time chorus scenarios, to minimize end-to-end delay and achieve sync between vocals and accompaniment, a
common approach is to use dual instances at the lead singer's end to separately upload vocal and accompaniment
streams, while other chorus participants only upload their vocal streams and locally play the accompaniment. In this

case, each chorus participant needs to subscribe to the lead singer's vocal stream, while refraining from subscribing
to the lead singer's music stream. This setup can only be achieved by implementing dual-instance separate streaming.
2. Why is it recommended to enable mixing pushback in real-time chorus scenarios?
Having the audience pull multiple single streams at the same time is likely to result in misalignment between multiple
vocal streams and accompaniment streams. Pulling a mixed stream can ensure absolute alignment of all streams and

reduce downstream bandwidth.
3. What are the uses of SEI in real-time chorus scenarios?
Transmitting accompaniment music progress, for lyric sync on the audience's end.
Transparently transmitting single stream volume through a mixed stream, for display as sound waves on the listener's
end.
4. Loading accompaniment music takes a long duration, causing significant playback delay?

Loading network music resources via the SDK incurs a certain delay. It is recommended to initiate music pre-loading
before starting playback.

[[self.trtcCloud getAudioEffectManager] preloadMusic:musicParam onProgress:nil onEr

5. When singing along with accompaniment, the vocals are barely audible. Is the music overwhelming the
vocals?

If the default volume settings result in the accompaniment overwhelming the vocals, it is recommended to adjust the
volume balance between the music and vocals accordingly.

// Set the local playback volume of a piece of background music.

[[self.trtcCloud getAudioEffectManager] setMusicPlayoutVolume:self.musicId volume:v

// Set the remote playback volume of a specific background music.

[[self.trtcCloud getAudioEffectManager] setMusicPublishVolume:self.musicId volume:v

// Set the local and remote volume of all background music.

[[self.trtcCloud getAudioEffectManager] setAllMusicVolume:volume];

// Set the volume of voice capture.

[[self.trtcCloud getAudioEffectManager] setVoiceVolume:volume];

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 258 of 588

Live Show Streaming
Scenario Solution
Last updated：2024-07-25 17:02:41

Scene Introduction

The live showroom scenario is a video interaction scenario under the social entertainment mode. It supports multi-user
video mic connect, making it easier to engage users in mic connect, thus boosting user spending willingness and
stickiness. Moreover, the live showroom also supports cross-room competition between anchors from different rooms,

further enhancing the fun of live streaming. Cross-room competition with latency below 300 ms, supporting audience
and anchor mic connecting, smooth on/off mic switching, meets the high-frequency interaction demands of the live
showroom scenario. The intelligent beauty feature also meets the personalized needs of anchors, making live
streaming more appealing.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 259 of 588

Implementation Scheme

Typically, implementing a complete live showroom scenario involves several functional modules: Room Management,
Seat Management, Media Stream Management, On-Cloud Recording, etc. The key actions and feature points under

each feature module are shown in the table below. Each functional module will be introduced individually to provide a
comprehensive understanding of the functionalities required for building a live showroom scenario.

Feature Module Key Actions and Feature Points

Room management Room list, create a room, enter a room, exit a room, and terminate a room.

Seat Management Request to speak, become a listener, invite a listener to speak, remove a
speaker, and mute a speaker.

Media Stream Management RTC Real-Time Interaction Solution

On-cloud recording TRTC on-cloud recording.

https://intl.cloud.tencent.com/document/product/1228/59952#e087b511-502a-4993-8a52-e74c6c15280b
https://intl.cloud.tencent.com/document/product/1228/59952#e087b511-502a-4993-8a52-e74c6c15280b#de8aad6c-c124-4597-a6ad-7b7bc4310625
https://intl.cloud.tencent.com/document/product/1228/59952#e087b511-502a-4993-8a52-e74c6c15280b#de8aad6c-c124-4597-a6ad-7b7bc4310625#9b3aa201-586b-463d-aa0d-f0e79110177f
https://intl.cloud.tencent.com/document/product/1228/59952#e087b511-502a-4993-8a52-e74c6c15280b#de8aad6c-c124-4597-a6ad-7b7bc4310625#9b3aa201-586b-463d-aa0d-f0e79110177f#3a21cbfa-21f5-4ac0-872a-a2f4a3098466

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 260 of 588

The overall business architecture of the live showroom scenario is shown in the figure below. The room owner creates
a room, and users can choose to enter rooms that interest them. Users who enter the room can become speakers to
participate in audio and video interactions with the anchor via the mic. Typically, due to compliance requirements, the

audio and video content in the room needs to be recorded and submitted for review.

Note:
Relayed push and recording reviews can be configured to use either target single streams or mix streams based on
specific business requirements.

The recording and review process can be implemented using either RTC Recording Review or CDN Recording
Review, depending on specific business requirements.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 261 of 588

Room management

The Room Management Module is primarily responsible for maintaining the room list and includes the following
features:
Create Room: After users log in to the business system, they can create a room. The room list needs to be updated

after a room is created.
Enter a Room: Users can choose to enter an existing room. Upon entering, the current list of room members should be
updated.
Exit a Room: Users can choose to exit the current room. Upon exiting, the current list of room members needs to be
updated with a delete operation.

Destroy a Room: After all users exit the room, it needs to be destroyed. Upon destruction, the room list needs to be
updated with a delete operation.
Note:
Room Management is a necessary module for implementing a live showroom, but it is not the main functional module.
It can be implemented in conjunction with the business system and IM&TRTC SDK, see Voice Chat Room - Room
Management for details.

Seat Management

Seats in a live streaming room are generally ordered and limited. Seat Management is primarily responsible for
defining the number of seats in a room based on the business scene, as well as managing the status of all seats in the
current room. Seat Management mainly includes: request to speak, become a listener, invite a listener to speak,
remove a speaker, and mute a speaker.
After users enter a room, only idle seats can be applied for.

After the room owner approves a user to become a speaker, the seat status needs to be changed to non-idle.
After the user stops streaming and becomes a listener, the seat status needs to be reset.
The room owner has the authority to lock the seat, invite a listener to speak, remove a speaker, mute a speaker, etc.
Note:
Seat Management is a necessary module for implementing a live showroom, but it is not the main functional module. It

can be implemented in conjunction with the business system and IM&TRTC SDK, see Voice Chat Room - Seat
Management for details.

Media Stream Management

For ordinary live showroom scenarios, we recommend the RTC real-time interaction solution: both anchors and
audience use the RTC protocol for publishing/playback, minimizing end-to-end latency and ensuring a smoother
experience for the audience when joining and leaving the mic, without abrupt changes such as image fast-forwarding
or rewinding. Taking the example of multi-person co-anchoring live streaming interactions, the main architecture of live

showroom in a pure RTC publishing/playback scenario is shown in the figure below:

https://intl.cloud.tencent.com/document/product/1228/59940#45608109-3c99-471b-9911-2ddf76785e47
https://intl.cloud.tencent.com/document/product/1228/59940#f6b567ce-31cc-4bff-bc6b-c26483820a6f

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 262 of 588

The overall process of this solution is as follows:
1. Both the anchor and audience connect through the signaling module, which is mainly responsible for controlling the
live streaming process and synchronizing the live streaming status.

2. Regardless of whether there are mic-connecting audiences or not, both the anchor and the audience use the TRTC
audio and video cloud service for publishing/playback.
3. After the audience requests to mic connect with the anchor, the signaling module will notify the anchor and
synchronize the personal information of the co-speakers.
4. Once the anchor accepts the mic connection request, the mic-connecting audience starts streaming, and all
members in the room receive stream update notifications and pull the audio-video stream of the mic-connecting

audience.
5. When a mic-connecting audience member requests to disconnect, they stop streaming. All members in the room
will receive stream update notifications and stop pulling that audience's audio and video stream.
Note:

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 263 of 588

The signaling module can be a custom-developed signaling channel, and it is also recommended to use Instant
Messaging (IM) for signaling interaction.

On-cloud recording

TRTC's newly upgraded on-cloud recording does not depend on cloud streaming services. It does not require a

relayed push for cloud live streaming and uses TRTC's internal real-time recording cluster for audio and video
recording, offering a more comprehensive and unified recording experience.
Single Stream Recording: With TRTC's on-cloud recording feature, you can record the audio and video stream of
each user in the room into separate files.

Mix Stream Recording: Record the audio-video media streams of the same room as a single file.

Note:

For a detailed introduction and activation guide to TRTC On-Cloud Recording, see On-Cloud Recording.

https://intl.cloud.tencent.com/products/im
https://intl.cloud.tencent.com/document/product/647/45169

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 264 of 588

In the live showroom scenario, a common approach for recording is the mixed-stream recording solution, while the
single stream recording solution can be chosen if there is a need for single stream review of the anchor or the mic-
connecting audience.

Key Business Logic

Gift and Like Messages

In the live showroom scenario, gifts and likes are common ways of interaction. Audiences can express their love and
support for the anchor by giving gifts and likes, and the anchor can also earn revenue from them. Below, we will
introduce the implementation of gift and like messages based on Tencent Cloud Instant Messaging.

Gift message

1. Non-persistent connection requests from the client to their business server involve gift billing logic.
2. After billing, the sender directly sees XXX gave XXX a gift (to ensure the sender sees the gift they sent themselves;
when the message volume is large, it may trigger an abandonment strategy).
3. After billing is settled, the client calls the server API Sending Custom Messages in a Group (gift).

4. If encountering scenarios of rapid gift giving, you need to merge the messages:
If users directly select the number of gifts, such as choosing 99 gifts, the system should send a single message with
the parameter set to 99 gifts.
If the gifts are in a combo and it's uncertain how many there will be, the business backend can merge every 20
(quantity adjustable) or send one for combos lasting over 1 second. Following this logic, for example, for a combo of

https://intl.cloud.tencent.com/products/im
https://intl.cloud.tencent.com/document/product/1047/34959

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 265 of 588

99 gifts, only 5 messages would need to be sent after optimization.
An example request package for server API sending custom messages in a group is as follows, where MsgBody
supports customizing message elements.

{

 "GroupId": "@TGS#12DEVUDHQ",

 "Random": 2784275388,

 "MsgPriority": "High", // The priority of the message. Gift messages should be

 "MsgBody": [

 {

 "MsgType": "TIMCustomElem",

 "MsgContent": {

 // type: gift type; giftUrl: gift resource URL; giftName: gift name

 "Data": "{\\"cmd\\": \\"gift_msg\\", \\"msg\\": {\\"type\\": 1, \\"

 }

 }

]

}

Like message

https://intl.cloud.tencent.com/document/product/1047/34959
https://intl.cloud.tencent.com/document/product/1047/33527
https://intl.cloud.tencent.com/document/product/1047/33527#.E8.87.AA.E5.AE.9A.E4.B9.89.E6.B6.88.E6.81.AF.E5.85.83.E7.B4.A0

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 266 of 588

1. Likes do not involve billing and are typically sent directly from the client using sending custom messages in a group.
2. For like messages that need to be counted on the server, after traffic throttling is performed on the client, likes on
the client are counted, and like messages within a short period of time are merged into one. The business server gets

the count of likes in the callback after sending a group message for statistics.
3. For like messages that do not require counting, follow the same logic as step 2. Throttle the likes messages on the
client side and send them. There is no need to count them in the callback after sending the group message.
Note:
Please set important messages to high priority (e.g., gift messages) and high-frequency but not important messages

to low priority (e.g., like messages).
Specific implementation steps for live streaming interaction features (such as likes, gifts, and on-screen comment
chat) can be seen in Quick Integration Guide - Live Streaming
 Interactive Messages.

Integrating Beauty Effect

In the live showroom scenario, the beauty effect is a frequently used feature. It not only improves the beauty of the
anchor but also adds fun to live interaction through various sticker effects. TRTC supports the integration of Tencent

Effect SDK as well as the integration of mainstream third-party beauty effect products in the market, such as Volcano
Beauty, FaceUnity, etc.

Beauty Effect Integration Process

https://im.sdk.qcloud.com/doc/en/classcom_1_1tencent_1_1imsdk_1_1v2_1_1V2TIMManager.html#afbce8ff97be0a3a42c7dc826d316f2c2
https://intl.cloud.tencent.com/document/product/1047/34375
https://intl.cloud.tencent.com/document/product/1228/59954#a1195ec7-f96a-41f0-ac94-37819d7a653f
https://intl.cloud.tencent.com/products/x-magic

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 267 of 588

API Call Sequence

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 268 of 588

App

App

TRTCCloud

TRTCCloud

Beauty

Beauty

sharedInstance Create TRTC Instance

addListener Add TRTC Event Callback

setLocalVideoProcessListener Set Video Data Callback for Third-Party Beauty

startLocalPreview Start Local Camera Preview

onGLContextCreated Notification that SDK's Internal OpenGL Environment has been Created

Third-Party Beauty Initialization

loop
onProcessVideoFrame Video Processing Callback for Third-party Beauty Component Connecting

Third-Party Beauty Processing

Writeback of Beauty Video Data

stopLocalPreview Stop Camera Preview

onGLContextDestory Notification that SDK's Internal OpenGL Environment has been Destroyed

Third-party Beauty Resource Destruction

Comparison of Beauty Products

Beauty
Type

Beauty
Effect

Access
Costs Fees

Virtual AI
Digital
Human

Support Terminal

Tencent
Effect
SDK

The basic
effect is
good,
advanced
effect for big
eyes/slim
faces is
significant.

Low Moderate Supported Android/iOS/PC/Flutter/Web/Mini
Program

FaceUnity
Effect
SDK

The basic
effect is
good,
advanced
effects like
big eyes/slim
faces are
average.

Moderately
high

Moderate Supported Android/iOS/PC/Untiy

https://intl.cloud.tencent.com/products/x-magic
https://www.faceunity.com/effects.html

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 269 of 588

Volcano
Effect
SDK

The basic
effect is
good,
advanced
effects like
big eyes/slim
faces are
relatively
good.

Moderately
high

Relatively
High Supported Android/iOS/PC/Linux

Cross-Room Competition

Cross-room competition between anchors is a common gameplay in live showroom scenarios. It enhances the fun of
interactive live streaming and stimulates the audience's desire to rank and give gifts. TRTC supports multiple rooms
and cross-room competition between multiple anchors. Below are the specific implementation methods.
1. How It Works
By default, only users in the same room can have audio and video calls, and the audio and video streams between
different rooms are isolated. Through the cross-room competition, the audio and video streams of an anchor in another

room can be published in the current room, while the audio and video streams of the current anchor will also be
published in the target anchor's room. This allows anchors in different rooms to share audio and video streams across
rooms, enabling audiences in each room to watch the audio and video of both anchors.

https://www.volcengine.com/product/intelligent-interactive-effects

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 270 of 588

The figure above shows the main process of cross-room competition. For example: After anchor A in room 101
establishes a cross-room call with anchor B in room 102 using ConnectOtherRoom() :

Users in room 101 will receive two event callbacks from anchor B: onRemoteUserEnterRoom(B) and

 onUserVideoAvailable(B,true) . Therefore, users in room 101 can subscribe to the audio and video of

anchor B.
Users in room 102 will receive two event callbacks from anchor A: onRemoteUserEnterRoom(A) and

 onUserVideoAvailable(A,true) . Therefore, users in room 102 can subscribe to the audio and video of

anchor A.
Note:
Both local and peer users participating in cross-room competition must be in the anchor role and must have
audio/video uplink capabilities.
Cross-room mic-connection PK with multiple room anchors can be achieved by calling ConnectOtherRoom()

multiple times. Currently, a room can connect with up to three other room anchors at most, and up to 10 anchors in a

room can conduct cross-room mic-connection competition with anchors in other rooms.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 271 of 588

TRTC cross-room competition can also be achieved by createSubCloud() to create a sub-instance and join the

publishing/playback of another room. Currently, there is no limit to the number of sub-instances, facilitating the future
expansion of business scenes involving PK between multiple rooms or anchors.

2. Real-Time Interactive Cross-Room Competition Process
In a pure RTC scenario, the cross-room competition process is straightforward. Anchors and cross-room competition
anchors mutually pull RTC single streams, and the audience simultaneously pulls the RTC single streams of both
anchors and cross-room competition anchors. The audience can independently control the subscription logic of the
media streams of anchors and cross-room connecting anchors. The real-time interactive cross-room call process is

shown in the diagram below.

Note:
In real-time interactive cross-room competition scenes, audiences in the room can independently control the logic of
subscribing to the media streams of cross-room connecting anchors, or it can be changed by the room owner to
<1>change the uplink capability of a cross-room anchor in their rooms<1>.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 272 of 588

Scene Approach

Single-Anchor Live Streaming

A live streaming room with only one anchor is called single-anchor live streaming. In this scenario, the room owner is
the only anchor. The audience can join the live stream, watch the live streaming, send messages, and give gifts to the
room owner.

Multi-Person Co-Anchoring Live Streaming

Multi-person co-anchoring live streaming refers to a scenario where multiple anchors engage in real-time audio and
video interactions within the live streaming room. The room owner can invite a listener to speak and control the seats;
audiences can also request to speak to interact with the anchor.

Cross-Room Competition Live Streaming

In the live streaming room, to enhance the atmosphere and quickly attract followers, the room owner can invite another
anchor from a different live room to engage in mic connecting or online PK. The audience in the mic-connected live

streaming room can simultaneously watch the interaction between the two anchors and send gifts based on their
performance, or quickly switch between live streaming rooms to vote for different room owners. This is a typical
scenario for video competition live streaming.

Live Shopping

Live shopping combines e-commerce with video interactive live streaming. In the live streaming room, the anchor
introduces products to the audience and provides product lists and links; the audience can click the link to place
orders quickly for products they like. During the live streaming, the audience can become a speaker to interact with the

room owner in real-time, such as asking about product details, negotiating prices, and sharing their experience of
using the products; the room owner can also engage in competition live streaming with another room's owner,
showcasing their products to inspire the audience's purchasing enthusiasm and add fun to the live streaming.

Alternative Solutions

In addition to the recommended RTC Real-Time Interaction Solution, live showroom scenarios usually have an
alternative solution: RTC CDN Live Streaming Solution.

RTC CDN Live Streaming Solution

The anchor uses the RTC protocol for streaming and relayed push of Tencent Cloud Streaming Services or third-party
live streaming. General audiences pull the CDN stream to watch while mic-connecting audiences engage in interactive
co-anchoring by switching to the RTC protocol for streaming. This solution is a commonly used compromise, with

https://intl.cloud.tencent.com/document/product/1228/59952#9b3aa201-586b-463d-aa0d-f0e79110177f

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 273 of 588

higher latency for both watching and mic connecting on the audience side. However, it offers advantages in terms of
cost-effectiveness and audience scalability. The publishing/playback architecture is shown in the diagram below:

The overall process of this solution is as follows:
1. The anchor enters the TRTC room, streams via the RTC protocol, and relays to Cloud Streaming Services.

2. Non-mic audience pull the CDN accelerated stream for watching through V2TXLivePlayer .

3. Audiences can request to speak and become the mic-connecting audiences. They stop the CDN streaming and
switch to the RTC protocol for publishing/playback.
4. Audiences off the mic become general audiences. They stop the RTC protocol publishing/playback and switch to
the CDN streaming.

CDN playback addresses support multiple protocols such as RTMP/FLV/HLS/WebRTC, with splicing rules detailed in
Splicing Playback URL.
Different live streaming playback protocols have varying compatible platforms, play delays, and billing rules. See the
table below for details:

Live Streaming
Protocol

Advantage Disadvantage Playback
Latency

FLV Mature, suited for high-
concurrency scenarios

Requires integration of SDK for
playback

2s - 3s

https://intl.cloud.tencent.com/document/product/267/38393#.E6.8B.BC.E8.A3.85.E6.92.AD.E6.94.BE-url

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 274 of 588

RTMP Relatively low latency Poor performance in high-
concurrency scenarios

1s - 3s

HLS(M3U8) Well supported on mobile
browsers

High latency 10s - 30s

WebRTC Lowest latency Requires integration of SDK for
playback

< 1s

Note:

Tencent Cloud Streaming Services supports multiple playback protocols. You can choose the appropriate pull stream
solution based on your business needs. For example, for delay-sensitive businesses, LEB pulling stream is
recommended.
HLS and WebRTC playback protocols support the adaptive bitrate feature, which allows smooth switching of
playback bitrate under different network conditions. See Adaptive Bitrate for details.

Smooth Mic On/Off Handling

In single-anchor low-frequency mic connection live streaming scenes, due to cost considerations, RTC CDN live

streaming solutions or third-party live streaming publishing/playback solutions are often used. In single-anchor
streaming, the anchor streams via RTC or third-party live streaming, while audiences pull streams via CDN. In
interactive co-anchoring scenes, both the anchor and audiences stream via RTC. This involves switching between
publishing/playback tools while maintaining a seamless experience for users. Below are the specific methods for
smooth mic on/off handling in both the RTC CDN live streaming and third-party live streaming publishing/playback

solutions.
1. RTC CDN Live Streaming Solution
Under the RTC CDN live streaming solution, the anchor always uses the TRTC SDK for publishing/playback. During
mic connects, only the mic-connecting audience needs to switch the publishing/playback tools, and the rendering
control can be reused.

https://intl.cloud.tencent.com/document/product/1071/44558
https://intl.cloud.tencent.com/document/product/267/50271

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 275 of 588

2. Third-Party Live Streaming Publishing/Playback Solution
In the third-party live streaming publishing/playback solution, during mic connects, both the anchor and the mic-
connecting audience need to switch the publishing/playback control. It is recommended to use TRTC's custom
capture and rendering features.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 276 of 588

Note:
Smooth Mic on: To avoid screen interrupts when switching the stream puller, it is suggested to wait for the TRTC's
first frame callback onFirstVideoFrame before stopping the CDN streaming.

Smooth Mic off: To avoid screen interrupts when switching the stream puller, it is suggested to wait for the video play
event onVideoPlaying before stopping the RTC streaming.

CDN Live Streaming in Cross-Room Competition

In the RTC CDN live streaming scenario, the process of cross-room competition is relatively complex. Anchors pull

RTC single streams from each other and CDN audiences pull the mixed streams from both the anchor and the cross-
room competition anchor. Audiences cannot independently control the subscription logic of the anchor and cross-room
competition anchor's media streams. The process for cross-room calls in a CDN live streaming scenario is shown in
the diagram below:

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 277 of 588

Note:
In the CDN live streaming in cross-room competition scene, CDN audiences cannot independently control the
subscription logic of the cross-room connected anchor's media stream. It needs to be uniformly controlled by the
anchor through updating and publishing the media stream.

Supporting Products for the Solution

System
Level

Product Application Scenes

Access
layer

Tencent Real-
Time
Communication
(TRTC)

Provides a low-latency, high-quality multi-person audio and video real-time
interaction live streaming solution, which is a foundational capability for
live showroom scenarios.

Access
layer

Instant Messaging
(IM)

Provides room management and seat management capabilities based on
group features, enables the sending and receiving of rich media messages

https://intl.cloud.tencent.com/document/product/647/50762#735a40ecbeb18a37348b9dbce0ae8c68
https://intl.cloud.tencent.com/products/trtc
https://intl.cloud.tencent.com/products/im

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 278 of 588

such as live streaming room-wide messaging, public screen messages, as
well as custom signaling and other communication needs.

Access
layer

Tencent Effect
SDK

Provides real-time effects processing capabilities such as beauty, filtering,
makeup, fun stickers, emojis, and virtual avatars.

Cloud
Services

Cloud Streaming
Services (CSS)

Provides real-time audio and video relayed push, along with accelerated
media stream distribution services, as well as additional capabilities such
as recording and pornography detection.

Cloud
Services

Video on Demand
(VOD)

Catering to media such as audio, video, and images, it offers an integrated
high-quality media service that includes creation, upload, storage,
transcoding, media processing service, media AI, accelerated distribution
and playback, and copyright protection.

Data
storage

 Cloud Object
Storage (COS)

Provides storage services for audio and video recording files, as well as
audio and video slicing files.

https://intl.cloud.tencent.com/products/x-magic
https://intl.cloud.tencent.com/products/css
https://intl.cloud.tencent.com/products/vod
https://intl.cloud.tencent.com/products/cos

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 279 of 588

Quick Integration Guide
Android
Last updated：2024-07-18 14:26:14

Business Process

This section summarizes some common business processes in live showroom, helping you better understand the
implementation process of the entire scenario.
Anchor starts and ends the live streaming.

The anchor initiates the cross-room competition.
The RTC audience enters the room for mic-connection.
The CDN audience enters the room for mic-connection.
The following figure shows the process of an anchor (room owner) local preview, creating a room, entering the room to
start the live streaming, and leaving the room to end the live streaming.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 280 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 281 of 588

The following figure shows the process of Anchor A inviting Anchor B for a cross-room competition. During the cross-
room competition, the audiences in both rooms can see the PK mic-connection live streaming of the two room owners.

The following figure shows the process for RTC live interactive streaming audience to enter the room, apply for the
mic-connection, end the mic-connection, and exit the room.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 282 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 283 of 588

The following figure shows the process for RTC CDN live streaming audience to enter the room, apply for the mic-
connection, end the mic-connection, and exit the room.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 284 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 285 of 588

Integration Preparation

Step 1. Activating the service.

Live showroom scenarios usually require two paid PaaS services from Tencent Cloud Tencent Real-Time
Communication (TRTC) and Tencent Effect for construction. TRTC is responsible for providing real-time audio and

video interaction capabilities. Tencent Effect is responsible for providing beauty effects capabilities. If you use a third-
party beauty effect product, you can disregard the Tencent Effect integration part.
Activate TRTC service.
Activate Tencent Effect service.
1. First, you need to log in to the Tencent Real-Time Communication (TRTC) console to create an application. You

can choose to upgrade the TRTC application version according to your needs. For example, the professional edition
unlocks more value-added feature services.

https://intl.cloud.tencent.com/products/trtc
https://intl.cloud.tencent.com/products/x-magic
https://console.trtc.io/

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 286 of 588

Note:
It is recommended to create two applications for testing and production environments, respectively. Each Tencent

Cloud account (UIN) is given 10,000 minutes of free duration every month for one year.
TRTC offers monthly subscription plans including the experience edition (default), basic edition, and professional
edition. Different value-added feature services can be unlocked. For details, see Version Features and Monthly
Subscription Plan Instructions.
2. After an application is created, you can see the basic information of the application in the Application Management -

Application Overview section. It is important to keep the SDKAppID and SDKSecretKey safe for later use and to
avoid key leakage that could lead to traffic theft.

https://intl.cloud.tencent.com/document/product/647/52816#f10b65d1-6e8d-41e3-8686-84909b00a1a2

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 287 of 588

1. Log in to Tencent Cloud Tencent Effect console > Mobile License. Click Create Trial License (the free trial validity
period for the trial version License is 14 days. It is extendable once for a total of 28 days). Fill in the actual

requirements for App Name , Package Name and Bundle ID . Choose Tencent Effect, and choose the

capabilities to be tested: Advanced Package S1-07, Atomic Capability X1-01, Atomic Capability X1-02, and Atomic
Capability X1-03. After checking, accurately fill in the company name, and industry type. Upload company
service license, click Confirm to submit the review application, and wait for the manual review process.

https://console.intl.cloud.tencent.com/xmagic/mobile

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 288 of 588

2. After the trial version License is successfully created, the page will display the generated License information. At

this time, the License URL and License Key parameters are not yet effective and will only become active after the

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 289 of 588

submission is approved. When configuring SDK initialization, you need to input both the License URL and
License Key parameters. Keep the following information secure.

Step 2: Importing SDK.

The TRTC SDK and the Tencent Effect SDK have been released to the mavenCentral repository. You can configure
Gradle to download and update automatically.
1. Add the dependency for the appropriate version of the SDK in dependencies.

dependencies {

 // TRTC Lite SDK. It includes TRTC and live streaming playback features and

is compact in size.

 implementation 'com.tencent.liteav:LiteAVSDK_TRTC:latest.release'

 // TRTC Professional SDK. It also includes live streaming, short video,

video on demand, and other features, and is slightly larger in size.

 // implementation

'com.tencent.liteav:LiteAVSDK_Professional:latest.release'

 // Tencent Effect SDK example of S1-07 package is as follows:

 implementation 'com.tencent.mediacloud:TencentEffect_S1-07:latest.release'

}

Note:
Besides the recommended automatic loading method, you can also choose to download the SDK and manually import
it. For details, see Manually Integrating the TRTC SDK and Manually Integrating Tencent Effect SDK.
2. Specify the CPU architecture used by the app in defaultConfig.

defaultConfig {

https://intl.cloud.tencent.com/document/product/647/35093#.E6.96.B9.E6.A1.88.E4.BA.8C.EF.BC.9A.E4.B8.8B.E8.BD.BD-sdk-.E5.B9.B6.E6.89.8B.E5.8A.A8.E5.AF.BC.E5.85.A5
https://intl.cloud.tencent.com/document/product/1143/45385#.E9.9B.86.E6.88.90.E5.87.86.E5.A4.87

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 290 of 588

 ndk {

 abiFilters "armeabi-v7a", "arm64-v8a"

 }

}

Note:
The TRTC SDK supports architectures including armeabi, armeabi-v7a and arm64-v8a. Additionally, it supports

architectures for simulators including x86 and x86_64.
The Tencent Effect SDK currently only supports architectures including armeabi-v7a and arm64-v8a.
3. Click Sync Now to automatically download the SDK and integrate it into your project. If your Tencent effect
package includes dynamic effect and filter features, then you need to download the corresponding package from the
SDK Download Page. Unzip the free filters (./assets/lut) and animated stickers (./MotionRes) from the package and

place them in the following directories in your project:
Dynamic Effect: ../assets/MotionRes .

Filter: ../assets/lut .

Step 3: Project configuration.

1. Configure permissions.
To configure app permissions in AndroidManifest.xml, for live showroom scenarios, both the TRTC SDK and the
Tencent Effect SDK require the following permissions:

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />

<uses-permission android:name="android.permission.RECORD_AUDIO" />

<uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" />

<uses-permission android:name="android.permission.BLUETOOTH" />

<uses-permission android:name="android.permission.CAMERA" />

<uses-feature android:name="android.hardware.camera.autofocus" />

Note:
Do not set android:hardwareAccelerated="false" . Disabling hardware acceleration will result in failure to

render the other party's video stream.

The TRTC SDK does not have built-in permission request logic. You need to declare the corresponding permissions
and features yourself. Some permissions (such as storage, recording and camera), also require runtime dynamic
requests.
If the Android project's targetSdkVersion is 31 or higher, or if the target device runs Android 12 or a newer

version, the official requirement is to dynamically request android.permission.BLUETOOTH_CONNECT

permission in the code to use the Bluetooth feature properly. For more information, see Bluetooth Permissions.
2. Obfuscation configuration.

https://intl.cloud.tencent.com/document/product/1143/45377
https://developer.android.google.cn/develop/connectivity/bluetooth/bt-permissions

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 291 of 588

Since we use Java's reflection features inside the SDK, you need to add relevant SDK classes to the non-obfuscation
list in the proguard-rules.pro file:

-keep class com.tencent.** { *; }

-keep class org.light.** { *;}

-keep class org.libpag.** { *;}

-keep class org.extra.** { *;}

-keep class com.gyailib.**{ *;}

-keep class androidx.exifinterface.** { *;}

Step 4: Authentication and authorization.

TRTC authentication credential.
Tencent Effect authentication license.

UserSig is a security protection signature designed by Tencent Cloud to prevent malicious attackers from
misappropriating your cloud service usage rights. TRTC validates this authentication credential when it enters the
room.
Debugging Stage: UserSig can be generated through two methods for debugging and testing purposes only: client
sample code and console access.
Formal Operation Stage: It is recommended to use a higher security level server computation for generating UserSig.

This is to prevent key leakage due to client reverse engineering.
The specific implementation process is as follows:
1. Before calling the SDK's initialization function, your app must first request UserSig from your server.
2. Your server computes the UserSig based on the SDKAppID and UserID.
3. The server returns the computed UserSig to your app.

4. Your app passes the obtained UserSig into the SDK through a specific API.
5. The SDK submits the SDKAppID + UserID + UserSig to Tencent Cloud CVM for verification.
6. Tencent Cloud verifies the UserSig and confirms its validity.
7. After the verification is passed, real-time audio and video services will be provided to the TRTC SDK.

https://intl.cloud.tencent.com/document/product/647/35166#.E5.AE.A2.E6.88.B7.E7.AB.AF.E7.A4.BA.E4.BE.8B.E4.BB.A3.E7.A0.81.E8.AE.A1.E7.AE.97-usersig
https://intl.cloud.tencent.com/document/product/647/35166#.E6.8E.A7.E5.88.B6.E5.8F.B0.E8.8E.B7.E5.8F.96-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 292 of 588

Note:
The local computation method of UserSig during the debugging stage is not recommended for application in an online
environment. It is prone to reverse engineering, leading to key leakage.
We provide server computation source code for UserSig in multiple programming languages
(Java/GO/PHP/Nodejs/Python/C#/C++). For details, see Server Computation of UserSig.

Before using Tencent Effect, you need to verify the license credential with Tencent Cloud. Configuring the License
requires License Key and License Url. Sample code is as follows.

import com.tencent.xmagic.telicense.TELicenseCheck;

// If the purpose is just to trigger the download or update of the License, and not

TELicenseCheck.getInstance().setTELicense(context, URL, KEY, new TELicenseCheck.TEL

 @Override

 public void onLicenseCheckFinish(int errorCode, String msg) {

 // Note: This callback does not necessarily be called on the calling thread

 if (errorCode == TELicenseCheck.ERROR_OK) {

 // Authentication successful.

 } else {

 // Authentication failed.

 }

https://intl.cloud.tencent.com/document/product/1047/34385#.E6.9C.8D.E5.8A.A1.E7.AB.AF.E8.AE.A1.E7.AE.97-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 293 of 588

 }

});

Note:
It is recommended to trigger the authentication permission in the initialization code of related business modules.
Ensure to avoid having to download the License temporarily before use. Additionally, during authentication, network
permissions must be ensured.

The actual application's Package Name must match exactly with the Package Name associated with the creation of
License. Otherwise, it will lead to License verification failure. For details, see Authentication Error Code.

Step 5: Initializing the SDK.

Initialize the TRTC SDK.
Initialize the Tencent Effect SDK.

// Create TRTC SDK instance (Single Instance Pattern).

TRTCCloud mTRTCCloud = TRTCCloud.sharedInstance(context);

// Set event listeners.

mTRTCCloud.addListener(trtcSdkListener);

// Notifications from various SDK events (e.g., error codes, warning codes, audio a

private TRTCCloudListener trtcSdkListener = new TRTCCloudListener() {

 @Override

 public void onError(int errCode, String errMsg, Bundle extraInfo) {

 Log.d(TAG, errCode + errMsg);

 }

 @Override

 public void onWarning(int warningCode, String warningMsg, Bundle extraInfo) {

 Log.d(TAG, warningCode + warningMsg);

 }

};

// Remove event listener.

mTRTCCloud.removeListener(trtcSdkListener);

// Terminate TRTC SDK instance (Singleton Pattern).

TRTCCloud.destroySharedInstance();

Note:
It is recommended to listen to SDK event notifications. Perform log printing and handling for some common errors. For
details, see Error Code Table.

import com.tencent.xmagic.XmagicApi;

// Initialize the beauty SDK.

https://intl.cloud.tencent.com/document/product/1143/45385#.E6.AD.A5.E9.AA.A4.E4.B8.80.EF.BC.9A.E9.89.B4.E6.9D.83
https://intl.cloud.tencent.com/document/product/647/35130

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 294 of 588

XmagicApi mXmagicApi = new XmagicApi(context, XmagicResParser.getResPath(), new Xma

// During development and debugging, you can set the log level to DEBUG. For releas

mXmagicApi.setXmagicLogLevel(Log.WARN);

// Release the beauty SDK. This method needs to be called on the GL thread.

mXmagicApi.onDestroy();

Note:
Before the Tencent Effect SDK is initialized, resource copying and other preparatory work are needed. For detailed
steps, see Using the Tencent Effect SDK.

Integration Process

API sequence diagram.

Anchor TRTCCloud TRTCCloudListener Business_Server Audience

Anchor Enters Room and Starts Pushing Stream

Enter Live Streaming Preview Interface

setVideoEncoderParam

startLocalPreview

startLocalAudio

opt [Set Local Screen Rendering Mode]

setLocalRenderParams

opt [Set Encoder Output Mirror Mode]

setVideoEncoderMirror

Create Room, and Start Live Streaming

The room is created successfully. Return userSig.

enterRoom:role:Anchor

onEnterRoom

Audience Enters Room and Pull Stream

enterRoom:role:Audience

onEnterRoom

onRemoteUserEnterRoom

onUserAudioAvailable:true

onUserVideoAvailable:true

startRemoteView

onFirstAudioFrame

onFirstVideoFrame

https://intl.cloud.tencent.com/document/product/1143/45385#.E6.95.B4.E4.BD.93.E6.B5.81.E7.A8.8B

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 295 of 588

Anchor TRTCCloud TRTCCloudListener Business_Server Audience

opt [Set Remote Screen Rendering Mode]

setRemoteRenderParams

Audience Mic Connection Interaction

Request Mic Connection

The audience requests a mic connection.

Agree

The anchor agrees mic connection.

switchRole:Anchor

onSwitchRole

startLocalAudio

startLocalPreview

setVideoEncoderParam

onRemoteUserEnterRoom

onUserAudioAvailable:true

onUserVideoAvailable:true

startRemoteView

onFirstAudioFrame

onFirstVideoFrame

Audience Becomes Listener and Exits Room

switchRole:Audience

onSwitchRole

stopLocalAudio

stopLocalPreview

onRemoteUserLeaveRoom

onUserAudioAvailable:false

onUserVideoAvailable:false

stopRemoteView

exitRoom

onExitRoom

Anchor Exits Room and Stops Live Streaming

stopLocalAudio

stopLocalPreview

exitRoom

onExitRoom

Stop live streaming and destroy the room.

DismissRoom

Step 1: The anchor enters the room to push streams.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 296 of 588

The control used by the TRTC SDK to display video streams only supports passing in a TXCloudVideoView

type. Therefore, you need to first define the view rendering control in the layout file.

<com.tencent.rtmp.ui.TXCloudVideoView

 android:id="@+id/live_cloud_view_main"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

Note:
If you need to specifically use TextureView or SurfaceView as the view rendering control, see Advanced

Features - View Rendering Control.
1. The anchor activates local video preview and audio capture before entering the room.

// Obtain the video rendering control for displaying the anchor's local video previ

TXCloudVideoView mTxcvvAnchorPreviewView = findViewById(R.id.live_cloud_view_main);

// Set video encoding parameters to determine the picture quality seen by remote us

TRTCCloudDef.TRTCVideoEncParam encParam = new TRTCCloudDef.TRTCVideoEncParam();

encParam.videoResolution = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_960_540;

encParam.videoFps = 15;

encParam.videoBitrate = 1300;

encParam.videoResolutionMode = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_MODE_PORTRAIT;

mTRTCCloud.setVideoEncoderParam(encParam);

// boolean mIsFrontCamera can specify using the front/rear camera for video capture

mTRTCCloud.startLocalPreview(mIsFrontCamera, mTxcvvAnchorPreviewView);

// Here you can specify the audio quality, from low to high as SPEECH/DEFAULT/MUSIC

mTRTCCloud.startLocalAudio(TRTCCloudDef.TRTC_AUDIO_QUALITY_DEFAULT);

Note:
You can set the video encoding parameters TRTCVideoEncParam according to business needs. For the best
combinations of resolutions and bitrates for each tier, see Resolution and Bitrate Reference Table.

Call the above API before enterRoom . The SDK will only start the camera preview and audio capture, and wait

until you call enterRoom to start streaming.

Call the above API after enterRoom . The SDK will start the camera preview and audio capture and automatically

start streaming.
2. The anchor sets rendering parameters for the local video, and the encoder output video mode (optional).

TRTCCloudDef.TRTCRenderParams params = new TRTCCloudDef.TRTCRenderParams();

params.mirrorType = TRTCCloudDef.TRTC_VIDEO_MIRROR_TYPE_AUTO; // Video mirror mod

params.fillMode = TRTCCloudDef.TRTC_VIDEO_RENDER_MODE_FILL; // Video fill mode

params.rotation = TRTCCloudDef.TRTC_VIDEO_ROTATION_0; // Video rotation a

// Set the rendering parameters for the local video.

https://intl.cloud.tencent.com/document/product/1228/59954#adc81f8c-0dbf-4889-828c-1ea2859bc49b
https://intl.cloud.tencent.com/document/product/647/35153#trtcvideoencparam
https://intl.cloud.tencent.com/document/product/647/35153#.E5.88.86.E8.BE.A8.E7.8E.87.E7.A0.81.E7.8E.87.E5.8F.82.E7.85.A7.E8.A1.A8

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 297 of 588

mTRTCCloud.setLocalRenderParams(params);

// Set the video mirror mode for the encoder output.

mTRTCCloud.setVideoEncoderMirror(boolean mirror);

// Set the rotation of the video encoder output.

mTRTCCloud.setVideoEncoderRotation(int rotation);

Note:
Setting local video rendering parameters only affects the rendering effect of the local video.
Setting encoder output mode affects the viewing effect for other users in the room (and the cloud recording files).
3. The anchor starts the live streaming, entering the room and start streaming.

public void enterRoomByAnchor(String roomId, String userId) {

 TRTCCloudDef.TRTCParams params = new TRTCCloudDef.TRTCParams();

 // Take the room ID string as an example.

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend.

 params.userSig = getUserSig(userId);

 // Replace with your SDKAppID.

 params.sdkAppId = SDKAppID;

 // Specify the anchor role.

 params.role = TRTCCloudDef.TRTCRoleAnchor;

 // Enter the room in an interactive live streaming scenario.

 mTRTCCloud.enterRoom(params, TRTCCloudDef.TRTC_APP_SCENE_LIVE);

}

// Event callback for the result of entering the room.

@Override

public void onEnterRoom(long result) {

 if (result > 0) {

 // result indicates the time taken (in milliseconds) to join the room.

 Log.d(TAG, "Enter room succeed");

 } else {

 // result indicates the error code when you fail to enter the room.

 Log.d(TAG, "Enter room failed");

 }

}

Note:
TRTC room IDs are divided into integer type roomId and string type strRoomId . The rooms of these two types

are not interconnected. It is recommended to unify the room ID type.
TRTC user roles are divided into anchors and audiences. Only anchors have streaming permissions. It is necessary to
specify the user role when entering the room. If not specified, the default will be the anchor role.
In live showroom scenarios, it is recommended to choose TRTC_APP_SCENE_LIVE as the room entry mode.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 298 of 588

Step 2: The audience enters the room to pull streams.

1. Audience enters the TRTC room.

public void enterRoomByAudience(String roomId, String userId) {

 TRTCCloudDef.TRTCParams params = new TRTCCloudDef.TRTCParams();

 // Take the room ID string as an example.

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend.

 params.userSig = getUserSig(userId);

 // Replace with your SDKAppID.

 params.sdkAppId = SDKAppID;

 // Specify the audience role.

 params.role = TRTCCloudDef.TRTCRoleAudience;

 // Enter the room in an interactive live streaming scenario.

 mTRTCCloud.enterRoom(params, TRTCCloudDef.TRTC_APP_SCENE_LIVE);

}

// Event callback for the result of entering the room.

@Override

public void onEnterRoom(long result) {

 if (result > 0) {

 // result indicates the time taken (in milliseconds) to join the room.

 Log.d(TAG, "Enter room succeed");

 } else {

 // result indicates the error code when you fail to enter the room.

 Log.d(TAG, "Enter room failed");

 }

}

2. Audience subscribes to the anchor's audio and video streams.

@Override

public void onUserAudioAvailable(String userId, boolean available) {

 // The remote user publishes/unpublishes their audio.

 // Under the automatic subscription mode, you do not need to do anything. The S

}

@Override

public void onUserVideoAvailable(String userId, boolean available) {

 // The remote user publishes/unpublishes the primary video.

 if (available) {

 // Subscribe to the remote user's video stream and bind the video rendering

 mTRTCCloud.startRemoteView(userId, TRTCCloudDef.TRTC_VIDEO_STREAM_TYPE_BIG,

 } else {

 // Unsubscribe to the remote user's video stream and release the rendering

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 299 of 588

 mTRTCCloud.stopRemoteView(userId, TRTCCloudDef.TRTC_VIDEO_STREAM_TYPE_BIG);

 }

}

3. Audience sets the rendering mode for the remote video (optional).

TRTCCloudDef.TRTCRenderParams params = new TRTCCloudDef.TRTCRenderParams();

params.mirrorType = TRTCCloudDef.TRTC_VIDEO_MIRROR_TYPE_AUTO; // Video mirror mod

params.fillMode = TRTCCloudDef.TRTC_VIDEO_RENDER_MODE_FILL; // Video fill mode

params.rotation = TRTCCloudDef.TRTC_VIDEO_ROTATION_0; // Video rotation a

// Set the rendering mode for the remote video.

mTRTCCloud.setRemoteRenderParams(userId, TRTCCloudDef.TRTC_VIDEO_STREAM_TYPE_BIG, p

Step 3: The audience interacts via mic.

1. The audience is switched to the anchor role.

// Switched to the anchor role.

mTRTCCloud.switchRole(TRTCCloudDef.TRTCRoleAnchor);

// Event callback for switching the role.

@Override

public void onSwitchRole(int errCode, String errMsg) {

 if (errCode == TXLiteAVCode.ERR_NULL) {

 // Role switched successfully.

 }

}

2. Audience start local audio and video capture and streaming.

// Obtain the video rendering control for displaying the co-broadcasting audience's

TXCloudVideoView mTxcvvAudiencePreviewView = findViewById(R.id.live_cloud_view_sub)

// Set video encoding parameters to determine the picture quality seen by remote us

TRTCCloudDef.TRTCVideoEncParam encParam = new TRTCCloudDef.TRTCVideoEncParam();

encParam.videoResolution = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_480_270;

encParam.videoFps = 15;

encParam.videoBitrate = 550;

encParam.videoResolutionMode = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_MODE_PORTRAIT;

mTRTCCloud.setVideoEncoderParam(encParam);

// boolean mIsFrontCamera can specify using the front/rear camera for video capture

mTRTCCloud.startLocalPreview(mIsFrontCamera, mTxcvvAudiencePreviewView);

// Here you can specify the audio quality, from low to high as SPEECH/DEFAULT/MUSIC

mTRTCCloud.startLocalAudio(TRTCCloudDef.TRTC_AUDIO_QUALITY_DEFAULT);

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 300 of 588

Note:
You can set the video encoding parameters TRTCVideoEncParam according to business needs. For the best
combinations of resolutions and bitrates for each tier, see Resolution and Bitrate Reference Table.

3. The audience leaves the seat and stops streaming.

// Switched to the audience role.

mTRTCCloud.switchRole(TRTCCloudDef.TRTCRoleAudience);

// Event callback for switching the role.

@Override

public void onSwitchRole(int errCode, String errMsg) {

 if (errCode == TXLiteAVCode.ERR_NULL) {

 // Stop camera capture and streaming.

 mTRTCCloud.stopLocalPreview();

 // Stop microphone capture and streaming.

 mTRTCCloud.stopLocalAudio();

 }

}

Step 4: Exiting and dissolving the room.

1. Exit the room.

public void exitRoom() {

 mTRTCCloud.stopLocalAudio();

 mTRTCCloud.stopLocalPreview();

 mTRTCCloud.exitRoom();

}

// Event callback for exiting the room.

@Override

public void onExitRoom(int reason) {

 if (reason == 0) {

 Log.d(TAG, "Actively call exitRoom to exit the room.");

 } else if (reason == 1) {

 Log.d(TAG, "Removed from the current room by the server.");

 } else if (reason == 2) {

 Log.d(TAG, "The current room has been dissolved.");

 }

}

Note:
After all resources occupied by the SDK are released, the SDK will throw the onExitRoom callback notification to

inform you.

https://intl.cloud.tencent.com/document/product/647/35153#trtcvideoencparam
https://intl.cloud.tencent.com/document/product/647/35153#.E5.88.86.E8.BE.A8.E7.8E.87.E7.A0.81.E7.8E.87.E5.8F.82.E7.85.A7.E8.A1.A8

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 301 of 588

If you want to call enterRoom again or switch to another audio/video SDK, wait for the onExitRoom callback

before proceeding. Otherwise, you may encounter exceptions such as the camera or microphone being forcefully
occupied.

2. Dissolve the room.
Server Dissolvement: TRTC provides the Server dissolves the room API DismissRoom (differentiating between

numeric room ID and string room ID). You can call this API to remove all users from the room and dissolve the room.
Client Dissolvement: Through the exitRoom API of each client, all the anchors and audiences in the room can

be completed of room exit. After room exit, according to TRTC room lifecycle rules, the room will automatically be

dissolved. For details, see Exit Room.
Warning:
It is recommended that after the end of live streaming, you call the room dissolvement API on the server to ensure the
room is dissolved. This will prevent audiences from accidentally entering the room and incurring unexpected charges.

Alternative solutions

API sequence diagram.

Anchor TRTCCloud TRTCCloudListener Business_Server V2TXLivePlayer V2TXLivePlayerObserver Audience

Anchor Relays Stream to CDN

Enter Live Streaming Preview Interface

setVideoEncoderParam

startLocalPreview

startLocalAudio

opt [Set Local Screen Rendering Mode]

setLocalRenderParams

opt [Set Encoder Output Mirror Mode]

setVideoEncoderMirror

Create Room, and Start Live Streaming

The room is created successfully. Return userSig.

enterRoom:role:Anchor

onEnterRoom

startPublishMediaStream

onStartPublishMediaStream

Audience Pulls Stream to Play

setRenderView

opt [Set Latency Adjustment Mode]

setCacheParams

startLivePlay

opt [Set Screen Filling Mode]

setRenderFillMode

https://intl.cloud.tencent.com/document/product/647/34269
https://intl.cloud.tencent.com/document/product/647/48271

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 302 of 588

opt [Set Screen Rendering Direction]

setRenderRotation

onAudioLoading

onVideoLoading

onAudioPlaying

onVideoPlaying

Audience Mic Connection Interaction

Request Mic Connection

The audience requests a mic connection.

Agree

The anchor agrees mic connection.

startLocalAudio

startLocalPreview

setVideoEncoderParam

enterRoom:role:Anchor

onEnterRoom

onRemoteUserEnterRoom

onUserAudioAvailable:true

onUserVideoAvailable:true

startRemoteView

onFirstAudioFrame

onFirstVideoFrame

alt [UserId is Not Empty]

stopPlay

onRemoteUserEnterRoom

updatePublishMediaStream

onUpdatePublishMediaStream

onUserAudioAvailable:true

onUserVideoAvailable:true

startRemoteView

onFirstAudioFrame

onFirstVideoFrame

Audience Becomes Listener and Exits Room

setRenderView

startLivePlay

onAudioLoading

onVideoLoading

onAudioPlaying

onVideoPlaying

stopAllRemoteView

stopLocalAudio

stopLocalPreview

onUserAudioAvailable:false

onUserVideoAvailable:false

stopRemoteView

exitRoom

onExitRoom

onRemoteUserLeaveRoom

updatePublishMediaStream

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 303 of 588

Anchor TRTCCloud TRTCCloudListener Business_Server V2TXLivePlayer V2TXLivePlayerObserver Audience

onUpdatePublishMediaStream

Anchor Exits Room and Stops Live Streaming

stopPublishMediaStream

stopLocalAudio

stopLocalPreview

exitRoom

onStopPublishMediaStream

onExitRoom

Stop live streaming and destroy the room.

DismissRoom

Step 1: The anchor relays the streams to CDN.

1. Related configurations for relaying to live streaming CDN.
Global automatic relayed push
If you need to automatically relay all anchors' audio and video streams in the room to live streaming CDN, you just
need to enable Relay to CDN in the TRTC console Advanced Features page.

Relayed push of the specified streams
If you need to manually specify the audio and video streams to be published to live streaming CDN, or publish the
mixed audio and video streams to live streaming CDN, you can do so by calling the startPublishMediaStream API. In
this case, you do not need to activate global automatically relaying to CDN in the console. For detailed introduction,

see Publish Audio and Video Streams to Live Streaming CDN.

https://console.trtc.io/features
https://intl.cloud.tencent.com/document/product/647/50762#bb3260a94c9fe97ee7231fe849fec1d4
https://intl.cloud.tencent.com/document/product/647/47858

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 304 of 588

2. The anchor activates local video preview and audio capture before entering the room.
The control used by the TRTC SDK to display video streams only supports passing in a TXCloudVideoView

type. Therefore, you need to first define the view rendering control in the layout file.

<com.tencent.rtmp.ui.TXCloudVideoView

 android:id="@+id/live_cloud_view_main"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

Note:
If you need to specifically use TextureView or SurfaceView as the view rendering control, see Advanced

Features - View Rendering Control.

// Obtain the video rendering control for displaying the anchor's local video previ

TXCloudVideoView mTxcvvAnchorPreviewView = findViewById(R.id.live_cloud_view_main);

// Set video encoding parameters to determine the picture quality seen by remote us

TRTCCloudDef.TRTCVideoEncParam encParam = new TRTCCloudDef.TRTCVideoEncParam();

encParam.videoResolution = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_960_540;

encParam.videoFps = 15;

encParam.videoBitrate = 1300;

encParam.videoResolutionMode = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_MODE_PORTRAIT;

mTRTCCloud.setVideoEncoderParam(encParam);

// boolean mIsFrontCamera can specify using the front/rear camera for video capture

mTRTCCloud.startLocalPreview(mIsFrontCamera, mTxcvvAnchorPreviewView);

// Here you can specify the audio quality, from low to high as SPEECH/DEFAULT/MUSIC

mTRTCCloud.startLocalAudio(TRTCCloudDef.TRTC_AUDIO_QUALITY_DEFAULT);

Note:
You can set the video encoding parameters TRTCVideoEncParam according to business needs. For the best
combinations of resolutions and bitrates for each tier, see Resolution and Bitrate Reference Table.

Call the above API before enterRoom . The SDK will only start the camera preview and audio capture, and wait

until you call enterRoom to start streaming.

Call the above API after enterRoom . The SDK will start the camera preview and audio capture and automatically

start streaming.
3. The anchor sets rendering parameters for the local screen, and the encoder output video mode.

TRTCCloudDef.TRTCRenderParams params = new TRTCCloudDef.TRTCRenderParams();

params.mirrorType = TRTCCloudDef.TRTC_VIDEO_MIRROR_TYPE_AUTO; // Video mirror mod

params.fillMode = TRTCCloudDef.TRTC_VIDEO_RENDER_MODE_FILL; // Video fill mode

params.rotation = TRTCCloudDef.TRTC_VIDEO_ROTATION_0; // Video rotation a

// Set the rendering parameters for the local video.

https://intl.cloud.tencent.com/document/product/1228/59954#adc81f8c-0dbf-4889-828c-1ea2859bc49b
https://intl.cloud.tencent.com/document/product/647/35153#trtcvideoencparam
https://intl.cloud.tencent.com/document/product/647/35153#.E5.88.86.E8.BE.A8.E7.8E.87.E7.A0.81.E7.8E.87.E5.8F.82.E7.85.A7.E8.A1.A8

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 305 of 588

mTRTCCloud.setLocalRenderParams(params);

// Set the video mirror mode for the encoder output.

mTRTCCloud.setVideoEncoderMirror(boolean mirror);

// Set the rotation of the video encoder output.

mTRTCCloud.setVideoEncoderRotation(int rotation);

Note:
Setting local video rendering parameters only affects the rendering effect of the local video.
Setting encoder output mode affects the viewing effect for other users in the room (and the cloud recording files).
4. The anchor starts the live streaming, entering the room and start streaming.

public void enterRoomByAnchor(String roomId, String userId) {

 TRTCCloudDef.TRTCParams params = new TRTCCloudDef.TRTCParams();

 // Take the room ID string as an example.

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend.

 params.userSig = getUserSig(userId);

 // Replace with your SDKAppID.

 params.sdkAppId = SDKAppID;

 // Specify the anchor role.

 params.role = TRTCCloudDef.TRTCRoleAnchor;

 // Enter the room in an interactive live streaming scenario.

 mTRTCCloud.enterRoom(params, TRTCCloudDef.TRTC_APP_SCENE_LIVE);

}

// Event callback for the result of entering the room.

@Override

public void onEnterRoom(long result) {

 if (result > 0) {

 // result indicates the time taken (in milliseconds) to join the room.

 Log.d(TAG, "Enter room succeed");

 } else {

 // result indicates the error code when you fail to enter the room.

 Log.d(TAG, "Enter room failed");

 }

}

Note:
TRTC room IDs are divided into integer type roomId and string type strRoomId . The rooms of these two types

are not interconnected. It is recommended to unify the room ID type.
TRTC user roles are divided into anchors and audiences. Only anchors have streaming permissions. It is necessary to
specify the user role when entering the room. If not specified, the default will be the anchor role.
In live showroom scenarios, it is recommended to choose TRTC_APP_SCENE_LIVE as the room entry mode.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 306 of 588

5. The anchor relays the audio and video streams to the live streaming CDN.

public void startPublishMediaToCDN(String streamName) {

 // Set the expiration time for the push URLs.

 long txTime = (System.currentTimeMillis() / 1000) + (24 * 60 * 60);

 // Generate authentication information. The getSafeUrl method can be obtained i

 String secretParam = UrlHelper.getSafeUrl(LIVE_URL_KEY, streamName, txTime);

 // The target URLs for media stream publication.

 TRTCCloudDef.TRTCPublishTarget target = new TRTCCloudDef.TRTCPublishTarget();

 // The target URLs are set for relaying to CDN.

 target.mode = TRTCCloudDef.TRTC_PublishBigStream_ToCdn;

 TRTCCloudDef.TRTCPublishCdnUrl cdnUrl = new TRTCCloudDef.TRTCPublishCdnUrl();

 // Construct push URLs (in RTMP format) to the live streaming service provider.

 cdnUrl.rtmpUrl = "rtmp://" + PUSH_DOMAIN + "/live/" + streamName + "?" + secret

 // True means Tencent Cloud CSS, and false means third-party live streaming ser

 cdnUrl.isInternalLine = true;

 // Multiple CDN push URLs can be added.

 target.cdnUrlList.add(cdnUrl);

 // Set media stream encoding output parameters (can be defined according to bus

 TRTCCloudDef.TRTCStreamEncoderParam trtcStreamEncoderParam = new TRTCCloudDef.T

 trtcStreamEncoderParam.audioEncodedChannelNum = 1;

 trtcStreamEncoderParam.audioEncodedKbps = 50;

 trtcStreamEncoderParam.audioEncodedCodecType = 0;

 trtcStreamEncoderParam.audioEncodedSampleRate = 48000;

 trtcStreamEncoderParam.videoEncodedFPS = 15;

 trtcStreamEncoderParam.videoEncodedGOP = 2;

 trtcStreamEncoderParam.videoEncodedKbps = 1300;

 trtcStreamEncoderParam.videoEncodedWidth = 540;

 trtcStreamEncoderParam.videoEncodedHeight = 960;

 // Start publishing media streams.

 mTRTCCloud.startPublishMediaStream(target, trtcStreamEncoderParam, �null);

}

Note:
During single-anchor live streaming, only initiate the relayed push task. When there is an audience co-broadcasting or
anchor PK, update this task to a mixed-stream transcoding task.

Information of push authentication KEY LIVE_URL_KEY and push domain name PUSH_DOMAIN are required to

obtain in the CSS console Domain Management page.
After the media stream is published, SDK will provide the backend-initiated task identifier (taskId) through the callback
onStartPublishMediaStream.

@Override

public void onStartPublishMediaStream(String taskId, int code, String message, Bund

https://console.intl.cloud.tencent.com/live/
https://intl.cloud.tencent.com/document/product/647/50763#95cedc06908dda47f4459b30961764a4

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 307 of 588

 // taskId: When the request is successful, TRTC backend will provide the taskId

 // code: Callback result. 0 means success and other values mean failure.

}

Step 2: The audience pulls streams for playback.

CDN audiences do not need to enter the TRTC room. They can directly pull the anchor's CDN stream for playback.

import com.tencent.live2.V2TXLivePlayer;

import com.tencent.live2.V2TXLivePlayerObserver;

import com.tencent.live2.impl.V2TXLivePlayerImpl;

// Initialize the player.

V2TXLivePlayer mLivePlayer = new V2TXLivePlayerImpl(context);

// Set the player callback listener.

mLivePlayer.setObserver(mV2TXLivePlayerObserver);

// Set the video rendering control for the player.

mLivePlayer.setRenderView(TXCloudVideoView view);

mLivePlayer.setRenderView(TextureView view);

mLivePlayer.setRenderView(SurfaceView view);

// Set delay management mode (optional).

mLivePlayer.setCacheParams(1.0f, 5.0f); // Auto mode

mLivePlayer.setCacheParams(1.0f, 1.0f); // Speed mode

mLivePlayer.setCacheParams(5.0f, 5.0f); // Smooth mode

// Concatenate the pull URLs for playback.

String flvURL = "http://" + PLAY_DOMAIN + "/live/" + streamName + ".flv"; // FLV UR

String hlsURL = "http://" + PLAY_DOMAIN + "/live/" + streamName + ".m3u8"; // HLS U

String rtmpURL = "rtmp://" + PLAY_DOMAIN + "/live/" + streamName; // RTMP URL

String webrtcURL = "webrtc://" + PLAY_DOMAIN + "/live/" + streamName; // WebRTC URL

// Start playing.

mLivePlayer.startLivePlay(flvURL);

// Custom set fill mode (optional).

mLivePlayer.setRenderFillMode(V2TXLiveFillModeFit);

// Custom video rendering direction (optional).

mLivePlayer.setRenderRotation(V2TXLiveRotation0);

Note:
The playback domain name PLAY_DOMAIN requires you to Add Your Own Domain in the CSS console for live

streaming playback. You also should configure domain CNAME.
The live streaming feature requires setting the License before success in playback. Otherwise, playback will fail (black
screen). It needs to be set globally only once. If you have not obtained the License, you can freely apply for a Trial

https://intl.cloud.tencent.com/document/product/267/35970
https://intl.cloud.tencent.com/document/product/267/31057
https://console.intl.cloud.tencent.com/vod/license

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 308 of 588

Version License for normal playback. The Official Version License requires purchase.

 import com.tencent.rtmp.TXLiveBase;

 // Set Licence.

 TXLiveBase.getInstance().setLicence(context, LICENSEURL, LICENSEURLKEY);

Step 3: The audience interacts via mic.

1. Viewers who want to co-broadcasting need to enter the TRTC room for real-time interaction with the anchor.

// Enter the TRTC room and start streaming.

public void enterRoom(String roomId, String userId) {

 TRTCCloudDef.TRTCParams params = new TRTCCloudDef.TRTCParams();

 // Take the room ID string as an example.

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend.

 params.userSig = getUserSig(userId);

 // Replace with your SDKAppID.

 params.sdkAppId = SDKAppID;

 // Specify the anchor role.

 params.role = TRTCCloudDef.TRTCRoleAnchor;

 // Enable local audio and video capture.

 startLocalMedia();

 // In an interactive live streaming scenario, enter the room and push streams.

 mTRTCCloud.enterRoom(params, TRTCCloudDef.TRTC_APP_SCENE_LIVE);

}

// Enable local video preview and audio capture.

public void startLocalMedia() {

 // Obtain the video rendering control for displaying the co-broadcasting audien

 TXCloudVideoView mTxcvvAudiencePreviewView = findViewById(R.id.live_cloud_view_

 // Set video encoding parameters to determine the picture quality seen by remot

 TRTCCloudDef.TRTCVideoEncParam encParam = new TRTCCloudDef.TRTCVideoEncParam();

 encParam.videoResolution = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_480_270;

 encParam.videoFps = 15;

 encParam.videoBitrate = 550;

 encParam.videoResolutionMode = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_MODE_PORTRAIT

 mTRTCCloud.setVideoEncoderParam(encParam);

 // boolean mIsFrontCamera can specify using the front/rear camera for video cap

 mTRTCCloud.startLocalPreview(mIsFrontCamera, mTxcvvAudiencePreviewView);

 // Here you can specify the audio quality, from low to high as SPEECH/DEFAULT/M

 mTRTCCloud.startLocalAudio(TRTCCloudDef.TRTC_AUDIO_QUALITY_DEFAULT);

https://console.intl.cloud.tencent.com/vod/license
https://buy.intl.cloud.tencent.com/license

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 309 of 588

}

// Event callback for the result of entering the room.

@Override

public void onEnterRoom(long result) {

 if (result > 0) {

 // result indicates the time taken (in milliseconds) to join the room.

 Log.d(TAG, "Enter room succeed");

 } else {

 // result indicates the error code when you fail to enter the room.

 Log.d(TAG, "Enter room failed");

 }

}

Note:
You can set the video encoding parameters TRTCVideoEncParam according to business needs. For the best

combinations of resolutions and bitrates for each tier, see Resolution and Bitrate Reference Table.
2. The mic-connection audience start subscribing to the anchor's audio and video streams after they successfully
enter the room.

@Override

public void onUserAudioAvailable(String userId, boolean available) {

 // The remote user publishes/unpublishes their audio.

 // Under the automatic subscription mode, you do not need to do anything. The S

}

@Override

public void onUserVideoAvailable(String userId, boolean available) {

 // The remote user publishes/unpublishes the primary video.

 if (available) {

 // Subscribe to the remote user's video stream and bind the video rendering

 mTRTCCloud.startRemoteView(userId, TRTCCloudDef.TRTC_VIDEO_STREAM_TYPE_BIG,

 } else {

 // Unsubscribe to the remote user's video stream and release the rendering

 mTRTCCloud.stopRemoteView(userId, TRTCCloudDef.TRTC_VIDEO_STREAM_TYPE_BIG);

 }

}

@Override

public void onFirstVideoFrame(String userId, int streamType, int width, int height)

 // The SDK starts rendering the first frame of the local or remote user's video

 if (!userId.isEmpty()) {

 // Stop playing the CDN stream upon receiving the first frame of the anchor

 mLivePlayer.stopPlay();

 }

https://intl.cloud.tencent.com/document/product/647/35153#trtcvideoencparam
https://intl.cloud.tencent.com/document/product/647/35153#.E5.88.86.E8.BE.A8.E7.8E.87.E7.A0.81.E7.8E.87.E5.8F.82.E7.85.A7.E8.A1.A8

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 310 of 588

}

Note:
TRTC stream pulling startRemoteView can directly reuse the video rendering control previously used by the

CDN stream pulling setRenderView .

To avoid video interruptions when switching between stream pullers, it is recommended to wait until the TRTC first
frame callback onFirstVideoFrame is received before stopping the CDN stream pulling.

3. The anchor updates the publication of mixed media streams.

// Event callback for the mic-connection audience's room entry.

@Override

public void onRemoteUserEnterRoom(String userId) {

 if (!mixUserList.contains(userId)) {

 mixUserList.add(userId);

 }

 updatePublishMediaToCDN(streamName, mixUserList, taskId);

}

// Event callback for updating the media stream.

@Override

public void onUpdatePublishMediaStream(String taskId, int code, String message, Bun

 // When you call the publish media stream API (updatePublishMediaStream), the t

 // code: Callback result. 0 means success and other values mean failure.

}

// Update the publication of mixed media streams to the live streaming CDN.

public void updatePublishMediaToCDN(String streamName, List<String> mixUserList, St

 // Set the expiration time for the push URLs.

 long txTime = (System.currentTimeMillis() / 1000) + (24 * 60 * 60);

 // Generate authentication information. The getSafeUrl method can be obtained i

 String secretParam = UrlHelper.getSafeUrl(LIVE_URL_KEY, streamName, txTime);

 // The target URLs for media stream publication.

 TRTCCloudDef.TRTCPublishTarget target = new TRTCCloudDef.TRTCPublishTarget();

 // The target URLs are set for relaying the mixed streams to CDN.

 target.mode = TRTCCloudDef.TRTC_PublishMixStream_ToCdn;

 TRTCCloudDef.TRTCPublishCdnUrl cdnUrl = new TRTCCloudDef.TRTCPublishCdnUrl();

 // Construct push URLs (in RTMP format) to the live streaming service provider.

 cdnUrl.rtmpUrl = "rtmp://" + PUSH_DOMAIN + "/live/" + streamName + "?" + secret

 // True means Tencent Cloud CSS, and false means third-party live streaming ser

 cdnUrl.isInternalLine = true;

 // Multiple CDN push URLs can be added.

 target.cdnUrlList.add(cdnUrl);

 // Set media stream encoding output parameters.

 TRTCCloudDef.TRTCStreamEncoderParam trtcStreamEncoderParam = new TRTCCloudDef.T

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 311 of 588

 trtcStreamEncoderParam.audioEncodedChannelNum = 1;

 trtcStreamEncoderParam.audioEncodedKbps = 50;

 trtcStreamEncoderParam.audioEncodedCodecType = 0;

 trtcStreamEncoderParam.audioEncodedSampleRate = 48000;

 trtcStreamEncoderParam.videoEncodedFPS = 15;

 trtcStreamEncoderParam.videoEncodedGOP = 2;

 trtcStreamEncoderParam.videoEncodedKbps = 1300;

 trtcStreamEncoderParam.videoEncodedWidth = 540;

 trtcStreamEncoderParam.videoEncodedHeight = 960;

 // Configuration parameters for media stream transcoding.

 TRTCCloudDef.TRTCStreamMixingConfig trtcStreamMixingConfig = new TRTCCloudDef.T

 if (mixUserList != null) {

 ArrayList<TRTCCloudDef.TRTCUser> audioMixUserList = new ArrayList<>();

 ArrayList<TRTCCloudDef.TRTCVideoLayout> videoLayoutList = new ArrayList<>()

 for (int i = 0; i < mixUserList.size() && i < 16; i++) {

 TRTCCloudDef.TRTCUser user = new TRTCCloudDef.TRTCUser();

 // The integer room number is intRoomId.

 user.strRoomId = mRoomId;

 user.userId = mixUserList.get(i);

 audioMixUserList.add(user);

 TRTCCloudDef.TRTCVideoLayout videoLayout = new TRTCCloudDef.TRTCVideoLa

 if (mixUserList.get(i).equals(mUserId)) {

 // The layout for the anchor's video.

 videoLayout.x = 0;

 videoLayout.y = 0;

 videoLayout.width = 540;

 videoLayout.height = 960;

 videoLayout.zOrder = 0;

 } else {

 // The layout for the mic-connection audience's video.

 videoLayout.x = 400;

 videoLayout.y = 5 + i * 245;

 videoLayout.width = 135;

 videoLayout.height = 240;

 videoLayout.zOrder = 1;

 }

 videoLayout.fixedVideoUser = user;

 videoLayout.fixedVideoStreamType = TRTCCloudDef.TRTC_VIDEO_STREAM_TYPE_

 videoLayoutList.add(videoLayout);

 }

 // Specify the information for each input audio stream in the transcoding s

 trtcStreamMixingConfig.audioMixUserList = audioMixUserList;

 // Specify the information of position, size, layer, and stream type for ea

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 312 of 588

 trtcStreamMixingConfig.videoLayoutList = videoLayoutList;

 }

 // Update the published media stream.

 mTRTCCloud.updatePublishMediaStream(taskId, target, trtcStreamEncoderParam, trt

}

Note:
To ensure continuous CDN playback without stream disconnection, you need to keep the media stream encoding
output parameter trtcStreamEncoderParam and the stream name streamName unchanged.

Media stream encoding output parameters and mixed display layout parameters can be customized according to

business needs. Currently, up to 16 channels of audio and video input are supported. If a user only provides audio, it
will still be counted as one channel.
Switching between audio only, audio and video, and video only is not supported within the same task.
4. The off-streaming audience exit the room, and the anchor updates the mixed stream task.

// The reusable TRTC video rendering control.

mLivePlayer.setRenderView(TXCloudVideoView view);

// Restart playing CDN media stream.

mLivePlayer.startLivePlay(URL);

// Player event callback.

private V2TXLivePlayerObserver mV2TXLivePlayerObserver = new V2TXLivePlayerObserver

 @Override

 public void onVideoLoading(V2TXLivePlayer player, Bundle extraInfo) {

 // Video loading event.

 }

 @Override

 public void onVideoPlaying(V2TXLivePlayer player, boolean firstPlay, Bundle ext

 // Video playback event.

 if (firstPlay) {

 mTRTCCloud.stopAllRemoteView();

 mTRTCCloud.stopLocalAudio();

 mTRTCCloud.stopLocalPreview();

 mTRTCCloud.exitRoom();

 }

 }

};

Note:
To avoid video interruptions when switching the stream puller, it is recommended to wait for the player's video
playback event onVideoPlaying before exiting the TRTC room.

// Event callback for the mic-connection audience's room exit.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 313 of 588

@Override

public void onRemoteUserLeaveRoom(String userId, int reason) {

 if (mixUserList.contains(userId)) {

 mixUserList.remove(userId);

 }

 // The anchor updates the mixed stream task.

 updatePublishMediaToCDN(streamName, mixUserList, taskId);

}

// Event callback for updating the media stream.

@Override

public void onUpdatePublishMediaStream(String taskId, int code, String message, Bun

 // When you call the publish media stream API (updatePublishMediaStream), the t

 // code: Callback result. 0 means success and other values mean failure.

}

Step 4: The anchor stops the live streaming and exits the room.

public void exitRoom() {

 // Stop all published media streams.

 mTRTCCloud.stopPublishMediaStream("");

 mTRTCCloud.stopLocalAudio();

 mTRTCCloud.stopLocalPreview();

 mTRTCCloud.exitRoom();

}

// Event callback for stopping media streams.

@Override

public void onStopPublishMediaStream(String taskId, int code, String message, Bundl

 // When you call the stop publishing media stream API (stopPublishMediaStream),

 // code: Callback result. 0 means success and other values mean failure.

}

// Event callback for exiting the room.

@Override

public void onExitRoom(int reason) {

 if (reason == 0) {

 Log.d(TAG, "Actively call exitRoom to exit the room.");

 } else if (reason == 1) {

 Log.d(TAG, "Removed from the current room by the server.");

 } else if (reason == 2) {

 Log.d(TAG, "The current room has been dissolved.");

 }

}

Note:

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 314 of 588

To stop publishing media streams, fill in an empty string for taskId . This will stop all the media streams you have

published.
After all resources occupied by the SDK are released, the SDK will throw the onExitRoom callback notification to

inform you.

Advanced Features

The anchor initiates the cross-room competition.

1. Either party initiates the cross-room competition.

public void connectOtherRoom(String roomId, String userId) {

 try {

 JSONObject jsonObj = new JSONObject();

 ? ? // The digit room ID is roomId.

 jsonObj.put("strRoomId", roomId);

 jsonObj.put("userId", userId);

 mTRTCCloud.ConnectOtherRoom(jsonObj.toString());

 } catch (JSONException e) {

 e.printStackTrace();

 }

}

// Result callback for requesting cross-room mic-connection.

@Override

public void onConnectOtherRoom(String userId, int errCode, String errMsg) {

 // The user ID of the anchor in the other room you want to initiate the cross-r

 // Error code. ERR_NULL indicates the request is successful.

 // Error message.

}

Note:
Both local and remote users participating in the cross-room competition must be in the anchor role and must have
audio or video uplink capabilities.
2. All users in both rooms will receive a callback indicating that the audio and video streams from the PK anchor in the
other room are available.

@Override

public void onUserAudioAvailable(String userId, boolean available) {

 // The remote user publishes/unpublishes their audio.

 // Under the automatic subscription mode, you do not need to do anything. The S

}

@Override

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 315 of 588

public void onUserVideoAvailable(String userId, boolean available) {

 // The remote user publishes/unpublishes the primary video.

 if (available) {

 // Subscribe to the remote user's video stream and bind the video rendering

 mTRTCCloud.startRemoteView(userId, TRTCCloudDef.TRTC_VIDEO_STREAM_TYPE_BIG,

 } else {

 // Unsubscribe to the remote user's video stream and release the rendering

 mTRTCCloud.stopRemoteView(userId, TRTCCloudDef.TRTC_VIDEO_STREAM_TYPE_BIG);

 }

}

3. Either party exits the cross-room competition.

// Exit the cross-room mic-connection.

mTRTCCloud.DisconnectOtherRoom();

// Result callback for exiting cross-room mic-connection.

@Override

public void onDisConnectOtherRoom(int errCode, String errMsg) {

 super.onDisConnectOtherRoom(errCode, errMsg);

}

Note:
After calling DisconnectOtherRoom() , you may exit the cross-room competition with all other room anchors.

Either the initiator or the receiver can call DisconnectOtherRoom() to exit the cross-room competition.

Integrate the third-party beauty features.

TRTC supports integrating third-party beauty effect products. Use the example of Tencent Effect to demonstrate the
process of integrating the third-party beauty features.
1. Integrate the Tencent Effect SDK, and apply for an authorization license. For details, see Integration Preparation for

steps.
2. Resource copying (if any). If your resource files are built in the assets directory, you need to copy them to the App's
private directory before use.

XmagicResParser.setResPath(new File(getFilesDir(), "xmagic").getAbsolutePath());

//loading

// Copy resource files to the private directory. Only need to do it once.

XmagicResParser.copyRes(getApplicationContext());

If your resource file is dynamically downloaded from the internet, you need to set the resource file path after the
download is successful.

XmagicResParser.setResPath(local path of the downloaded resource file);

https://intl.cloud.tencent.com/document/product/1228/59954#8b6b50a0-939d-48a1-aac1-58c6009e4b78
https://intl.cloud.tencent.com/document/product/1143/47831

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 316 of 588

3. Set the video data callback for third-party beauty features. Pass the results of the beauty SDK processing each
frame of data into the TRTC SDK for rendering processing.

mTRTCCloud.setLocalVideoProcessListener(TRTCCloudDef.TRTC_VIDEO_PIXEL_FORMAT_Textur

 @Override

 public void onGLContextCreated() {

 // The OpenGL environment has already been set up internally within the SDK

 if (mXmagicApi == null) {

 XmagicApi mXmagicApi = new XmagicApi(context, XmagicResParser.getResPat

 } else {

 mXmagicApi.onResume();

 }

 }

 @Override

 public int onProcessVideoFrame(TRTCCloudDef.TRTCVideoFrame srcFrame, TRTCCloudD

 // Callback for integrating with third-party beauty components for video pr

 if (mXmagicApi != null) {

 dstFrame.texture.textureId = mXmagicApi.process(srcFrame.texture.textur

 }

 return 0;

 }

 @Override

 public void onGLContextDestory() {

 // The internal OpenGL environment within the SDK has been terminated. At t

 mXmagicApi.onDestroy();

 }

});

Note:
Steps 1 and 2 vary depending on the different third-party beauty products. And Step 3 is a general and important
step for integrating third-party beauty features into TRTC.

For scenario-specific integration guidelines of Tencent Effect, see Integrating Tencent Effect into TRTC SDK. For
guidelines on integrating Tencent Effect independently, see Integrating Tencent Effect SDK.

Dual-stream encoding mode

When the dual-stream encoding mode is enabled, the current user's encoder will output two video streams, a high-
definition large screen, and a low-definition small screen, at the same time (but only one audio stream). In this way,
other users in the room can choose to subscribe to the high-definition large screen or low-definition small screen

based on their network conditions or screen sizes.
1. Enable large-and-small-screen dual-stream encoding mode.

public void enableDualStreamMode(boolean enable) {

https://intl.cloud.tencent.com/document/product/1143/45391
https://intl.cloud.tencent.com/document/product/1143/45385

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 317 of 588

 // Video encoding parameters for the small-screen stream (customizable).

 TRTCCloudDef.TRTCVideoEncParam smallVideoEncParam = new TRTCCloudDef.TRTCVideoE

 smallVideoEncParam.videoResolution = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_480_270

 smallVideoEncParam.videoFps = 15;

 smallVideoEncParam.videoBitrate = 550;

 smallVideoEncParam.videoResolutionMode = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_MOD

 mTRTCCloud.enableEncSmallVideoStream(enable, smallVideoEncParam);

}

Note:

When the dual-stream encoding mode is enabled, it will consume more CPU and network bandwidth. Therefore, it
may be considered for use on Mac, Windows, or high-performance Pads. It is not recommended for mobile devices.
2. Choose the type of remote user's video stream to pull.

// Optional video stream types when subscribing to a remote user's video stream.

mTRTCCloud.startRemoteView(userId, streamType, videoView);

// You can switch the size of the specified remote user's screen at any time.

mTRTCCloud.setRemoteVideoStreamType(userId, streamType);

Note:
When the dual-stream encoding mode is enabled, you can specify the video stream type as
 TRTC_VIDEO_STREAM_TYPE_SMALL with streamType to pull a low-quality small video for viewing.

View rendering control

In TRTC, there are many APIs that require you to control the video screen. All these APIs require you to specify a
video rendering control. On the Android platform, TXCloudVideoView is used as the video rendering control, and

both SurfaceView and TextureView rendering schemes are supported. Below are the methods for

specifying the type of rendering control and updating the video rendering control.
1. If you want mandatory use of a certain scheme, or to convert the local video rendering control to
 TXCloudVideoView , you can code as follows.

// Mandatory use of TextureView.

TextureView textureView = findViewById(R.id.texture_view);

TXCloudVideoView cloudVideoView = new TXCloudVideoView(context);

cloudVideoView.addVideoView(textureView);

// Mandatory use of SurfaceView.

SurfaceView surfaceView = findViewById(R.id.surface_view);

TXCloudVideoView cloudVideoView = new TXCloudVideoView(surfaceView);

2. If your business involves scenarios of switching display zones, you can use the TRTC SDK to update the local
preview screen and update the remote user's video rendering control feature.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 318 of 588

// Update local preview screen rendering control.

mTRTCCloud.updateLocalView(videoView);

// Update the remote user's video rendering control.

mTRTCCloud.updateRemoteView(userId, streamType, videoView);

Note:

Pass in videoView as the target video rendering control. streamType only supports

 TRTC_VIDEO_STREAM_TYPE_BIG and TRTC_VIDEO_STREAM_TYPE_SUB .

Live Streaming Interactive Messages

Live streaming interaction is particularly important in live streaming scenarios. Users interact with the anchor through
likes messages, gift messages, and bullet screen messages. The precondition for implementing the live interaction
feature is to activate the Instant Messaging (IM) service and import the IM SDK. For detailed guidelines, see Voice

Chat Room Integration Guide - Preparation for Integration.

Likes messages

1. The liker sends custom group messages related to likes through the client. After it is sended successfully, the
business party renders the likes effect locally.

// Construct the likes message body.

JSONObject jsonObject = new JSONObject();

try {

 jsonObject.put("cmd", "like_msg");

 JSONObject msgJsonObject = new JSONObject();

 msgJsonObject.put("type", 1); // Likes type.

 msgJsonObject.put("likeCount", 10); // Number of likes.

 jsonObject.put("msg", msgJsonObject);

} catch (JSONException e) {

 e.printStackTrace();

}

String data = jsonObject.toString();

// Send custom group messages (it is recommended that likes messages should be set

V2TIMManager.getInstance().sendGroupCustomMessage(data.getBytes(), mRoomId,

 V2TIMMessage.V2TIM_PRIORITY_LOW, new V2TIMValueCallback<V2TIMMessage>() {

 @Override

 public void onError(int i, String s) {

 // Failed to send likes messages.

 }

 @Override

 public void onSuccess(V2TIMMessage v2TIMMessage) {

 // Likes messages sent successfully.

https://intl.cloud.tencent.com/document/product/1228/59954#11eee571-8277-4639-961d-34eba818a429
https://intl.cloud.tencent.com/document/product/1228/59954#11eee571-8277-4639-961d-34eba818a429#3335554c-4b30-476c-8541-24553b2356bf
https://intl.cloud.tencent.com/document/product/1228/59954#11eee571-8277-4639-961d-34eba818a429#3335554c-4b30-476c-8541-24553b2356bf#99847e5e-e6f0-44a6-b9b2-82201a6636c3
https://intl.cloud.tencent.com/products/im
https://intl.cloud.tencent.com/document/product/1228/59942#98a99507-e454-4eb9-b483-7ee3daa488b0

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 319 of 588

 // Local rendering of likes effect.

 }

 });

2. Other users in the room receive callback for custom group messages. Then proceed with message parsing and
likes effect rendering.

// Custom group messages received.

V2TIMManager.getInstance().addSimpleMsgListener(new V2TIMSimpleMsgListener() {

 @Override

 public void onRecvGroupCustomMessage(String msgID, String groupID, V2TIMGroupMe

 String customStr = new String(customData);

 if (!customStr.isEmpty()) {

 try {

 JSONObject jsonObject = new JSONObject(customStr);

 String command = jsonObject.getString("cmd");

 JSONObject messageJsonObject = jsonObject.getJSONObject("msg");

 if (command.equals("like_msg")) {

 int type = messageJsonObject.getInt("type"); // Like

 int likeCount = messageJsonObject.getInt("likeCount"); // Numb

 // Render likes effect based on likes type and count.

 }

 } catch (JSONException e) {

 e.printStackTrace();

 }

 }

 }

});

Gift messages

1. The sender initiates a request to the business server. Upon completing the billing and settlement, the business
server calls the REST API to send a custom message to the group.
1.1 Request URL sample:

https://xxxxxx/v4/group_open_http_svc/send_group_msg?

sdkappid=88888888&identifier=admin&usersig=xxx&random=99999999&contenttype=json

1.2 Request packet body sample:

{

 "GroupId": "@TGS#12DEVUDHQ",

 "Random": 2784275388,

 "MsgPriority": "High", // The priority of the message. Gift messages should be

 "MsgBody": [

 {

https://intl.cloud.tencent.com/document/product/1047/34959

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 320 of 588

 "MsgType": "TIMCustomElem",

 "MsgContent": {

 // type: gift type; giftUrl: gift resource URL; giftName: gift name

 "Data": "{\\"cmd\\": \\"gift_msg\\", \\"msg\\": {\\"type\\": 1, \\"

 }

 }

]

}

2. Other users in the room receive a callback for custom group messages. Then proceed with message parsing and

gift effect rendering.

// Custom group messages received.

V2TIMManager.getInstance().addSimpleMsgListener(new V2TIMSimpleMsgListener() {

 @Override

 public void onRecvGroupCustomMessage(String msgID, String groupID, V2TIMGroupMe

 String customStr = new String(customData);

 if (!customStr.isEmpty()) {

 try {

 JSONObject jsonObject = new JSONObject(customStr);

 String command = jsonObject.getString("cmd");

 JSONObject messageJsonObject = jsonObject.getJSONObject("msg");

 if (command.equals("gift_msg")) {

 int type = messageJsonObject.getInt("type"); //

 int giftCount = messageJsonObject.getInt("giftCount"); //

 String giftUrl = messageJsonObject.getString("giftUrl"); //

 String giftName = messageJsonObject.getString("giftName"); //

 // Render gift effects based on gift type, count, resource URL,

 }

 } catch (JSONException e) {

 e.printStackTrace();

 }

 }

 }

});

Bullet screen messages

Live showroom usually have text-based bullet screen message interactions. This can be achieved through the sending
and receiving of group chat regular text messages via IM.

// Send public screen bullet screen messages.

V2TIMManager.getInstance().sendGroupTextMessage(text, groupID, V2TIMMessage.V2TIM_P

 @Override

 public void onError(int i, String s) {

 // Failed to send bullet screen messages.

 }

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 321 of 588

 @Override

 public void onSuccess(V2TIMMessage v2TIMMessage) {

 // Successfully sent bullet screen messages.

 // Local display of the message text.

 }

});

// Receive public screen bullet screen messages.

V2TIMManager.getInstance().addSimpleMsgListener(new V2TIMSimpleMsgListener() {

 @Override

 public void onRecvGroupTextMessage(String msgID, String groupID, V2TIMGroupMemb

 // Render bullet screen messages based on sender and message text.

 }

});

Note:

The recommended priority setting is as follows. Gift messages should be set to high priority. Bullet screen messages
should be set to medium priority. Like messages should be set to low priority.
Sending group chat messages from the client will not trigger the message reception callback. Only other users within
the group can receive them.

Exception Handling

Exception error handling

When the TRTC SDK encounters an unrecoverable error, the error will be thrown in the onError callback. For

details, see Error Code Table.
1. UserSig related
UserSig verification failure will lead to room-entering failure. You can use the UserSig tool for verification.

Enumeration Value Description

ERR_TRTC_INVALID_USER_SIG -3320
Room entry parameter userSig is incorrect. Check
if TRTCParams.userSig is empty.

ERR_TRTC_USER_SIG_CHECK_FAILED -100018
UserSig verification failed. Check if the parameter
 TRTCParams.userSig is filled in correctly or
has expired.

2. Room entry and exit related
If failed to enter the room, you should first verify the correctness of the room entry parameters. It is essential that the

room entry and exit APIs are called in a paired manner. This means that, even in the event of a failed room entry, the

https://intl.cloud.tencent.com/document/product/647/35130
https://console.trtc.io/usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 322 of 588

room exit API must still be called.

Enumeration Value Description

ERR_TRTC_CONNECT_SERVER_TIMEOUT -3308
Room entry request timed out. Check if your
internet connection is lost or if a VPN is enabled.
You may also attempt to switch to 4G for testing.

ERR_TRTC_INVALID_SDK_APPID -3317
Room entry parameter sdkAppId is incorrect.
Check if TRTCParams.sdkAppId is empty.

ERR_TRTC_INVALID_ROOM_ID -3318

Room entry parameter roomId is incorrect.
Check if TRTCParams.roomId or
 TRTCParams.strRoomId is empty. Note
that roomId and strRoomId cannot be used
interchangeably.

ERR_TRTC_INVALID_USER_ID -3319
Room entry parameter userId is incorrect. Check
if TRTCParams.userId is empty.

ERR_TRTC_ENTER_ROOM_REFUSED -3340
Room entry request is denied. Check if
 enterRoom is called consecutively to enter
rooms with the same ID.

3. Device related
Errors for relevant monitoring devices. Prompt the user via UI in case of relevant errors.

Enumeration Value Description

ERR_CAMERA_START_FAIL -1301

Failed to open the camera. For example, if there is an
exception for the camera's configuration program (driver)
on a Windows or macOS device, you should try disabling
then re-enabling the device, restarting the machine, or
updating the configuration program.

ERR_MIC_START_FAIL -1302

Failed to open the mic. For example, if there is an
exception for the mic's configuration program (driver) on a
Windows or macOS device, you should try disabling then
re-enabling the device, restarting the machine, or
updating the configuration program.

ERR_CAMERA_NOT_AUTHORIZED -1314
The device of camera is unauthorized. This typically
occurs on mobile devices and may be due to the user
having denied the permission.

ERR_MIC_NOT_AUTHORIZED -1317 The device of mic is unauthorized. This typically occurs on
mobile devices and may be due to the user having denied

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 323 of 588

the permission.

ERR_CAMERA_OCCUPY -1316 The camera is occupied. Try a different camera.

ERR_MIC_OCCUPY -1319 The mic is occupied. This occurs when, for example, the
user is currently having a call on the mobile device.

Issues with the remote mirror mode not functioning properly.

In TRTC, video mirror settings are divided into local preview mirror setLocalRenderParams and video encoding

mirror setVideoEncoderMirror . These settings individually affect the mirror effect of the local preview and the

output of the video encoding (the mirror mode affects remote viewers and cloud recordings). If you expect the mirror
effect seen in the local preview to also take effect on the remote viewer's end, follow these encoding procedures.

// Set the rendering parameters for the local video.

TRTCCloudDef.TRTCRenderParams params = new TRTCCloudDef.TRTCRenderParams();

params.mirrorType = TRTCCloudDef.TRTC_VIDEO_MIRROR_TYPE_ENABLE; // Video mirror mod

params.fillMode = TRTCCloudDef.TRTC_VIDEO_RENDER_MODE_FILL; // Video fill mode

params.rotation = TRTCCloudDef.TRTC_VIDEO_ROTATION_0; // Video rotation a

mTRTCCloud.setLocalRenderParams(params);

// Set the video mirror mode for the encoder output.

mTRTCCloud.setVideoEncoderMirror(true);

Issues with camera scale, focus, and switch.

In live showroom scenarios, the anchor may need to custom adjust the camera settings. The TRTC SDK's device
management class provides APIs for these needs.
1. Query and set the zoom factor for the camera.

// Get the maximum zoom factor for the camera (only for mobile devices).

float zoomRatio = mTRTCCloud.getDeviceManager().getCameraZoomMaxRatio();

// Set the zoom factor for the camera (only for mobile devices).

// Value range is 1 - 5. 1 means the furthest field of view (normal lens), and 5 me

mTRTCCloud.getDeviceManager().setCameraZoomRatio(zoomRatio);

2. Set the focus feature and position of the camera.

// Enable or disable the camera's autofocus feature (only for mobile devices).

mTRTCCloud.getDeviceManager().enableCameraAutoFocus(false);

// Set the focus position of the camera (only for mobile devices).

// The precondition for using this API is to first disable the autofocus feature us

mTRTCCloud.getDeviceManager().setCameraFocusPosition(int x, int y);

3. Determine and switch to front or rear cameras.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 324 of 588

// Determine if the current camera is the front camera (only for mobile devices).

boolean isFrontCamera = mTRTCCloud.getDeviceManager().isFrontCamera();

// Switch to front or rear cameras (only for mobile devices).

// Passing true means switching to front, and passing false means switching to rear

mTRTCCloud.getDeviceManager().switchCamera(!isFrontCamera);

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 325 of 588

iOS
Last updated：2024-07-18 14:27:33

Business Process

This section summarizes some common business processes in live showroom, helping you better understand the
implementation process of the entire scenario.
Anchor starts and ends the live streaming.

The anchor initiates the cross-room competition.
The RTC audience enters the room for mic-connection.
The CDN audience enters the room for mic-connection.
The following figure shows the process of an anchor (room owner) local preview, creating a room, entering the room to
start the live streaming, and leaving the room to end the live streaming.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 326 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 327 of 588

The following figure shows the process of Anchor A inviting Anchor B for a cross-room competition. During the cross-
room competition, the audiences in both rooms can see the PK mic-connection live streaming of the two room owners.

The following figure shows the process for RTC live interactive streaming audience to enter the room, apply for the
mic-connection, end the mic-connection, and exit the room.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 328 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 329 of 588

The following figure shows the process for RTC CDN live streaming audience to enter the room, apply for the mic-
connection, end the mic-connection, and exit the room.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 330 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 331 of 588

Integration Preparation

Step 1. Activating the service.

Live showroom scenarios usually require two paid PaaS services from Tencent Cloud Tencent Real-Time
Communication (TRTC) and Tencent Effect for construction. TRTC is responsible for providing real-time audio and

video interaction capabilities. Tencent Effect is responsible for providing beauty effects capabilities. If you use a third-
party beauty effect product, you can disregard the Tencent Effect integration part.
Activate TRTC service.
Activate Tencent Effect service.
1. First, you need to log in to the Tencent Real-Time Communication (TRTC) console to create an application. You

can choose to upgrade the TRTC application version according to your needs. For example, the professional edition
unlocks more value-added feature services.

https://intl.cloud.tencent.com/products/trtc
https://intl.cloud.tencent.com/products/x-magic
https://console.trtc.io/

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 332 of 588

Note:
It is recommended to create two applications for testing and production environments, respectively. Each Tencent
Cloud account (UIN) is given 10,000 minutes of free duration every month for one year.
TRTC offers monthly subscription plans including the experience edition (default), basic edition, and professional

edition. Different value-added feature services can be unlocked. For details, see Version Features and Monthly
Subscription Plan Instructions.
2. After an application is created, you can see the basic information of the application in the Application Management -
Application Overview section. It is important to keep the SDKAppID and SDKSecretKey safe for later use and to
avoid key leakage that could lead to traffic theft.

https://intl.cloud.tencent.com/document/product/647/52816#f10b65d1-6e8d-41e3-8686-84909b00a1a2

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 333 of 588

1. Log in to Tencent Cloud Tencent Effect console > Mobile License. Click Create Trial License (the free trial validity
period for Trial Version License is 14 days. It is extendable once for a total of 28 days). Fill in the actual requirements
for App Name , Package Name and Bundle ID . Choose Tencent Effect, and choose the capabilities to be

tested: Advanced Package S1-07, Atomic Capability X1-01, Atomic Capability X1-02, and Atomic Capability X1-03.

After you check it, accurately fill in the company name, and industry type. Upload company service license,
click OK to submit the review application, and wait for the manual review process.

https://console.intl.cloud.tencent.com/xmagic/mobile

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 334 of 588

2. After the trial version License is successfully created, the page will display the generated License information. At

this time, the License URL and License Key parameters are not yet effective and will only become active after the

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 335 of 588

submission is approved. When configuring SDK initialization, you need to input both the License URL and
License Key parameters. Keep the following information secure.

Step 2: Importing SDK.

TRTC SDK and Tencent Effect SDK have been released to the CocoaPods repository. You can integrate them via
CocoaPods.
1. Install CocoaPods.

Enter the following command in a terminal window (you need to install Ruby on your Mac first):

sudo gem install cocoapods

2. Create a Podfile file.
Go to the project directory, and enter the following command. A Podfile file will then be created in the project directory.

pod init

3. Edit the Podfile file.
Choose an appropriate version for your project and edit the Podfile file:

platform :ios, '8.0'

 target 'App' do

 # TRTC Lite Edition

 # The installation package has the minimum incremental size. But it only

supports two features of Real-Time Communication (TRTC) and TXLivePlayer for

live streaming playback.

 pod 'TXLiteAVSDK_TRTC', :podspec =>

'https://liteav.sdk.qcloud.com/pod/liteavsdkspec/TXLiteAVSDK_TRTC.podspec'

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 336 of 588

 # Pro Edition

 # Includes a wide range of features such as Real-Time Communication (TRTC),

TXLivePlayer for live streaming playback, TXLivePusher for RTMP push streams,

TXVodPlayer for on-demand playback, and UGSV for short video recording and

editing.

 # pod 'TXLiteAVSDK_Professional', :podspec =>

'https://liteav.sdk.qcloud.com/pod/liteavsdkspec/TXLiteAVSDK_Professional.podsp

ec'

 # Tencent Effect SDK example of S1-07 package is as follows:

 pod 'TencentEffect_S1-07'

end

4. Update and install the SDK.
Enter the following command in a terminal window to update the local repository files and install the SDK:

pod install

Or run this command to update the local repository:

pod update

Upon the completion of pod command execution, an .xcworkspace project file integrated with the SDK will be

generated. Double-click to open it.
Note:
If the pod search fails, it is recommended to try updating the pod's local repo cache. Update command is as follows:

 pod setup

 pod repo update

 rm ~/Library/Caches/CocoaPods/search_index.json

Besides the recommended automatic loading method, you can also choose to download the SDK and manually import
it. For details, see Manually Integrating the TRTC SDK and Manually Integrating Tencent Effect SDK.
5. Add beauty resources to the actual project.

Download and unzip the corresponding package of SDK and Beauty Resources. Add the bundle resources under the
resources/motionRes folder to the actual project.
On the Build Settings, under Other Linker Flags, add -ObjC .

6. Modify the Bundle Identifier to match the applied trial authorization.

Step 3: Project configuration.

1. Configure permissions.

https://intl.cloud.tencent.com/document/product/647/35092#.E6.96.B9.E6.A1.88.E4.BA.8C.EF.BC.9A.E4.B8.8B.E8.BD.BD-sdk-.E5.B9.B6.E6.89.8B.E5.8A.A8.E5.AF.BC.E5.85.A5
https://intl.cloud.tencent.com/document/product/1143/45384#.E5.AF.BC.E5.85.A5-sdk
https://intl.cloud.tencent.com/document/product/1143/45377

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 337 of 588

For live showroom scenarios, TRTC SDK and Tencent Effect SDK require the following permissions. Add the following
two items to the App's Info.plist, corresponding to the microphone and camera prompts in the system pop-up
authorization dialog box.

Privacy - Microphone Usage Description. Enter a prompt specifying the purpose of microphone use.
Privacy - Camera Usage Description. Enter a prompt specifying the purpose of camera use.

2. If you need your App to continue running certain features in the background, go to XCode. Choose your current
project. Under Capabilities, set the settings for Background Modes to ON, and check Audio, AirPlay, and Picture in
Picture, as shown below:

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 338 of 588

Step 4: Authentication and authorization.

TRTC authentication credential.
Tencent Effect authentication license.

UserSig is a security protection signature designed by Tencent Cloud to prevent malicious attackers from
misappropriating your cloud service usage rights. TRTC validates this authentication credential when it enters the
room.
Debugging Stage: UserSig can be generated through two methods for debugging and testing purposes only: client
sample code and console access.

Formal Operation Stage: It is recommended to use a higher security level server computation for generating UserSig.
This is to prevent key leakage due to client reverse engineering.
The specific implementation process is as follows:
1. Before calling the SDK's initialization function, your app must first request UserSig from your server.
2. Your server computes the UserSig based on the SDKAppID and UserID.

https://intl.cloud.tencent.com/document/product/647/35166#.E5.AE.A2.E6.88.B7.E7.AB.AF.E7.A4.BA.E4.BE.8B.E4.BB.A3.E7.A0.81.E8.AE.A1.E7.AE.97-usersig
https://intl.cloud.tencent.com/document/product/647/35166#.E6.8E.A7.E5.88.B6.E5.8F.B0.E8.8E.B7.E5.8F.96-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 339 of 588

3. The server returns the computed UserSig to your app.
4. Your app passes the obtained UserSig into the SDK through a specific API.
5. The SDK submits the SDKAppID + UserID + UserSig to Tencent Cloud CVM for verification.

6. Tencent Cloud verifies the UserSig and confirms its validity.
7. After the verification is passed, real-time audio and video services will be provided to the TRTC SDK.

Note:
The local computation method of UserSig during the debugging stage is not recommended for application in an online
environment. It is prone to reverse engineering, leading to key leakage.
We provide server computation source code for UserSig in multiple programming languages
(Java/GO/PHP/Nodejs/Python/C#/C++). For details, see Server Computation of UserSig.

Before using Tencent Effect, you need to verify the license credential with Tencent Cloud. Configuring the License
requires License Key and License Url. Sample code is as follows.

[TELicenseCheck setTELicense:LicenseURL key:LicenseKey completion:^(NSInteger authr

 if (authresult == TELicenseCheckOk) {

 NSLog(@"Authentication successful.");

 } else {

https://intl.cloud.tencent.com/document/product/1047/34385#.E6.9C.8D.E5.8A.A1.E7.AB.AF.E8.AE.A1.E7.AE.97-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 340 of 588

 NSLog(@"Authentication failed.");

 }

}];

Note:
It is recommended to trigger the authentication permission in the initialization code of related business modules.
Ensure to avoid having to download the License temporarily before use. Additionally, during authentication, network
permissions must be ensured.

The actual application's Bundle ID must match exactly with the Bundle ID associated with the creation of License.
Otherwise, it will lead to License verification failure. For details, see Authentication Error Code.

Step 5: Initializing the SDK.

Initialize the TRTC SDK.
Initialize the Tencent Effect SDK.

// Create TRTC SDK instance (Single Instance Pattern).

self.trtcCloud = [TRTCCloud sharedInstance];

// Set event listeners.

self.trtcCloud.delegate = self;

// Notifications from various SDK events (e.g., error codes, warning codes, audio a

- (void)onError:(TXLiteAVError)errCode errMsg:(nullable NSString *)errMsg extInfo:(

 NSLog(@"%d: %@", errCode, errMsg);

}

- (void)onWarning:(TXLiteAVWarning)warningCode warningMsg:(nullable NSString *)warn

 NSLog(@"%d: %@", warningCode, warningMsg);

}

// Remove event listener.

self.trtcCloud.delegate = nil;

// Terminate TRTC SDK instance (Singleton Pattern).

[TRTCCloud destroySharedIntance];

Note:
It is recommended to listen to SDK event notifications. Perform log printing and handling for some common errors. For
details, see Error Code Table.

// Load beauty-related resources.

NSDictionary *assetsDict = @{@"core_name":@"LightCore.bundle",

 @"root_path":[[NSBundle mainBundle] bundlePath]

};

// Initialize the Tencent Effect SDK.

self.beautyKit = [[XMagic alloc] initWithRenderSize:previewSize assetsDict:assetsDi

https://intl.cloud.tencent.com/document/product/1143/45384#.E6.AD.A5.E9.AA.A4.E4.B8.80.EF.BC.9A.E9.89.B4.E6.9D.83
https://intl.cloud.tencent.com/document/product/647/35135

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 341 of 588

// Release the Tencent Effect SDK.

[self.beautyKit deinit]

Note:
Before initializing the Tencent Effect SDK, resource copying and other preparatory work are needed. For detailed
steps, see Tencent Effect SDK integration steps.

Integration Process

API sequence diagram.

Anchor TRTCCloud TRTCCloudDelegate Business_Server Audience

Anchor Enters Room and Starts Pushing Stream

Enter Live Streaming Preview Interface

setVideoEncoderParam

startLocalPreview

startLocalAudio

opt [Set Local Screen Rendering Mode]

setLocalRenderParams

opt [Set Encoder Output Mirror Mode]

setVideoEncoderMirror

Create Room, and Start Live Streaming

The room is created successfully. Return userSig.

enterRoom:role:Anchor

onEnterRoom

Audience Enters Room and Pull Stream

enterRoom:role:Audience

onEnterRoom

onRemoteUserEnterRoom

onUserAudioAvailable:true

onUserVideoAvailable:true

startRemoteView

onFirstAudioFrame

onFirstVideoFrame

opt [Set Remote Screen Rendering Mode]

setRemoteRenderParams

Audience Mic Connection Interaction

https://intl.cloud.tencent.com/document/product/1143/45384#.E9.9B.86.E6.88.90.E6.AD.A5.E9.AA.A4

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 342 of 588

Anchor TRTCCloud TRTCCloudDelegate Business_Server Audience

Request Mic Connection

The audience requests a mic connection.

Agree

The anchor agrees mic connection.

switchRole:Anchor

onSwitchRole

startLocalAudio

startLocalPreview

setVideoEncoderParam

onRemoteUserEnterRoom

onUserAudioAvailable:true

onUserVideoAvailable:true

startRemoteView

onFirstAudioFrame

onFirstVideoFrame

Audience Becomes Listener and Exits Room

switchRole:Audience

onSwitchRole

stopLocalAudio

stopLocalPreview

onRemoteUserLeaveRoom

onUserAudioAvailable:false

onUserVideoAvailable:false

stopRemoteView

exitRoom

onExitRoom

Anchor Exits Room and Stops Live Streaming

stopLocalAudio

stopLocalPreview

exitRoom

onExitRoom

Stop live streaming and destroy the room.

DismissRoom

Step 1: The anchor enters the room to push streams.

1. The anchor activates local video preview and audio capture before entering the room.

// Obtain the video rendering control for displaying the anchor's local video previ

@property (nonatomic, strong) UIView *anchorPreviewView;

@property (nonatomic, strong) TRTCCloud *trtcCloud;

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 343 of 588

- (void)setupTRTC {

 self.trtcCloud = [TRTCCloud sharedInstance];

 self.trtcCloud.delegate = self;

 // Set video encoding parameters to determine the picture quality seen by remot

 TRTCVideoEncParam *encParam = [[TRTCVideoEncParam alloc] init];

 encParam.videoResolution = TRTCVideoResolution_960_540;

 encParam.videoFps = 15;

 encParam.videoBitrate = 1300;

 encParam.resMode = TRTCVideoResolutionModePortrait;

 [self.trtcCloud setVideoEncoderParam:encParam];

 // isFrontCamera can specify using the front/rear camera for video capture.

 [self.trtcCloud startLocalPreview:self.isFrontCamera view:self.anchorPreviewVie

 // Here you can specify the audio quality, from low to high as SPEECH/DEFAULT/M

 [self.trtcCloud startLocalAudio:TRTCAudioQualityDefault];

}

Note:

You can set the video encoding parameters TRTCVideoEncParam according to business needs. For the best
combinations of resolutions and bitrates for each tier, see Resolution and Bitrate Reference Table.
Call the above API before enterRoom . The SDK will only start the camera preview and audio capture, and wait

until you call enterRoom to start streaming.

Call the above API after enterRoom . The SDK will start the camera preview and audio capture and automatically

start streaming.

2. The anchor sets rendering parameters for the local video, and the encoder output video mode (optional).

- (void)setupRenderParams {

 TRTCRenderParams *params = [[TRTCRenderParams alloc] init];

 // Video mirror mode

 params.mirrorType = TRTCVideoMirrorTypeAuto;

 // Video fill mode

 params.fillMode = TRTCVideoFillMode_Fill;

 // Video rotation angle

 params.rotation = TRTCVideoRotation_0;

 // Set the rendering parameters for the local video.

 [self.trtcCloud setLocalRenderParams:params];

 // Set the video mirror mode for the encoder output.

 [self.trtcCloud setVideoEncoderMirror:YES];

 // Set the rotation of the video encoder output.

 [self.trtcCloud setVideoEncoderRotation:TRTCVideoRotation_0];

}

https://intl.cloud.tencent.com/document/product/647/35153#trtcvideoencparam
https://intl.cloud.tencent.com/document/product/647/35153#.E5.88.86.E8.BE.A8.E7.8E.87.E7.A0.81.E7.8E.87.E5.8F.82.E7.85.A7.E8.A1.A8

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 344 of 588

Note:
Setting local video rendering parameters only affects the rendering effect of the local video.
Setting encoder output mode affects the viewing effect for other users in the room (and the cloud recording files).

3. The anchor starts the live streaming, entering the room and start streaming.

- (void)enterRoomByAnchorWithUserId:(NSString *)userId roomId:(NSString *)roomId {

 TRTCParams *params = [[TRTCParams alloc] init];

 // Take the room ID string as an example.

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend.

 params.userSig = @"userSig";

 // Replace with your SDKAppID.

 params.sdkAppId = 0;

 // Specify the anchor role.

 params.role = TRTCRoleAnchor;

 // Enter the room in an interactive live streaming scenario.

 [self.trtcCloud enterRoom:params appScene:TRTCAppSceneLIVE];

}

// Event callback for the result of entering the room.

- (void)onEnterRoom:(NSInteger)result {

 if (result > 0) {

 // result indicates the time taken (in milliseconds) to join the room.

 NSLog(@"Enter room succeed!");

 } else {

 // result indicates the error code when you fail to enter the room.

 NSLog(@"Enter room failed!");

 }

}

Note:
TRTC room IDs are divided into integer type roomId and string type strRoomId . The rooms of these two types

are not interconnected. It is recommended to unify the room ID type.
TRTC user roles are divided into anchors and audiences. Only anchors have streaming permissions. It is necessary to
specify the user role when entering the room. If not specified, the default will be the anchor role.
In live showroom scenarios, it is recommended to choose TRTCAppSceneLIVE as the room entry mode.

Step 2: The audience enters the room to pull streams.

1. Audience enters the TRTC room.

- (void)enterRoomByAudienceWithUserId:(NSString *)userId roomId:(NSString *)roomId

 TRTCParams *params = [[TRTCParams alloc] init];

 // Take the room ID string as an example.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 345 of 588

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend.

 params.userSig = @"userSig";

 // Replace with your SDKAppID.

 params.sdkAppId = 0;

 // Specify the audience role.

 params.role = TRTCRoleAudience;

 // Enter the room in an interactive live streaming scenario.

 [self.trtcCloud enterRoom:params appScene:TRTCAppSceneLIVE];

}

// Event callback for the result of entering the room.

- (void)onEnterRoom:(NSInteger)result {

 if (result > 0) {

 // result indicates the time taken (in milliseconds) to join the room.

 NSLog(@"Enter room succeed!");

 } else {

 // result indicates the error code when you fail to enter the room.

 NSLog(@"Enter room failed!");

 }

}

2. Audience subscribes to the anchor's audio and video streams.

- (void)onUserAudioAvailable:(NSString *)userId available:(BOOL)available {

 // The remote user publishes/unpublishes their audio.

 // Under the automatic subscription mode, you do not need to do anything. The S

}

- (void)onUserVideoAvailable:(NSString *)userId available:(BOOL)available {

 // The remote user publishes/unpublishes the primary video.

 if (available) {

 // Subscribe to the remote user's video stream and bind the video rendering

 [self.trtcCloud startRemoteView:userId streamType:TRTCVideoStreamTypeBig vi

 } else {

 // Unsubscribe to the remote user's video stream and release the rendering

 [self.trtcCloud stopRemoteView:userId streamType:TRTCVideoStreamTypeBig];

 }

}

3. Audience sets the rendering mode for the remote video (optional).

- (void)setupRemoteRenderParams {

 TRTCRenderParams *params = [[TRTCRenderParams alloc] init];

 // Video mirror mode

 params.mirrorType = TRTCVideoMirrorTypeAuto;

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 346 of 588

 // Video fill mode

 params.fillMode = TRTCVideoFillMode_Fill;

 // Video rotation angle

 params.rotation = TRTCVideoRotation_0;

 // Set the rendering mode for the remote video.

 [self.trtcCloud setRemoteRenderParams:@"userId" streamType:TRTCVideoStreamTypeB

}

Step 3: The audience interacts via mic.

1. The audience is switched to the anchor role.

- (void)switchToAnchor {

 // Switched to the anchor role.

 [self.trtcCloud switchRole:TRTCRoleAnchor];

}

// Event callback for switching the role.

- (void)onSwitchRole:(TXLiteAVError)errCode errMsg:(NSString *)errMsg {

 if (errCode == ERR_NULL) {

 // Role switched successfully.

 }

}

2. Audience start local audio and video capture and streaming.

- (void)setupTRTC {

 // Set video encoding parameters to determine the picture quality seen by remot

 TRTCVideoEncParam *encParam = [[TRTCVideoEncParam alloc] init];

 encParam.videoResolution = TRTCVideoResolution_480_270;

 encParam.videoFps = 15;

 encParam.videoBitrate = 550;

 encParam.resMode = TRTCVideoResolutionModePortrait;

 [self.trtcCloud setVideoEncoderParam:encParam];

 // isFrontCamera can specify using the front/rear camera for video capture.

 [self.trtcCloud startLocalPreview:self.isFrontCamera view:self.audiencePreviewV

 // Here you can specify the audio quality, from low to high as SPEECH/DEFAULT/M

 [self.trtcCloud startLocalAudio:TRTCAudioQualityDefault];

}

Note:
You can set the video encoding parameters TRTCVideoEncParam according to business needs. For the best
combinations of resolutions and bitrates for each tier, see Resolution and Bitrate Reference Table.
3. The audience leaves the seat and stops streaming.

https://intl.cloud.tencent.com/document/product/647/35153#trtcvideoencparam
https://intl.cloud.tencent.com/document/product/647/35153#.E5.88.86.E8.BE.A8.E7.8E.87.E7.A0.81.E7.8E.87.E5.8F.82.E7.85.A7.E8.A1.A8

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 347 of 588

- (void)switchToAudience {

 // Switched to the audience role.

 [self.trtcCloud switchRole:TRTCRoleAudience];

}

// Event callback for switching the role.

- (void)onSwitchRole:(TXLiteAVError)errCode errMsg:(NSString *)errMsg {

 if (errCode == ERR_NULL) {

 // Stop camera capture and streaming.

 [self.trtcCloud stopLocalPreview];

 // Stop microphone capture and streaming.

 [self.trtcCloud stopLocalAudio];

 }

}

Step 4: Exiting and dissolving the room.

1. Exit the room.

- (void)exitRoom {

 [self.trtcCloud stopLocalAudio];

 [self.trtcCloud stopLocalPreview];

 [self.trtcCloud exitRoom];

}

// Event callback for exiting the room.

- (void)onExitRoom:(NSInteger)reason {

 if (reason == 0) {

 NSLog(@"Proactively call exitRoom to exit the room.");

 } else if (reason == 1) {

 NSLog(@"Removed from the current room by the server.");

 } else if (reason == 2) {

 NSLog(@"The current room is dissolved.");

 }

}

Note:
After all resources occupied by the SDK are released, the SDK will throw the onExitRoom callback notification to

inform you.

If you want to call enterRoom again or switch to another audio/video SDK, wait for the onExitRoom callback

before proceeding. Otherwise, you may encounter exceptions such as the camera or microphone being forcefully
occupied.
2. Dissolve the room.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 348 of 588

Server Dissolvement: TRTC provides the Server dissolves the room API DismissRoom (differentiating between

numeric room ID and string room ID). You can call this API to remove all users from the room and dissolve the room.
Client Dissolvement: Through the exitRoom API of each client, all the anchors and audiences in the room can

be completed of room exit. After room exit, according to TRTC room lifecycle rules, the room will automatically be
dissolved. For details, see Exit Room.
Warning:
It is recommended that after the end of live streaming, you call the room dissolvement API on the server to ensure the
room is dissolved. This will prevent audiences from accidentally entering the room and incurring unexpected charges.

Alternative solutions

API sequence diagram.

Anchor TRTCCloud TRTCCloudDelegate Business_Server V2TXLivePlayer V2TXLivePlayerObserver Audienc

Anchor Relays Stream to CDN

Enter Live Streaming Preview Interface

setVideoEncoderParam

startLocalPreview

startLocalAudio

opt [Set Local Screen Rendering Mode]

setLocalRenderParams

opt [Set Encoder Output Mirror Mode]

setVideoEncoderMirror

Create Room, and Start Live Streaming

The room is created successfully. Return userSig.

enterRoom:role:Anchor

onEnterRoom

startPublishMediaStream

onStartPublishMediaStream

Audience Pulls Stream to Play

setRenderView

opt [Set Latency Adjustment Mode]

setCacheParams

https://intl.cloud.tencent.com/document/product/647/34269
https://intl.cloud.tencent.com/document/product/647/48271

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 349 of 588

startLivePlay

opt [Set Screen Filling Mode]

setRenderFillMode

opt [Set Screen Rendering Direction]

setRenderRotation

onAudioLoading

onVideoLoading

onAudioPlaying

onVideoPlaying

Audience Mic Connection Interaction

Request Mic Connection

The audience requests a mic connection.

Agree

The anchor agrees mic connection.

startLocalAudio

startLocalPreview

setVideoEncoderParam

enterRoom:role:Anchor

onEnterRoom

onRemoteUserEnterRoom

onUserAudioAvailable:true

onUserVideoAvailable:true

startRemoteView

onFirstAudioFrame

onFirstVideoFrame

alt [UserId is Not Empty]

stopPlay

onRemoteUserEnterRoom

updatePublishMediaStream

onUpdatePublishMediaStream

onUserAudioAvailable:true

onUserVideoAvailable:true

startRemoteView

onFirstAudioFrame

onFirstVideoFrame

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 350 of 588

Anchor TRTCCloud TRTCCloudDelegate Business_Server V2TXLivePlayer V2TXLivePlayerObserver Audienc

Audience Becomes Listener and Exits Room

setRenderView

startLivePlay

onAudioLoading

onVideoLoading

onAudioPlaying

onVideoPlaying

stopAllRemoteView

stopLocalAudio

stopLocalPreview

onUserAudioAvailable:false

onUserVideoAvailable:false

stopRemoteView

exitRoom

onExitRoom

onRemoteUserLeaveRoom

updatePublishMediaStream

onUpdatePublishMediaStream

Anchor Exits Room and Stops Live Streaming

stopPublishMediaStream

stopLocalAudio

stopLocalPreview

exitRoom

onStopPublishMediaStream

onExitRoom

Stop live streaming and destroy the room.

DismissRoom

Step 1: The anchor relays the streams to CDN.

1. Related configurations for relaying to live streaming CDN.
Global automatic relayed push
If you need to automatically relay all anchors' audio and video streams in the room to live streaming CDN, you need to
enable Relay to CDN in the TRTC console Advanced Features page.

https://console.trtc.io/features

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 351 of 588

Relayed push of the specified streams

If you need to manually specify the audio and video streams to be published to live streaming CDN, or publish the
mixed audio and video streams to live streaming CDN, you can do so by calling the startPublishMediaStream API. In
this case, you do not need to activate global automatically relaying to CDN in the console. For detailed introduction,
see Publish Audio and Video Streams to Live Streaming CDN.
2. The anchor activates local video preview and audio capture before entering the room.

// Obtain the video rendering control for displaying the anchor's local video previ

@property (nonatomic, strong) UIView *anchorPreviewView;

- (void)setupTRTC {

 self.trtcCloud = [TRTCCloud sharedInstance];

 self.trtcCloud.delegate = self;

 // Set video encoding parameters to determine the picture quality seen by remot

 TRTCVideoEncParam *encParam = [[TRTCVideoEncParam alloc] init];

 encParam.videoResolution = TRTCVideoResolution_960_540;

 encParam.videoFps = 15;

 encParam.videoBitrate = 1300;

 encParam.resMode = TRTCVideoResolutionModePortrait;

 [self.trtcCloud setVideoEncoderParam:encParam];

 // isFrontCamera can specify using the front/rear camera for video capture.

https://intl.cloud.tencent.com/document/product/647/50754#9cea9ae34a50a44c0a7023295313bf2e
https://intl.cloud.tencent.com/document/product/647/47858

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 352 of 588

 [self.trtcCloud startLocalPreview:self.isFrontCamera view:self.anchorPreviewVie

 // Here you can specify the audio quality, from low to high as SPEECH/DEFAULT/M

 [self.trtcCloud startLocalAudio:TRTCAudioQualityDefault];

}

Note:

You can set the video encoding parameters TRTCVideoEncParam according to business needs. For the best
combinations of resolutions and bitrates for each tier, see Resolution and Bitrate Reference Table.
Call the above API before enterRoom . The SDK will only start the camera preview and audio capture, and wait

until you call enterRoom to start streaming.

Call the above API after enterRoom . The SDK will start the camera preview and audio capture and automatically

start streaming.
3. The anchor sets rendering parameters for the local screen, and the encoder output video mode.

- (void)setupRenderParams {

 TRTCRenderParams *params = [[TRTCRenderParams alloc] init];

 // Video mirror mode

 params.mirrorType = TRTCVideoMirrorTypeAuto;

 // Video fill mode

 params.fillMode = TRTCVideoFillMode_Fill;

 // Video rotation angle

 params.rotation = TRTCVideoRotation_0;

 // Set the rendering parameters for the local video.

 [self.trtcCloud setLocalRenderParams:params];

 // Set the video mirror mode for the encoder output.

 [self.trtcCloud setVideoEncoderMirror:YES];

 // Set the rotation of the video encoder output.

 [self.trtcCloud setVideoEncoderRotation:TRTCVideoRotation_0];

}

Note:
Setting local video rendering parameters only affects the rendering effect of the local video.
Setting encoder output mode affects the viewing effect for other users in the room (and the cloud recording files).
4. The anchor starts the live streaming, entering the room and start streaming.

- (void)enterRoomByAnchorWithUserId:(NSString *)userId roomId:(NSString *)roomId {

 TRTCParams *params = [[TRTCParams alloc] init];

 // Take the room ID string as an example.

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend.

 params.userSig = @"userSig";

 // Replace with your SDKAppID.

https://intl.cloud.tencent.com/document/product/647/35153#trtcvideoencparam
https://intl.cloud.tencent.com/document/product/647/35153#.E5.88.86.E8.BE.A8.E7.8E.87.E7.A0.81.E7.8E.87.E5.8F.82.E7.85.A7.E8.A1.A8

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 353 of 588

 params.sdkAppId = 0;

 // Specify the anchor role.

 params.role = TRTCRoleAnchor;

 // Enter the room in an interactive live streaming scenario.

 [self.trtcCloud enterRoom:params appScene:TRTCAppSceneLIVE];

}

// Event callback for the result of entering the room.

- (void)onEnterRoom:(NSInteger)result {

 if (result > 0) {

 // result indicates the time taken (in milliseconds) to join the room.

 NSLog(@"Enter room succeed!");

 } else {

 // result indicates the error code when you fail to enter the room.

 NSLog(@"Enter room failed!");

 }

}

Note:
TRTC room IDs are divided into integer type roomId and string type strRoomId . The rooms of these two types

are not interconnected. It is recommended to unify the room ID type.

TRTC user roles are divided into anchors and audiences. Only anchors have streaming permissions. It is necessary to
specify the user role when entering the room. If not specified, the default will be the anchor role.
In live showroom scenarios, it is recommended to choose TRTCAppSceneLIVE as the room entry mode.

5. The anchor relays the audio and video streams to the live streaming CDN.

- (void)startPublishMediaToCDN:(NSString *)streamName {

 NSDate *date = [NSDate dateWithTimeIntervalSinceNow:0];

 // Set the expiration time for the push URLs.

 NSTimeInterval time = [date timeIntervalSince1970] + (24 * 60 * 60);

 // Generate authentication information. The getSafeUrl method can be obtained i

 NSString *secretParam = [self getSafeUrl:LIVE_URL_KEY streamName:streamName tim

 // The target URLs for media stream publication.

 TRTCPublishTarget* target = [[TRTCPublishTarget alloc] init];

 // The target URLs are set for relaying to CDN.

 target.mode = TRTCPublishBigStreamToCdn;

 TRTCPublishCdnUrl* cdnUrl = [[TRTCPublishCdnUrl alloc] init];

 // Construct push URLs (in RTMP format) to the live streaming service provider.

 cdnUrl.rtmpUrl = [NSString stringWithFormat:@"rtmp://%@/live/%@?%@", PUSH_DOMAI

 // True means Tencent CSS push URLs, and false means third-party services.

 cdnUrl.isInternalLine = YES;

 NSMutableArray* cdnUrlList = [NSMutableArray array];

 // Multiple CDN push URLs can be added.

 [cdnUrlList addObject:cdnUrl];

 target.cdnUrlList = cdnUrlList;

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 354 of 588

 // Set media stream encoding output parameters (can be defined according to bus

 TRTCStreamEncoderParam* encoderParam = [[TRTCStreamEncoderParam alloc] init];

 encoderParam.audioEncodedSampleRate = 48000;

 encoderParam.audioEncodedChannelNum = 1;

 encoderParam.audioEncodedKbps = 50;

 encoderParam.audioEncodedCodecType = 0;

 encoderParam.videoEncodedWidth = 540;

 encoderParam.videoEncodedHeight = 960;

 encoderParam.videoEncodedFPS = 15;

 encoderParam.videoEncodedGOP = 2;

 encoderParam.videoEncodedKbps = 1300;

 // Start publishing media streams.

 [self.trtcCloud startPublishMediaStream:target encoderParam:encoderParam mixing

}

Note:
During single-anchor live streaming, only initiate the relayed push task. When there is an audience co-broadcasting or
anchor PK, update this task to a mixed-stream transcoding task.
Information of push authentication KEY LIVE_URL_KEY and push domain name PUSH_DOMAIN are required to

obtain in the CSS console Domain Management page.
After the media stream is published, SDK will provide the backend-initiated task identifier (taskId) through the callback
onStartPublishMediaStream.

- (void)onStartPublishMediaStream:(NSString *)taskId code:(int)code message:(NSStri

 // taskId: When the request is successful, TRTC backend will provide the taskId

 // code: Callback result. 0 means success and other values mean failure.

}

Step 2: The audience pulls streams for playback.

CDN audiences do not need to enter the TRTC room. They can directly pull the anchor's CDN stream for playback.

// Initialize the player.

self.livePlayer = [[V2TXLivePlayer alloc] init];

// Set the player callback listener.

[self.livePlayer setObserver:self];

// Set the video rendering control for the player.

[self.livePlayer setRenderView:self.remoteView];

// Set delay management mode (optional).

[self.livePlayer setCacheParams:1.f maxTime:5.f]; // Auto mode

[self.livePlayer setCacheParams:1.f maxTime:1.f]; // Speed mode

[self.livePlayer setCacheParams:5.f maxTime:5.f]; // Smooth mode

https://console.intl.cloud.tencent.com/live/
https://intl.cloud.tencent.com/document/product/647/50755#7793cc61deebd412cb1f1b8c4762cb3e

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 355 of 588

// Concatenate the pull URLs for playback.

NSString *flvUrl = [NSString stringWithFormat:@"http://%@/live/%@.flv", PLAY_DOMAIN

NSString *hlsUrl = [NSString stringWithFormat:@"http://%@/live/%@.m3u8", PLAY_DOMAI

NSString *rtmpUrl = [NSString stringWithFormat:@"rtmp://%@/live/%@", PLAY_DOMAIN, s

NSString *webrtcUrl = [NSString stringWithFormat:@"webrtc://%@/live/%@", PLAY_DOMAI

// Start playing.

[self.livePlayer startLivePlay:flvUrl];

// Custom set fill mode (optional).

[self.livePlayer setRenderFillMode:V2TXLiveFillModeFit];

// Custom video rendering direction (optional).

[self.livePlayer setRenderRotation:V2TXLiveRotation0];

Note:
The playback domain name PLAY_DOMAIN requires you to Add Your Own Domain in the CSS console for live
streaming playback. You also should configure domain CNAME.
The live streaming feature requires setting the License before success in playback. Otherwise, playback will fail (black

screen). It needs to be set globally only once. If you have not obtained the License, you can freely apply for a Trial
Version License for normal playback. The Official Version License requires purchase.

 [TXLiveBase setLicenceURL:LICENSEURL key:LICENSEURLKEY];

Step 3: The audience interacts via mic.

1. Viewers who want to co-broadcasting need to enter the TRTC room for real-time interaction with the anchor.

// Enter the TRTC room and start streaming.

- (void)enterRoomWithUserId:(NSString *)userId roomId:(NSString *)roomId {

 TRTCParams *params = [[TRTCParams alloc] init];

 // Take the room ID string as an example.

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend.

 params.userSig = @"userSig";

 // Replace with your SDKAppID.

 params.sdkAppId = 0;

 // Specify the anchor role.

 params.role = TRTCRoleAnchor;

 // Enable local audio and video capture.

 [self startLocalMedia];

 // Enter the room in an interactive live streaming scenario.

 [self.trtcCloud enterRoom:params appScene:TRTCAppSceneLIVE];

}

https://intl.cloud.tencent.com/document/product/267/35970
https://intl.cloud.tencent.com/document/product/267/31057
https://console.intl.cloud.tencent.com/vod/license
https://buy.intl.cloud.tencent.com/license

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 356 of 588

// Enable local video preview and audio capture.

- (void)startLocalMedia {

 // Set video encoding parameters to determine the picture quality seen by remot

 TRTCVideoEncParam *encParam = [[TRTCVideoEncParam alloc] init];

 encParam.videoResolution = TRTCVideoResolution_480_270;

 encParam.videoFps = 15;

 encParam.videoBitrate = 550;

 encParam.resMode = TRTCVideoResolutionModePortrait;

 [self.trtcCloud setVideoEncoderParam:encParam];

 // isFrontCamera can specify using the front/rear camera for video capture.

 [self.trtcCloud startLocalPreview:self.isFrontCamera view:self.audiencePreviewV

 // Here you can specify the audio quality, from low to high as SPEECH/DEFAULT/M

 [self.trtcCloud startLocalAudio:TRTCAudioQualityDefault];

}

// Event callback for the result of entering the room.

- (void)onEnterRoom:(NSInteger)result {

 if (result > 0) {

 // result indicates the time taken (in milliseconds) to join the room.

 NSLog(@"Enter room succeed!");

 } else {

 // result indicates the error code when you fail to enter the room.

 NSLog(@"Enter room failed!");

 }

}

Note:
You can set the video encoding parameters TRTCVideoEncParam according to business needs. For the best
combinations of resolutions and bitrates for each tier, see Resolution and Bitrate Reference Table.
2. The mic-connection audience start subscribing to the anchor's audio and video streams after they successfully
enter the room.

- (void)onUserAudioAvailable:(NSString *)userId available:(BOOL)available {

 // The remote user publishes/unpublishes their audio.

 // Under the automatic subscription mode, you do not need to do anything. The S

}

- (void)onUserVideoAvailable:(NSString *)userId available:(BOOL)available {

 // The remote user publishes/unpublishes the primary video.

 if (available) {

 // Subscribe to the remote user's video stream and bind the video rendering

 [self.trtcCloud startRemoteView:userId streamType:TRTCVideoStreamTypeBig vi

 } else {

 // Unsubscribe to the remote user's video stream and release the rendering

 [self.trtcCloud stopRemoteView:userId streamType:TRTCVideoStreamTypeBig];

https://intl.cloud.tencent.com/document/product/647/35153#trtcvideoencparam
https://intl.cloud.tencent.com/document/product/647/35153#.E5.88.86.E8.BE.A8.E7.8E.87.E7.A0.81.E7.8E.87.E5.8F.82.E7.85.A7.E8.A1.A8

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 357 of 588

 }

}

- (void)onFirstVideoFrame:(NSString *)userId streamType:(TRTCVideoStreamType)stream

 // The SDK starts rendering the first frame of the local or remote user's video

 if (![userId isEqualToString:@""]) {

 // Stop playing the CDN stream upon receiving the first frame of the anchor

 [self.livePlayer stopPlay];

 }

}

Note:
TRTC stream pulling startRemoteView can directly reuse the video rendering control previously used by the

CDN stream pulling setRenderView .

To avoid video interruptions when switching between stream pullers, it is recommended to wait until the TRTC first
frame callback onFirstVideoFrame is received before stopping the CDN stream pulling.

3. The anchor updates the publication of mixed media streams.

// Event callback for the mic-connection audience's room entry.

- (void)onRemoteUserEnterRoom:(NSString *)userId {

 if (![self.mixUserList containsObject:userId]) {

 [self.mixUserList addObject:userId];

 }

 [self updatePublishMediaToCDN];

}

// Update the publication of mixed media streams to the live streaming CDN.

- (void)updatePublishMediaToCDN {

 NSDate *date = [NSDate dateWithTimeIntervalSinceNow:0];

 // Set the expiration time for the push URLs.

 NSTimeInterval time = [date timeIntervalSince1970] + (24 * 60 * 60);

 // Generate authentication information. The getSafeUrl method can be obtained i

 NSString *secretParam = [self getSafeUrl:LIVE_URL_KEY streamName:self.streamNam

 // The target URLs for media stream publication.

 TRTCPublishTarget* target = [[TRTCPublishTarget alloc] init];

 // The target URLs are set for relaying the mixed streams to CDN.

 target.mode = TRTCPublishMixStreamToCdn;

 TRTCPublishCdnUrl* cdnUrl = [[TRTCPublishCdnUrl alloc] init];

 // Construct push URLs (in RTMP format) to the live streaming service provider.

 cdnUrl.rtmpUrl = [NSString stringWithFormat:@"rtmp://%@/live/%@?%@", PUSH_DOMAI

 // True means Tencent CSS push URLs, and false means third-party services.

 cdnUrl.isInternalLine = YES;

 NSMutableArray* cdnUrlList = [NSMutableArray array];

 // Multiple CDN push URLs can be added.

 [cdnUrlList addObject:cdnUrl];

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 358 of 588

 target.cdnUrlList = cdnUrlList;

 // Set media stream encoding output parameters.

 TRTCStreamEncoderParam* encoderParam = [[TRTCStreamEncoderParam alloc] init];

 encoderParam.audioEncodedSampleRate = 48000;

 encoderParam.audioEncodedChannelNum = 1;

 encoderParam.audioEncodedKbps = 50;

 encoderParam.audioEncodedCodecType = 0;

 encoderParam.videoEncodedWidth = 540;

 encoderParam.videoEncodedHeight = 960;

 encoderParam.videoEncodedFPS = 15;

 encoderParam.videoEncodedGOP = 2;

 encoderParam.videoEncodedKbps = 1300;

 TRTCStreamMixingConfig *config = [[TRTCStreamMixingConfig alloc] init];

 if (self.mixUserList.count) {

 NSMutableArray<TRTCUser *> *userList = [NSMutableArray array];

 NSMutableArray<TRTCVideoLayout *> *layoutList = [NSMutableArray array];

 for (int i = 1; i < MIN(self.mixUserList.count, 16); i++) {

 TRTCUser *user = [[TRTCUser alloc] init];

 // The integer room number is intRoomId.

 user.strRoomId = self.roomId;

 user.userId = self.mixUserList[i];

 [userList addObject:user];

 TRTCVideoLayout *layout = [[TRTCVideoLayout alloc] init];

 if ([self.mixUserList[i] isEqualToString:self.userId]) {

 // The layout for the anchor's video.

 layout.rect = CGRectMake(0, 0, 540, 960);

 layout.zOrder = 0;

 } else {

 // The layout for the mic-connection audience's video.

 layout.rect = CGRectMake(400, 5 + i * 245, 135, 240);

 layout.zOrder = 1;

 }

 layout.fixedVideoUser = user;

 layout.fixedVideoStreamType = TRTCVideoStreamTypeBig;

 [layoutList addObject:layout];

 }

 // Specify the information for each input audio stream in the transcoding s

 config.audioMixUserList = [userList copy];

 // Specify the information of position, size, layer, and stream type for ea

 config.videoLayoutList = [layoutList copy];

 }

 // Update the published media stream.

 [self.trtcCloud updatePublishMediaStream:self.taskId publishTarget:target encod

}

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 359 of 588

// Event callback for updating the media stream.

- (void)onUpdatePublishMediaStream:(NSString *)taskId code:(int)code message:(NSStr

 // When you call the publish media stream API (updatePublishMediaStream), the t

 // code: Callback result. 0 means success and other values mean failure.

}

Note:
To ensure continuous CDN playback without stream disconnection, you need to keep the media stream encoding
output parameter encoderParam and the stream name streamName unchanged.

Media stream encoding output parameters and mixed display layout parameters can be customized according to

business needs. Currently, up to 16 channels of audio and video input are supported. If a user only provides audio, it
will still be counted as one channel.
Switching between audio only, audio and video, and video only is not supported within the same task.
4. The off-streaming audience exit the room, and the anchor updates the mixed stream task.

// Set the player callback listener.

[self.livePlayer setObserver:self];

// The reusable TRTC video rendering control.

[self.livePlayer setRenderView:self.remoteView];

// Restart playing CDN media stream.

[self.livePlayer startLivePlay:flvUrl];

- (void)onVideoLoading:(id<V2TXLivePlayer>)player extraInfo:(NSDictionary *)extraIn

 // Video loading event.

}

// Video playback event.

- (void)onVideoPlaying:(id<V2TXLivePlayer>)player firstPlay:(BOOL)firstPlay extraIn

 if (firstPlay) {

 [self.trtcCloud stopAllRemoteView];

 [self.trtcCloud stopLocalAudio];

 [self.trtcCloud stopLocalPreview];

 [self.trtcCloud exitRoom];

 }

}

Note:
To avoid video interruptions when switching the stream puller, it is recommended to wait for the player's video
playback event onVideoPlaying before exiting the TRTC room.

// Event callback for the mic-connection audience's room exit.

- (void)onRemoteUserLeaveRoom:(NSString *)userId reason:(NSInteger)reason {

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 360 of 588

 if ([self.mixUserList containsObject:userId]) {

 [self.mixUserList removeObject:userId];

 }

 // The anchor updates the mixed stream task.

 [self updatePublishMediaToCDN];

}

// Event callback for updating the media stream.

- (void)onUpdatePublishMediaStream:(NSString *)taskId code:(int)code message:(NSStr

 // When you call the publish media stream API (updatePublishMediaStream), the t

 // code: Callback result. 0 means success and other values mean failure.

}

Step 4: The anchor stops the live streaming and exits the room.

- (void)exitRoom {

 // Stop all published media streams.

 [self.trtcCloud stopPublishMediaStream:@""];

 [self.trtcCloud stopLocalAudio];

 [self.trtcCloud stopLocalPreview];

 [self.trtcCloud exitRoom];

}

// Event callback for stopping media streams.

- (void)onStopPublishMediaStream:(NSString *)taskId code:(int)code message:(NSStrin

 // When you call the stop publishing media stream API (stopPublishMediaStream),

 // code: Callback result. 0 means success and other values mean failure.

}

// Event callback for exiting the room.

- (void)onExitRoom:(NSInteger)reason {

 if (reason == 0) {

 NSLog(@"Proactively call exitRoom to exit the room.");

 } else if (reason == 1) {

 NSLog(@"Removed from the current room by the server.");

 } else if (reason == 2) {

 NSLog(@"The current room is dissolved.");

 }

}

Note:
To stop publishing media streams, fill in an empty string for taskId . This will stop all the media streams you have

published.
After all resources occupied by the SDK are released, the SDK will throw the onExitRoom callback notification to

inform you.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 361 of 588

Advanced Features

The anchor initiates the cross-room competition.

1. Either party initiates the cross-room competition.

- (void)connectOtherRoom:(NSString *)roomId {

 NSMutableDictionary *jsonDict = [[NSMutableDictionary alloc] init];

 // The digit room ID is roomId.

 [jsonDict setObject:roomId forKey:@"strRoomId"];

 [jsonDict setObject:self.userId forKey:@"userId"];

 NSData *jsonData = [NSJSONSerialization dataWithJSONObject:jsonDict options:NSJ

 NSString *jsonString = [[NSString alloc] initWithData:jsonData encoding:NSUTF8S

 [self.trtcCloud connectOtherRoom:jsonString];

}

// Result callback for requesting cross-room mic-connection.

- (void)onConnectOtherRoom:(NSString *)userId errCode:(TXLiteAVError)errCode errMsg

 // The user ID of the anchor in the other room you want to initiate the cross-r

 // Error code. ERR_NULL indicates the request is successful.

 // Error message.

}

Note:
Both local and remote users participating in the cross-room competition must be in the anchor role and must have
audio or video uplink capabilities.

2. All users in both rooms will receive a callback indicating that the audio and video streams from the PK anchor in the
other room are available.

- (void)onUserAudioAvailable:(NSString *)userId available:(BOOL)available {

 // The remote user publishes/unpublishes their audio.

 // Under the automatic subscription mode, you do not need to do anything. The S

}

- (void)onUserVideoAvailable:(NSString *)userId available:(BOOL)available {

 // The remote user publishes/unpublishes the primary video.

 if (available) {

 // Subscribe to the remote user's video stream and bind the video rendering

 [self.trtcCloud startRemoteView:userId streamType:TRTCVideoStreamTypeBig vi

 } else {

 // Unsubscribe to the remote user's video stream and release the rendering

 [self.trtcCloud stopRemoteView:userId streamType:TRTCVideoStreamTypeBig];

 }

}

3. Either party exits the cross-room competition.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 362 of 588

// Exit the cross-room mic-connection.

[self.trtcCloud disconnectOtherRoom];

// Result callback for exiting cross-room mic-connection.

- (void)onDisconnectOtherRoom:(TXLiteAVError)errCode errMsg:(NSString *)errMsg {

}

Note:
After DisconnectOtherRoom() is called, you may exit the cross-room competition with all other room anchors.

Either the initiator or the receiver can call DisconnectOtherRoom() to exit the cross-room competition.

Integrate the third-party beauty features.

TRTC supports integrating third-party beauty effect products. Use the example of Tencent Effect to demonstrate the
process of integrating the third-party beauty features.
1. Integrate the Tencent Effect SDK, and apply for an authorization license. For details, see Integration Preparation for
steps.

2. Set the SDK material resource path (if any).

NSString *beautyConfigPath = [NSSearchPathForDirectoriesInDomains(NSDocumentDirecto

beautyConfigPath = [beautyConfigPath stringByAppendingPathComponent:@"beauty_config

NSFileManager *localFileManager=[[NSFileManager alloc] init];

BOOL isDir = YES;

NSDictionary * beautyConfigJson = @{};

if ([localFileManager fileExistsAtPath:beautyConfigPath isDirectory:&isDir] && !isD

 NSString *beautyConfigJsonStr = [NSString stringWithContentsOfFile:beautyConfig

 NSError *jsonError;

 NSData *objectData = [beautyConfigJsonStr dataUsingEncoding:NSUTF8StringEncodin

 beautyConfigJson = [NSJSONSerialization JSONObjectWithData:objectData

 options:NSJSONReadingMutableContainers

 error:&jsonError];

}

NSDictionary *assetsDict = @{@"core_name":@"LightCore.bundle",

 @"root_path":[[NSBundle mainBundle] bundlePath],

 @"tnn_"

 @"beauty_config":beautyConfigJson

};

// Initialize the SDK: Width and height are the width and height of the texture, re

self.xMagicKit = [[XMagic alloc] initWithRenderSize:CGSizeMake(width,height) assets

3. Set the video data callback for third-party beauty features. Pass the results of the beauty SDK processing each
frame of data into the TRTC SDK for rendering processing.

// Set the video data callback for third-party beauty features in the TRTC SDK.

[self.trtcCloud setLocalVideoProcessDelegete:self pixelFormat:TRTCVideoPixelFormat_

https://intl.cloud.tencent.com/document/product/1228/59955#8b6b50a0-939d-48a1-aac1-58c6009e4b78

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 363 of 588

#pragma mark - TRTCVideoFrameDelegate

// Construct the YTProcessInput and pass it into the SDK for rendering processing.

- (uint32_t)onProcessVideoFrame:(TRTCVideoFrame *_Nonnull)srcFrame dstFrame:(TRTCVi

 if (!self.xMagicKit) {

 [self buildBeautySDK:srcFrame.width and:srcFrame.height texture:srcFrame.te

 self.heightF = srcFrame.height;

 self.widthF = srcFrame.width;

 }

 if(self.xMagicKit!=nil && (self.heightF!=srcFrame.height || self.widthF!=srcFra

 self.heightF = srcFrame.height;

 self.widthF = srcFrame.width;

 [self.xMagicKit setRenderSize:CGSizeMake(srcFrame.width, srcFrame.height)];

 }

 YTProcessInput *input = [[YTProcessInput alloc] init];

 input.textureData = [[YTTextureData alloc] init];

 input.textureData.texture = srcFrame.textureId;

 input.textureData.textureWidth = srcFrame.width;

 input.textureData.textureHeight = srcFrame.height;

 input.dataType = kYTTextureData;

 YTProcessOutput *output = [self.xMagicKit process:input withOrigin:YtLightImage

 dstFrame.textureId = output.textureData.texture;

 return 0;

}

Note:

Steps 1 and 2 vary depending on the different third-party beauty products. And Step 3 is a general and important
step for integrating third-party beauty features into TRTC.
For scenario-specific integration guidelines of Tencent Effect, see Integrating Tencent Effect into TRTC SDK. For
guidelines on integrating Tencent Effect independently, see Integrating Tencent Effect SDK.

Dual-stream encoding mode

When the dual-stream encoding mode is enabled, the current user's encoder will output two video streams, a high-

definition large screen, and a low-definition small screen, at the same time (but only one audio stream). In this way,
other users in the room can choose to subscribe to the high-definition large screen or low-definition small screen
based on their network conditions or screen sizes.
1. Enable large-and-small-screen dual-stream encoding mode.

- (void)enableDualStreamMode:(BOOL)enable {

 // Video encoding parameters for the small-screen stream (customizable).

 TRTCVideoEncParam *smallVideoEncParam = [[TRTCVideoEncParam alloc] init];

 smallVideoEncParam.videoResolution = TRTCVideoResolution_480_270;

 smallVideoEncParam.videoFps = 15;

https://intl.cloud.tencent.com/document/product/1143/45390
https://intl.cloud.tencent.com/document/product/1143/45384

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 364 of 588

 smallVideoEncParam.videoBitrate = 550;

 smallVideoEncParam.resMode = TRTCVideoResolutionModePortrait;

 [self.trtcCloud enableEncSmallVideoStream:enable withQuality:smallVideoEncParam

}

Note:
When the dual-stream encoding mode is enabled, it will consume more CPU and network bandwidth. Therefore, it

may be considered for use on Mac, Windows, or high-performance Pads. It is not recommended for mobile devices.
2. Choose the type of remote user's video stream to pull.

// Optional video stream types when subscribing to a remote user's video stream.

[self.trtcCloud startRemoteView:userId streamType:TRTCVideoStreamTypeBig view:view]

// You can switch the size of the specified remote user's screen at any time.

[self.trtcCloud setRemoteVideoStreamType:userId type:TRTCVideoStreamTypeSmall];

Note:

When the dual-stream encoding mode is enabled, you can specify the video stream type as
 TRTCVideoStreamTypeSmall with streamType to pull a low-quality small video for viewing.

View rendering control

If your business involves scenarios of switching display zones, you can use the TRTC SDK to update the local
preview screen and update the remote user's video rendering control feature.

// Update local preview screen rendering control.

[self.trtcCloud updateLocalView:view];

// Update the remote user's video rendering control.

[self.trtcCloud updateRemoteView:view streamType:TRTCVideoStreamTypeBig forUser:use

Note:
The parameter view refers to the target video rendering control. And streamType only supports

 TRTCVideoStreamTypeBig and TRTCVideoStreamTypeSub .

Live Streaming Interactive Messages

Live streaming interaction is particularly important in live streaming scenarios. Users interact with the anchor through

like messages, gift messages, and bullet screen messages. The precondition for implementing the live interaction
feature is to activate the Instant Messaging (IM) service and import the IM SDK. For detailed guidelines, see Voice
Chat Room Integration Guide - Preparation for Integration.

Like message

https://intl.cloud.tencent.com/document/product/1228/59955#11eee571-8277-4639-961d-34eba818a429
https://intl.cloud.tencent.com/document/product/1228/59955#11eee571-8277-4639-961d-34eba818a429#3335554c-4b30-476c-8541-24553b2356bf
https://intl.cloud.tencent.com/document/product/1228/59955#11eee571-8277-4639-961d-34eba818a429#3335554c-4b30-476c-8541-24553b2356bf#99847e5e-e6f0-44a6-b9b2-82201a6636c3
https://intl.cloud.tencent.com/products/im
https://intl.cloud.tencent.com/document/product/1228/59943#55808226-ebdb-430b-bacb-f058ea0058b8

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 365 of 588

1. The liker sends custom group messages related to likes through the client. After it is sended successfully, the
business party renders the likes effect locally.

// Construct the likes message body.

NSDictionary *msgDict = @{

 @"type": @1, // Like type

 @"likeCount": @10 // Number of likes

};

NSDictionary *dataDict = @{

 @"cmd": @"like_msg",

 @"msg": msgDict

};

NSError *error;

NSData *data = [NSJSONSerialization dataWithJSONObject:dataDict options:0 error:&er

// Send custom group messages (it is recommended that like messages should be set t

[[V2TIMManager sharedInstance] sendGroupCustomMessage:data to:groupID priority:V2TI

 // Like messages sent successfully.

 // Local rendering of likes effect.

} fail:^(int code, NSString *desc) {

 // Failed to send like messages.

}];

2. Other users in the room receive callback for custom group messages. Then proceed with message parsing and
likes effect rendering.

// Custom group messages received.

[[V2TIMManager sharedInstance] addSimpleMsgListener:self];

- (void)onRecvGroupCustomMessage:(NSString *)msgID groupID:(NSString *)groupID send

 if (data.length > 0) {

 NSError *error;

 NSDictionary *dataDict = [NSJSONSerialization JSONObjectWithData:data optio

 if (!error) {

 NSString *command = dataDict[@"cmd"];

 NSDictionary *msgDict = dataDict[@"msg"];

 if ([command isEqualToString:@"like_msg"]) {

 NSNumber *type = msgDict[@"type"]; // Likes type.

 NSNumber *likeCount = msgDict[@"likeCount"]; // Number o

 // Render likes effect based on likes type and count.

 }

 } else {

 NSLog(@"Parsing error: %@", error.localizedDescription);

 }

 }

}

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 366 of 588

Gift messages

1. The sender initiates a request to the business server. Upon completing the billing and settlement, the business
server calls the REST API to send a custom message to the group.
1.1 Request URL sample:

https://xxxxxx/v4/group_open_http_svc/send_group_msg?

sdkappid=88888888&identifier=admin&usersig=xxx&random=99999999&contenttype=json

1.2 Request packet body sample:

{

 "GroupId": "@TGS#12DEVUDHQ",

 "Random": 2784275388,

 "MsgPriority": "High", // The priority of the message. Gift messages should be

 "MsgBody": [

 {

 "MsgType": "TIMCustomElem",

 "MsgContent": {

 // type: gift type; giftUrl: gift resource URL; giftName: gift name

 "Data": "{\\"cmd\\": \\"gift_msg\\", \\"msg\\": {\\"type\\": 1, \\"

 }

 }

]

}

2. Other users in the room receive a callback for custom group messages. Then proceed with message parsing and
gift effect rendering.

// Custom group messages received.

[[V2TIMManager sharedInstance] addSimpleMsgListener:self];

- (void)onRecvGroupCustomMessage:(NSString *)msgID groupID:(NSString *)groupID send

 if (data.length > 0) {

 NSError *error;

 NSDictionary *dataDict = [NSJSONSerialization JSONObjectWithData:data optio

 if (!error) {

 NSString *command = dataDict[@"cmd"];

 NSDictionary *msgDict = dataDict[@"msg"];

 if ([command isEqualToString:@"gift_msg"]) {

 NSNumber *type = msgDict[@"type"]; // Gift type.

 NSNumber *giftCount = msgDict[@"giftCount"]; // Number of gifts.

 NSString *giftUrl = msgDict[@"giftUrl"]; // Gift resource URL.

 NSString *giftName = msgDict[@"giftName"]; // Gift name.

 // Render gift effects based on gift type, count, resource URL, and

 }

 } else {

 NSLog(@"Parsing error: %@", error.localizedDescription);

https://intl.cloud.tencent.com/document/product/1047/34959

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 367 of 588

 }

 }

}

Bullet screen messages

Live showroom usually have text-based bullet screen message interactions. This can be achieved through the sending
and receiving of group chat regular text messages via IM.

// Send public screen bullet screen messages.

[[V2TIMManager sharedInstance] sendGroupTextMessage:text to:groupID priority:V2TIM_

 // Successfully sent bullet screen messages.

 // Local display of the message text.

} fail:^(int code, NSString *desc) {

 // Failed to send bullet screen messages.

}];

// Receive public screen bullet screen messages.

[[V2TIMManager sharedInstance] addSimpleMsgListener:self];

- (void)onRecvGroupTextMessage:(NSString *)msgID groupID:(NSString *)groupID sender

 // Rendering bullet screen messages based on sender info and message text.

}

Note:
The recommended priority setting is as follows. Gift messages should be set to high priority. Bullet screen messages

should be set to medium priority. Like messages should be set to low priority.
Sending group chat messages from the client will not trigger the message reception callback. Only other users within
the group can receive them.

Exception Handling

Exception error handling

When the TRTC SDK encounters an unrecoverable error, the error will be thrown in the onError callback. For

details, see Error Code Table.
1. UserSig related

UserSig verification failure will lead to room-entering failure. You can use the UserSig tool for verification.

Enumeration Value Description

ERR_TRTC_INVALID_USER_SIG -3320
Room entry parameter userSig is incorrect. Check
if TRTCParams.userSig is empty.

ERR_TRTC_USER_SIG_CHECK_FAILED -100018 UserSig verification failed. Check if the parameter

https://intl.cloud.tencent.com/document/product/647/35135
https://console.trtc.io/usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 368 of 588

 TRTCParams.userSig is filled in correctly or
has expired.

2. Room entry and exit related
If failed to enter the room, you should first verify the correctness of the room entry parameters. It is essential that the
room entry and exit APIs are called in a paired manner. This means that, even in the event of a failed room entry, the
room exit API must still be called.

Enumeration Value Description

ERR_TRTC_CONNECT_SERVER_TIMEOUT -3308
Room entry request timed out. Check if your
internet connection is lost or if a VPN is enabled.
You may also attempt to switch to 4G for testing.

ERR_TRTC_INVALID_SDK_APPID -3317
Room entry parameter sdkAppId is incorrect.
Check if TRTCParams.sdkAppId is empty.

ERR_TRTC_INVALID_ROOM_ID -3318

Room entry parameter roomId is incorrect.
Check if TRTCParams.roomId or
 TRTCParams.strRoomId is empty. Note
that roomId and strRoomId cannot be used
interchangeably.

ERR_TRTC_INVALID_USER_ID -3319
Room entry parameter userId is incorrect. Check
if TRTCParams.userId is empty.

ERR_TRTC_ENTER_ROOM_REFUSED -3340
Room entry request is denied. Check if
 enterRoom is called consecutively to enter
rooms with the same ID.

3. Device related
Errors for relevant monitoring devices. Prompt the user via UI in case of relevant errors.

Enumeration Value Description

ERR_CAMERA_START_FAIL -1301

Failed to open the camera. For example, if there is an
exception for the camera's configuration program (driver)
on a Windows or macOS device, you should try disabling
then re-enabling the device, restarting the machine, or
updating the configuration program.

ERR_MIC_START_FAIL -1302 Failed to open the mic. For example, if there is an
exception for the mic's configuration program (driver) on a
Windows or macOS device, you should try disabling then

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 369 of 588

re-enabling the device, restarting the machine, or
updating the configuration program.

ERR_CAMERA_NOT_AUTHORIZED -1314
The device of camera is unauthorized. This typically
occurs on mobile devices and may be due to the user
having denied the permission.

ERR_MIC_NOT_AUTHORIZED -1317
The device of mic is unauthorized. This typically occurs on
mobile devices and may be due to the user having denied
the permission.

ERR_CAMERA_OCCUPY -1316 The camera is occupied. Try a different camera.

ERR_MIC_OCCUPY -1319 The mic is occupied. This occurs when, for example, the
user is currently having a call on the mobile device.

Issues with the remote mirror mode not functioning properly.

In TRTC, video mirror settings are divided into local preview mirror setLocalRenderParams and video encoding

mirror setVideoEncoderMirror . These settings individually affect the mirror effect of the local preview and the

output of the video encoding (the mirror mode affects remote viewers and cloud recordings). If you expect the mirror

effect seen in the local preview to also take effect on the remote viewer's end, follow these encoding procedures.

// Set the rendering parameters for the local video.

TRTCRenderParams *params = [[TRTCRenderParams alloc] init];

params.mirrorType = TRTCVideoMirrorTypeEnable; // Video mirror mode

params.fillMode = TRTCVideoFillMode_Fill; // Video fill mode

params.rotation = TRTCVideoRotation_0; // Video rotation angle

[self.trtcCloud setLocalRenderParams:params];

// Set the video mirror mode for the encoder output.

[self.trtcCloud setVideoEncoderMirror:YES];

Issues with camera scale, focus, and switch.

In live showroom scenarios, the anchor may need to custom adjust the camera settings. The TRTC SDK's device
management class provides APIs for these needs.
1. Query and set the zoom factor for the camera.

// Get the maximum zoom factor for the camera (only for mobile devices).

CGFloat zoomRatio = [[self.trtcCloud getDeviceManager] getCameraZoomMaxRatio];

// Set the zoom factor for the camera (only for mobile devices).

// Value range is 1 - 5. 1 means the furthest field of view (normal lens), and 5 me

[[self.trtcCloud getDeviceManager] setCameraZoomRatio:zoomRatio];

2. Set the focus feature and position of the camera.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 370 of 588

// Enable or disable the camera's autofocus feature (only for mobile devices).

[[self.trtcCloud getDeviceManager] enableCameraAutoFocus:NO];

// Set the focus position of the camera (only for mobile devices).

// The precondition for using this API is to first disable the autofocus feature us

[[self.trtcCloud getDeviceManager] setCameraFocusPosition:CGPointMake(x, y)];

3. Determine and switch to front or rear cameras.

// Determine if the current camera is the front camera (only for mobile devices).

BOOL isFrontCamera = [[self.trtcCloud getDeviceManager] isFrontCamera];

// Switch to front or rear cameras (only for mobile devices).

// Incoming true means switching to front, and incoming false means switching to re

[[self.trtcCloud getDeviceManager] switchCamera:!isFrontCamera];

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 371 of 588

Live Shopping
Live Streaming with Goods
Scenario Solution
Last updated：2024-07-25 17:07:57

Scene Description

Live streaming with goods is an emerging e-commerce model that allows anchors to interact in real time with the
audience via live streaming platforms, showcasing and promoting products, thereby selling them. In this scene,
anchors typically present various products in the live streaming rooms, including clothing, cosmetics, and household

items, and explain product features, discount information, and usage methods to the audience. Audiences can ask
questions, comment, and purchase products in the live streaming rooms, achieving instant communication and
transactions. By using Tencent Cloud Tencent Real-Time Communication (TRTC) combined with Instant Messaging
(IM) and other products, you can easily set up a live shopping streaming room.

https://intl.cloud.tencent.com/products/trtc
https://intl.cloud.tencent.com/products/im

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 372 of 588

Implementation Scheme

Typically, implementing a complete live streaming with goods scene involves several functional modules: Room
Management, Seat Management, Product Management, Audio and Video Management, On-Cloud Recording, etc.

The key actions and feature points under each functional module are shown in the table below. Each functional
module will be introduced individually to provide a comprehensive understanding of the functionalities required for
building a live shopping scene.

Functional Module Key Actions and Feature Points

Room Management Create a room, enter a room, exit a room, and destroy a room.

Seat Management Request to speak, become a listener, invite a listener to speak, remove a
speaker, and mute a speaker.

Product Management Product list management, product pop-up management, and jump and
payment.

https://intl.cloud.tencent.com/document/product/1228/60245#e087b511-502a-4993-8a52-e74c6c15280b
https://intl.cloud.tencent.com/document/product/1228/60245#e087b511-502a-4993-8a52-e74c6c15280b#de8aad6c-c124-4597-a6ad-7b7bc4310625
https://intl.cloud.tencent.com/document/product/1228/60245#e087b511-502a-4993-8a52-e74c6c15280b#de8aad6c-c124-4597-a6ad-7b7bc4310625#dd06f366-3b8f-4cf6-a8f4-11e855121ee2
https://intl.cloud.tencent.com/document/product/1228/60245#e087b511-502a-4993-8a52-e74c6c15280b#de8aad6c-c124-4597-a6ad-7b7bc4310625#dd06f366-3b8f-4cf6-a8f4-11e855121ee2#9b3aa201-586b-463d-aa0d-f0e79110177f
https://intl.cloud.tencent.com/document/product/1228/60245#e087b511-502a-4993-8a52-e74c6c15280b#de8aad6c-c124-4597-a6ad-7b7bc4310625#dd06f366-3b8f-4cf6-a8f4-11e855121ee2#9b3aa201-586b-463d-aa0d-f0e79110177f#3a21cbfa-21f5-4ac0-872a-a2f4a3098466

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 373 of 588

Audio and Video Management Local streaming, remote pull-streaming, and audience Mic connection.

On-Cloud Recording TRTC on-cloud recording.

The overall business architecture of the live streaming with goods scene is shown in the figure below. The speaker
creates a room, and other users can join the rooms they are interested in. Upon entering the room, users off the

microphone can join the microphone to interact with the speaker via audio and video. The speaker is also responsible
for maintaining the product list, and explaining and publishing products. Typically, for compliance requirements, the
audio and video content in the live streaming room needs to be recorded and reviewed.

Note:
The solution shown here is the RTC real-time interactive live streaming solution. In actual applications, the RTC CDN
live streaming solution may also be used. For details, please refer to Alternative Solutions.

https://intl.cloud.tencent.com/document/product/1228/60245#52b2cac8-3db4-4748-8280-1cb2976c28d9

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 374 of 588

Room Management

The Room Management Module is primarily responsible for maintaining the room list and includes the following
features:
Create Room: After users log in to the business system, they can create a room. The room list needs to be updated

after a room is created.
Enter a Room: Users can choose to enter an existing room. Upon entering, the current list of room members should be
updated.
Exit a Room: Users can choose to exit the current room. Upon exiting, the current list of room members needs to be
updated with a delete operation.

Destroy a Room: After all users exit the room, it needs to be destroyed. Upon destruction, the room list needs to be
updated with a delete operation.
Note:
Room Management is a necessary module for implementing live shopping, but it is not the main functional module. It
can be implemented in conjunction with the business system and IM&TRTC SDK, see Voice Chat Room - Room
Management for details.

Seat Management

Seats in a live streaming room are generally ordered and limited. Seat Management is primarily responsible for
defining the number of seats in a room based on the business scene, as well as managing the status of all seats in the
current room. Seat Management mainly includes: request to speak, become a listener, invite a listener to speak,
remove a speaker, and mute a speaker.
After users enter a room, only idle seats can be applied for.

After the anchor approves a user to become a speaker, the seat status needs to be changed to non-idle.
After becoming a listener, the co-anchoring user needs to stop local streaming and reset the seat status.
The anchor has the authority to lock the seat, invite a listener to speak, remove a speaker, mute a speaker, etc.
Note:
Seat Management is a necessary module for implementing live shopping, but it is not the main functional module. It

can be implemented in conjunction with the business system and IM&TRTC SDK, see Voice Chat Room - Seat
Management for details.

Product Management

The Product Management Module is unique to live shopping scenes and generally includes product list management,
product pop-up management, product link jump, and payment. The following image displays the basic process of
product management:

https://intl.cloud.tencent.com/document/product/1228/59940#45608109-3c99-471b-9911-2ddf76785e47
https://intl.cloud.tencent.com/document/product/1228/59940#f6b567ce-31cc-4bff-bc6b-c26483820a6f

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 375 of 588

Product List Management
Product list management is the basic feature of product management, mainly including the addition, deletion,
modification, and query of products. Usually, we store various information about products in the backend database,
such as product name, description, price, inventory, and images. On the frontend, we can obtain this information
through APIs and display it to users in the form of a list.

Product Pop-up Management
During the process of live streaming with goods, as the anchor talks about and lists products, it's often necessary to
pop up corresponding product information on the audience's end to prompt them to browse and purchase. The
product information pop-up feature can be achieved in the following two ways. You can choose one based on your
business needs:
Custom Message

Generally, product information pop-ups can be achieved by sending custom messages to the live streaming room, and
parsed and displayed after the audience in the live streaming room receives the custom messages. The sending and
receiving of custom messages can be implemented by the business side or through Tencent Cloud Instant Messaging
(IM) Group Messages. For specific implementation, see Product Information Pop-up - Custom Messages.
SEI Information

SEI (Supplemental Enhancement Information) provides a method to add additional information to a video stream. You
can use Tencent Real-Time Communication (TRTC) Sending SEI Information to insert specified product information
into the anchor's video stream. The audience in the live streaming room who are watching the stream can receive SEI
messages, which will then be parsed and displayed. Based on the characteristics of SEI, this method can achieve
precise synchronization between product information pop-ups and the anchor's live streaming screen. For specific

implementation, see Product Information Pop-up - SEI Information.
Product Link Jump and Payment
After selecting products in the live streaming room, the audience needs to click on the product link, and jump to the
specific E-commerce shop for order confirmation and payment. The E-commerce shop here can be an in-platform

https://intl.cloud.tencent.com/document/product/1047/33526
https://intl.cloud.tencent.com/document/product/1228/60247#68e894f0-b443-48c9-974b-18a8afa4e0bb
https://intl.cloud.tencent.com/document/product/647/50762#52a919f9f3a990ebd08679bd47aa69bb
https://intl.cloud.tencent.com/document/product/1228/60247#742cb382-d825-4d72-b802-62dadf597932

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 376 of 588

store or an integrated third-party platform store. After the user completes the payment, we also need to obtain the
payment result to update the sales status and inventory information of the product.
Note:

The above product management module is for reference only. In actual applications, you need to design and deploy
according to your business needs.

Audio and Video Management

For standard live shopping scenes (audience size not exceeding 100,000 people), we recommend the RTC Real-
time Interaction Solution: both the anchor and the audience use the RTC protocol for publishing/playback,
minimizing end-to-end delay and ensuring a smoother experience for the audience when joining and leaving the mic,

without abrupt changes such as image fast-forwarding or rewinding. Taking the example of multi-person co-anchoring
interactive live streaming, the main architecture of pure RTC publishing/playback in a live shopping scene is as shown
in the figure below:

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 377 of 588

The overall process of this solution architecture is as follows:
1. Both the anchor and audience connect through the signaling module, which is mainly responsible for controlling the
live streaming process and synchronizing the live streaming status.

2. Regardless of whether there are mic-connecting audiences or not, both the anchor and the audience use the TRTC
audio and video cloud service for publishing/playback.
3. After the audience requests to mic connect with the anchor, the signaling module will notify the anchor and
synchronize the personal information of the co-speakers.
4. Once the anchor accepts the mic connection request, the mic-connecting audience starts streaming, and all
members in the room receive stream update notifications and pull the audio-video stream of the mic-connecting

audience.
5. When a mic-connecting audience member requests to disconnect, they stop streaming. All members in the room
will receive stream update notifications and stop pulling that audience's audio and video stream.
Note:

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 378 of 588

The signaling module can be a custom-developed signaling channel, and it is also recommended to use Instant
Messaging (IM) for signaling interaction.
For large-scale live shopping scenes (with over 100,000 audience members in a single room), it is necessary to use

the RTC CDN live streaming solution. For details, see Alternative Solutions.

On-Cloud Recording

TRTC's newly upgraded on-cloud recording does not depend on cloud streaming services. It does not require a
relayed push for cloud live streaming and uses TRTC's internal real-time recording cluster for audio and video
recording, offering a more comprehensive and unified recording experience.
Single Stream Recording: With TRTC's on-cloud recording feature, you can record the audio and video stream of

each user in the room into separate files.

Mix Stream Recording: Record the audio-video media streams of the same room as a single file.

https://intl.cloud.tencent.com/products/im
https://intl.cloud.tencent.com/document/product/1228/60245#52b2cac8-3db4-4748-8280-1cb2976c28d9

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 379 of 588

Note:
For a detailed introduction and activation guide to TRTC On-Cloud Recording, see On-Cloud Recording.

Key Business Logic

Product Explanation Replay

Product Explanation Replay is an essential feature for live shopping scenes, which is generally divided into In-live
Replay and Post-live Replay. Product Explanation Replay helps latecomers and users who missed the live streaming
to independently review the product explanation given during the live streaming by the anchor, thus increasing sales
volume and improving the conversion rate. The Product Explanation Replay feature can be implemented in the
following two ways.

Recorded Replay

Recorded Replay is a common way to implement the Product Explanation Replay feature, which is simple to
implement and does not limit the timing of the replay. Below is the basic process for implementing Product Explanation
Replay using Recorded Replay.
1. Record Explanation Material
Specify Recording Mode (RecordMode)

Single Stream Recording: Record each anchor's audio and video stream in the room into separate audio and video
files and upload them to the cloud storage platform.
Mixed Stream Recording: Mix all the audio and video streams of all anchors you subscribe to in the room into one
audio and video file and upload it to the cloud storage platform.
Specify Storage Location and Recording Format (StorageParams)
Storage Location: Supports storage to Cloud Video on Demand (VOD) or Cloud Object Storage (COS). You can

specify CloudStorage (COS parameters) or CloudVod (VOD parameters) through the StorageParams parameter; it

https://intl.cloud.tencent.com/document/product/647/45169
https://intl.cloud.tencent.com/document/api/647/36760#recordparams
https://intl.cloud.tencent.com/document/api/647/36760#storageparams
https://intl.cloud.tencent.com/products/vod
https://intl.cloud.tencent.com/products/cos
https://intl.cloud.tencent.com/document/api/647/36760#storageparams
https://intl.cloud.tencent.com/document/api/647/36760#cloudvod
https://intl.cloud.tencent.com/document/api/647/36760#cloudstorage

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 380 of 588

does not support setting both VOD and COS simultaneously.
Recording Format: When the file is stored in COS, the default recording format is HLS; you can modify the recorded
file format through the OutputFormat parameter under RecordParams. When the file is stored in VOD, the default

recording format is MP4; you can modify the recorded file format through the MediaType parameter under
TencentVod.
Start Recording Task (CreateCloudRecording)
To start on-cloud recording, call the REST API (CreateCloudRecording) through your backend service. Pay special
attention to the parameter Task ID (TaskId); this parameter is the unique identifier for this recording task. You need

to save this Task ID as it will be required for subsequent operations related to this recording task.
Note:
In the CreateCloudRecording API to initiate on-cloud recording tasks, you need to specify the parameters UserId and
UserSig needed for assigning a recording Chatbot to enter the room (How to Obtain UserSig). Please ensure that the
UserId is not duplicated with those of the regular anchors or audience in your room and does not match the UserId of a
recording Chatbot already assigned to a room in the midst of recording; otherwise, it will lead to the failure of the

recording task.
Stop Recording Task (DeleteCloudRecording)
You can timely stop on-cloud recording tasks by calling the REST API (DeleteCloudRecording) through your backend
service, requiring the Task ID (TaskId) parameter returned when starting the recording task.
2. Obtain Playback Address

Method 1: Manual Search
After the recording task ends, the files recorded by the TRTC recording system will be uploaded to the cloud storage
platform specified by you (Cloud Video on Demand (VOD) or Cloud Object Storage (COS)). You can directly go to the
VOD Console or COS Console to locate the desired recorded media files and manually obtain the playback address.
Method 2: Callback Reception

You can also configure the recording callback URL in the console, allowing the cloud platform to proactively push the
message of new recording files to your server. After the recording file is successfully transferred, the cloud platform
will send a notification to your server through the callback address (HTTP/HTTPS) set in the console. It will push the
recording and related events to your server through the callback address you set. You can receive the playback
address VideoUrl of the recording file by accepting the upload success callback with an event type of 311. The
callback example information is as follows:

{

 "EventGroupId": 3,

 "EventType": 311,

 "CallbackTs": 1622191965320,

 "EventInfo": {

 "RoomId": "20015",

 "EventTs": 1622191965,

 "UserId": "xx",

 "TaskId": "xx",

https://intl.cloud.tencent.com/document/api/647/36760#recordparams
https://intl.cloud.tencent.com/document/api/647/36760#tencentvod
https://intl.cloud.tencent.com/document/api/647/46960
https://intl.cloud.tencent.com/document/api/647/46960
https://intl.cloud.tencent.com/document/product/647/35166
https://intl.cloud.tencent.com/document/api/647/46959
https://intl.cloud.tencent.com/document/api/647/46959
https://console.intl.cloud.tencent.com/vod
https://console.intl.cloud.tencent.com/cos
https://intl.cloud.tencent.com/document/product/647/39559#fedd0ff6-9bae-4772-bc9f-ebcacaae6a55
https://console.intl.cloud.tencent.com/trtc

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 381 of 588

 "Payload": {

 "Status": 0,

 "TencentVod": {

 "UserId": "xx",

 "TrackType": "audio_video",

 "MediaId": "main",

 "FileId": "xxxx",

 "VideoUrl": "http://xxxx",

 "CacheFile": "xxxx.mp4",

 "StartTimeStamp": xxxx,

 "EndTimeStamp": xxxx

 }

 }

 }

}

3. Play Recorded Video

After completing the preliminary preparations, you can call startVodPlay of TXVodPlayer to play the recorded

product explanation video. TXVodPlayer will automatically recognize the playback protocol, and you only need to pass
the playback URL to the startVodPlay function. For more code examples, please see Quick Integration Guide -

Product Explanation Replay.
Android

iOS

// Play URL video resource

String url = "http://1252463788.vod2.myqcloud.com/xxxxx/v.f20.mp4";

mVodPlayer.startVodPlay(url);

// Play URL video resource

NSString* url = @"http://1252463788.vod2.myqcloud.com/xxxxx/v.f20.mp4";

[_txVodPlayer startVodPlay:url];

Note:
For on-demand playback, the Player SDK is needed, but there's no need for separate integration, and you just need to
integrate the full feature version of LiteAVSDK, as detailed in Quick Access Guide - Import SDK.

Live Streaming Time Shift

Live Streaming Time Shift can also achieve the product explanation replay feature, but it only supports revisiting the
product explanation during the live streaming and does not support replay after the live streaming. Below is the basic
process of using Live Streaming Time Shift for product explanation replay.

1. Enable Relayed Push
Global Automatic Relayed Push

https://liteav.sdk.qcloud.com/doc/api/en/group__TXVodPlayer__android.html#af5a7d14ba9434a9f479d34d6a71c0d16
https://intl.cloud.tencent.com/document/product/1228/60247#0d4157ed-03f5-4f4b-9e84-71f63bef3334
https://intl.cloud.tencent.com/document/product/266/7836
https://intl.cloud.tencent.com/document/product/1228/60247#357d8a07-1b5c-4565-9545-04a5e85f5d7e

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 382 of 588

If you need to automatically relay all anchors' audio and video streams in the room to live streaming CDN, you need to
enable Relay to CDN in the TRTC console Advanced Features page.

Relayed Push of the Specified Streams
If you need to manually specify the audio and video streams to be published to live streaming CDN, or publish the
mixed audio and video streams to live streaming CDN, you can do so by calling the startPublishMediaStream API. In
this case, you do not need to activate global automatically relaying to CDN in the console. For a detailed introduction,

see Publish Audio and Video Streams to Live Streaming CDN.
2. Create Time Shift Template
Go to CSS Console - Feature Configuration - Live Streaming Time Shift, click Create Template, fill in the relevant
parameters and click Save. Finally, follow the prompts to Bind Push Domain Name.

https://console.trtc.io/features
https://intl.cloud.tencent.com/document/product/647/50762#bb3260a94c9fe97ee7231fe849fec1d4
https://intl.cloud.tencent.com/document/product/647/47858
https://console.intl.cloud.tencent.com/live/config/time-shift

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 383 of 588

3. Construct Play Request
Live Streaming Time Shift can only be distributed through the HLS protocol. Specify the time to revisit in the M3U8
request parameters, which is the time segment when the anchor explains the product.
The general HLS live streaming address format is http://domain/appname/stream.m3u8 . To support the

time shift playback, time shift parameters need to be appended to this address, as shown in the table below:

Field Name Meaning Required
or Not

Example

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 384 of 588

txTimeshift Value on: enable new live streaming time shift. Yes txTimeshift=on

tsStart
Time shift start time, the interval between tsStart
and tsEnd cannot be less than the duration of
one Ts shard and cannot be more than 6 hours.

Yes tsStart=20121010010101

tsEnd
Time shift end time, the interval between tsStart
and tsEnd cannot be less than the duration of
one Ts shard and cannot be more than 6 hours.

Yes tsEnd=20121010010102

tsFormat

The value format for tsStart and tsEnd is
 {timeformat}_{unit}_{zone} .
timeformat value:
unix: unix timestamp. If 'unix' is selected, the
'zone' part can be ignored.
human: human-readable time, 20121010010101
unit: s/ms, unit in seconds or milliseconds
zone: Time zones are divided into East and West
Zones:
The range for the East Zone is 1 ~ 12.
The range for the West Zone is -12 ~ -1.

Yes tsFormat=unix_s
tsFormat=human_s_8

tsCodecname
For transcoding streams, it's necessary to
specify the template name. Original streams and
watermark streams do not carry this field.

No tsCodecname=hd

Below are examples of playback requests for both time formats:

// Playback request with unix-format time

http://example.domain.com/live/stream.m3u8?

txTimeshift=on&tsFormat=unix_s&tsStart=1675302995&tsEnd=1675303025&tsCodecname=

test

// Playback request with human-format time

http://example.domain.com/live/stream.m3u8?

txTimeshift=on&tsFormat=human_s_8&tsStart=20230202095635&tsEnd=20230202095705&t

sCodecname=test

Note:

The Live Streaming Time Shift feature is a paid value-added service. Using the Live Streaming Time Shift feature will
generate a time-shift bill, see Billing Documentation for billing rules.
The Live Streaming Time Shift feature is only applicable to RTC CDN live streaming solutions. For more details on
implementing the Live Streaming Time Shift feature, see Live Streaming Time Shift.

https://intl.cloud.tencent.com/document/product/267/53262
https://intl.cloud.tencent.com/document/product/267/31565

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 385 of 588

Integrating Beauty Effect

In the live shopping scene, the beauty effect is also a frequently used feature. It not only improves the beauty of the
anchor but also adds fun to live interaction through various sticker effects. TRTC supports the integration of Tencent
Effect SDK as well as the integration of mainstream third-party beauty effect products in the market, such as Volcano

Beauty, and FaceUnity.

Beauty Effect Integration Process

API Call Sequence

https://intl.cloud.tencent.com/products/x-magic

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 386 of 588

App

App

TRTCCloud

TRTCCloud

Beauty

Beauty

sharedInstance Create TRTC Instance

addListener Add TRTC Event Callback

setLocalVideoProcessListener Set Video Data Callback for Third-Party Beauty

startLocalPreview Start Local Camera Preview

onGLContextCreated Notification that SDK's Internal OpenGL Environment has been Created

Third-Party Beauty Initialization

loop
onProcessVideoFrame Video Processing Callback for Third-party Beauty Component Connecting

Third-Party Beauty Processing

Writeback of Beauty Video Data

stopLocalPreview Stop Camera Preview

onGLContextDestory Notification that SDK's Internal OpenGL Environment has been Destroyed

Third-party Beauty Resource Destruction

Comparison of Beauty Products

Beauty
Type

Beauty
Effect

Integration
Cost Fees

Virtual AI
Digital
Human

Support Terminal

Tencent
Effect
SDK

The basic
effect is
good,
advanced
effect for big
eyes/slim
faces is
significant.

Moderately
Low

Moderate Supported Android/iOS/PC/Flutter/Web/Mini
Program

FaceUnity
Effect
SDK

The basic
effect is
good,
advanced
effects like
big eyes/slim
faces are
average.

Moderately
High

Moderate Supported Android/iOS/PC/Untiy

https://intl.cloud.tencent.com/products/x-magic
https://www.faceunity.com/effects.html

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 387 of 588

Volcano
Effect
SDK

The basic
effect is
good,
advanced
effects like
big eyes/slim
faces are
relatively
good.

Moderately
High

Relatively
High Supported Android/iOS/PC/Linux

Cross-room Co-hosting Competition

Connecting anchors across rooms for cross-room competition is a novel approach in the live shopping scene.
Interactive competition can enhance the entertainment value of live streaming and to some extent, and stimulate the
audience's desire to shop. TRTC supports cross-room competition across multiple rooms and among multiple
anchors. Below, we introduce specific implementation methods.
1. How It Works
By default, only users in the same room can have audio and video calls, and the audio and video streams between

different rooms are isolated. Through the cross-room competition, the audio and video streams of an anchor in another
room can be published in the current room, while the audio and video streams of the current anchor will also be
published in the target anchor's room. This allows anchors in different rooms to share audio and video streams across
rooms, enabling audiences in each room to watch the audio and video of both anchors.

https://www.volcengine.com/product/intelligent-interactive-effects

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 388 of 588

The figure above shows the main process of cross-room competition. For example: After anchor A in room 101
establishes a cross-room call with anchor B in room 102 using ConnectOtherRoom() :

Users in room 101 will receive two event callbacks from anchor B: onRemoteUserEnterRoom(B) and

 onUserVideoAvailable(B,true) . Therefore, users in room 101 can subscribe to the audio and video of

anchor B.
Users in room 102 will receive two event callbacks from anchor A: onRemoteUserEnterRoom(A) and

 onUserVideoAvailable(A,true) . Therefore, users in room 102 can subscribe to the audio and video of

anchor A.
Note:
Both local and peer users participating in cross-room competition must be in the anchor role and must have
audio/video uplink capabilities.
Cross-room competition with multiple room anchors can be achieved by calling ConnectOtherRoom() multiple

times. Currently, a room can connect with up to three other room anchors at most, and up to 10 anchors in a room can

conduct cross-room competition with anchors in other rooms.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 389 of 588

TRTC cross-room competition can also be achieved by createSubCloud() to create a sub-instance and join the

publishing/playback of another room. Currently, there is no limit to the number of sub-instances, facilitating the future
expansion of business scenes involving PK between multiple rooms or anchors.

2. Real-Time Interactive Cross-Room Competition Process
RTC real-time interaction solution The cross-room competition process is straightforward. Anchors and cross-room
competition anchors mutually pull RTC single streams, and the audience simultaneously pulls the RTC single streams
of both anchors and cross-room competition anchors. The audience can independently control the subscription logic
of the media streams of anchors and cross-room connecting anchors. The RTC real-time interactive cross-room

competition process is shown in the figure below:

Note:
In real-time interactive cross-room competition scenes, audiences in the room can independently control the logic of
subscribing to the media streams of cross-room connecting anchors, or it can be changed by the room owner to
<1>change the uplink capability of a cross-room anchor in their rooms<1>.

https://intl.cloud.tencent.com/document/product/1228/60245#9b3aa201-586b-463d-aa0d-f0e79110177f

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 390 of 588

Alternative Solutions

Apart from the recommended RTC Real-time Interaction Solution in the scene implementation scheme, another
alternative solution for the live shopping scene without limiting the audience size usually exists: RTC CDN Live
Streaming Solution.

RTC CDN Live Streaming Solution

The anchor uses the TRTC protocol for publishing/playback and relayed push of Tencent Cloud Streaming Services
or a third-party live streaming platform. General audiences pull the CDN stream to watch while mic-connecting
audiences engage in interactive co-anchoring by switching to the TRTC protocol for streaming. This solution is a
commonly used compromise, with a higher delay for both watching and mic connecting on the audience side.
However, it offers advantages in terms of cost-effectiveness and audience scalability. The whole architecture is shown

in the figure below:

https://intl.cloud.tencent.com/document/product/1228/60245#9b3aa201-586b-463d-aa0d-f0e79110177f
https://intl.cloud.tencent.com/document/product/1228/60245#9b3aa201-586b-463d-aa0d-f0e79110177f#66849e11-c04a-4e76-8e59-16e8a8d238cd

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 391 of 588

The overall process of this solution is as follows:
1. The anchor enters the TRTC room, streams via the RTC protocol, and relays to Cloud Streaming Services.
2. Ordinary off-mic audiences pull CDN accelerated streams and watch through live streaming players.
3. Audiences can request to speak and become the mic-connecting audiences. They stop the CDN streaming and
switch to the RTC protocol for publishing/playback.

4. Audiences off the mic become general audiences. They stop the RTC protocol publishing/playback and switch to
the CDN streaming.
CDN stream playback addresses support multiple protocols such as RTMP/FLV/HLS/WebRTC, with splicing rules
detailed in Splicing Playback URL.
Different live streaming playback protocols have varying compatible platforms, play delays, and billing rules. See the

table below for details:

Live Streaming
Protocol

Advantages Disadvantages PlayDelay

https://intl.cloud.tencent.com/document/product/267/38393#.E6.8B.BC.E8.A3.85.E6.92.AD.E6.94.BE-url

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 392 of 588

FLV Mature, suited for high-
concurrency scenes

Requires integration of SDK for
playback

2s - 3s

RTMP Relatively low delay Poor performance in high-
concurrency scenes

1s - 3s

HLS(M3U8) High support on mobile
browsers

Very high delay 10s - 30s

WebRTC Lowest delay Requires integration of SDK for
playback

< 1s

Note:
Tencent Cloud Streaming Services supports multiple playback protocols. You can choose the appropriate pull stream
solution based on your business needs. For example, for delay-sensitive businesses, LEB pulling stream is
recommended.

HLS and WebRTC playback protocols support the adaptive bitrate feature, which allows smooth switching of
playback bitrate under different network conditions. See Adaptive Bitrate for details.

Smooth Mic On/Off Handling

In single-anchor low-frequency mic connection live streaming scenes, due to cost considerations, RTC CDN live
streaming solutions or third-party live streaming publishing/playback solutions are often used. In single-anchor
streaming, the anchor streams via RTC or third-party live streaming, while audiences pull streams via CDN. In
interactive co-anchoring scenes, both the anchor and audiences stream via RTC. This involves switching between

publishing/playback tools while maintaining a seamless experience for users. Below are the specific methods for
smooth mic on/off handling in both the RTC CDN live streaming and third-party live streaming publishing/playback
solutions.
1. RTC CDN Live Streaming Solution
Under the RTC CDN live streaming solution, the anchor always uses the TRTC SDK for publishing/playback. During

mic connects, only the mic-connecting audience needs to switch the publishing/playback tools, and the rendering
control can be reused.

https://intl.cloud.tencent.com/document/product/1071/44558
https://intl.cloud.tencent.com/document/product/267/50271

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 393 of 588

2. Third-Party Live Streaming Publishing/Playback Solution
In the third-party live streaming publishing/playback solution, during mic connects, both the anchor and the mic-
connecting audience need to switch the publishing/playback control. It is recommended to use TRTC's custom
capture and rendering features.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 394 of 588

Note:
Smooth Mic on: To avoid screen interrupts when switching the stream puller, it is suggested to wait for the TRTC's
first frame callback onFirstVideoFrame before stopping the CDN streaming.

Smooth Mic off: To avoid screen interrupts when switching the stream puller, it is suggested to wait for the video play
event onVideoPlaying before stopping the RTC streaming.

CDN Live Streaming in Cross-Room Competition

In the RTC CDN live streaming scene, the process of cross-room competition is relatively complex. Anchors pull RTC

single streams from each other and CDN audiences pull the mixed streams from both the anchor and the cross-room
competition anchor. Audiences cannot independently control the subscription logic of the anchor and cross-room
competition anchor's media streams. The process for cross-room competition in a CDN live streaming scene is shown
in the figure below:

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 395 of 588

Note:
In the CDN live streaming in cross-room competition scene, CDN audiences cannot independently control the
subscription logic of the cross-room connected anchor's media stream. It needs to be uniformly controlled by the
anchor through updating and publishing the media stream.

Scene Approach

Single-anchor Live Streaming with Goods

Single-anchor live streaming with goods is the most common and basic approach in live shopping scenes. In such a

scene, there is only one anchor in the live streaming room, and roles such as co-anchor do not exist. Audiences can
enter the live streaming room to watch the live streaming, interact, and shop. The single-anchor live streaming with
goods scene is recommended to use the RTC CDN Live Streaming Solution.

Multi-person Co-anchoring Interactive Live Streaming with Goods

Based on the single-anchor live streaming with goods scene, the multi-person co-anchoring interactive live streaming
with goods scene provides the approach of inviting the audience to have a mic on for interaction with the anchor.

https://intl.cloud.tencent.com/document/product/647/50762#735a40ecbeb18a37348b9dbce0ae8c68
https://intl.cloud.tencent.com/document/product/1228/60245#66849e11-c04a-4e76-8e59-16e8a8d238cd

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 396 of 588

Anchors can invite the audience to take the mic and control the seats; audiences can also actively request to speak for
interaction with the anchor. This approach enhances the audience's sense of participation and motivates the
audience. This scene is recommended to use the RTC Real-time Interaction Solution.

Cross-room Competition and Mic Connection Live Streaming with Goods

Besides the traditional single-room anchor live streaming with goods, anchors can also engage in cross-room
competition with another live streaming room's anchor to showcase their products, ignite the audience's purchasing
enthusiasm, and increase the live streaming's entertainment value. Live streaming with goods in cross-room
competition is a popular novel approach. In this scene, the RTC Real-time Interaction Solution or RTC CDN Live
Streaming Solution can be selected based on business needs.

Supporting Products for the Solution

System
Level

Product Name Application Scenes

Access
Layer

Tencent Real-
Time
Communication
(TRTC)

Provides a low-delay, high-quality multi-person audio and video real-time
interaction live streaming solution, which is a foundational capability for
live shopping scenes.

Access
Layer

Instant Messaging
(IM)

Provides room management and seat management capabilities based on
group features, enables the sending and receiving of rich media messages
such as live streaming room-wide messaging, public screen messages, as
well as custom signaling and other communication needs.

Access
Layer

Tencent Effect
SDK

Provides real-time effects processing capabilities such as beauty, filtering,
makeup, fun stickers, emojis, and virtual avatars.

Cloud
Services

Cloud Streaming
Services (CSS)

Provides real-time audio and video relayed push, along with accelerated
media stream distribution services, as well as additional capabilities such
as recording and pornography detection.

Cloud
Services

Video on Demand
(VOD)

Catering to media such as audio, video, and images, it offers an integrated
high-quality media service that includes creation, upload, storage,
transcoding, media processing service, media AI, accelerated distribution
and playback, and copyright protection.

Data
Storage

 Cloud Object
Storage (COS)

Provides storage services for audio and video recording files, as well as
audio and video slicing files.

https://intl.cloud.tencent.com/document/product/1228/60245#9b3aa201-586b-463d-aa0d-f0e79110177f
https://intl.cloud.tencent.com/products/trtc
https://intl.cloud.tencent.com/products/im
https://intl.cloud.tencent.com/products/x-magic
https://intl.cloud.tencent.com/products/css
https://intl.cloud.tencent.com/products/vod
https://intl.cloud.tencent.com/products/cos

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 397 of 588

Quick Integration Guide
Android
Last updated：2024-07-18 14:26:14

Business Process

This section summarizes some common business processes in the e-commerce live streaming scenario, helping you
better understand the implementation process of the entire scenario.
Anchor starts and ends live broadcast

Anchor initiates the cross-room mic-connection PK
The RTC audience enters the room for mic-connection
The CDN audience enters the room for mic-connection
Product Management for Merchandising
The following diagram shows the process of an anchor (room owner) local preview, creating a room, entering a room

to start live streaming, and leaving the room to end the live streaming.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 398 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 399 of 588

The following diagram shows the process of Anchor A inviting Anchor B for a cross-room PK. During the cross-room
PK, the audiences in both rooms can see the PK mic-connection live streaming of the two room owners.

The following diagram shows the process for RTC live interactive streaming audience to enter the room, apply for the
mic-connection, end the mic-connection, and exit the room.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 400 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 401 of 588

The following diagram shows the process for RTC CDN live streaming audience to enter the room, apply for the mic-
connection, end the mic-connection, and exit the room.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 402 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 403 of 588

The diagram below shows the process in live streaming merchandising scenarios, where the anchor edits and lists
products, while audience browses and purchases products.

Integration Preparations

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 404 of 588

Step 1: activate the service

E-commerce live streaming scenarios usually rely on paid PaaS services such as Real-Time Communication (TRTC),
Beauty Special Effect, Player SDK. Among them, TRTC provides real-time audio and video interactive capabilities,
Special Effect provides beauty special effects, and the player is responsible for live and on-demand playback. You can

freely choose to activate the above services according to your actual business needs.
Activate TRTC Service
Activate Special Effect Service
Activate Player Service
1. First, you need to log in to the TRTC Console to create an application. You can choose to upgrade the TRTC

application version according to your needs. For example, the professional edition unlocks more value-added feature
services.

https://intl.cloud.tencent.com/products/trtc
https://intl.cloud.tencent.com/products/x-magic
https://intl.cloud.tencent.com/document/product/266/7836
https://console.trtc.io/

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 405 of 588

Note:
It is recommended to create two separate applications for testing and production environments. Each account (UIN) is

provided with 10,000 minutes of free usage per month within one year.
The TRTC monthly package is divided into Trial Version (by default), Basic Version, and Professional Version, which
can unlock different value-added features and services. For details, see Version Features and Monthly Package
Description.

https://intl.cloud.tencent.com/document/product/647/52816#f10b65d1-6e8d-41e3-8686-84909b00a1a2

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 406 of 588

2. Once the application is created, you can find basic information about it under the Application Management -
Application Overview section. It is important to store the SDKAppID and SDKSecretKey for later use and to avoid
key leakage to prevent unauthorized traffic usage.

1. Log in to Cloud Special Effect Console > Mobile License. Click Create Trial License (the free trial validity period
for Trial Version License is 14 days. It is extendable once for a total of 28 days). Fill in the actual requirements for
 App Name , Package Name and Bundle ID . Select Special Effect, and choose the capabilities to be

tested: Advanced Package S1-07, Atomic Capability X1-01, Atomic Capability X1-02, and Atomic Capability X1-03.
After you check it, accurately fill in the company name, and industry type. Upload Company Service License,

click OK to submit the review application, and wait for the manual review process.

https://console.intl.cloud.tencent.com/xmagic/mobile

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 407 of 588

2. After the Trial License is successfully created, the page will display the generated License information. At this time,

the License URL and License Key parameters are not yet effective and will only become active after the submission is

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 408 of 588

approved. When configuring SDK initialization, you need to input both the License URL and License Key
parameters. Keep the following information secure.

1. Log in to VOD Console or CSS Console > License Management > Mobile License, and click Create Trial
License.

2. Enter the App Name , Package Name , and Bundle ID according to your actual needs, select Player

Premium, and click OK.

https://console.intl.cloud.tencent.com/vod/license
https://console.intl.cloud.tencent.com/live/license

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 409 of 588

3. After the Trial License is successfully created, the page will display the generated License information. When
initializing the SDK configuration, you need to enter two parameters: License Key and License URL, so

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 410 of 588

carefully save the following information.

Note:
The License URL and Key for the same application are unique; after the Trial License is upgraded to the official
version, the License URL and Key remain unchanged.

Step 2: import SDK

TRTC SDK, Special Effect SDK, and Player SDK have all been released on the mavenCentral repository. You can
configure gradle to download and update automatically.

1. Add the dependency for the appropriate version of the SDK in dependencies.

dependencies {

 // The full feature version of SDK, including TRTC, live streaming, short

video, player, and other features

 implementation 'com.tencent.liteav:LiteAVSDK_Professional:latest.release'

 // Special Effect SDK example of S1-07 package is as follows

 implementation 'com.tencent.mediacloud:TencentEffect_S1-07:latest.release'

}

Note:
Besides the recommended automatic loading method, you can also choose to download the SDK and manually import
it. For details, see Manually Integrate the TRTC SDK and Manually Integrate Special Effect SDK.

The implementation of the e-commerce live streaming scenario usually relies on a combination of multiple capabilities
such as TRTC and player. To avoid the symbol conflict issues that arise from single integrations, it is
recommended to integrate the full feature version of the SDK.
2. Specify the CPU architecture used by the app in defaultConfig.

https://intl.cloud.tencent.com/document/product/647/35093#.E6.96.B9.E6.A1.88.E4.BA.8C.EF.BC.9A.E4.B8.8B.E8.BD.BD-sdk-.E5.B9.B6.E6.89.8B.E5.8A.A8.E5.AF.BC.E5.85.A5
https://intl.cloud.tencent.com/document/product/1143/45385#.E9.9B.86.E6.88.90.E5.87.86.E5.A4.87

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 411 of 588

defaultConfig {

 ndk {

 abiFilters "armeabi-v7a", "arm64-v8a"

 }

}

Note:

The full feature version of LiteAVSDK supports armeabi/armeabi-v7a/arm64-v8a/x86/x86_64 architectures, while
Special Effect SDK only supports armeabi-v7a/arm64-v8a architectures.
3. Click Sync Now to automatically download the SDK and integrate it into your project. If your special effect package
includes dynamic effect and filter features, then you need to download the corresponding package from the SDK
Download Page, unzip the free filter materials (./assets/lut) and animated stickers (./MotionRes) from the package and

place them in the following directories in your project:
Dynamic Effect: ../assets/MotionRes

Filter: ../assets/lut

Step 3: project configuration

1. Configure permissions
To configure App permissions in AndroidManifest.xml, for an e-commerce live streaming scenario, both LiteAVSDK

and Special Effect SDK require the following permissions:

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />

<uses-permission android:name="android.permission.RECORD_AUDIO" />

<uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" />

<uses-permission android:name="android.permission.BLUETOOTH" />

<uses-permission android:name="android.permission.CAMERA" />

<uses-feature android:name="android.hardware.camera.autofocus" />

Note:
Do not set android:hardwareAccelerated="false" . Disabling hardware acceleration will result in failure to

render the other party's video stream.

LiteAVSDK does not have built-in permission request logic, so you need to declare the corresponding permissions
yourself. Some permissions (such as storage, recording and camera) also require runtime dynamic requests.
If the Android project's targetSdkVersion is 31 or higher, or if the target device runs Android 12 or a newer

version, the official requirement is to dynamically request android.

permission.BLUETOOTH_CONNECT permission in the code to use the Bluetooth feature properly. For more

information, see Bluetooth Permissions.
2. Obfuscation configuration

https://intl.cloud.tencent.com/document/product/1143/45377
https://developer.android.google.cn/develop/connectivity/bluetooth/bt-permissions

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 412 of 588

Since we use Java's reflection features inside the SDK, you need to add relevant SDK classes to the non-obfuscation
list in the proguard-rules.pro file:

-keep class com.tencent.** { *; }

-keep class org.light.** { *;}

-keep class org.libpag.** { *;}

-keep class org.extra.** { *;}

-keep class com.gyailib.**{ *;}

-keep class androidx.exifinterface.** { *;}

Step 4: authentication and authorization

TRTC Authentication Credential
Special Effect Authentication License

Player Authentication License
UserSig is a security protection signature designed by the cloud platform to prevent malicious attackers from
misappropriating your cloud service usage rights. TRTC validates this authentication credential when entering a room.
Debugging and testing stage: UserSig can be generated through Client Sample Code and Console Access, which are
only used for debugging and testing.
Production stage: It is recommended to use the server computing UserSig solution, which has a higher security level

and helps prevent the client from being decompiled and reversed, to avoid the risk of key leakage.
The specific implementation process is as follows:
1. Before calling the initialization API of the SDK, your app must first request UserSig from your server.
2. Your server generates the UserSig based on the SDKAppID and UserID.
3. The server returns the generated UserSig to your app.

4. Your app sends the obtained UserSig to the SDK through a specific API.
5. The SDK submits the SDKAppID + UserID + UserSig to the cloud server for verification.
6. The cloud platform verifies the validity of the UserSig.
7. After the verification is passed, real-time audio and video services will be provided to the TRTC SDK.

https://intl.cloud.tencent.com/document/product/647/35166#.E5.AE.A2.E6.88.B7.E7.AB.AF.E7.A4.BA.E4.BE.8B.E4.BB.A3.E7.A0.81.E8.AE.A1.E7.AE.97-usersig
https://intl.cloud.tencent.com/document/product/647/35166#.E6.8E.A7.E5.88.B6.E5.8F.B0.E8.8E.B7.E5.8F.96-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 413 of 588

Note:
The method of generating UserSig locally during the debugging and testing stage is not recommended for the online
environment because it may be easily decompiled and reversed, causing key leakage.
We provide server computation source code for UserSig in multiple programming languages
(Java/GO/PHP/Nodejs/Python/C#/C++). For details, see Server Computation of UserSig.

Before using Beauty Special Effect, you need to verify the license credential with the cloud platform. Configuring the
License requires License Key and License Url. Sample code is as follows.

import com.tencent.xmagic.telicense.TELicenseCheck;

// If the purpose is just to trigger the download or update of the License, and not

TELicenseCheck.getInstance().setTELicense(context, URL, KEY, new TELicenseCheck.TEL

 @Override

 public void onLicenseCheckFinish(int errorCode, String msg) {

 // Note: This callback does not necessarily be called on the calling thread

 if (errorCode == TELicenseCheck.ERROR_OK) {

 // Authentication successful

 } else {

 // Authentication failed

 }

https://intl.cloud.tencent.com/document/product/1047/34385#.E6.9C.8D.E5.8A.A1.E7.AB.AF.E8.AE.A1.E7.AE.97-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 414 of 588

 }

});

Note:
It is recommended to trigger the authentication permission in the initialization code of related business modules, to
avoid having to download the License temporarily before use. Additionally, during authentication, network permissions
must be ensured.

The actual application's Package Name must exactly match the Package Name associated with the License creation.
Otherwise, it will lead to License verification failure. For details, see Authentication Error Codes.
The live streaming and on-demand playback features require setting the License before success in playback.
Otherwise, playback will fail (black screen). It needs to be set globally only once. If you have not obtained the License,
you can freely apply for a Trial Version License for normal playback. The Official Version License requires purchase.

After successfully applying for License, you will receive two strings: License URL and License Key.
Before your App calls the SDK-related features, you need to configure as follows (recommended to configure in the
Application class):

public class MApplication extends Application {

 public void onCreate() {

 super.onCreate();

 String licenceURL = ""; // The obtained licence URL

 String licenceKey = ""; // The obtained licence key

 TXLiveBase.getInstance().setLicence(appContext, licenceURL, licenceKey);

 TXLiveBase.setListener(new TXLiveBaseListener() {

 @Override

 public void onLicenceLoaded(int result, String reason) {

 Log.i(TAG, "onLicenceLoaded: result:" + result + ", reason:" + reas

 if (result != 0) {

 // If the result is not 0, it means the setting has failed, and

 TXLiveBase.getInstance().setLicence(appContext, licenceURL, lic

 }

 }

 });

 }

}

After the License is successfully set (you need to wait for a while, the specific time depends on the network

conditions), you can use the following method to view the License information:

TXLiveBase.getInstance().getLicenceInfo();

Note:
The actual application's Package Name must exactly match the Package Name associated with the License creation.

Otherwise, it will lead to License verification failure.

https://intl.cloud.tencent.com/document/product/1143/45385#.E6.AD.A5.E9.AA.A4.E4.B8.80.EF.BC.9A.E9.89.B4.E6.9D.83
https://console.intl.cloud.tencent.com/vod/license
https://buy.intl.cloud.tencent.com/license

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 415 of 588

The License is a strong online verification logic. When the TXLiveBase#setLicence is called after the application is
started for the first time, the network must be available. At the first launch of the App, if the network permission is not
yet authorized, you need to wait until the permission is granted before calling TXLiveBase#setLicence again.

Listen to the loading result of TXLiveBase#setLicence: For onLicenceLoaded API, if it fails, you should retry and guide
according to the actual situation. If it fails multiple times, you can limit the frequency and supplement with product pop-
ups and other guides to allow users to check the network conditions.
TXLiveBase#setLicence can be called multiple times. It is recommended to call TXLiveBase#setLicence when
entering the main interface of the App to ensure successful loading.

For multi-process Apps, ensure that every process using the player calls TXLiveBase#setLicence when it starts. For
example, for Apps on the Android side that use a separate process for video playback, when the process is killed and
restarted by the system during background playback, TXLiveBase#setLicence should also be called.

Step 5: initialize the SDK

Initialize the TRTC SDK
Initialize the Special Effect SDK
Initialize Player SDK

// Create TRTC SDK instance (single instance pattern)

TRTCCloud mTRTCCloud = TRTCCloud.sharedInstance(context);

// Set event listeners

mTRTCCloud.addListener(trtcSdkListener);

// Notifications from various SDK events (e.g., error codes, warning codes, audio a

private TRTCCloudListener trtcSdkListener = new TRTCCloudListener() {

 @Override

 public void onError(int errCode, String errMsg, Bundle extraInfo) {

 Log.d(TAG, errCode + errMsg);

 }

 @Override

 public void onWarning(int warningCode, String warningMsg, Bundle extraInfo) {

 Log.d(TAG, warningCode + warningMsg);

 }

};

// Remove event listener

mTRTCCloud.removeListener(trtcSdkListener);

// Destroy TRTC SDK instance (single instance pattern)

TRTCCloud.destroySharedInstance();

Note:
It is recommended to listen to SDK events notification. Perform log printing and handling for some common errors. For

details, see Error Code Table.

https://intl.cloud.tencent.com/document/product/647/35130

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 416 of 588

import com.tencent.xmagic.XmagicApi;

// Initialize the beauty SDK

XmagicApi mXmagicApi = new XmagicApi(context, XmagicResParser.getResPath(), new Xma

// During development and debugging, you can set the log level to DEBUG. For releas

mXmagicApi.setXmagicLogLevel(Log.WARN);

// Release the beauty SDK. This method needs to be called in the GL thread

mXmagicApi.onDestroy();

Note:
Before the Special Effect SDK is initialized, resource copying and other preparatory work are needed. For detailed
steps, see Using the Special Effect SDK.
On-demand Playback Scenario SDK Initialization.

// Set the SDK connection environment (if you serve global users, configure the SDK

TXLiveBase.setGlobalEnv("GDPR");

// Create a Player object

TXVodPlayer mVodPlayer = new TXVodPlayer(mContext);

// Add a View control for video rendering

TXCloudVideoView mPlayerView = findViewById(R.id.video_view);

// Associate the Player object with the View control

mVodPlayer.setPlayerView(mPlayerView);

// Player parameter configuration

TXVodPlayConfig config = new TXVodPlayConfig();

config.setEnableAccurateSeek(true); // Set whether to seek accurately. The default

config.setMaxCacheItems(5); // Set the number of cache files to 5

config.setProgressInterval(200); // Set the interval for progress callbacks, in mil

config.setMaxBufferSize(50); // The maximum pre-load size, in MB

mVodPlayer.setConfig(config);// Pass config to mVodPlayer

// Player event listener

mVodPlayer.setVodListener(new ITXVodPlayListener() {

 @Override

 public void onPlayEvent(TXVodPlayer player, int event, Bundle param) {

 // Event notification

 }

 @Override

 public void onNetStatus(TXVodPlayer player, Bundle bundle) {

 // Status feedback

 }

https://intl.cloud.tencent.com/document/product/1143/45385#.E6.95.B4.E4.BD.93.E6.B5.81.E7.A8.8B

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 417 of 588

});

Live Streaming Scenarios SDK initialization.

// The TXCloudVideoView for video rendering needs to be added in advance

TXCloudVideoView mRenderView = findViewById(R.id.video_view);

// Create a Player object

V2TXLivePlayer mLivePlayer = new V2TXLivePlayerImpl(mContext);

// Associate the Player object with the video rendering view

mLivePlayer.setRenderView(mRenderView);

// Player event listener

mLivePlayer.setObserver(new V2TXLivePlayerObserver() {

 @Override

 public void onVideoLoading(V2TXLivePlayer player, Bundle extraInfo) {

 // Video loading event

 }

 @Override

 public void onVideoPlaying(V2TXLivePlayer player, boolean firstPlay, Bundle ext

 // Video playback event

 }

});

Integration Process

API Sequence Diagram

Anchor TRTCCloud TRTCCloudListener Business_Server Audience

Anchor Enters Room and Starts Pushing Stream

Enter Live Streaming Preview Interface

setVideoEncoderParam

startLocalPreview

startLocalAudio

opt [Set Local Screen Rendering Mode]

setLocalRenderParams

opt [Set Encoder Output Mirror Mode]

setVideoEncoderMirror

Create Room, and Start Live Streaming

The room is created successfully. Return userSig.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 418 of 588

enterRoom:role:Anchor

onEnterRoom

Audience Enters Room and Pull Stream

enterRoom:role:Audience

onEnterRoom

onRemoteUserEnterRoom

onUserAudioAvailable:true

onUserVideoAvailable:true

startRemoteView

onFirstAudioFrame

onFirstVideoFrame

opt [Set Remote Screen Rendering Mode]

setRemoteRenderParams

Audience Mic Connection Interaction

Request Mic Connection

The audience requests a mic connection.

Agree

The anchor agrees mic connection.

switchRole:Anchor

onSwitchRole

startLocalAudio

startLocalPreview

setVideoEncoderParam

onRemoteUserEnterRoom

onUserAudioAvailable:true

onUserVideoAvailable:true

startRemoteView

onFirstAudioFrame

onFirstVideoFrame

Audience Becomes Listener and Exits Room

switchRole:Audience

onSwitchRole

stopLocalAudio

stopLocalPreview

onRemoteUserLeaveRoom

onUserAudioAvailable:false

onUserVideoAvailable:false

stopRemoteView

exitRoom

onExitRoom

Anchor Exits Room and Stops Live Streaming

stopLocalAudio

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 419 of 588

Anchor TRTCCloud TRTCCloudListener Business_Server Audience

stopLocalPreview

exitRoom

onExitRoom

Stop live streaming and destroy the room.

DismissRoom

Step 1: The anchor enters the room to push streams

The control used by the TRTC SDK to display video streams only supports passing in a TXCloudVideoView

type. Therefore, you need to first define the view rendering control in the layout file.

<com.tencent.rtmp.ui.TXCloudVideoView

 android:id="@+id/live_cloud_view_main"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

Note:
If you need to specifically use TextureView or SurfaceView as the view rendering control, see Advanced

Features - View Rendering Control.
1. The anchor activates local video preview and audio capture before entering the room.

// Obtain the video rendering control for displaying the anchor's local video previ

TXCloudVideoView mTxcvvAnchorPreviewView = findViewById(R.id.live_cloud_view_main);

// Set video encoding parameters to determine the picture quality seen by remote us

TRTCCloudDef.TRTCVideoEncParam encParam = new TRTCCloudDef.TRTCVideoEncParam();

encParam.videoResolution = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_960_540;

encParam.videoFps = 15;

encParam.videoBitrate = 1300;

encParam.videoResolutionMode = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_MODE_PORTRAIT;

mTRTCCloud.setVideoEncoderParam(encParam);

// boolean mIsFrontCamera can specify using the front/rear camera for video capture

mTRTCCloud.startLocalPreview(mIsFrontCamera, mTxcvvAnchorPreviewView);

// Here you can specify the audio quality, from low to high as SPEECH/DEFAULT/MUSIC

mTRTCCloud.startLocalAudio(TRTCCloudDef.TRTC_AUDIO_QUALITY_DEFAULT);

Note:

You can set the video encoding parameters TRTCVideoEncParam according to business needs. For the best
combinations of resolutions and bitrates for each tier, see Resolution and Bitrate Reference Table.

https://intl.cloud.tencent.com/document/product/1228/60247#adc81f8c-0dbf-4889-828c-1ea2859bc49b
https://intl.cloud.tencent.com/document/product/647/35153#trtcvideoencparam
https://intl.cloud.tencent.com/document/product/647/35153#.E5.88.86.E8.BE.A8.E7.8E.87.E7.A0.81.E7.8E.87.E5.8F.82.E7.85.A7.E8.A1.A8

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 420 of 588

Call the above API before enterRoom . The SDK will only start the camera preview and audio capture, and wait

until you call enterRoom to start streaming.

Call the above API after enterRoom . The SDK will start the camera preview and audio capture and automatically

start streaming.
2. The anchor sets rendering parameters for the local video, and the encoder output video mode (optional).

TRTCCloudDef.TRTCRenderParams params = new TRTCCloudDef.TRTCRenderParams();

params.mirrorType = TRTCCloudDef.TRTC_VIDEO_MIRROR_TYPE_AUTO; // Video mirror mod

params.fillMode = TRTCCloudDef.TRTC_VIDEO_RENDER_MODE_FILL; // Video fill mode

params.rotation = TRTCCloudDef.TRTC_VIDEO_ROTATION_0; // Video rotation a

// Set the rendering parameters for the local video

mTRTCCloud.setLocalRenderParams(params);

// Set the video mirror mode for the encoder output

mTRTCCloud.setVideoEncoderMirror(boolean mirror);

// Set the rotation of the video encoder output

mTRTCCloud.setVideoEncoderRotation(int rotation);

Note:
Setting local screen rendering parameters only affects the rendering effect of the local screen.

Setting encoder output pattern affects the viewing effect for other users in the room (as well as the cloud recording
files).
3. The anchor starts the live streaming, entering the room and start streaming.

public void enterRoomByAnchor(String roomId, String userId) {

 TRTCCloudDef.TRTCParams params = new TRTCCloudDef.TRTCParams();

 // Take the room ID string as an example

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend

 params.userSig = getUserSig(userId);

 // Replace with your SDKAppID

 params.sdkAppId = SDKAppID;

 // Specify the anchor role

 params.role = TRTCCloudDef.TRTCRoleAnchor;

 // Enter the room in an interactive live streaming scenario

 mTRTCCloud.enterRoom(params, TRTCCloudDef.TRTC_APP_SCENE_LIVE);

}

// Event callback for the result of entering the room

@Override

public void onEnterRoom(long result) {

 if (result > 0) {

 // The result represents the time taken to join the room (in milliseconds)

 Log.d(TAG, "Enter room succeed");

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 421 of 588

 } else {

 // The result represents the error code fwhen you fail to enter the room

 Log.d(TAG, "Enter room failed");

 }

}

Note:

TRTC room IDs are divided into digit type roomId and string type strRoomId . The rooms of these two types

are not interconnected. It is recommended to unify the room ID type.
TRTC user roles are divided into anchors and audiences. Only anchors have streaming permissions. It is necessary to
specify the user role when entering the room. If not specified, the default will be the anchor role.
In e-commerce live streaming scenarios, it is recommended to choose TRTC_APP_SCENE_LIVE as the room entry

mode.

Step 2: The audience enters the room to pull streams

1. Audience enters the TRTC room.

public void enterRoomByAudience(String roomId, String userId) {

 TRTCCloudDef.TRTCParams params = new TRTCCloudDef.TRTCParams();

 // Take the room ID string as an example

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend

 params.userSig = getUserSig(userId);

 // Replace with your SDKAppID

 params.sdkAppId = SDKAppID;

 // Specify the audience role

 params.role = TRTCCloudDef.TRTCRoleAudience;

 // Enter the room in an interactive live streaming scenario

 mTRTCCloud.enterRoom(params, TRTCCloudDef.TRTC_APP_SCENE_LIVE);

}

// Event callback for the result of entering the room

@Override

public void onEnterRoom(long result) {

 if (result > 0) {

 // The result represents the time taken to join the room (in milliseconds)

 Log.d(TAG, "Enter room succeed");

 } else {

 // The result represents the error code fwhen you fail to enter the room

 Log.d(TAG, "Enter room failed");

 }

}

2. Audience subscribes to the anchor's audio and video streams.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 422 of 588

@Override

public void onUserAudioAvailable(String userId, boolean available) {

 // The remote user publishes/unpublishes their audio

 // Under the automatic subscription mode, you do not need to do anything. The S

}

@Override

public void onUserVideoAvailable(String userId, boolean available) {

 // The remote user publishes/unpublishes the primary video

 if (available) {

 // Subscribe to the remote user's video stream and bind the video rendering

 mTRTCCloud.startRemoteView(userId, TRTCCloudDef.TRTC_VIDEO_STREAM_TYPE_BIG,

 } else {

 // Unsubscribe to the remote user's video stream and release the rendering

 mTRTCCloud.stopRemoteView(userId, TRTCCloudDef.TRTC_VIDEO_STREAM_TYPE_BIG);

 }

}

3. Audience sets the rendering mode for the remote video (optional).

TRTCCloudDef.TRTCRenderParams params = new TRTCCloudDef.TRTCRenderParams();

params.mirrorType = TRTCCloudDef.TRTC_VIDEO_MIRROR_TYPE_AUTO; // Video mirror mod

params.fillMode = TRTCCloudDef.TRTC_VIDEO_RENDER_MODE_FILL; // Video fill mode

params.rotation = TRTCCloudDef.TRTC_VIDEO_ROTATION_0; // Video rotation a

// Set the rendering mode for the remote video

mTRTCCloud.setRemoteRenderParams(userId, TRTCCloudDef.TRTC_VIDEO_STREAM_TYPE_BIG, p

Step 3: The audience interacts via mic-connection

1. The audience is switched to the anchor role.

// Switch to the anchor role

mTRTCCloud.switchRole(TRTCCloudDef.TRTCRoleAnchor);

// Event callback for switching role

@Override

public void onSwitchRole(int errCode, String errMsg) {

 if (errCode == TXLiteAVCode.ERR_NULL) {

 // Role switched successfully

 }

}

2. The audience starts local audio and video capture and streaming.

// Obtain the video rendering control for displaying the mic-connection audience's

TXCloudVideoView mTxcvvAudiencePreviewView = findViewById(R.id.live_cloud_view_sub)

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 423 of 588

// Set video encoding parameters to determine the picture quality seen by remote us

TRTCCloudDef.TRTCVideoEncParam encParam = new TRTCCloudDef.TRTCVideoEncParam();

encParam.videoResolution = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_480_270;

encParam.videoFps = 15;

encParam.videoBitrate = 550;

encParam.videoResolutionMode = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_MODE_PORTRAIT;

mTRTCCloud.setVideoEncoderParam(encParam);

// boolean mIsFrontCamera can specify using the front/rear camera for video capture

mTRTCCloud.startLocalPreview(mIsFrontCamera, mTxcvvAudiencePreviewView);

// Here you can specify the audio quality, from low to high as SPEECH/DEFAULT/MUSIC

mTRTCCloud.startLocalAudio(TRTCCloudDef.TRTC_AUDIO_QUALITY_DEFAULT);

Note:
You can set the video encoding parameters TRTCVideoEncParam according to business needs. For the best
combinations of resolutions and bitrates for each tier, see Resolution and Bitrate Reference Table.
3. The audience drops the mic and stops streaming.

// Switch to the audience role

mTRTCCloud.switchRole(TRTCCloudDef.TRTCRoleAudience);

// Event callback for switching role

@Override

public void onSwitchRole(int errCode, String errMsg) {

 if (errCode == TXLiteAVCode.ERR_NULL) {

 // Stop camera capture and streaming

 mTRTCCloud.stopLocalPreview();

 // Stop microphone capture and streaming

 mTRTCCloud.stopLocalAudio();

 }

}

Step 4: Exit and dissolve the room

1. Exit Room

public void exitRoom() {

 mTRTCCloud.stopLocalAudio();

 mTRTCCloud.stopLocalPreview();

 mTRTCCloud.exitRoom();

}

// Event callback for exiting the room

@Override

public void onExitRoom(int reason) {

https://intl.cloud.tencent.com/document/product/647/35153#trtcvideoencparam
https://intl.cloud.tencent.com/document/product/647/35153#.E5.88.86.E8.BE.A8.E7.8E.87.E7.A0.81.E7.8E.87.E5.8F.82.E7.85.A7.E8.A1.A8

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 424 of 588

 if (reason == 0) {

 Log.d(TAG, "Actively call exitRoom to exit the room");

 } else if (reason == 1) {

 Log.d(TAG, "Removed from the current room by the server");

 } else if (reason == 2) {

 Log.d(TAG, "The current room has been dissolved");

 }

}

Note:

After all resources occupied by the SDK are released, the SDK will throw the onExitRoom callback notification to

inform you.
If you wish to call enterRoom again or switch to another audio and video SDK, wait for the onExitRoom

callback before proceeding. Otherwise, you may encounter various exceptional issues such as the camera,
microphone device being forcibly occupied.

2. Dissolve Room
Server dissolves the room
TRTC provides the server dissolves digit type room API DismissRoom , as well as server dissolves string type

room API DismissRoomByStrRoomId. You can call the server dissolves the room API to remove all users from the
room and dissolve the room.
Client dissolves the room

The client does not have a API to directly dissolve the room. Each client needs to call exitRoom to exit the room. Once
all anchors and audience have exited, the room will automatically be dissolved according to TRTC's room lifecycle
rules. For more details, see TRTC Exits Room.
Warning:
It is recommended that after the end of live streaming, you call the room dissolvement API on the server to ensure the

room is dissolved. This will prevent audiences from accidentally entering the room and incurring unexpected charges.

Alternative Solutions

API Sequence Diagram

Anchor TRTCCloud TRTCCloudListener Business_Server V2TXLivePlayer V2TXLivePlayerObserver Audienc

Anchor Relays Stream to CDN

Enter Live Streaming Preview Interface

setVideoEncoderParam

https://intl.cloud.tencent.com/document/product/647/34269
https://intl.cloud.tencent.com/document/product/647/39631
https://intl.cloud.tencent.com/document/product/647/50762#4651ae2c9ff5aa99442102e0d77a8606
https://intl.cloud.tencent.com/document/product/647/48271

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 425 of 588

startLocalPreview

startLocalAudio

opt [Set Local Screen Rendering Mode]

setLocalRenderParams

opt [Set Encoder Output Mirror Mode]

setVideoEncoderMirror

Create Room, and Start Live Streaming

The room is created successfully. Return userSig.

enterRoom:role:Anchor

onEnterRoom

startPublishMediaStream

onStartPublishMediaStream

Audience Pulls Stream to Play

setRenderView

opt [Set Latency Adjustment Mode]

setCacheParams

startLivePlay

opt [Set Screen Filling Mode]

setRenderFillMode

opt [Set Screen Rendering Direction]

setRenderRotation

onAudioLoading

onVideoLoading

onAudioPlaying

onVideoPlaying

Audience Mic Connection Interaction

Request Mic Connection

The audience requests a mic connection.

Agree

The anchor agrees mic connection.

startLocalAudio

startLocalPreview

setVideoEncoderParam

enterRoom:role:Anchor

onEnterRoom

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 426 of 588

onRemoteUserEnterRoom

onUserAudioAvailable:true

onUserVideoAvailable:true

startRemoteView

onFirstAudioFrame

onFirstVideoFrame

alt [UserId is Not Empty]

stopPlay

onRemoteUserEnterRoom

updatePublishMediaStream

onUpdatePublishMediaStream

onUserAudioAvailable:true

onUserVideoAvailable:true

startRemoteView

onFirstAudioFrame

onFirstVideoFrame

Audience Becomes Listener and Exits Room

setRenderView

startLivePlay

onAudioLoading

onVideoLoading

onAudioPlaying

onVideoPlaying

stopAllRemoteView

stopLocalAudio

stopLocalPreview

onUserAudioAvailable:false

onUserVideoAvailable:false

stopRemoteView

exitRoom

onExitRoom

onRemoteUserLeaveRoom

updatePublishMediaStream

onUpdatePublishMediaStream

Anchor Exits Room and Stops Live Streaming

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 427 of 588

Anchor TRTCCloud TRTCCloudListener Business_Server V2TXLivePlayer V2TXLivePlayerObserver Audienc

stopPublishMediaStream

stopLocalAudio

stopLocalPreview

exitRoom

onStopPublishMediaStream

onExitRoom

Stop live streaming and destroy the room.

DismissRoom

Step 1: The anchor relays stream pushing

1. Related configurations for relaying to live streaming CDN.
Global Automatic Relayed Push
If you need to automatically relay all anchors' audio and video streams in the room to live streaming CDN, you just
need to enable Relay to CDN on the Advanced Features page in the TRTC Console.

Relayed Push of the Specified Streams
If you need to manually specify the audio and video streams to be published to live streaming CDN, or publish the
mixed audio and video streams to live streaming CDN, you can do so by calling the startPublishMediaStream API. In

https://console.trtc.io/features
https://intl.cloud.tencent.com/document/product/647/50762#bb3260a94c9fe97ee7231fe849fec1d4

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 428 of 588

this case, you do not need to activate global automatically relaying to CDN in the console. For a detailed introduction,
see Publish Audio and Video Streams to Live Streaming CDN.
2. The anchor activates local video preview and audio capture before entering the room.

The control used by the TRTC SDK to display video streams only supports passing in a TXCloudVideoView

type. Therefore, you need to first define the view rendering control in the layout file.

<com.tencent.rtmp.ui.TXCloudVideoView

 android:id="@+id/live_cloud_view_main"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

Note:
If you need to specifically use TextureView or SurfaceView as the view rendering control, see Advanced

Features - View Rendering Control.

// Obtain the video rendering control for displaying the anchor's local video previ

TXCloudVideoView mTxcvvAnchorPreviewView = findViewById(R.id.live_cloud_view_main);

// Set video encoding parameters to determine the picture quality seen by remote us

TRTCCloudDef.TRTCVideoEncParam encParam = new TRTCCloudDef.TRTCVideoEncParam();

encParam.videoResolution = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_960_540;

encParam.videoFps = 15;

encParam.videoBitrate = 1300;

encParam.videoResolutionMode = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_MODE_PORTRAIT;

mTRTCCloud.setVideoEncoderParam(encParam);

// boolean mIsFrontCamera can specify using the front/rear camera for video capture

mTRTCCloud.startLocalPreview(mIsFrontCamera, mTxcvvAnchorPreviewView);

// Here you can specify the audio quality, from low to high as SPEECH/DEFAULT/MUSIC

mTRTCCloud.startLocalAudio(TRTCCloudDef.TRTC_AUDIO_QUALITY_DEFAULT);

Note:

You can set the video encoding parameters TRTCVideoEncParam according to business needs. For the best
combinations of resolutions and bitrates for each tier, see Resolution and Bitrate Reference Table.
Call the above API before enterRoom . The SDK will only start the camera preview and audio capture, and wait

until you call enterRoom to start streaming.

Call the above API after enterRoom . The SDK will start the camera preview and audio capture and automatically

start streaming.
3. The anchor sets rendering parameters for the local screen, and the encoder output video mode.

TRTCCloudDef.TRTCRenderParams params = new TRTCCloudDef.TRTCRenderParams();

params.mirrorType = TRTCCloudDef.TRTC_VIDEO_MIRROR_TYPE_AUTO; // Video mirror mod

params.fillMode = TRTCCloudDef.TRTC_VIDEO_RENDER_MODE_FILL; // Video fill mode

https://intl.cloud.tencent.com/document/product/647/47858
https://intl.cloud.tencent.com/document/product/1228/60247#adc81f8c-0dbf-4889-828c-1ea2859bc49b
https://intl.cloud.tencent.com/document/product/647/35153#trtcvideoencparam
https://intl.cloud.tencent.com/document/product/647/35153#.E5.88.86.E8.BE.A8.E7.8E.87.E7.A0.81.E7.8E.87.E5.8F.82.E7.85.A7.E8.A1.A8

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 429 of 588

params.rotation = TRTCCloudDef.TRTC_VIDEO_ROTATION_0; // Video rotation a

// Set the rendering parameters for the local video

mTRTCCloud.setLocalRenderParams(params);

// Set the video mirror mode for the encoder output

mTRTCCloud.setVideoEncoderMirror(boolean mirror);

// Set the rotation of the video encoder output

mTRTCCloud.setVideoEncoderRotation(int rotation);

Note:

Setting local screen rendering parameters only affects the rendering effect of the local screen.
Setting encoder output pattern affects the viewing effect for other users in the room (as well as the cloud recording
files).
4. The anchor starts the live streaming, entering the room and start streaming.

public void enterRoomByAnchor(String roomId, String userId) {

 TRTCCloudDef.TRTCParams params = new TRTCCloudDef.TRTCParams();

 // Take the room ID string as an example

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend

 params.userSig = getUserSig(userId);

 // Replace with your SDKAppID

 params.sdkAppId = SDKAppID;

 // Specify the anchor role

 params.role = TRTCCloudDef.TRTCRoleAnchor;

 // Enter the room in an interactive live streaming scenario

 mTRTCCloud.enterRoom(params, TRTCCloudDef.TRTC_APP_SCENE_LIVE);

}

// Event callback for the result of entering the room

@Override

public void onEnterRoom(long result) {

 if (result > 0) {

 // The result represents the time taken to join the room (in milliseconds)

 Log.d(TAG, "Enter room succeed");

 } else {

 // The result represents the error code fwhen you fail to enter the room

 Log.d(TAG, "Enter room failed");

 }

}

Note:
TRTC room IDs are divided into digit type roomId and string type strRoomId . The rooms of these two types

are not interconnected. It is recommended to unify the room ID type.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 430 of 588

TRTC user roles are divided into anchors and audiences. Only anchors have streaming permissions. It is necessary to
specify the user role when entering the room. If not specified, the default will be the anchor role.
In e-commerce live streaming scenarios, it is recommended to choose TRTC_APP_SCENE_LIVE as the room entry

mode.
5. The anchor relays the audio and video streams to the live streaming CDN.

public void startPublishMediaToCDN(String streamName) {

 // Set the expiration time for the push URLs

 long txTime = (System.currentTimeMillis() / 1000) + (24 * 60 * 60);

 // Generate authentication information. The getSafeUrl method can be obtained i

 String secretParam = UrlHelper.getSafeUrl(LIVE_URL_KEY, streamName, txTime);

 // The target URLs for media stream publication

 TRTCCloudDef.TRTCPublishTarget target = new TRTCCloudDef.TRTCPublishTarget();

 // The target URLs are set for relaying to CDN

 target.mode = TRTCCloudDef.TRTC_PublishBigStream_ToCdn;

 TRTCCloudDef.TRTCPublishCdnUrl cdnUrl = new TRTCCloudDef.TRTCPublishCdnUrl();

 // Construct push URLs (in RTMP format) to the live streaming service provider

 cdnUrl.rtmpUrl = "rtmp://" + PUSH_DOMAIN + "/live/" + streamName + "?" + secret

 // True means the cloud platform CSS, and false means third-party live streamin

 cdnUrl.isInternalLine = true;

 // Multiple CDN push URLs can be added

 target.cdnUrlList.add(cdnUrl);

 // Set media stream encoding output parameters (can be defined according to bus

 TRTCCloudDef.TRTCStreamEncoderParam trtcStreamEncoderParam = new TRTCCloudDef.T

 trtcStreamEncoderParam.audioEncodedChannelNum = 1;

 trtcStreamEncoderParam.audioEncodedKbps = 50;

 trtcStreamEncoderParam.audioEncodedCodecType = 0;

 trtcStreamEncoderParam.audioEncodedSampleRate = 48000;

 trtcStreamEncoderParam.videoEncodedFPS = 15;

 trtcStreamEncoderParam.videoEncodedGOP = 2;

 trtcStreamEncoderParam.videoEncodedKbps = 1300;

 trtcStreamEncoderParam.videoEncodedWidth = 540;

 trtcStreamEncoderParam.videoEncodedHeight = 960;

 // Start publishing media stream

 mTRTCCloud.startPublishMediaStream(target, trtcStreamEncoderParam, �null);

}

Note:
During single-anchor live streaming, only initiate the relayed push task. When there is an audience mic-connection or
anchor PK, update this task to a mixed-stream transcoding task.
Information of push authentication KEY LIVE_URL_KEY and push domain name PUSH_DOMAIN can be

obtained on the Domain Name Management page in the CSS Console.

https://console.intl.cloud.tencent.com/live/

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 431 of 588

After the media stream is published, SDK will provide the backend-initiated task identifier (taskId) through the callback
onStartPublishMediaStream.

@Override

public void onStartPublishMediaStream(String taskId, int code, String message, Bund

 // taskId: When the request is successful, TRTC backend will provide the taskId

 // code: Callback result. 0 means success and other values mean failure

}

Step 2: The audience pulls streams for playback

CDN audience do not need to enter the TRTC room; they can directly pull the anchor's CDN stream for playback. In
the live streaming playback scenario, see Initialize SDK for player initialization steps.

// Set delay management mode (optional)

mLivePlayer.setCacheParams(1.0f, 5.0f); // Auto mode

mLivePlayer.setCacheParams(1.0f, 1.0f); // Speed mode

mLivePlayer.setCacheParams(5.0f, 5.0f); // Smooth mode

// Concatenate the pull URLs for playback

String flvURL = "http://" + PLAY_DOMAIN + "/live/" + streamName + ".flv"; // FLV UR

String hlsURL = "http://" + PLAY_DOMAIN + "/live/" + streamName + ".m3u8"; // HLS U

String rtmpURL = "rtmp://" + PLAY_DOMAIN + "/live/" + streamName; // RTMP URL

String webrtcURL = "webrtc://" + PLAY_DOMAIN + "/live/" + streamName; // WebRTC URL

// Start playing

mLivePlayer.startLivePlay(flvURL);

// Custom set fill mode (optional)

mLivePlayer.setRenderFillMode(V2TXLiveFillModeFit);

// Customize video rendering direction (optional)

mLivePlayer.setRenderRotation(V2TXLiveRotation0);

Note:
The playback domain name PLAY_DOMAIN requires you to Add Your Own Domain in the CSS console for live
streaming playback. You also should configure domain CNAME.
To use the live streaming, you need to configure the player's Licence authorization in advance, or the playback will fail
(black screen). For details, see Authentication and Authorization.

Step 3: The audience interacts via mic-connection

1. The mic-connection audiences need to enter the TRTC room for real-time interaction with the anchor.

// Enter the TRTC room and start streaming

public void enterRoom(String roomId, String userId) {

 TRTCCloudDef.TRTCParams params = new TRTCCloudDef.TRTCParams();

https://intl.cloud.tencent.com/document/product/647/50763#95cedc06908dda47f4459b30961764a4
https://intl.cloud.tencent.com/document/product/1228/60247#da6ac569-2069-461a-b1b3-fcf22705d466
https://intl.cloud.tencent.com/document/product/267/35970
https://intl.cloud.tencent.com/document/product/267/31057
https://intl.cloud.tencent.com/document/product/1228/60247#a5c24159-c1b9-4f0b-b2b1-3e1bba640cb9

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 432 of 588

 // Take the room ID string as an example

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend

 params.userSig = getUserSig(userId);

 // Replace with your SDKAppID

 params.sdkAppId = SDKAppID;

 // Specify the anchor role

 params.role = TRTCCloudDef.TRTCRoleAnchor;

 // Enable local audio and video capture

 startLocalMedia();

 // In an interactive live streaming scenario, enter the room and push streams

 mTRTCCloud.enterRoom(params, TRTCCloudDef.TRTC_APP_SCENE_LIVE);

}

// Enable local video preview and audio capture

public void startLocalMedia() {

 // Obtain the video rendering control for displaying the mic-connection audienc

 TXCloudVideoView mTxcvvAudiencePreviewView = findViewById(R.id.live_cloud_view_

 // Set video encoding parameters to determine the picture quality seen by remot

 TRTCCloudDef.TRTCVideoEncParam encParam = new TRTCCloudDef.TRTCVideoEncParam();

 encParam.videoResolution = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_480_270;

 encParam.videoFps = 15;

 encParam.videoBitrate = 550;

 encParam.videoResolutionMode = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_MODE_PORTRAIT

 mTRTCCloud.setVideoEncoderParam(encParam);

 // boolean mIsFrontCamera can specify using the front/rear camera for video cap

 mTRTCCloud.startLocalPreview(mIsFrontCamera, mTxcvvAudiencePreviewView);

 // Here you can specify the audio quality, from low to high as SPEECH/DEFAULT/M

 mTRTCCloud.startLocalAudio(TRTCCloudDef.TRTC_AUDIO_QUALITY_DEFAULT);

}

// Event callback for the result of entering the room

@Override

public void onEnterRoom(long result) {

 if (result > 0) {

 // The result represents the time taken to join the room (in milliseconds)

 Log.d(TAG, "Enter room succeed");

 } else {

 // The result represents the error code fwhen you fail to enter the room

 Log.d(TAG, "Enter room failed");

 }

}

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 433 of 588

Note:
You can set the video encoding parameters TRTCVideoEncParam according to business needs. For the best
combinations of resolutions and bitrates for each tier, see Resolution and Bitrate Reference Table.

2. The mic-connection audience start subscribing to the anchor's audio and video streams after they successfully
enter the room.

@Override

public void onUserAudioAvailable(String userId, boolean available) {

 // The remote user publishes/unpublishes their audio

 // Under the automatic subscription mode, you do not need to do anything. The S

}

@Override

public void onUserVideoAvailable(String userId, boolean available) {

 // The remote user publishes/unpublishes the primary video

 if (available) {

 // Subscribe to the remote user's video stream and bind the video rendering

 mTRTCCloud.startRemoteView(userId, TRTCCloudDef.TRTC_VIDEO_STREAM_TYPE_BIG,

 } else {

 // Unsubscribe to the remote user's video stream and release the rendering

 mTRTCCloud.stopRemoteView(userId, TRTCCloudDef.TRTC_VIDEO_STREAM_TYPE_BIG);

 }

}

@Override

public void onFirstVideoFrame(String userId, int streamType, int width, int height)

 // The SDK starts rendering the first frame of the local or remote user's video

 if (!userId.isEmpty()) {

 // Stop playing the CDN stream upon receiving the first frame of the anchor

 mLivePlayer.stopPlay();

 }

}

Note:
TRTC stream pulling startRemoteView can directly reuse the video rendering control previously used by the

CDN stream pulling setRenderView .

To avoid video interruptions when switching between stream pullers, it is recommended to wait until the TRTC first
frame callback onFirstVideoFrame is received before stopping the CDN stream pulling.

3. The anchor updates the publication of mixed media streams.

// Event callback for the mic-connection audience's room entry

@Override

public void onRemoteUserEnterRoom(String userId) {

 if (!mixUserList.contains(userId)) {

https://intl.cloud.tencent.com/document/product/647/35153#trtcvideoencparam
https://intl.cloud.tencent.com/document/product/647/35153#.E5.88.86.E8.BE.A8.E7.8E.87.E7.A0.81.E7.8E.87.E5.8F.82.E7.85.A7.E8.A1.A8

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 434 of 588

 mixUserList.add(userId);

 }

 updatePublishMediaToCDN(streamName, mixUserList, taskId);

}

// Event callback for updating the media stream

@Override

public void onUpdatePublishMediaStream(String taskId, int code, String message, Bun

 // When you call the publish media stream API (updatePublishMediaStream), the t

 // code: Callback result. 0 means success and other values mean failure

}

// Update the publication of mixed media streams to the live streaming CDN

public void updatePublishMediaToCDN(String streamName, List<String> mixUserList, St

 // Set the expiration time for the push URLs

 long txTime = (System.currentTimeMillis() / 1000) + (24 * 60 * 60);

 // Generate authentication information. The getSafeUrl method can be obtained i

 String secretParam = UrlHelper.getSafeUrl(LIVE_URL_KEY, streamName, txTime);

 // The target URLs for media stream publication

 TRTCCloudDef.TRTCPublishTarget target = new TRTCCloudDef.TRTCPublishTarget();

 // The target URLs are set for relaying the mixed streams to CDN

 target.mode = TRTCCloudDef.TRTC_PublishMixStream_ToCdn;

 TRTCCloudDef.TRTCPublishCdnUrl cdnUrl = new TRTCCloudDef.TRTCPublishCdnUrl();

 // Construct push URLs (in RTMP format) to the live streaming service provider

 cdnUrl.rtmpUrl = "rtmp://" + PUSH_DOMAIN + "/live/" + streamName + "?" + secret

 // True means the cloud platform CSS, and false means third-party live streamin

 cdnUrl.isInternalLine = true;

 // Multiple CDN push URLs can be added

 target.cdnUrlList.add(cdnUrl);

 // Set media stream encoding output parameters

 TRTCCloudDef.TRTCStreamEncoderParam trtcStreamEncoderParam = new TRTCCloudDef.T

 trtcStreamEncoderParam.audioEncodedChannelNum = 1;

 trtcStreamEncoderParam.audioEncodedKbps = 50;

 trtcStreamEncoderParam.audioEncodedCodecType = 0;

 trtcStreamEncoderParam.audioEncodedSampleRate = 48000;

 trtcStreamEncoderParam.videoEncodedFPS = 15;

 trtcStreamEncoderParam.videoEncodedGOP = 2;

 trtcStreamEncoderParam.videoEncodedKbps = 1300;

 trtcStreamEncoderParam.videoEncodedWidth = 540;

 trtcStreamEncoderParam.videoEncodedHeight = 960;

 // Configuration parameters for media stream transcoding

 TRTCCloudDef.TRTCStreamMixingConfig trtcStreamMixingConfig = new TRTCCloudDef.T

 if (mixUserList != null) {

 ArrayList<TRTCCloudDef.TRTCUser> audioMixUserList = new ArrayList<>();

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 435 of 588

 ArrayList<TRTCCloudDef.TRTCVideoLayout> videoLayoutList = new ArrayList<>()

 for (int i = 0; i < mixUserList.size() && i < 16; i++) {

 TRTCCloudDef.TRTCUser user = new TRTCCloudDef.TRTCUser();

 // The integer room number is intRoomId

 user.strRoomId = mRoomId;

 user.userId = mixUserList.get(i);

 audioMixUserList.add(user);

 TRTCCloudDef.TRTCVideoLayout videoLayout = new TRTCCloudDef.TRTCVideoLa

 if (mixUserList.get(i).equals(mUserId)) {

 // The layout for the anchor's video

 videoLayout.x = 0;

 videoLayout.y = 0;

 videoLayout.width = 540;

 videoLayout.height = 960;

 videoLayout.zOrder = 0;

 } else {

 // The layout for the mic-connection audience's video

 videoLayout.x = 400;

 videoLayout.y = 5 + i * 245;

 videoLayout.width = 135;

 videoLayout.height = 240;

 videoLayout.zOrder = 1;

 }

 videoLayout.fixedVideoUser = user;

 videoLayout.fixedVideoStreamType = TRTCCloudDef.TRTC_VIDEO_STREAM_TYPE_

 videoLayoutList.add(videoLayout);

 }

 // Specify the information for each input audio stream in the transcoding s

 trtcStreamMixingConfig.audioMixUserList = audioMixUserList;

 // Specify the information of position, size, layer, and stream type for ea

 trtcStreamMixingConfig.videoLayoutList = videoLayoutList;

 }

 // Update the published media stream

 mTRTCCloud.updatePublishMediaStream(taskId, target, trtcStreamEncoderParam, �tr

}

Note:
To ensure continuous CDN playback without stream disconnection, you need to keep the media stream encoding
output parameter trtcStreamEncoderParam and the stream name streamName unchanged.

Media stream encoding output parameters and mixed display layout parameters can be customized according to
business needs. Currently, up to 16 channels of audio and video input are supported. If a user only provides audio, it

will still be counted as one channel.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 436 of 588

Switching between audio only, audio and video, and video only is not supported within the same task.
4. The off-streaming audience exit the room, and the anchor updates the mixed stream task.

// The reusable TRTC video rendering control

mLivePlayer.setRenderView(TXCloudVideoView view);

// Restart playing CDN media stream

mLivePlayer.startLivePlay(URL);

// Callback for player event listener

mLivePlayer.setObserver(new V2TXLivePlayerObserver() {

 @Override

 public void onVideoLoading(V2TXLivePlayer player, Bundle extraInfo) {

 // Video loading event

 }

 @Override

 public void onVideoPlaying(V2TXLivePlayer player, boolean firstPlay, Bundle ext

 // Video playback event

 if (firstPlay) {

 mTRTCCloud.stopAllRemoteView();

 mTRTCCloud.stopLocalAudio();

 mTRTCCloud.stopLocalPreview();

 mTRTCCloud.exitRoom();

 }

 }

});

Note:
To avoid video interruptions when switching the stream puller, it is recommended to wait for the player's video

playback event onVideoPlaying before exiting the TRTC room.

// Event callback for the mic-connection audience's room exit

@Override

public void onRemoteUserLeaveRoom(String userId, int reason) {

 if (mixUserList.contains(userId)) {

 mixUserList.remove(userId);

 }

 // The anchor updates the mixed stream task

 updatePublishMediaToCDN(streamName, mixUserList, taskId);

}

// Event callback for updating the media stream

@Override

public void onUpdatePublishMediaStream(String taskId, int code, String message, Bun

 // When you call the publish media stream API (updatePublishMediaStream), the t

 // code: Callback result. 0 means success and other values mean failure

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 437 of 588

}

Step 4: The anchor stops the live streaming and exits the room

public void exitRoom() {

 // Stop all published media streams

 mTRTCCloud.stopPublishMediaStream("");

 mTRTCCloud.stopLocalAudio();

 mTRTCCloud.stopLocalPreview();

 mTRTCCloud.exitRoom();

}

// Event callback for stopping media streams

@Override

public void onStopPublishMediaStream(String taskId, int code, String message, Bundl

 // When you call stopPublishMediaStream, the taskId you provide will be returne

 // code: Callback result. 0 means success and other values mean failure

}

// Event callback for exiting the room

@Override

public void onExitRoom(int reason) {

 if (reason == 0) {

 Log.d(TAG, "Actively call exitRoom to exit the room");

 } else if (reason == 1) {

 Log.d(TAG, "Removed from the current room by the server");

 } else if (reason == 2) {

 Log.d(TAG, "The current room has been dissolved");

 }

}

Note:
To stop publishing media streams, enter an empty string for taskId . This will stop all the media streams you have

published.

After all resources occupied by the SDK are released, the SDK will throw the onExitRoom callback notification to

inform you.

Advanced Features

Product Information Pop-up

The Product Information Pop-up feature can be implemented through IM Custom Message or SEI Information. Below
are the specific information of the two implementation methods.

https://intl.cloud.tencent.com/document/product/1228/60247#68e894f0-b443-48c9-974b-18a8afa4e0bb
https://intl.cloud.tencent.com/document/product/1228/60247#68e894f0-b443-48c9-974b-18a8afa4e0bb#742cb382-d825-4d72-b802-62dadf597932

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 438 of 588

Custom Message

Custom messages depend on Instant Messaging (IM). You need to activate the service and import the IM SDK in
advance. For detailed guidelines, see Voice Chat Room Connection Guide - Connection Preparation.
1. Send Custom Messages

Method 1: The anchor sends product pop-up related custom group messages on the client.

// Construct product pop-up message body

JSONObject jsonObject = new JSONObject();

try {

 jsonObject.put("cmd", "item_popup_msg");

 JSONObject msgJsonObject = new JSONObject();

 msgJsonObject.put("itemNumber", 1); // Item number

 msgJsonObject.put("itemPrice", 199.0); // Item price

 msgJsonObject.put("itemTitle", "xxx"); // Item title

 msgJsonObject.put("itemUrl", "xxx");// Item URL

 jsonObject.put("msg", msgJsonObject);

} catch (JSONException e) {

 e.printStackTrace();

}

String data = jsonObject.toString();

// Send custom group messages (it is recommended that product pop-up messages shoul

V2TIMManager.getInstance().sendGroupCustomMessage(data.getBytes(), mRoomId,

 V2TIMMessage.V2TIM_PRIORITY_HIGH, new V2TIMValueCallback<V2TIMMessage>() {

 @Override

 public void onError(int i, String s) {

 // Failed to send product pop-up message

 }

 @Override

 public void onSuccess(V2TIMMessage v2TIMMessage) {

 // Successfully sent product pop-up message

 // Locally rendering of product pop-up effect

 }

 });

Method 2: The backend operators sends product pop-up related custom group messages on the server.

Request URL sample:

https://xxxxxx/v4/group_open_http_svc/send_group_msg?

sdkappid=88888888&identifier=admin&usersig=xxx&random=99999999&contenttype=json

Request packet body sample:

{

 "GroupId": "@TGS#12DEVUDHQ",

https://intl.cloud.tencent.com/products/im
https://write.woa.com/document/127435706431578112#98a99507-e454-4eb9-b483-7ee3daa488b0

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 439 of 588

 "Random": 2784275388,

 "MsgPriority": "High", // The priority of the message. It is recommended to se

 "MsgBody": [

 {

 "MsgType": "TIMCustomElem",

 "MsgContent": {

 // itemNumber: item number; itemPrice: item price; itemTitle: item

 "Data": "{\\"cmd\\": \\"item_popup_msg\\", \\"msg\\": {\\"itemNumbe

 }

 }

]

}

2. Receive Custom Messages
Other users in the room receive callback for custom group messages, then proceed with message parsing and
product pop-up effect rendering.

// Custom group messages received

V2TIMManager.getInstance().addSimpleMsgListener(new V2TIMSimpleMsgListener() {

 @Override

 public void onRecvGroupCustomMessage(String msgID, String groupID, V2TIMGroupMe

 String customStr = new String(customData);

 if (!customStr.isEmpty()) {

 try {

 JSONObject jsonObject = new JSONObject(customStr);

 String command = jsonObject.getString("cmd");

 JSONObject messageJsonObject = jsonObject.getJSONObject("msg");

 if (command.equals("item_popup_msg")) {

 int itemNumber = messageJsonObject.getInt("itemNumber"); // It

 double itemPrice = messageJsonObject.getDouble("itemPrice"); /

 String itemTitle = messageJsonObject.getString("itemTitle"); /

 String itemUrl = messageJsonObject.getString("itemUrl"); // It

 // Render product pop-up effect based on item number, item pric

 }

 } catch (JSONException e) {

 e.printStackTrace();

 }

 }

 }

});

SEI Information

SEI information will be inserted into the anchor's video stream for transmission, achieving precise sync between the
product information pop-up and the anchor's live streaming.
1. Send SEI Information

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 440 of 588

The anchor sends SEI messages related to product pop-up on the TRTC client.

// Construct product pop-up message body

JSONObject jsonObject = new JSONObject();

try {

 jsonObject.put("cmd", "item_popup_msg");

 JSONObject msgJsonObject = new JSONObject();

 msgJsonObject.put("itemNumber", 1); // Item number

 msgJsonObject.put("itemPrice", 199.0); // Item price

 msgJsonObject.put("itemTitle", "xxx"); // Item title

 msgJsonObject.put("itemUrl", "xxx");// Item URL

 jsonObject.put("msg", msgJsonObject);

} catch (JSONException e) {

 e.printStackTrace();

}

String data = jsonObject.toString();

// Send SEI information

mTRTCCloud.sendSEIMsg(data.getBytes(), 1);

2. Receive SEI Information
Method 1: The audience receives SEI messages on the TRTC client, then proceeds with message parsing and

product pop-up effect rendering.

mTRTCCloud.setListener(new TRTCCloudListener() {

 @Override

 public void onRecvSEIMsg(String userId, byte[] data) {

 String dataStr = new String(data);

 if (!dataStr.isEmpty()) {

 try {

 JSONObject jsonObject = new JSONObject(dataStr);

 String command = jsonObject.getString("cmd");

 JSONObject messageJsonObject = jsonObject.getJSONObject("msg");

 if (command.equals("item_popup_msg")) {

 int itemNumber = messageJsonObject.getInt("itemNumber"); // It

 double itemPrice = messageJsonObject.getDouble("itemPrice"); /

 String itemTitle = messageJsonObject.getString("itemTitle"); /

 String itemUrl = messageJsonObject.getString("itemUrl"); // It

 // Render product pop-up effect based on item number, item pric

 }

 } catch (JSONException e) {

 e.printStackTrace();

 }

 }

 }

});

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 441 of 588

Method 2: The audience receives SEI messages on the CDN stream player, then proceeds with message parsing and
product pop-up effect rendering.

// Set the PayloadType for sending SEI messages in TRTC

mTRTCCloud.callExperimentalAPI("{\\"api\\":\\"setSEIPayloadType\\",\\"params\\":{\\

// Enable receiving SEI messages on the player and set the PayloadType

mLivePlayer.enableReceiveSeiMessage(true, 5);

// SEI message callback and parsing

mLivePlayer.setObserver(new V2TXLivePlayerObserver() {

 @Override

 public void onReceiveSeiMessage(V2TXLivePlayer player, int payloadType, byte[]

 String dataStr = new String(data);

 if (!dataStr.isEmpty()) {

 try {

 JSONObject jsonObject = new JSONObject(dataStr);

 String command = jsonObject.getString("cmd");

 JSONObject messageJsonObject = jsonObject.getJSONObject("msg");

 if (command.equals("item_popup_msg")) {

 int itemNumber = messageJsonObject.getInt("itemNumber"); // It

 double itemPrice = messageJsonObject.getDouble("itemPrice"); /

 String itemTitle = messageJsonObject.getString("itemTitle"); /

 String itemUrl = messageJsonObject.getString("itemUrl"); // It

 // Render product pop-up effect based on item number, item pric

 }

 } catch (JSONException e) {

 e.printStackTrace();

 }

 }

 }

});

Note:
It is necessary to ensure that the SEI PayloadType of the TRTC sender and the player receiver are consistent, so

that the audience can successfully receive the SEI messages relayed via TRTC.

Product Explanation Replay

By playing pre-recorded product explanation videos, the product explanation replay feature is implemented.
First, it is necessary to initialize the player, then start playing the recorded video. TXVodPlayer supports two playback
modes, which you can choose according to your needs:
Using the URL method
Using the FileId method

// Play URL video resource

https://intl.cloud.tencent.com/document/product/1228/60247#da6ac569-2069-461a-b1b3-fcf22705d466

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 442 of 588

String url = "http://1252463788.vod2.myqcloud.com/xxxxx/v.f20.mp4";

mVodPlayer.startVodPlay(url);

// Play local video resources

String localFile = "/sdcard/video.mp4";

mVodPlayer.startVodPlay(localFile);

// Recommended to use the new API below

// The psign means player signature. For more information about the signature and h

TXPlayInfoParams playInfoParam = new TXPlayInfoParams(1252463788, // The appId of t

 "4564972819220421305", // The fileId of video

 "psignxxxxxxx"); // Player signature

mVodPlayer.startVodPlay(playInfoParam);

// Old API, not recommended

TXPlayerAuthBuilder authBuilder = new TXPlayerAuthBuilder();

authBuilder.setAppId(1252463788);

authBuilder.setFileId("4564972819220421305");

mVodPlayer.startVodPlay(authBuilder);

Playback control: adjust the progress, pause playback, resume playback, and end playback.

// Adjust the progress (seconds)

mVodPlayer.seek(time);

// Pause playback

mVodPlayer.pause();

// Resume playback

mVodPlayer.resume();

// End playback (clear the last frame)

mVodPlayer.stopPlay(true);

Note:
When stopping playback, remember to destroy the View control, especially before the next startVodPlay .

Otherwise, it will cause a large amount of memory leak and screen flash.
Also, when exiting the playback interface, remember to call the rendering View's onDestroy() function.

Otherwise, it may cause memory leaks and a "Receiver not registered" warning.

@Override

public void onDestroy() {

 super.onDestroy();

 mVodPlayer.stopPlay(true); // True means clearing the last frame

 mPlayerView.onDestroy();

}

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 443 of 588

Cross-room Mic-connection PK

1. Either party initiates the cross-room mic-connection PK.

public void connectOtherRoom(String roomId, String userId) {

 try {

 JSONObject jsonObj = new JSONObject();

 // The digit room number is roomId

 jsonObj.put("strRoomId", roomId);

 jsonObj.put("userId", userId);

 mTRTCCloud.ConnectOtherRoom(jsonObj.toString());

 } catch (JSONException e) {

 e.printStackTrace();

 }

}

// Result callback for requesting cross-room mic-connection

@Override

public void onConnectOtherRoom(String userId, int errCode, String errMsg) {

 // The user ID of the anchor in the other room you want to initiate the cross-r

 // Error code. ERR_NULL indicates the request is successful

 // Error message

}

Note:

Both local and remote users participating in the cross-room mic-connection must be in the anchor role and must have
audio/video uplink capabilities.
Cross-room mic-connection PK with multiple room anchors can be achieved by calling ConnectOtherRoom()

multiple times. Currently, a room can connect with up to three other room anchors at most, and up to 10 anchors in a
room can conduct cross-room mic-connection competition with anchors in other rooms.
2. All users in both rooms will receive a callback indicating that the audio and video streams from the PK anchor in the

other room are available.

@Override

public void onUserAudioAvailable(String userId, boolean available) {

 // The remote user publishes/unpublishes their audio

 // Under the automatic subscription mode, you do not need to do anything. The S

}

@Override

public void onUserVideoAvailable(String userId, boolean available) {

 // The remote user publishes/unpublishes the primary video

 if (available) {

 // Subscribe to the remote user's video stream and bind the video rendering

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 444 of 588

 mTRTCCloud.startRemoteView(userId, TRTCCloudDef.TRTC_VIDEO_STREAM_TYPE_BIG,

 } else {

 // Unsubscribe to the remote user's video stream and release the rendering

 mTRTCCloud.stopRemoteView(userId, TRTCCloudDef.TRTC_VIDEO_STREAM_TYPE_BIG);

 }

}

3. Either party exits the cross-room mic-connection PK.

// Exiting cross-room mic-connection

mTRTCCloud.DisconnectOtherRoom();

// Result callback for exiting cross-room mic-connection

@Override

public void onDisConnectOtherRoom(int errCode, String errMsg) {

 super.onDisConnectOtherRoom(errCode, errMsg);

}

Note:

After calling DisconnectOtherRoom() , you may exit the cross-room mic-connection PK with all other room

anchors.
Either the initiator or the receiver can call DisconnectOtherRoom() to exit the cross-room mic-connection PK.

Third-Party Beauty Feature Integration

TRTC supports integrating third-party beauty effect products. Use the example of Special Effect to demonstrate the
process of integrating the third-party beauty features.
1. Integrate the Special Effect SDK, and apply for an authorization license. For details, see Integration Preparation for

steps.
2. Resource copying (if any). If your resource files are built into the assets directory, you need to copy them to the
App's private directory before use.

XmagicResParser.setResPath(new File(getFilesDir(), "xmagic").getAbsolutePath());

//loading

// Copy resource files to the private directory. Only need to do it once

XmagicResParser.copyRes(getApplicationContext());

If your resource file is dynamically downloaded from the internet, you need to set the resource file path after the
download is successful.

XmagicResParser.setResPath (local path of the downloaded resource file);

3. Set the video data callback for third-party beauty features. Pass the results of the beauty SDK processing each

frame of data into the TRTC SDK for rendering processing.

https://intl.cloud.tencent.com/document/product/1228/60247#8b6b50a0-939d-48a1-aac1-58c6009e4b78
https://intl.cloud.tencent.com/document/product/1143/47831

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 445 of 588

mTRTCCloud.setLocalVideoProcessListener(TRTCCloudDef.TRTC_VIDEO_PIXEL_FORMAT_Textur

 @Override

 public void onGLContextCreated() {

 // The OpenGL environment has already been set up internally within the SDK

 if (mXmagicApi == null) {

 XmagicApi mXmagicApi = new XmagicApi(context, XmagicResParser.getResPat

 } else {

 mXmagicApi.onResume();

 }

 }

 @Override

 public int onProcessVideoFrame(TRTCCloudDef.TRTCVideoFrame srcFrame, TRTCCloudD

 // Callback for integrating with third-party beauty components for video pr

 if (mXmagicApi != null) {

 dstFrame.texture.textureId = mXmagicApi.process(srcFrame.texture.textur

 }

 return 0;

 }

 @Override

 public void onGLContextDestory() {

 // The internal OpenGL environment within the SDK has been terminated. At t

 mXmagicApi.onDestroy();

 }

});

Note:

Steps 1 and 2 vary depending on the different third-party beauty products, while Step 3 is a general and important
step for integrating third-party beauty features into TRTC.
For scenario-specific integration guidelines of beauty effects, see Integrating Special Effect into TRTC SDK. For
guidelines on integrating beauty effects independently, see Integrating Special Effect SDK.

Dual-Stream Encoding Mode

When the dual-stream encoding mode is enabled, the current user's encoder outputs two video streams, a high-

definition large screen and a low-definition small screen, at the same time (but only one audio stream). In this way,
other users in the room can choose to subscribe to the high-definition large screen or low-definition small screen
based on their network conditions or screen sizes.
1. Enable large-and-small-screen dual-stream encoding mode.

public void enableDualStreamMode(boolean enable) {

 // Video encoding parameters for the small stream (customizable).

 TRTCCloudDef.TRTCVideoEncParam smallVideoEncParam = new TRTCCloudDef.TRTCVideoE

 smallVideoEncParam.videoResolution = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_480_270

https://intl.cloud.tencent.com/document/product/1143/45391
https://intl.cloud.tencent.com/document/product/1143/45385

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 446 of 588

 smallVideoEncParam.videoFps = 15;

 smallVideoEncParam.videoBitrate = 550;

 smallVideoEncParam.videoResolutionMode = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_MOD

 mTRTCCloud.enableEncSmallVideoStream(enable, smallVideoEncParam);

}

Note:

When the dual-stream encoding mode is enabled, it consumes more CPU and network bandwidth. Therefore, it may
be considered for use on Mac, Windows, or high-performance Pads. It is not recommended for mobile devices.
2. Select the type of remote user's video stream to pull.

// Optional video stream types when you subscribe to a remote user's video stream

mTRTCCloud.startRemoteView(userId, streamType, videoView);

// You can switch the size of the specified remote user's screen at any time

mTRTCCloud.setRemoteVideoStreamType(userId, streamType);

Note:
When the dual-stream encoding mode is enabled, you can specify the video stream type as
 TRTC_VIDEO_STREAM_TYPE_SMALL with streamType to pull a low-quality small video for viewing.

View rendering control

In TRTC, there are many APIs that require you to control the video screen. All these APIs require you to specify a
video rendering control. On the Android platform, TXCloudVideoView is used as the video rendering control, and

both SurfaceView and TextureView rendering schemes are supported. Below are the methods for

specifying the type of rendering control and updating the video rendering control.
1. If you want mandatory use of a certain scheme, or to convert the local video rendering control to
 TXCloudVideoView , you can code as follows.

// Mandatory use of TextureView

TextureView textureView = findViewById(R.id.texture_view);

TXCloudVideoView cloudVideoView = new TXCloudVideoView(context);

cloudVideoView.addVideoView(textureView);

// Mandatory use of SurfaceView

SurfaceView surfaceView = findViewById(R.id.surface_view);

TXCloudVideoView cloudVideoView = new TXCloudVideoView(surfaceView);

2. If your business involves scenarios of switching display zones, you can use the TRTC SDK to update the local
preview screen and update the remote user's video rendering control feature.

// Update local preview screen rendering control

mTRTCCloud.updateLocalView(videoView);

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 447 of 588

// Update the remote user's video rendering control

mTRTCCloud.updateRemoteView(userId, streamType, videoView);

Note:
The pass-through parameter videoView refers to the target video rendering control. And streamType only

supports TRTC_VIDEO_STREAM_TYPE_BIG and TRTC_VIDEO_STREAM_TYPE_SUB .

Exception Handling

Exception error handling

When the TRTC SDK encounters an unrecoverable error, the error is thrown in the onError callback. For details,

see Error Code Table.

1. UserSig related
UserSig verification failure leads to room-entering failure. You can use the UserSig tool for verification.

Enumeration Value Description

ERR_TRTC_INVALID_USER_SIG -3320
Room entry parameter userSig is incorrect. Check
if TRTCParams.userSig is empty.

ERR_TRTC_USER_SIG_CHECK_FAILED -100018
UserSig verification failed. Check if the parameter
 TRTCParams.userSig is filled in correctly or
has expired.

2. Room entry and exit related
If room entry is failed, you should first verify the correctness of the room entry parameters. It is essential that the room
entry and exit APIs are called in a paired manner. This means that, even in the event of a failed room entry, the room
exit API must still be called.

Enumeration Value Description

ERR_TRTC_CONNECT_SERVER_TIMEOUT -3308

Room entry request timed out. Check if your
internet connection is lost or if a VPN is enabled.
You may also attempt to switch to 4G for
testing.

ERR_TRTC_INVALID_SDK_APPID -3317
Room entry parameter sdkAppId is incorrect.
Check if TRTCParams.sdkAppId is empty

ERR_TRTC_INVALID_ROOM_ID -3318 Room entry parameter roomId is
incorrect.Check if TRTCParams.roomId or
 TRTCParams.strRoomId is empty. Nnote

https://intl.cloud.tencent.com/document/product/647/35130
https://console.trtc.io/usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 448 of 588

that roomId and strRoomId cannot be used
interchangeably.

ERR_TRTC_INVALID_USER_ID -3319
Room entry parameter userId is incorrect.
Check if TRTCParams.userId is empty.

ERR_TRTC_ENTER_ROOM_REFUSED -3340
Room entry request was denied. Check if
 enterRoom is called consecutively to enter
rooms with the same ID.

3. Device related
Errors for related monitoring devices. Prompt the user via UI in case of relevant errors.

Enumeration Value Description

ERR_CAMERA_START_FAIL -1301

Failed to enable the camera. For example, if there is an
exception for the camera's configuration program
(driver) on a Windows or Mac device, you should try
disabling then re-enabling the device, restarting the
machine, or updating the configuration program.

ERR_MIC_START_FAIL -1302

Failed to open the mic. For example, if there is an
exception for the camera's configuration program
(driver) on a Windows or Mac device, you should try
disabling then re-enabling the device, restarting the
machine, or updating the configuration program.

ERR_CAMERA_NOT_AUTHORIZED -1314
The device of camera is unauthorized. This typically
occurs on mobile devices and may be due to the user
having denied the permission.

ERR_MIC_NOT_AUTHORIZED -1317
The device of mic is unauthorized. This typically occurs
on mobile devices and may be due to the user having
denied the permission.

ERR_CAMERA_OCCUPY -1316 The camera is occupied. Try a different camera.

ERR_MIC_OCCUPY -1319 The mic is occupied. This occurs when, for example, the
user is currently having a call on the mobile device.

Issues with the remote mirror mode not functioning properly

In TRTC, video mirror settings are divided into local preview mirror setLocalRenderParams and video encoding

mirror setVideoEncoderMirror . These settings separately affect the mirror effect of the local preview and the

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 449 of 588

video encoding output (the mirror mode for remote viewers and cloud recordings). If you expect the mirror effect seen
in the local preview to also take effect on the remote viewer's end, follow these encoding procedures.

// Set the rendering parameters for the local video

TRTCCloudDef.TRTCRenderParams params = new TRTCCloudDef.TRTCRenderParams();

params.mirrorType = TRTCCloudDef.TRTC_VIDEO_MIRROR_TYPE_ENABLE; // Video mirror mod

params.fillMode = TRTCCloudDef.TRTC_VIDEO_RENDER_MODE_FILL; // Video fill mode

params.rotation = TRTCCloudDef.TRTC_VIDEO_ROTATION_0; // Video rotation a

mTRTCCloud.setLocalRenderParams(params);

// Set the video mirror mode for the encoder output

mTRTCCloud.setVideoEncoderMirror(true);

Issues with camera scale, focus, and switch

In e-commerce live streaming scenarios, the anchor may need to custom adjust the camera settings. The TRTC
SDK's device management class provides APIs for these needs.
1. Query and set the zoom factor for the camera.

// Get the maximum zoom factor for the camera (only for mobile devices)

float zoomRatio = mTRTCCloud.getDeviceManager().getCameraZoomMaxRatio();

// Set the zoom factor for the camera (only for mobile devices)

// Value range is 1-5. 1 means the furthest field of view (normal lens), and 5 mean

mTRTCCloud.getDeviceManager().setCameraZoomRatio(zoomRatio);

2. Set the focus feature and position of the camera.

// Enable or disable the camera's autofocus feature (only for mobile devices)

mTRTCCloud.getDeviceManager().enableCameraAutoFocus(false);

// Set the focus position of the camera (only for mobile devices)

// The precondition for using this API is to first disable the autofocus feature us

mTRTCCloud.getDeviceManager().setCameraFocusPosition(int x, int y);

3. Determine and switch to front or rear cameras.

// Determine if the current camera is the front camera (only for mobile devices)

boolean isFrontCamera = mTRTCCloud.getDeviceManager().isFrontCamera();

// Switch to front or rear cameras (only for mobile devices)

// Passing true means switching to front, and passing false means switching to rear

mTRTCCloud.getDeviceManager().switchCamera(!isFrontCamera);

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 450 of 588

iOS
Last updated：2024-07-18 14:26:15

Business Process

This document summarizes some common business processes in the e-commerce live streaming scenario, helping
you better understand the implementation process of the entire scenario.
Anchor starts and ends live broadcast

Anchor initiates the cross-room mic-connection PK
The RTC audience enters the room for mic-connection
The CDN audience enters the room for mic-connection
Product Management for Merchandising
The following diagram shows the process of an anchor (room owner) local preview, creating a room, entering a room

to start live streaming, and leaving the room to end the live streaming.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 451 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 452 of 588

The following diagram shows the process of Anchor A inviting Anchor B for a cross-room PK. During the cross-room
PK, the audiences in both rooms can see the PK mic-connection live streaming of the two room owners.

The following diagram shows the process for RTC live interactive streaming audience to enter the room, apply for the
mic-connection, end the mic-connection, and exit the room.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 453 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 454 of 588

The following diagram shows the process for RTC CDN live streaming audience to enter the room, apply for the mic-
connection, end the mic-connection, and exit the room.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 455 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 456 of 588

The diagram below shows the process in live streaming merchandising scenarios, where the anchor edits and lists
products, while audience browses and purchases products.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 457 of 588

Integration Preparations

Step 1: activate the service

E-commerce live streaming scenarios usually rely on paid PaaS services such as Real-Time Communication (TRTC),
Beauty Special Effect, Player SDK. Among them, TRTC provides real-time audio and video interactive capabilities,
Special Effect provides beauty special effects, and the player is responsible for live and on-demand playback. You can

freely choose to activate the above services according to your actual business needs.
Activate TRTC Service
Activate Special Effect Service
Activate Player Service
1. First, you need to log in to the TRTC Console to create an application. You can choose to upgrade the TRTC

application version according to your needs. For example, the professional edition unlocks more value-added feature
services.

https://intl.cloud.tencent.com/products/trtc
https://intl.cloud.tencent.com/products/x-magic
https://intl.cloud.tencent.com/document/product/266/7836
https://console.trtc.io/

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 458 of 588

Note:
It is recommended to create two separate applications for testing and production environments. Each account (UIN) is
provided with 10,000 minutes of free usage per month within one year.
The TRTC monthly package is divided into Trial Version (by default), Basic Version, and Professional Version, which

can unlock different value-added features and services. For details, see Version Features and Monthly Package
Description.

https://intl.cloud.tencent.com/document/product/647/52816#f10b65d1-6e8d-41e3-8686-84909b00a1a2

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 459 of 588

2. Once the application is created, you can find basic information about it under the Application Management -
Application Overview section. It is important to store the SDKAppID and SDKSecretKey for later use and to avoid
key leakage to prevent unauthorized traffic usage.

1. Log in to Cloud Special Effect Console > Mobile License. Click Create Trial License (the free trial validity period

for Trial Version License is 14 days. It is extendable once for a total of 28 days). Fill in the actual requirements for
 App Name , Package Name and Bundle ID . Select Special Effect, and choose the capabilities to be

tested: Advanced Package S1-07, Atomic Capability X1-01, Atomic Capability X1-02, and Atomic Capability X1-03.
After you check it, accurately fill in the company name, and industry type. Upload Company Service License,
click OK to submit the review application, and wait for the manual review process.

https://console.intl.cloud.tencent.com/xmagic/mobile

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 460 of 588

2. After the Trial License is successfully created, the page will display the generated License information. At this time,

the License URL and License Key parameters are not yet effective and will only become active after the submission is
approved. When configuring SDK initialization, you need to input both the License URL and License Key
parameters. Keep the following information secure.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 461 of 588

1. Log in to VOD Console or CSS Console > License Management > Mobile License, and click Create Trial
License.

2. Enter the App Name , Package Name , and Bundle ID according to your actual needs, select Player

Premium, and click OK.

https://console.intl.cloud.tencent.com/vod/license
https://console.intl.cloud.tencent.com/live/license

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 462 of 588

3. After the Trial License is successfully created, the page will display the generated License information. When
initializing the SDK configuration, you need to enter two parameters: License Key and License URL, so

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 463 of 588

carefully save the following information.

Note:
The License URL and Key for the same application are unique; after the Trial License is upgraded to the official
version, the License URL and Key remain unchanged.

Step 2: import SDK

TRTC SDK and Special Effect SDK have been released to the CocoaPods repository, and you can integrate them via
CocoaPods.

1. Install CocoaPods
Enter the following command in a terminal window (you need to install Ruby on your Mac first):

sudo gem install cocoapods

2. Create Podfile File
Go to the project directory, and enter the following command. A Podfile file will then be created in the project directory.

pod init

3. Edit Podfile File
Choose an appropriate version for your project and edit the Podfile file:

platform :ios, '8.0'

 target 'App' do

 # The full feature version of SDK

 # Includes a wide range of features such as Real-Time Communication (TRTC),

TXLivePlayer for live streaming playback, TXLivePusher for RTMP push streams,

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 464 of 588

TXVodPlayer for on-demand playback, and UGSV for short video recording and

editing.

 pod 'TXLiteAVSDK_Professional', :podspec =>

'https://liteav.sdk.qcloud.com/pod/liteavsdkspec/TXLiteAVSDK_Professional.podsp

ec'

 # Special Effect SDK example of S1-07 package is as follows

 pod 'TencentEffect_S1-07'

end

Note:
The implementation of e-commerce live streaming scenarios usually depends on the combination of several
capabilities such as TRTC and players. To avoid the symbol conflict issue that arises from single integration,

it is recommended to integrate the full feature version of the SDK.
4. Update and install the SDK
Enter the following command in a terminal window to update the local repository files and install the SDK:

pod install

Or run this command to update the local repository:

pod update

Upon the completion of pod command execution, a project file suffixed with .xcworkspace and integrated with the SDK
will be generated. Double-click to open it.
Note:
If the pod search fails, it is recommended to try updating the local repo cache of pod. The update command is as

follows:

pod setup

pod repo update

rm ~/Library/Caches/CocoaPods/search_index.json

Besides the recommended automatic loading method, you can also choose to download the SDK and manually import
it. For details, see Manually Integrate the TRTC SDK and Manually Integrate Special Effect SDK.
5. Add beauty resources to the actual project
Download and unzip the corresponding package of SDK and Beauty Resources. Add the bundle resources under the
resources/motionRes folder to the actual project.

Add -ObjC in Other Linker Flags of Build Settings.

6. Modify the Bundle Identifier to match the applied trial authorization.

Step 3: project configuration

https://intl.cloud.tencent.com/document/product/647/35092#.E6.96.B9.E6.A1.88.E4.BA.8C.EF.BC.9A.E4.B8.8B.E8.BD.BD-sdk-.E5.B9.B6.E6.89.8B.E5.8A.A8.E5.AF.BC.E5.85.A5
https://intl.cloud.tencent.com/document/product/1143/45384#.E5.AF.BC.E5.85.A5-sdk
https://intl.cloud.tencent.com/document/product/1143/45377

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 465 of 588

1. Configure permissions
For e-commerce live streaming scenarios, LiteAVSDK and Special Effect SDK require the following permissions. Add
the following two items to the App's Info.plist, corresponding to the microphone and camera prompts in the system

pop-up authorization dialog box.
Privacy - Microphone Usage Description. Enter a prompt specifying the purpose of microphone use.
Privacy - Camera Usage Description. Enter a prompt specifying the purpose of camera use.

2. If you need your App to continue running certain features in the background, go to XCode, select your current
project, and under Capabilities, set the setting for Background Modes to ON, and check Audio, AirPlay, and Picture in
Picture, as shown below:

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 466 of 588

Step 4: authentication and authorization

TRTC Authentication Credential
Special Effect Authentication License

Player Authentication License
UserSig is a security protection signature designed by the cloud platform to prevent malicious attackers from
misappropriating your cloud service usage rights. TRTC validates this authentication credential when entering a room.
Debugging and testing stage: UserSig can be generated through Client Sample Code and Console Access, which are
only used for debugging and testing.

Production stage: It is recommended to use the server computing UserSig solution, which has a higher security level
and helps prevent the client from being decompiled and reversed, to avoid the risk of key leakage.
The specific implementation process is as follows:
1. Before calling the initialization API of the SDK, your app must first request UserSig from your server.
2. Your server generates the UserSig based on the SDKAppID and UserID.
3. The server returns the generated UserSig to your app.

https://intl.cloud.tencent.com/document/product/647/35166#.E5.AE.A2.E6.88.B7.E7.AB.AF.E7.A4.BA.E4.BE.8B.E4.BB.A3.E7.A0.81.E8.AE.A1.E7.AE.97-usersig
https://intl.cloud.tencent.com/document/product/647/35166#.E6.8E.A7.E5.88.B6.E5.8F.B0.E8.8E.B7.E5.8F.96-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 467 of 588

4. Your app sends the obtained UserSig to the SDK through a specific API.
5. The SDK submits the SDKAppID + UserID + UserSig to the cloud server for verification.
6. The cloud platform verifies the validity of the UserSig.

7. After the verification is passed, real-time audio and video services will be provided to the TRTC SDK.

Note:
The method of generating UserSig locally during the debugging and testing stage is not recommended for the online
environment because it may be easily decompiled and reversed, causing key leakage.
We provide server computation source code for UserSig in multiple programming languages

(Java/GO/PHP/Nodejs/Python/C#/C++). For details, see Server Computation of UserSig.
Before using Beauty Special Effect, you need to verify the license credential with the cloud platform. Configuring the
License requires License Key and License Url. Sample code is as follows.

[TELicenseCheck setTELicense:LicenseURL key:LicenseKey completion:^(NSInteger authr

 if (authresult == TELicenseCheckOk) {

 NSLog(@"Authentication successful");

 } else {

 NSLog(@"Authentication failed");

 }

https://intl.cloud.tencent.com/document/product/1047/34385#.E6.9C.8D.E5.8A.A1.E7.AB.AF.E8.AE.A1.E7.AE.97-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 468 of 588

}];

Note:
It is recommended to trigger the authentication permission in the initialization code of related business modules, to

avoid having to download the License temporarily before use. Additionally, during authentication, network permissions
must be ensured.
The actual application's Bundle ID must match exactly with the Bundle ID associated with the License creation.
Otherwise, it will lead to License verification failure. For details, see Authentication Error Code.
The live streaming and on-demand playback features require setting the License before success in playback.

Otherwise, playback will fail (black screen). It needs to be set globally only once. If you have not obtained the License,
you can freely apply for a Trial Version License for normal playback. The Official Version License requires purchase.
After successfully applying for License, you will receive two strings: License URL and License Key.
Before your App calls the SDK-related features (recommended in - [AppDelegate

application:didFinishLaunchingWithOptions:]), set the following settings:

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSD

 NSString * const licenceURL = @"<the obtained licenseUrl>";

 NSString * const licenceKey = @"<the obtained key>";

 // TXLiveBase is located in the "TXLiveBase.h" header file

 [TXLiveBase setLicence:licenceURL key:licenceKey];

 [TXLiveBase setObserver:self];

 NSLog(@"SDK Version = %@", [TXLiveBase getSDKVersionStr]);

 return YES;

}

#pragma mark - TXLiveBaseDelegate

- (void)onLicenceLoaded:(int)result Reason:(NSString *)reason {

 NSLog(@"onLicenceLoaded: result:%d reason:%@", result, reason);

 // If the result is not 0, it means the setting has failed, and you need to ret

 if (result != 0) {

 [TXLiveBase setLicence:licenceURL key:licenceKey];

 }

}

@end

After the License is successfully set (you need to wait for a while, the specific time depends on the network

conditions), you can use the following method to view the License information:

NSLog(@"%@", [TXLiveBase getLicenceInfo]);

Note:
The actual application's Bundle ID must match exactly with the Bundle ID associated with the License creation.

Otherwise, it will lead to License verification failure.

https://intl.cloud.tencent.com/document/product/1143/45384#.E6.AD.A5.E9.AA.A4.E4.B8.80.EF.BC.9A.E9.89.B4.E6.9D.83
https://console.intl.cloud.tencent.com/vod/license
https://buy.intl.cloud.tencent.com/license

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 469 of 588

The License is a strong online verification logic. When the TXLiveBase#setLicence is called after the application is
started for the first time, the network must be available. At the first launch of the App, if the network permission is not
yet authorized, you need to wait until the permission is granted before calling TXLiveBase#setLicence again.

Listen to the loading result of TXLiveBase#setLicence: For onLicenceLoaded API, if it fails, you should retry and guide
according to the actual situation. If it fails multiple times, you can limit the frequency and supplement with product pop-
ups and other guides to allow users to check the network conditions.
TXLiveBase#setLicence can be called multiple times. It is recommended to call TXLiveBase#setLicence when
entering the main interface of the App to ensure successful loading.

For multi-process Apps, ensure that every process using the player calls TXLiveBase#setLicence when it starts. For
example, for Apps on the Android side that use a separate process for video playback, when the process is killed and
restarted by the system during background playback, TXLiveBase#setLicence should also be called.

Step 5: initialize the SDK

Initialize the TRTC SDK
Initialize the Special Effect SDK
Initialize Player SDK

// Create TRTC SDK instance (single instance pattern)

self.trtcCloud = [TRTCCloud sharedInstance];

// Set event listeners

self.trtcCloud.delegate = self;

// Notifications from various SDK events (e.g., error codes, warning codes, audio a

- (void)onError:(TXLiteAVError)errCode errMsg:(nullable NSString *)errMsg extInfo:(

 NSLog(@"%d: %@", errCode, errMsg);

}

- (void)onWarning:(TXLiteAVWarning)warningCode warningMsg:(nullable NSString *)warn

 NSLog(@"%d: %@", warningCode, warningMsg);

}

// Remove event listener

self.trtcCloud.delegate = nil;

// Destroy TRTC SDK instance (single instance pattern)

[TRTCCloud destroySharedIntance];

Note:
It is recommended to listen to SDK event notifications. Perform log printing and handling for some common errors. For
details, see Error Code Table.

// Load beauty-related resources

NSDictionary *assetsDict = @{@"core_name":@"LightCore.bundle",

 @"root_path":[[NSBundle mainBundle] bundlePath]

https://intl.cloud.tencent.com/document/product/647/35135

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 470 of 588

};

// Initialize the Special Effect SDK

self.beautyKit = [[XMagic alloc] initWithRenderSize:previewSize assetsDict:assetsDi

// Release the Special Effect SDK

[self.beautyKit deinit];

Note:
Before initializing the Special Effect SDK, resource copying and other preparatory work are needed. For detailed
steps, see Special Effect SDK Integration Steps.

On-demand Playback Scenario SDK Initialization.

// 1. Set the SDK Connect Environment

// If you serve global users, configure the SDK connect environment for global conn

[TXLiveBase setGlobalEnv:"GDPR"];

// 2. Create Player

TXVodPlayer *_txVodPlayer = [[TXVodPlayer alloc] init];

// 3. Associate Rendering View

[_txVodPlayer setupVideoWidget:_myView insertIndex:0];

// 4. Player Parameter Configuration

TXVodPlayConfig *_config = [[TXVodPlayConfig alloc]init];

[_config setEnableAccurateSeek:true];// Set whether to seek accurately. The default

[_config setMaxCacheItems:5]; // Set the number of cache files to 5

[_config setProgressInterval:200]; // Set the interval for progress callbacks, in

[_config setMaxBufferSize:50]; // The maximum pre-load size, in MB

[_txVodPlayer setConfig:_config]; // Pass config to _txVodPlayer

// 5. Player Event Listener

- (void)onPlayEvent:(TXVodPlayer *)player event:(int)EvtID withParam:(NSDictionary*

// Received event that the player is ready, now you can call pause, resume, getWidt

// Received the start playback event } else if (EvtID == PLAY_EVT_PLAY_END) {

// Received the playback end event

 }

}

Live Streaming Scenarios SDK initialization.

// 1. Create Player

V2TXLivePlayer *_txLivePlayer = [[V2TXLivePlayer alloc] init];

// 2. Associate Rendering View

[_txLivePlayer setRenderView:_myView];

https://intl.cloud.tencent.com/document/product/1143/45384#.E9.9B.86.E6.88.90.E6.AD.A5.E9.AA.A4

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 471 of 588

// 3. Player Event Listener

[_txLivePlayer setObserver:self];

- (void)onVideoLoading:(id<V2TXLivePlayer>)player extraInfo:(NSDictionary *)extraIn

 // Video loading event

}

- (void)onVideoPlaying:(id<V2TXLivePlayer>)player firstPlay:(BOOL)firstPlay extraIn

 // Video playback event

}

Integration Process

API Sequence Diagram

Anchor TRTCCloud TRTCCloudDelegate Business_Server Audience

Anchor Enters Room and Starts Pushing Stream

Enter Live Streaming Preview Interface

setVideoEncoderParam

startLocalPreview

startLocalAudio

opt [Set Local Screen Rendering Mode]

setLocalRenderParams

opt [Set Encoder Output Mirror Mode]

setVideoEncoderMirror

Create Room, and Start Live Streaming

The room is created successfully. Return userSig.

enterRoom:role:Anchor

onEnterRoom

Audience Enters Room and Pull Stream

enterRoom:role:Audience

onEnterRoom

onRemoteUserEnterRoom

onUserAudioAvailable:true

onUserVideoAvailable:true

startRemoteView

onFirstAudioFrame

onFirstVideoFrame

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 472 of 588

Anchor TRTCCloud TRTCCloudDelegate Business_Server Audience

opt [Set Remote Screen Rendering Mode]

setRemoteRenderParams

Audience Mic Connection Interaction

Request Mic Connection

The audience requests a mic connection.

Agree

The anchor agrees mic connection.

switchRole:Anchor

onSwitchRole

startLocalAudio

startLocalPreview

setVideoEncoderParam

onRemoteUserEnterRoom

onUserAudioAvailable:true

onUserVideoAvailable:true

startRemoteView

onFirstAudioFrame

onFirstVideoFrame

Audience Becomes Listener and Exits Room

switchRole:Audience

onSwitchRole

stopLocalAudio

stopLocalPreview

onRemoteUserLeaveRoom

onUserAudioAvailable:false

onUserVideoAvailable:false

stopRemoteView

exitRoom

onExitRoom

Anchor Exits Room and Stops Live Streaming

stopLocalAudio

stopLocalPreview

exitRoom

onExitRoom

Stop live streaming and destroy the room.

DismissRoom

Step 1: The anchor enters the room to push streams

1. The anchor activates local video preview and audio capture before entering the room.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 473 of 588

// Obtain the video rendering control for displaying the anchor's local video previ

@property (nonatomic, strong) UIView *anchorPreviewView;

@property (nonatomic, strong) TRTCCloud *trtcCloud;

- (void)setupTRTC {

 self.trtcCloud = [TRTCCloud sharedInstance];

 self.trtcCloud.delegate = self;

 // Set video encoding parameters to determine the picture quality seen by remot

 TRTCVideoEncParam *encParam = [[TRTCVideoEncParam alloc] init];

 encParam.videoResolution = TRTCVideoResolution_960_540;

 encParam.videoFps = 15;

 encParam.videoBitrate = 1300;

 encParam.resMode = TRTCVideoResolutionModePortrait;

 [self.trtcCloud setVideoEncoderParam:encParam];

 // isFrontCamera can specify the use of front/rear camera for video capture

 [self.trtcCloud startLocalPreview:self.isFrontCamera view:self.anchorPreviewVie

 // Here you can specify the audio quality, from low to high as SPEECH/DEFAULT/M

 [self.trtcCloud startLocalAudio:TRTCAudioQualityDefault];

}

Note:
You can set the video encoding parameters TRTCVideoEncParam according to business needs. For the best
combinations of resolutions and bitrates for each tier, see Resolution and Bitrate Reference Table.
Call the above API before enterRoom . The SDK will only start the camera preview and audio capture, and wait

until you call enterRoom to start streaming.

Call the above API after enterRoom . The SDK will start the camera preview and audio capture and automatically

start streaming.
2. The anchor sets rendering parameters for the local video, and the encoder output video mode (optional).

- (void)setupRenderParams {

 TRTCRenderParams *params = [[TRTCRenderParams alloc] init];

 // Video mirror mode

 params.mirrorType = TRTCVideoMirrorTypeAuto;

 // Video fill mode

 params.fillMode = TRTCVideoFillMode_Fill;

 // Video rotation angle

 params.rotation = TRTCVideoRotation_0;

 // Set the rendering parameters for the local video

 [self.trtcCloud setLocalRenderParams:params];

 // Set the video mirror mode for the encoder output

 [self.trtcCloud setVideoEncoderMirror:YES];

 // Set the rotation of the video encoder output

https://intl.cloud.tencent.com/document/product/647/35153#trtcvideoencparam
https://intl.cloud.tencent.com/document/product/647/35153#.E5.88.86.E8.BE.A8.E7.8E.87.E7.A0.81.E7.8E.87.E5.8F.82.E7.85.A7.E8.A1.A8

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 474 of 588

 [self.trtcCloud setVideoEncoderRotation:TRTCVideoRotation_0];

}

Note:
Setting local screen rendering parameters only affects the rendering effect of the local screen.
Setting encoder output pattern affects the viewing effect for other users in the room (as well as the cloud recording
files).
3. The anchor starts the live streaming, entering the room and start streaming.

- (void)enterRoomByAnchorWithUserId:(NSString *)userId roomId:(NSString *)roomId {

 TRTCParams *params = [[TRTCParams alloc] init];

 // Take the room ID string as an example

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend

 params.userSig = @"userSig";

 // Replace with your SDKAppID

 params.sdkAppId = 0;

 // Specify the anchor role

 params.role = TRTCRoleAnchor;

 // Enter the room in an interactive live streaming scenario

 [self.trtcCloud enterRoom:params appScene:TRTCAppSceneLIVE];

}

// Event callback for the result of entering the room

- (void)onEnterRoom:(NSInteger)result {

 if (result > 0) {

 // The result represents the time taken to join the room (in milliseconds)

 NSLog(@"Enter room succeed!");

 } else {

 // The result represents the error code fwhen you fail to enter the room

 NSLog(@"Enter room failed!");

 }

}

Note:
TRTC room IDs are divided into integer type roomId and string type strRoomId . The rooms of these two types

are not interconnected. It is recommended to unify the room ID type.

TRTC user roles are divided into anchors and audiences. Only anchors have streaming permissions. It is necessary to
specify the user role when entering the room. If not specified, the default will be the anchor role.
In the e-commerce live streaming scenario, it is recommended to choose TRTCAppSceneLIVE as the room entry

mode.

Step 2: The audience enters the room to pull streams

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 475 of 588

1. Audience enters the TRTC room.

- (void)enterRoomByAudienceWithUserId:(NSString *)userId roomId:(NSString *)roomId

 TRTCParams *params = [[TRTCParams alloc] init];

 // Take the room ID string as an example

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend

 params.userSig = @"userSig";

 // Replace with your SDKAppID

 params.sdkAppId = 0;

 // Specify the audience role

 params.role = TRTCRoleAudience;

 // Enter the room in an interactive live streaming scenario

 [self.trtcCloud enterRoom:params appScene:TRTCAppSceneLIVE];

}

// Event callback for the result of entering the room

- (void)onEnterRoom:(NSInteger)result {

 if (result > 0) {

 // The result represents the time taken to join the room (in milliseconds)

 NSLog(@"Enter room succeed!");

 } else {

 // The result represents the error code fwhen you fail to enter the room

 NSLog(@"Enter room failed!");

 }

}

2. Audience subscribes to the anchor's audio and video streams.

- (void)onUserAudioAvailable:(NSString *)userId available:(BOOL)available {

 // The remote user publishes/unpublishes their audio

 // Under the automatic subscription mode, you do not need to do anything. The S

}

- (void)onUserVideoAvailable:(NSString *)userId available:(BOOL)available {

 // The remote user publishes/unpublishes the primary video

 if (available) {

 // Subscribe to the remote user's video stream and bind the video rendering

 [self.trtcCloud startRemoteView:userId streamType:TRTCVideoStreamTypeBig vi

 } else {

 // Unsubscribe to the remote user's video stream and release the rendering

 [self.trtcCloud stopRemoteView:userId streamType:TRTCVideoStreamTypeBig];

 }

}

3. Audience sets the rendering mode for the remote video (optional).

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 476 of 588

- (void)setupRemoteRenderParams {

 TRTCRenderParams *params = [[TRTCRenderParams alloc] init];

 // Video mirror mode

 params.mirrorType = TRTCVideoMirrorTypeAuto;

 // Video fill mode

 params.fillMode = TRTCVideoFillMode_Fill;

 // Video rotation angle

 params.rotation = TRTCVideoRotation_0;

 // Set the rendering mode for the remote video

 [self.trtcCloud setRemoteRenderParams:@"userId" streamType:TRTCVideoStreamTypeB

}

Step 3: The audience interacts via mic-connection

1. The audience is switched to the anchor role.

- (void)switchToAnchor {

 // Switch to the anchor role

 [self.trtcCloud switchRole:TRTCRoleAnchor];

}

// Event callback for switching role

- (void)onSwitchRole:(TXLiteAVError)errCode errMsg:(NSString *)errMsg {

 if (errCode == ERR_NULL) {

 // Role switched successfully

 }

}

2. The audience starts local audio and video capture and streaming.

- (void)setupTRTC {

 // Set video encoding parameters to determine the picture quality seen by remot

 TRTCVideoEncParam *encParam = [[TRTCVideoEncParam alloc] init];

 encParam.videoResolution = TRTCVideoResolution_480_270;

 encParam.videoFps = 15;

 encParam.videoBitrate = 550;

 encParam.resMode = TRTCVideoResolutionModePortrait;

 [self.trtcCloud setVideoEncoderParam:encParam];

 // isFrontCamera can specify the use of front/rear camera for video capture

 [self.trtcCloud startLocalPreview:self.isFrontCamera view:self.audiencePreviewV

 // Here you can specify the audio quality, from low to high as SPEECH/DEFAULT/M

 [self.trtcCloud startLocalAudio:TRTCAudioQualityDefault];

}

Note:

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 477 of 588

You can set the video encoding parameters TRTCVideoEncParam according to business needs. For the best
combinations of resolutions and bitrates for each tier, see Resolution and Bitrate Reference Table.
3. The audience drops the mic and stops streaming.

- (void)switchToAudience {

 // Switch to the audience role

 [self.trtcCloud switchRole:TRTCRoleAudience];

}

// Event callback for switching role

- (void)onSwitchRole:(TXLiteAVError)errCode errMsg:(NSString *)errMsg {

 if (errCode == ERR_NULL) {

 // Stop camera capture and streaming

 [self.trtcCloud stopLocalPreview];

 // Stop microphone capture and streaming

 [self.trtcCloud stopLocalAudio];

 }

}

Step 4: Exit and dissolve the room

1. Exit Room

- (void)exitRoom {

 [self.trtcCloud stopLocalAudio];

 [self.trtcCloud stopLocalPreview];

 [self.trtcCloud exitRoom];

}

// Event callback for exiting the room

- (void)onExitRoom:(NSInteger)reason {

 if (reason == 0) {

 NSLog(@"Proactively call exitRoom to exit the room");

 } else if (reason == 1) {

 NSLog(@"Removed from the current room by the server");

 } else if (reason == 2) {

 NSLog(@"The current room is dissolved");

 }

}

Note:
After all resources occupied by the SDK are released, the SDK will throw the onExitRoom callback notification to

inform you.
If you wish to call enterRoom again or switch to another audio and video SDK, wait for the onExitRoom

callback before proceeding. Otherwise, you may encounter various exceptional issues such as the camera,

https://intl.cloud.tencent.com/document/product/647/35153#trtcvideoencparam
https://intl.cloud.tencent.com/document/product/647/35153#.E5.88.86.E8.BE.A8.E7.8E.87.E7.A0.81.E7.8E.87.E5.8F.82.E7.85.A7.E8.A1.A8

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 478 of 588

microphone device being forcibly occupied.
2. Dissolve Room
Server dissolves the room

TRTC provides the server dissolves digit type room API DismissRoom , as well as server dissolves string type

room API DismissRoomByStrRoomId. You can call the server dissolves the room API to remove all users from the
room and dissolve the room.
Client dissolves the room
The client does not have a API to directly dissolve the room. Each client needs to call exitRoom to exit the room. Once

all anchors and audience have exited, the room will automatically be dissolved according to TRTC's room lifecycle
rules. For more details, see TRTC Exits Room.
Warning:
It is recommended that after the end of live streaming, you call the room dissolvement API on the server to ensure the
room is dissolved. This will prevent audiences from accidentally entering the room and incurring unexpected charges.

Alternative Solutions

API Sequence Diagram

Anchor TRTCCloud TRTCCloudDelegate Business_Server V2TXLivePlayer V2TXLivePlayerObserver Audienc

Anchor Relays Stream to CDN

Enter Live Streaming Preview Interface

setVideoEncoderParam

startLocalPreview

startLocalAudio

opt [Set Local Screen Rendering Mode]

setLocalRenderParams

opt [Set Encoder Output Mirror Mode]

setVideoEncoderMirror

Create Room, and Start Live Streaming

The room is created successfully. Return userSig.

enterRoom:role:Anchor

onEnterRoom

startPublishMediaStream

onStartPublishMediaStream

https://intl.cloud.tencent.com/document/product/647/34269
https://intl.cloud.tencent.com/document/product/647/39631
https://intl.cloud.tencent.com/document/product/647/50754#812a3ac0ad44e274ef4c9213ab0d4a54
https://intl.cloud.tencent.com/document/product/647/48271

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 479 of 588

onStartPublishMediaStream

Audience Pulls Stream to Play

setRenderView

opt [Set Latency Adjustment Mode]

setCacheParams

startLivePlay

opt [Set Screen Filling Mode]

setRenderFillMode

opt [Set Screen Rendering Direction]

setRenderRotation

onAudioLoading

onVideoLoading

onAudioPlaying

onVideoPlaying

Audience Mic Connection Interaction

Request Mic Connection

The audience requests a mic connection.

Agree

The anchor agrees mic connection.

startLocalAudio

startLocalPreview

setVideoEncoderParam

enterRoom:role:Anchor

onEnterRoom

onRemoteUserEnterRoom

onUserAudioAvailable:true

onUserVideoAvailable:true

startRemoteView

onFirstAudioFrame

onFirstVideoFrame

alt [UserId is Not Empty]

stopPlay

onRemoteUserEnterRoom

updatePublishMediaStream

onUpdatePublishMediaStream

onUserAudioAvailable:true

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 480 of 588

Anchor TRTCCloud TRTCCloudDelegate Business_Server V2TXLivePlayer V2TXLivePlayerObserver Audienc

onUserVideoAvailable:true

startRemoteView

onFirstAudioFrame

onFirstVideoFrame

Audience Becomes Listener and Exits Room

setRenderView

startLivePlay

onAudioLoading

onVideoLoading

onAudioPlaying

onVideoPlaying

stopAllRemoteView

stopLocalAudio

stopLocalPreview

onUserAudioAvailable:false

onUserVideoAvailable:false

stopRemoteView

exitRoom

onExitRoom

onRemoteUserLeaveRoom

updatePublishMediaStream

onUpdatePublishMediaStream

Anchor Exits Room and Stops Live Streaming

stopPublishMediaStream

stopLocalAudio

stopLocalPreview

exitRoom

onStopPublishMediaStream

onExitRoom

Stop live streaming and destroy the room.

DismissRoom

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 481 of 588

Step 1: The anchor relays stream pushing

1. Related configurations for relaying to live streaming CDN.
Global Automatic Relayed Push
If you need to automatically relay all anchors' audio and video streams in the room to live streaming CDN, you need to

enable Relay to CDN in the TRTC Console Advanced Features page.

Relayed Push of the Specified Streams
If you need to manually specify the audio and video streams to be published to live streaming CDN, or publish the

mixed audio and video streams to live streaming CDN, you can do so by calling the startPublishMediaStream API. In
this case, you do not need to activate global automatically relaying to CDN in the console. For a detailed introduction,
see Publish Audio and Video Streams to Live Streaming CDN.
2. The anchor activates local video preview and audio capture before entering the room.

// Obtain the video rendering control for displaying the anchor's local video previ

@property (nonatomic, strong) UIView *anchorPreviewView;

- (void)setupTRTC {

 self.trtcCloud = [TRTCCloud sharedInstance];

 self.trtcCloud.delegate = self;

 // Set video encoding parameters to determine the picture quality seen by remot

 TRTCVideoEncParam *encParam = [[TRTCVideoEncParam alloc] init];

 encParam.videoResolution = TRTCVideoResolution_960_540;

 encParam.videoFps = 15;

https://console.trtc.io/features
https://intl.cloud.tencent.com/document/product/647/50754#9cea9ae34a50a44c0a7023295313bf2e
https://intl.cloud.tencent.com/document/product/647/47858

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 482 of 588

 encParam.videoBitrate = 1300;

 encParam.resMode = TRTCVideoResolutionModePortrait;

 [self.trtcCloud setVideoEncoderParam:encParam];

 // isFrontCamera can specify the use of front/rear camera for video capture

 [self.trtcCloud startLocalPreview:self.isFrontCamera view:self.anchorPreviewVie

 // Here you can specify the audio quality, from low to high as SPEECH/DEFAULT/M

 [self.trtcCloud startLocalAudio:TRTCAudioQualityDefault];

}

Note:
You can set the video encoding parameters TRTCVideoEncParam according to business needs. For the best
combinations of resolutions and bitrates for each tier, see Resolution and Bitrate Reference Table.

Call the above API before enterRoom . The SDK will only start the camera preview and audio capture, and wait

until you call enterRoom to start streaming.

Call the above API after enterRoom . The SDK will start the camera preview and audio capture and automatically

start streaming.
3. The anchor sets rendering parameters for the local screen, and the encoder output video mode.

- (void)setupRenderParams {

 TRTCRenderParams *params = [[TRTCRenderParams alloc] init];

 // Video mirror mode

 params.mirrorType = TRTCVideoMirrorTypeAuto;

 // Video fill mode

 params.fillMode = TRTCVideoFillMode_Fill;

 // Video rotation angle

 params.rotation = TRTCVideoRotation_0;

 // Set the rendering parameters for the local video

 [self.trtcCloud setLocalRenderParams:params];

 // Set the video mirror mode for the encoder output

 [self.trtcCloud setVideoEncoderMirror:YES];

 // Set the rotation of the video encoder output

 [self.trtcCloud setVideoEncoderRotation:TRTCVideoRotation_0];

}

Note:
Setting local screen rendering parameters only affects the rendering effect of the local screen.

Setting encoder output pattern affects the viewing effect for other users in the room (as well as the cloud recording
files).
4. The anchor starts the live streaming, entering the room and start streaming.

- (void)enterRoomByAnchorWithUserId:(NSString *)userId roomId:(NSString *)roomId {

https://intl.cloud.tencent.com/document/product/647/35153#trtcvideoencparam
https://intl.cloud.tencent.com/document/product/647/35153#.E5.88.86.E8.BE.A8.E7.8E.87.E7.A0.81.E7.8E.87.E5.8F.82.E7.85.A7.E8.A1.A8

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 483 of 588

 TRTCParams *params = [[TRTCParams alloc] init];

 // Take the room ID string as an example

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend

 params.userSig = @"userSig";

 // Replace with your SDKAppID

 params.sdkAppId = 0;

 // Specify the anchor role

 params.role = TRTCRoleAnchor;

 // Enter the room in an interactive live streaming scenario

 [self.trtcCloud enterRoom:params appScene:TRTCAppSceneLIVE];

}

// Event callback for the result of entering the room

- (void)onEnterRoom:(NSInteger)result {

 if (result > 0) {

 // The result represents the time taken to join the room (in milliseconds)

 NSLog(@"Enter room succeed!");

 } else {

 // The result represents the error code fwhen you fail to enter the room

 NSLog(@"Enter room failed!");

 }

}

Note:
TRTC room IDs are divided into integer type roomId and string type strRoomId . The rooms of these two types

are not interconnected. It is recommended to unify the room ID type.
TRTC user roles are divided into anchors and audiences. Only anchors have streaming permissions. It is necessary to
specify the user role when entering the room. If not specified, the default will be the anchor role.
In the e-commerce live streaming scenario, it is recommended to choose TRTCAppSceneLIVE as the room entry

mode.
5. The anchor relays the audio and video streams to the live streaming CDN.

- (void)startPublishMediaToCDN:(NSString *)streamName {

 NSDate *date = [NSDate dateWithTimeIntervalSinceNow:0];

 // Set the expiration time for the push URLs

 NSTimeInterval time = [date timeIntervalSince1970] + (24 * 60 * 60);

 // Generate authentication information. The getSafeUrl method can be obtained i

 NSString *secretParam = [self getSafeUrl:LIVE_URL_KEY streamName:streamName tim

 // The target URLs for media stream publication

 TRTCPublishTarget* target = [[TRTCPublishTarget alloc] init];

 // The target URLs are set for relaying to CDN

 target.mode = TRTCPublishBigStreamToCdn;

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 484 of 588

 TRTCPublishCdnUrl* cdnUrl = [[TRTCPublishCdnUrl alloc] init];

 // Construct push URLs (in RTMP format) to the live streaming service provider

 cdnUrl.rtmpUrl = [NSString stringWithFormat:@"rtmp://%@/live/%@?%@", PUSH_DOMAI

 // True means CSS push URLs, and false means third-party services

 cdnUrl.isInternalLine = YES;

 NSMutableArray* cdnUrlList = [NSMutableArray array];

 // Multiple CDN push URLs can be added

 [cdnUrlList addObject:cdnUrl];

 target.cdnUrlList = cdnUrlList;

 // Set media stream encoding output parameters (can be defined according to bus

 TRTCStreamEncoderParam* encoderParam = [[TRTCStreamEncoderParam alloc] init];

 encoderParam.audioEncodedSampleRate = 48000;

 encoderParam.audioEncodedChannelNum = 1;

 encoderParam.audioEncodedKbps = 50;

 encoderParam.audioEncodedCodecType = 0;

 encoderParam.videoEncodedWidth = 540;

 encoderParam.videoEncodedHeight = 960;

 encoderParam.videoEncodedFPS = 15;

 encoderParam.videoEncodedGOP = 2;

 encoderParam.videoEncodedKbps = 1300;

 // Start publishing media stream

 [self.trtcCloud startPublishMediaStream:target encoderParam:encoderParam mixing

}

Note:

During single-anchor live streaming, only initiate the relayed push task. When there is an audience mic-connection or
anchor PK, update this task to a mixed-stream transcoding task.
Information of push authentication KEY LIVE_URL_KEY and push domain name PUSH_DOMAIN are required to
obtain on Domain Management page in the CSS Console.
After the media stream is published, SDK will provide the backend-initiated task identifier (taskId) through the callback

onStartPublishMediaStream.

- (void)onStartPublishMediaStream:(NSString *)taskId code:(int)code message:(NSStri

 // taskId: When the request is successful, TRTC backend will provide the taskId

 // code: Callback result. 0 means success and other values mean failure

}

Step 2: The audience pulls streams for playback

CDN audience do not need to enter the TRTC room; they can directly pull the anchor's CDN stream for playback.

// Initialize the player

self.livePlayer = [[V2TXLivePlayer alloc] init];

https://console.intl.cloud.tencent.com/live/
https://intl.cloud.tencent.com/document/product/647/50755#7793cc61deebd412cb1f1b8c4762cb3e

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 485 of 588

// Set the player callback listener

[self.livePlayer setObserver:self];

// Set the video rendering control for the player

[self.livePlayer setRenderView:self.remoteView];

// Set delay management mode (optional)

[self.livePlayer setCacheParams:1.f maxTime:5.f]; // Auto mode

[self.livePlayer setCacheParams:1.f maxTime:1.f]; // Speed mode

[self.livePlayer setCacheParams:5.f maxTime:5.f]; // Smooth mode

// Concatenate the pull URLs for playback

NSString *flvUrl = [NSString stringWithFormat:@"http://%@/live/%@.flv", PLAY_DOMAIN

NSString *hlsUrl = [NSString stringWithFormat:@"http://%@/live/%@.m3u8", PLAY_DOMAI

NSString *rtmpUrl = [NSString stringWithFormat:@"rtmp://%@/live/%@", PLAY_DOMAIN, s

NSString *webrtcUrl = [NSString stringWithFormat:@"webrtc://%@/live/%@", PLAY_DOMAI

// Start playing

[self.livePlayer startLivePlay:flvUrl];

// Custom set fill mode (optional)

[self.livePlayer setRenderFillMode:V2TXLiveFillModeFit];

// Customize video rendering direction (optional)

[self.livePlayer setRenderRotation:V2TXLiveRotation0];

Note:
The playback domain name PLAY_DOMAIN requires you to Add Your Own Domain in the CSS console for live
streaming playback. You also should configure domain CNAME.
To use the live streaming, you need to configure the player's Licence authorization in advance, or the playback will fail
(black screen). For details, see Authentication and Authorization.

Step 3: The audience interacts via mic-connection

1. The mic-connection audiences need to enter the TRTC room for real-time interaction with the anchor.

// Enter the TRTC room and start streaming

- (void)enterRoomWithUserId:(NSString *)userId roomId:(NSString *)roomId {

 TRTCParams *params = [[TRTCParams alloc] init];

 // Take the room ID string as an example

 params.strRoomId = roomId;

 params.userId = userId;

 // UserSig obtained from the business backend

 params.userSig = @"userSig";

 // Replace with your SDKAppID

 params.sdkAppId = 0;

 // Specify the anchor role

 params.role = TRTCRoleAnchor;

https://intl.cloud.tencent.com/document/product/267/35970
https://intl.cloud.tencent.com/document/product/267/31057
https://intl.cloud.tencent.com/document/product/1228/60248#a5c24159-c1b9-4f0b-b2b1-3e1bba640cb9

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 486 of 588

 // Enable local audio and video capture

 [self startLocalMedia];

 // Enter the room in an interactive live streaming scenario

 [self.trtcCloud enterRoom:params appScene:TRTCAppSceneLIVE];

}

// Enable local video preview and audio capture

- (void)startLocalMedia {

 // Set video encoding parameters to determine the picture quality seen by remot

 TRTCVideoEncParam *encParam = [[TRTCVideoEncParam alloc] init];

 encParam.videoResolution = TRTCVideoResolution_480_270;

 encParam.videoFps = 15;

 encParam.videoBitrate = 550;

 encParam.resMode = TRTCVideoResolutionModePortrait;

 [self.trtcCloud setVideoEncoderParam:encParam];

 // isFrontCamera can specify the use of front/rear camera for video capture

 [self.trtcCloud startLocalPreview:self.isFrontCamera view:self.audiencePreviewV

 // Here you can specify the audio quality, from low to high as SPEECH/DEFAULT/M

 [self.trtcCloud startLocalAudio:TRTCAudioQualityDefault];

}

// Event callback for the result of entering the room

- (void)onEnterRoom:(NSInteger)result {

 if (result > 0) {

 // The result represents the time taken to join the room (in milliseconds)

 NSLog(@"Enter room succeed!");

 } else {

 // The result represents the error code fwhen you fail to enter the room

 NSLog(@"Enter room failed!");

 }

}

Note:
You can set the video encoding parameters TRTCVideoEncParam according to business needs. For the best
combinations of resolutions and bitrates for each tier, see Resolution and Bitrate Reference Table.
2. The mic-connection audience start subscribing to the anchor's audio and video streams after they successfully
enter the room.

- (void)onUserAudioAvailable:(NSString *)userId available:(BOOL)available {

 // The remote user publishes/unpublishes their audio

 // Under the automatic subscription mode, you do not need to do anything. The S

}

- (void)onUserVideoAvailable:(NSString *)userId available:(BOOL)available {

 // The remote user publishes/unpublishes the primary video

https://intl.cloud.tencent.com/document/product/647/35153#trtcvideoencparam
https://intl.cloud.tencent.com/document/product/647/35153#.E5.88.86.E8.BE.A8.E7.8E.87.E7.A0.81.E7.8E.87.E5.8F.82.E7.85.A7.E8.A1.A8

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 487 of 588

 if (available) {

 // Subscribe to the remote user's video stream and bind the video rendering

 [self.trtcCloud startRemoteView:userId streamType:TRTCVideoStreamTypeBig vi

 } else {

 // Unsubscribe to the remote user's video stream and release the rendering

 [self.trtcCloud stopRemoteView:userId streamType:TRTCVideoStreamTypeBig];

 }

}

- (void)onFirstVideoFrame:(NSString *)userId streamType:(TRTCVideoStreamType)stream

 // The SDK starts rendering the first frame of the local or remote user's video

 if (![userId isEqualToString:@""]) {

 // Stop playing the CDN stream upon receiving the first frame of the anchor

 [self.livePlayer stopPlay];

 }

}

Note:
TRTC stream pulling startRemoteView can directly reuse the video rendering control previously used by the

CDN stream pulling setRenderView .

To avoid video interruptions when switching between stream pullers, it is recommended to wait until the TRTC first

frame callback onFirstVideoFrame is received before stopping the CDN stream pulling.

3. The anchor updates the publication of mixed media streams.

// Event callback for the mic-connection audience's room entry

- (void)onRemoteUserEnterRoom:(NSString *)userId {

 if (![self.mixUserList containsObject:userId]) {

 [self.mixUserList addObject:userId];

 }

 [self updatePublishMediaToCDN];

}

// Update the publication of mixed media streams to the live streaming CDN

- (void)updatePublishMediaToCDN {

 NSDate *date = [NSDate dateWithTimeIntervalSinceNow:0];

 // Set the expiration time for the push URLs

 NSTimeInterval time = [date timeIntervalSince1970] + (24 * 60 * 60);

 // Generate authentication information. The getSafeUrl method can be obtained i

 NSString *secretParam = [self getSafeUrl:LIVE_URL_KEY streamName:self.streamNam

 // The target URLs for media stream publication

 TRTCPublishTarget* target = [[TRTCPublishTarget alloc] init];

 // The target URLs are set for relaying the mixed streams to CDN

 target.mode = TRTCPublishMixStreamToCdn;

 TRTCPublishCdnUrl* cdnUrl = [[TRTCPublishCdnUrl alloc] init];

 // Construct push URLs (in RTMP format) to the live streaming service provider

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 488 of 588

 cdnUrl.rtmpUrl = [NSString stringWithFormat:@"rtmp://%@/live/%@?%@", PUSH_DOMAI

 // True means CSS push URLs, and false means third-party services

 cdnUrl.isInternalLine = YES;

 NSMutableArray* cdnUrlList = [NSMutableArray array];

 // Multiple CDN push URLs can be added

 [cdnUrlList addObject:cdnUrl];

 target.cdnUrlList = cdnUrlList;

 // Set media stream encoding output parameters

 TRTCStreamEncoderParam* encoderParam = [[TRTCStreamEncoderParam alloc] init];

 encoderParam.audioEncodedSampleRate = 48000;

 encoderParam.audioEncodedChannelNum = 1;

 encoderParam.audioEncodedKbps = 50;

 encoderParam.audioEncodedCodecType = 0;

 encoderParam.videoEncodedWidth = 540;

 encoderParam.videoEncodedHeight = 960;

 encoderParam.videoEncodedFPS = 15;

 encoderParam.videoEncodedGOP = 2;

 encoderParam.videoEncodedKbps = 1300;

 TRTCStreamMixingConfig *config = [[TRTCStreamMixingConfig alloc] init];

 if (self.mixUserList.count) {

 NSMutableArray<TRTCUser *> *userList = [NSMutableArray array];

 NSMutableArray<TRTCVideoLayout *> *layoutList = [NSMutableArray array];

 for (int i = 1; i < MIN(self.mixUserList.count, 16); i++) {

 TRTCUser *user = [[TRTCUser alloc] init];

 // The integer room number is intRoomId

 user.strRoomId = self.roomId;

 user.userId = self.mixUserList[i];

 [userList addObject:user];

 TRTCVideoLayout *layout = [[TRTCVideoLayout alloc] init];

 if ([self.mixUserList[i] isEqualToString:self.userId]) {

 // The layout for the anchor's video

 layout.rect = CGRectMake(0, 0, 540, 960);

 layout.zOrder = 0;

 } else {

 // The layout for the mic-connection audience's video

 layout.rect = CGRectMake(400, 5 + i * 245, 135, 240);

 layout.zOrder = 1;

 }

 layout.fixedVideoUser = user;

 layout.fixedVideoStreamType = TRTCVideoStreamTypeBig;

 [layoutList addObject:layout];

 }

 // Specify the information for each input audio stream in the transcoding s

 config.audioMixUserList = [userList copy];

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 489 of 588

 // Specify the information of position, size, layer, and stream type for ea

 config.videoLayoutList = [layoutList copy];

 }

 // Update the published media stream

 [self.trtcCloud updatePublishMediaStream:self.taskId publishTarget:target encod

}

// Event callback for updating the media stream

- (void)onUpdatePublishMediaStream:(NSString *)taskId code:(int)code message:(NSStr

 // When you call the publish media stream API (updatePublishMediaStream), the t

 // code: Callback result. 0 means success and other values mean failure

}

Note:
To ensure continuous CDN playback without stream disconnection, you need to keep the media stream encoding
output parameter encoderParam and the stream name streamName unchanged.

Media stream encoding output parameters and mixed display layout parameters can be customized according to
business needs. Currently, up to 16 channels of audio and video input are supported. If a user only provides audio, it

will still be counted as one channel.
Switching between audio only, audio and video, and video only is not supported within the same task.
4. The off-streaming audience exit the room, and the anchor updates the mixed stream task.

// Set the player callback listener

[self.livePlayer setObserver:self];

// The reusable TRTC video rendering control

[self.livePlayer setRenderView:self.remoteView];

// Restart playing CDN media stream

[self.livePlayer startLivePlay:flvUrl];

- (void)onVideoLoading:(id<V2TXLivePlayer>)player extraInfo:(NSDictionary *)extraIn

 // Video loading event

}

// Video playback event

- (void)onVideoPlaying:(id<V2TXLivePlayer>)player firstPlay:(BOOL)firstPlay extraIn

 if (firstPlay) {

 [self.trtcCloud stopAllRemoteView];

 [self.trtcCloud stopLocalAudio];

 [self.trtcCloud stopLocalPreview];

 [self.trtcCloud exitRoom];

 }

}

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 490 of 588

Note:
To avoid video interruptions when switching the stream puller, it is recommended to wait for the player's video
playback event onVideoPlaying before exiting the TRTC room.

// Event callback for the mic-connection audience's room exit

- (void)onRemoteUserLeaveRoom:(NSString *)userId reason:(NSInteger)reason {

 if ([self.mixUserList containsObject:userId]) {

 [self.mixUserList removeObject:userId];

 }

 // The anchor updates the mixed stream task

 [self updatePublishMediaToCDN];

}

// Event callback for updating the media stream

- (void)onUpdatePublishMediaStream:(NSString *)taskId code:(int)code message:(NSStr

 // When you call the publish media stream API (updatePublishMediaStream), the t

 // code: Callback result. 0 means success and other values mean failure

}

Step 4: The anchor stops the live streaming and exits the room

- (void)exitRoom {

 // Stop all published media streams

 [self.trtcCloud stopPublishMediaStream:@""];

 [self.trtcCloud stopLocalAudio];

 [self.trtcCloud stopLocalPreview];

 [self.trtcCloud exitRoom];

}

// Event callback for stopping media streams

- (void)onStopPublishMediaStream:(NSString *)taskId code:(int)code message:(NSStrin

 // When you call stopPublishMediaStream, the taskId you provide will be returne

 // code: Callback result. 0 means success and other values mean failure

}

// Event callback for exiting the room

- (void)onExitRoom:(NSInteger)reason {

 if (reason == 0) {

 NSLog(@"Proactively call exitRoom to exit the room");

 } else if (reason == 1) {

 NSLog(@"Removed from the current room by the server");

 } else if (reason == 2) {

 NSLog(@"The current room is dissolved");

 }

}

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 491 of 588

Note:
To stop publishing media streams, enter an empty string for taskId . This will stop all the media streams you have

published.

After all resources occupied by the SDK are released, the SDK will throw the onExitRoom callback notification to

inform you.

Advanced Features

Product Information Pop-up

The Product Information Pop-up feature can be implemented through IM Custom Message or SEI Information. Below
are the specific information of the two implementation methods.

Custom Message

Custom messages depend on Instant Messaging (IM). You need to activate the service and import the IM SDK in

advance. For detailed guidelines, see Voice Chat Room Connection Guide - Connection Preparation.
1. Send Custom Messages
Method 1: The anchor sends product pop-up related custom group messages on the client.

// Construct product pop-up message body

NSDictionary *msgDict = @{

 @"itemNumber": @1, // Item number

 @"itemPrice": @199.0,// Item price

 @"itemTitle": @"xxx",// Item title

 @"itemUrl": @"xxx" // Item URL

};

NSDictionary *dataDict = @{

 @"cmd": @"item_popup_msg",

 @"msg": msgDict

};

NSError *error;

NSData *data = [NSJSONSerialization dataWithJSONObject:dataDict options:0 error:&er

// Send custom group messages (it is recommended that product pop-up messages shoul

[[V2TIMManager sharedInstance] sendGroupCustomMessage:data to:groupID priority:V2TI

 // Successfully sent product pop-up message

 // Locally rendering of product pop-up effect

} fail:^(int code, NSString *desc) {

 // Failed to send product pop-up message

}];

Method 2: The backend operators sends product pop-up related custom group messages on the server.
Request URL sample:

https://intl.cloud.tencent.com/document/product/1228/60248#68e894f0-b443-48c9-974b-18a8afa4e0bb
https://intl.cloud.tencent.com/document/product/1228/60248#68e894f0-b443-48c9-974b-18a8afa4e0bb#742cb382-d825-4d72-b802-62dadf597932
https://intl.cloud.tencent.com/products/im
https://write.woa.com/document/127435706431578112#98a99507-e454-4eb9-b483-7ee3daa488b0

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 492 of 588

https://xxxxxx/v4/group_open_http_svc/send_group_msg?

sdkappid=88888888&identifier=admin&usersig=xxx&random=99999999&contenttype=json

Request packet body sample:

{

 "GroupId": "@TGS#12DEVUDHQ",

 "Random": 2784275388,

 "MsgPriority": "High", // The priority of the message. It is recommended to se

 "MsgBody": [

 {

 "MsgType": "TIMCustomElem",

 "MsgContent": {

 // itemNumber: item number; itemPrice: item price; itemTitle: item

 "Data": "{\\"cmd\\": \\"item_popup_msg\\", \\"msg\\": {\\"itemNumbe

 }

 }

]

}

2. Receive Custom Messages
Other users in the room receive callback for custom group messages, then proceed with message parsing and
product pop-up effect rendering.

// Custom group messages received

[[V2TIMManager sharedInstance] addSimpleMsgListener:self];

- (void)onRecvGroupCustomMessage:(NSString *)msgID groupID:(NSString *)groupID send

 if (data.length > 0) {

 NSError *error;

 NSDictionary *dataDict = [NSJSONSerialization JSONObjectWithData:data optio

 if (!error) {

 NSString *command = dataDict[@"cmd"];

 NSDictionary *msgDict = dataDict[@"msg"];

 if ([command isEqualToString:@"item_popup_msg"]) {

 NSNumber *itemNumber = msgDict[@"itemNumber"];// Item number

 NSNumber *itemPrice = msgDict[@"itemPrice"]; // Item price

 NSString *itemTitle = msgDict[@"itemTitle"]; // Item title

 NSString *itemUrl = msgDict[@"itemUrl"]; // Item URL

 // Render product pop-up effect based on item number, item price, i

 }

 } else {

 NSLog(@"Parsing error: %@", error.localizedDescription);

 }

 }

}

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 493 of 588

SEI Information

SEI information will be inserted into the anchor's video stream for transmission, achieving precise sync between the
product information pop-up and the anchor's live streaming.
1. Send SEI Information

The anchor sends SEI messages related to product pop-up on the TRTC client.

// Construct product pop-up message body

NSDictionary *msgDict = @{

 @"itemNumber": @1, // Item number

 @"itemPrice": @199.0,// Item price

 @"itemTitle": @"xxx",// Item title

 @"itemUrl": @"xxx" // Item URL

};

NSDictionary *dataDict = @{

 @"cmd": @"item_popup_msg",

 @"msg": msgDict

};

NSError *error;

NSData *data = [NSJSONSerialization dataWithJSONObject:dataDict options:0 error:&er

// Send SEI information

[self.trtcCloud sendSEIMsg:data repeatCount:1];

2. Receive SEI Information
Method 1: The audience receives SEI messages on the TRTC client, then proceeds with message parsing and
product pop-up effect rendering.

// Set TRTC event listener

self.trtcCloud.delegate = self;

// Receive SEI messages

- (void)onRecvSEIMsg:(NSString *)userId message:(NSData *)message {

 if (message.length > 0) {

 NSError *error;

 NSDictionary *dataDict = [NSJSONSerialization JSONObjectWithData:message op

 if (!error) {

 NSString *command = dataDict[@"cmd"];

 NSDictionary *msgDict = dataDict[@"msg"];

 if ([command isEqualToString:@"item_popup_msg"]) {

 NSNumber *itemNumber = msgDict[@"itemNumber"];// Item number

 NSNumber *itemPrice = msgDict[@"itemPrice"]; // Item price

 NSString *itemTitle = msgDict[@"itemTitle"]; // Item title

 NSString *itemUrl = msgDict[@"itemUrl"]; // Item URL

 // Render product pop-up effect based on item number, item price, i

 }

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 494 of 588

 } else {

 NSLog(@"Parsing error: %@", error.localizedDescription);

 }

 }

}

Method 2: The audience receives SEI messages on the CDN stream player, then proceeds with message parsing and

product pop-up effect rendering.

// Set the PayloadType for sending SEI messages in TRTC (must be set before sending

[self.trtcCloud callExperimentalAPI:@"{\\"api\\":\\"setSEIPayloadType\\",\\"params\

// Enable receiving SEI messages on the player and set the PayloadType

[self.livePlayer enableReceiveSeiMessage:YES payloadType:5];

// SEI message callback and parsing

- (void)onReceiveSeiMessage:(id<V2TXLivePlayer>)player payloadType:(int)payloadType

 if (data.length > 0) {

 NSError *error;

 NSDictionary *dataDict = [NSJSONSerialization JSONObjectWithData:data optio

 if (!error) {

 NSString *command = dataDict[@"cmd"];

 NSDictionary *msgDict = dataDict[@"msg"];

 if ([command isEqualToString:@"item_popup_msg"]) {

 NSNumber *itemNumber = msgDict[@"itemNumber"];// Item number

 NSNumber *itemPrice = msgDict[@"itemPrice"]; // Item price

 NSString *itemTitle = msgDict[@"itemTitle"]; // Item title

 NSString *itemUrl = msgDict[@"itemUrl"]; // Item URL

 // Render product pop-up effect based on item number, item price, i

 }

 } else {

 NSLog(@"Parsing error: %@", error.localizedDescription);

 }

 }

}

Note:
It is necessary to ensure that the SEI PayloadType of the TRTC sender and the player receiver are consistent, so

that the audience can successfully receive the SEI messages relayed via TRTC.

Product Explanation Replay

By playing pre-recorded product explanation videos, the product explanation replay feature is implemented.
First, it is necessary to initialize the player, then start playing the recorded video. TXVodPlayer supports two playback

modes, which you can choose according to your needs:
Using the URL method

https://intl.cloud.tencent.com/document/product/1228/60248#da6ac569-2069-461a-b1b3-fcf22705d466

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 495 of 588

Using the FileId method

// Play URL video resource

NSString* url = @"http://1252463788.vod2.myqcloud.com/xxxxx/v.f20.mp4";

[_txVodPlayer startVodPlay:url];

// Play sandbox local video resources

// Obtain the Documents path

NSString *documentPath = [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

// Obtain the local video path

NSString *videoPath = [NSString stringWithFormat:@"%@/video1.m3u8",documentPath];

[_txVodPlayer startVodPlay:videoPath];

TXPlayerAuthParams *p = [TXPlayerAuthParams new];

p.appId = 1252463788;

p.fileId = @"4564972819220421305";

// The psign means player signature. For more information about the signature and h

p.sign = @"psignxxxx"; // Player signature

[_txVodPlayer startVodPlayWithParams:p];

Playback control: adjust the progress, pause playback, resume playback, and end playback.

// Adjust the progress (seconds)

[_txVodPlayer seek:time];

// Pause playback

[_txVodPlayer pause];

// Resume playback

[_txVodPlayer resume];

// End playback

[_txVodPlayer stopPlay];

Note:

When stopping playback, remember to use removeVideoWidget to Destroy the view control before exiting the

current UI interface. Otherwise, it may cause a memory leak or screen flash.

// Destroy the view control

[_txVodPlayer removeVideoWidget];

Cross-room Mic-connection PK

1. Either party initiates the cross-room mic-connection PK.

- (void)connectOtherRoom:(NSString *)roomId {

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 496 of 588

 NSMutableDictionary *jsonDict = [[NSMutableDictionary alloc] init];

 // The digit room number is roomId

 [jsonDict setObject:roomId forKey:@"strRoomId"];

 [jsonDict setObject:self.userId forKey:@"userId"];

 NSData *jsonData = [NSJSONSerialization dataWithJSONObject:jsonDict options:NSJ

 NSString *jsonString = [[NSString alloc] initWithData:jsonData encoding:NSUTF8S

 [self.trtcCloud connectOtherRoom:jsonString];

}

// Result callback for requesting cross-room mic-connection

- (void)onConnectOtherRoom:(NSString *)userId errCode:(TXLiteAVError)errCode errMsg

 // The user ID of the anchor in the other room you want to initiate the cross-r

 // Error code. ERR_NULL indicates the request is successful

 // Error message

}

Note:

Both local and remote users participating in the cross-room mic-connection must be in the anchor role and must have
audio/video uplink capabilities.
Cross-room mic-connection PK with multiple room anchors can be achieved by calling ConnectOtherRoom()

multiple times. Currently, a room can connect with up to three other room anchors at most, and up to 10 anchors in a
room can conduct cross-room mic-connection competition with anchors in other rooms.

2. All users in both rooms will receive a callback indicating that the audio and video streams from the PK anchor in the
other room are available.

- (void)onUserAudioAvailable:(NSString *)userId available:(BOOL)available {

 // The remote user publishes/unpublishes their audio

 // Under the automatic subscription mode, you do not need to do anything. The S

}

- (void)onUserVideoAvailable:(NSString *)userId available:(BOOL)available {

 // The remote user publishes/unpublishes the primary video

 if (available) {

 // Subscribe to the remote user's video stream and bind the video rendering

 [self.trtcCloud startRemoteView:userId streamType:TRTCVideoStreamTypeBig vi

 } else {

 // Unsubscribe to the remote user's video stream and release the rendering

 [self.trtcCloud stopRemoteView:userId streamType:TRTCVideoStreamTypeBig];

 }

}

3. Either party exits the cross-room mic-connection PK.

// Exiting cross-room mic-connection

[self.trtcCloud disconnectOtherRoom];

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 497 of 588

// Result callback for exiting cross-room mic-connection

- (void)onDisconnectOtherRoom:(TXLiteAVError)errCode errMsg:(NSString *)errMsg {

}

Note:
After calling DisconnectOtherRoom() , you may exit the cross-room mic-connection PK with all other room

anchors.
Either the initiator or the receiver can call DisconnectOtherRoom() to exit the cross-room mic-connection PK.

Third-Party Beauty Feature Integration

TRTC supports integrating third-party beauty effect products. Use the example of Special Effect to demonstrate the
process of integrating the third-party beauty features.
1. Integrate the Special Effect SDK, and apply for an authorization license. For details, see Integration Preparation for
steps.
2. Set the SDK material resource path (if any).

NSString *beautyConfigPath = [NSSearchPathForDirectoriesInDomains(NSDocumentDirecto

beautyConfigPath = [beautyConfigPath stringByAppendingPathComponent:@"beauty_config

NSFileManager *localFileManager=[[NSFileManager alloc] init];

BOOL isDir = YES;

NSDictionary * beautyConfigJson = @{};

if ([localFileManager fileExistsAtPath:beautyConfigPath isDirectory:&isDir] && !isD

 NSString *beautyConfigJsonStr = [NSString stringWithContentsOfFile:beautyConfig

 NSError *jsonError;

 NSData *objectData = [beautyConfigJsonStr dataUsingEncoding:NSUTF8StringEncodin

 beautyConfigJson = [NSJSONSerialization JSONObjectWithData:objectData

 options:NSJSONReadingMutableContainers

 error:&jsonError];

}

NSDictionary *assetsDict = @{@"core_name":@"LightCore.bundle",

 @"root_path":[[NSBundle mainBundle] bundlePath],

 @"tnn_"

 @"beauty_config":beautyConfigJson

};

// Initialize SDK: Width and height are the width and height of the texture respect

self.xMagicKit = [[XMagic alloc] initWithRenderSize:CGSizeMake(width,height) assets

3. Set the video data callback for third-party beauty features. Pass the results of the beauty SDK processing each
frame of data into the TRTC SDK for rendering processing.

// Set the video data callback for third-party beauty features in the TRTC SDK

[self.trtcCloud setLocalVideoProcessDelegete:self pixelFormat:TRTCVideoPixelFormat_

#pragma mark - TRTCVideoFrameDelegate

https://intl.cloud.tencent.com/document/product/1228/60248#8b6b50a0-939d-48a1-aac1-58c6009e4b78

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 498 of 588

// Construct the YTProcessInput and pass it into the SDK for rendering processing

- (uint32_t)onProcessVideoFrame:(TRTCVideoFrame *_Nonnull)srcFrame dstFrame:(TRTCVi

 if (!self.xMagicKit) {

 [self buildBeautySDK:srcFrame.width and:srcFrame.height texture:srcFrame.te

 self.heightF = srcFrame.height;

 self.widthF = srcFrame.width;

 }

 if(self.xMagicKit!=nil && (self.heightF!=srcFrame.height || self.widthF!=srcFra

 self.heightF = srcFrame.height;

 self.widthF = srcFrame.width;

 [self.xMagicKit setRenderSize:CGSizeMake(srcFrame.width, srcFrame.height)];

 }

 YTProcessInput *input = [[YTProcessInput alloc] init];

 input.textureData = [[YTTextureData alloc] init];

 input.textureData.texture = srcFrame.textureId;

 input.textureData.textureWidth = srcFrame.width;

 input.textureData.textureHeight = srcFrame.height;

 input.dataType = kYTTextureData;

 YTProcessOutput *output = [self.xMagicKit process:input withOrigin:YtLightImage

 dstFrame.textureId = output.textureData.texture;

 return 0;

}

Note:
Steps 1 and 2 vary depending on the different third-party beauty products, while Step 3 is a general and important
step for integrating third-party beauty features into TRTC.
For scenario-specific integration guidelines of beauty effects, see Integrating Special Effect into TRTC SDK. For
guidelines on integrating beauty effects independently, see Integrating Special Effect SDK.

Dual-Stream Encoding Mode

When the dual-stream encoding mode is enabled, the current user's encoder outputs two video streams, a high-

definition large screen and a low-definition small screen, at the same time (but only one audio stream). In this way,
other users in the room can choose to subscribe to the high-definition large screen or low-definition small screen
based on their network conditions or screen sizes.
1. Enable large-and-small-screen dual-stream encoding mode.

- (void)enableDualStreamMode:(BOOL)enable {

 // Video encoding parameters for the small stream (customizable).

 TRTCVideoEncParam *smallVideoEncParam = [[TRTCVideoEncParam alloc] init];

 smallVideoEncParam.videoResolution = TRTCVideoResolution_480_270;

 smallVideoEncParam.videoFps = 15;

 smallVideoEncParam.videoBitrate = 550;

 smallVideoEncParam.resMode = TRTCVideoResolutionModePortrait;

 [self.trtcCloud enableEncSmallVideoStream:enable withQuality:smallVideoEncParam

https://intl.cloud.tencent.com/document/product/1143/45390
https://intl.cloud.tencent.com/document/product/1143/45384

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 499 of 588

}

Note:
When the dual-stream encoding mode is enabled, it consumes more CPU and network bandwidth. Therefore, it may

be considered for use on Mac, Windows, or high-performance Pads. It is not recommended for mobile devices.
2. Select the type of remote user's video stream to pull.

// Optional video stream types when you subscribe to a remote user's video stream

[self.trtcCloud startRemoteView:userId streamType:TRTCVideoStreamTypeBig view:view]

// You can switch the size of the specified remote user's screen at any time

[self.trtcCloud setRemoteVideoStreamType:userId type:TRTCVideoStreamTypeSmall];

Note:
When the dual-stream encoding mode is enabled, you can specify the video stream type as
 TRTCVideoStreamTypeSmall with streamType to pull a low-quality small video for viewing.

View rendering control

If your business involves scenarios of switching display zones, you can use the TRTC SDK to update the local
preview screen and update the remote user's video rendering control feature.

// Update local preview screen rendering control

[self.trtcCloud updateLocalView:view];

// Update the remote user's video rendering control

[self.trtcCloud updateRemoteView:view streamType:TRTCVideoStreamTypeBig forUser:use

Note:
The pass-through parameter view refers to the target video rendering control. And streamType only supports

 TRTCVideoStreamTypeBig and TRTCVideoStreamTypeSub .

Exception Handling

Exception error handling

When the TRTC SDK encounters an unrecoverable error, the error is thrown in the onError callback. For details,

see Error Code Table.
1. UserSig related
UserSig verification failure leads to room-entering failure. You can use the UserSig tool for verification.

Enumeration Value Description

ERR_TRTC_INVALID_USER_SIG -3320 Room entry parameter userSig is incorrect. Check if

https://intl.cloud.tencent.com/document/product/647/35135
https://console.trtc.io/usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 500 of 588

 TRTCParams.userSig is empty.

ERR_TRTC_USER_SIG_CHECK_FAILED -100018
UserSig verification failed. Check if the parameter
 TRTCParams.userSig is filled in correctly or
has expired.

2. Room entry and exit related
If room entry is failed, you should first verify the correctness of the room entry parameters. It is essential that the room

entry and exit APIs are called in a paired manner. This means that, even in the event of a failed room entry, the room
exit API must still be called.

Enumeration Value Description

ERR_TRTC_CONNECT_SERVER_TIMEOUT -3308
Room entry request timed out. Check if your
internet connection is lost or if a VPN is enabled.
You may also attempt to switch to 4G for testing.

ERR_TRTC_INVALID_SDK_APPID -3317
Room entry parameter sdkAppId is incorrect.
Check if TRTCParams.sdkAppId is empty

ERR_TRTC_INVALID_ROOM_ID -3318

Room entry parameter roomId is incorrect.Check if
 TRTCParams.roomId or
 TRTCParams.strRoomId is empty. Nnote
that roomId and strRoomId cannot be used
interchangeably.

ERR_TRTC_INVALID_USER_ID -3319
Room entry parameter userId is incorrect. Check if
 TRTCParams.userId is empty.

ERR_TRTC_ENTER_ROOM_REFUSED -3340
Room entry request was denied. Check if
 enterRoom is called consecutively to enter
rooms with the same ID.

3. Device related
Errors for related monitoring devices. Prompt the user via UI in case of relevant errors.

Enumeration Value Description

ERR_CAMERA_START_FAIL -1301

Failed to enable the camera. For example, if there is an
exception for the camera's configuration program (driver) on
a Windows or Mac device, you should try disabling then re-
enabling the device, restarting the machine, or updating the
configuration program.

ERR_MIC_START_FAIL -1302 Failed to open the mic. For example, if there is an exception

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 501 of 588

for the camera's configuration program (driver) on a
Windows or Mac device, you should try disabling then re-
enabling the device, restarting the machine, or updating the
configuration program.

ERR_CAMERA_NOT_AUTHORIZED -1314
The device of camera is unauthorized. This typically occurs
on mobile devices and may be due to the user having
denied the permission.

ERR_MIC_NOT_AUTHORIZED -1317
The device of mic is unauthorized. This typically occurs on
mobile devices and may be due to the user having denied
the permission.

ERR_CAMERA_OCCUPY -1316 The camera is occupied. Try a different camera.

ERR_MIC_OCCUPY -1319 The mic is occupied. This occurs when, for example, the
user is currently having a call on the mobile device.

Issues with the remote mirror mode not functioning properly

In TRTC, video mirror settings are divided into local preview mirror setLocalRenderParams and video encoding

mirror setVideoEncoderMirror . These settings separately affect the mirror effect of the local preview and the

video encoding output (the mirror mode for remote viewers and cloud recordings). If you expect the mirror effect seen
in the local preview to also take effect on the remote viewer's end, follow these encoding procedures.

// Set the rendering parameters for the local video

TRTCRenderParams *params = [[TRTCRenderParams alloc] init];

params.mirrorType = TRTCVideoMirrorTypeEnable; // Video mirror mode

params.fillMode = TRTCVideoFillMode_Fill; // Video fill mode

params.rotation = TRTCVideoRotation_0; // Video rotation angle

[self.trtcCloud setLocalRenderParams:params];

// Set the video mirror mode for the encoder output

[self.trtcCloud setVideoEncoderMirror:YES];

Issues with camera scale, focus, and switch

In e-commerce live streaming scenarios, the anchor may need to custom adjust the camera settings. The TRTC
SDK's device management class provides APIs for these needs.
1. Query and set the zoom factor for the camera.

// Get the maximum zoom factor for the camera (only for mobile devices)

CGFloat zoomRatio = [[self.trtcCloud getDeviceManager] getCameraZoomMaxRatio];

// Set the zoom factor for the camera (only for mobile devices)

// Value range is 1-5. 1 means the furthest field of view (normal lens), and 5 mean

[[self.trtcCloud getDeviceManager] setCameraZoomRatio:zoomRatio];

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 502 of 588

2. Set the focus feature and position of the camera.

// Enable or disable the camera's autofocus feature (only for mobile devices)

[[self.trtcCloud getDeviceManager] enableCameraAutoFocus:NO];

// Set the focus position of the camera (only for mobile devices)

// The precondition for using this API is to first disable the autofocus feature us

[[self.trtcCloud getDeviceManager] setCameraFocusPosition:CGPointMake(x, y)];

3. Determine and switch to front or rear cameras.

// Determine if the current camera is the front camera (only for mobile devices)

BOOL isFrontCamera = [[self.trtcCloud getDeviceManager] isFrontCamera];

// Switch to front or rear cameras (only for mobile devices)

// Passing true means switching to front, and passing false means switching to rear

[[self.trtcCloud getDeviceManager] switchCamera:!isFrontCamera];

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 503 of 588

Audio/Video Call
1V1 Audio and Video Call
Scenario Solution
Last updated：2024-07-25 17:09:36

Scene Overview

Scene Introduction

1V1 Audio and Video Call is a high-frequency usage scene similar to WeChat calls. TRTC (Tencent Real-Time
Communication) has an audio call latency of less than 300 ms, a packet loss resistance rate of over 80%, and can
resist network jitter of over 1000 ms, ensuring smooth and stable audio calls even in weak network environments.

Video calls support high-definition quality of 720 p, 1080 p, 2 K, and 2 K+ (specific devices), providing high-quality
video call services. Combined with the rich call signaling management APIs provided by Chat, it easily adapts to
various use cases. In addition, we also offer Audio/Video Call scene-based components that can be directly reused,
significantly reducing development costs. For details, see Component Introduction.

https://intl.cloud.tencent.com/products/trtc
https://intl.cloud.tencent.com/products/im
https://intl.cloud.tencent.com/document/product/647/50989

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 504 of 588

Scene Approach

The 1V1 Audio and Video Call feature not only incorporates the basic functionality of a WeChat-like calling
application, but it also has the potential to transform into a wide range of diverse use cases. Below are a few common
scenes briefly introduced.

Game Socializing

In the gaming field, Audio/Video Call facilitates real-time interactions among players, enhancing the overall gaming
experience. Players can engage in voice or video chats with friends within the game, share gaming experiences,
techniques, or collaborate on policy. Nowadays, audio and video calls are extensively utilized in game socializing
features, such as team voice chats.

Online Customer Service

1V1 Audio and Video Call enables customers to communicate with customer service representatives in real-time,

resulting in more effective problem-solving. Compared to traditional text-based customer service, audio and video

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 505 of 588

calls allow customers to describe their issues more vividly and enable service personnel to understand customer
needs more clearly, thus improving the efficiency of problem resolution. For instance, dispute resolution and insurance
consulting are excellent use cases for this type of communication.

Online Consultation

In the healthcare field, 1V1 Audio and Video Call enables patients to consult with doctors remotely. Patients can
describe their symptoms via Audio/Video Call, and doctors can make preliminary diagnoses based on the
descriptions. This method not only saves time and energy for patients but also allows doctors to serve more patients,
improving the usage of medical resources.

Financial Review

In the financial field, 1V1 Audio and Video Call can be utilized for identity verification and risk assessment. When

performing online financial management, account opening, or face-to-face signing, in accordance with national
regulatory requirements, audio and video recording services must be provided to create transaction record videos for
archiving and reference. Audio/Video Calls are extensively used in the financial review sector, not only enhancing the
efficiency of reviews but also mitigating the risk of fraud.

Implementation Scheme

Typically, implementing a basic 1V1 Audio and Video Call scene involves multiple feature modules. We can divide the
implementation scheme into three parts: Call Signaling Control, Audio/Video Call, Call Feature Control. The key

actions and features of each part are shown in the table below:

Functional Module Key Actions and Feature Points

Call Signaling Control Call, Answer, Decline, Hang up

Audio/Video Call Voice Call, Video Call

Call Feature Control
Enable/Disable Microphone/Camera/Speaker, Earpiece/Hands-free Switching,
Camera Switching, Window Size Switching, Network Status Prompt, Call Duration
Statistics

The complete implementation of Audio/Video Call scenes often relies on the combined capabilities of real-time audio
and video and instant messaging. The real-time audio and video module is responsible for audio and video
communication and device status control, while the instant messaging module handles signaling transmission and
message push. The main architecture of Audio/Video Call scene is shown below:

https://intl.cloud.tencent.com/document/product/1228/60251#b4dd5b12-448b-4fc9-8e12-d65aa6d323c9
https://intl.cloud.tencent.com/document/product/1228/60251#b4dd5b12-448b-4fc9-8e12-d65aa6d323c9#0ec1fb2e-7649-4551-a44d-5e8ecb80b598
https://intl.cloud.tencent.com/document/product/1228/60251#b4dd5b12-448b-4fc9-8e12-d65aa6d323c9#0ec1fb2e-7649-4551-a44d-5e8ecb80b598#90ec3ff8-9ad1-4bb9-9e6c-d927824db190

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 506 of 588

Call Signaling Control

Based on a complete call process, call signaling can be divided into Call,Answer,Decline,Hang up. Taking Chat as an
example, the following describes the specific implementation logic of the call signaling control after completing the
Log-in Operation.

Call

Call signaling can be subdivided into initiating a call, canceling a call, and call timeout, and their invocation sequence
is shown below:

https://intl.cloud.tencent.com/document/product/1228/60251#220cedf7-a3a4-46ee-85e7-5dfca353246a
https://intl.cloud.tencent.com/document/product/1228/60251#220cedf7-a3a4-46ee-85e7-5dfca353246a#47f6a2c4-dda7-464a-a64f-b6fbd466d179
https://intl.cloud.tencent.com/document/product/1228/60251#220cedf7-a3a4-46ee-85e7-5dfca353246a#47f6a2c4-dda7-464a-a64f-b6fbd466d179#0db9a27e-9098-466d-b8fb-89f96ee87bd7
https://intl.cloud.tencent.com/document/product/1228/60251#220cedf7-a3a4-46ee-85e7-5dfca353246a#47f6a2c4-dda7-464a-a64f-b6fbd466d179#0db9a27e-9098-466d-b8fb-89f96ee87bd7#cd8b1326-bea9-4fad-b816-19438ca7f65c
https://intl.cloud.tencent.com/products/im
https://intl.cloud.tencent.com/document/product/1047/47971

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 507 of 588

Calling_Party

Calling_Party

V2TIMManager

V2TIMManager

Called_Party

Called_Party

Initiate Call

invite:onSuccess Initiate Invitation

Start Ringing

onReceiveNewInvitationInvitation Notification

Start Ringing

Cancel Call

cancel:onSuccess Cancel Invitation

Stop Ringing

onInvitationCancelledCancel Notification

Stop Ringing

Call Timeout

onInvitationTimeout Timeout Notification

Stop Ringing

onInvitationTimeoutTimeout Notification

Stop Ringing

Initiating a call: The caller sends a call invitation to the callee, displays the call page, and plays the ringtone; the

callee receives the invitation, displays the call page, and plays the ringtone.
Canceling a call: The caller can cancel the call invitation midway, destroy the call page, and stop the ringtone; the
callee receives the cancellation notification, terminates the call page, and stops the ringtone.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 508 of 588

Call Timeout: If there is no response beyond the invite's predefined timeout period, both the caller and callee will
receive a timeout notification, terminate the call page, and stop the ringtone.

Answer

Upon receiving a call invitation from the caller, the callee can choose to answer the call, initiating the Audio/Video Call.

Calling_Party

Calling_Party

V2TIMManager

V2TIMManager

Called_Party

Called_Party

Answer Calls

accept:onSuccessAgree to The Invitation

Stop Ringing

onInviteeAccepted Agree Notification

Stop Ringing

Start Call

After answering the call, both parties start interactive audio and video communication. For more details on
implementation logic, see Audio/Video Call.

Decline

The decline signaling can be subdivided into active decline and busy decline, and their call sequence is shown below:

https://im.sdk.qcloud.com/doc/en/classcom_1_1tencent_1_1imsdk_1_1v2_1_1V2TIMSignalingManager.html#a3c0592962ef89e1075f3136fc7117da0
https://intl.cloud.tencent.com/document/product/1228/60251#0ec1fb2e-7649-4551-a44d-5e8ecb80b598

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 509 of 588

Calling_Party

Calling_Party

V2TIMManager

V2TIMManager

Called_Party

Called_Party

Proactive Rejection

reject:onSuccessReject Invitation

Stop Ringing

onInviteeRejected Reject Notification

Stop Ringing

Busy Line Rejection

Call in Progress

reject:onSuccessReject Invitation

onInviteeRejected Reject Notification

Stop Ringing

Proactive Rejection: The callee rejects the call invitation upon receipt, also terminates the call page and stops the
ringtone; the caller receives the rejection notice, also terminates the call page and stops the ringtone.
Busy Line Rejection: Upon receiving the call invitation, the callee directly rejects the invitation if a call is already in
progress; the caller receives the rejection notice, also terminates the call page and stopping the ringtone.
Note:

Both proactive and busy line rejections use the reject signal for implementation, but it's important to distinguish them
through the custom data field in the signaling.

Hang up

During a call, either the caller or the callee can opt to hang up at any time, thus ending the audio or video call.

https://im.sdk.qcloud.com/doc/en/classcom_1_1tencent_1_1imsdk_1_1v2_1_1V2TIMSignalingManager.html#ad9510bf8a333189fd1a0c1eafbde2266

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 510 of 588

Calling_Party

Calling_Party

TRTCCloud

TRTCCloud

Called_Party

Called_Party

Hang Up Call

exitRoom Exit the Room

onExitRoom Local Room Exit Notification

onRemoteUserLeaveRoomRemote User Room Exit Notification

exitRoomExit the Room

onExitRoomLocal Room Exit Notification

End Call

Taking the caller hanging up as an example: The caller performs the exit operation, the callee receives a remote exit

notification, also performs the exit operation, and the call between both parties ends.
Note:
The hangup operation does not use the IM signaling notification but is implemented through the TRTC (Tencent Real-
Time Communication) remote user exit callback notification.

Audio/Video Call

The Audio/Video Call mainly relies on the capabilities of TRTC (Tencent Real-Time Communication), which can be

divided into Voice Call and Video Call. Below, we'll detail the specific implementation logic of these two parts.

Audio Call

After connecting, both parties need to enter the same TRTC (Tencent Real-Time Communication) room, start
local audio capture and streaming, and mutually pull each other's audio stream to achieve a voice call.
The calling sequence for starting and ending a call's audio and video-related APIs is shown in the figure below:

https://intl.cloud.tencent.com/products/trtc
https://intl.cloud.tencent.com/document/product/1228/60251#e3b3ad49-1a0f-4ba8-ab63-9d0540000032
https://intl.cloud.tencent.com/document/product/1228/60251#e3b3ad49-1a0f-4ba8-ab63-9d0540000032#c4df1583-61ec-4919-91c9-5f03c2694769

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 511 of 588

Calling_Party

Calling_Party

TRTCCloud

TRTCCloud

Called_Party

Called_Party

Start Call

startLocalAudioStart Local Audio Capture

enterRoomEnter the Room

onEnterRoomNotification of Entering Room Result

startLocalAudio Start Local Audio Capture

enterRoom Enter the Room

onEnterRoom Notification of Entering Room Result

onRemoteUserEnterRoom Remote User Room Enter Notification

onUserAudioAvailable Notification of Remote User Publishing Audio Stream

onFirstAudioFrame Notification of First Audio Frame Playing

onRemoteUserEnterRoomRemote User Room Enter Notification

onUserAudioAvailableNotification of Remote User Publishing Audio Stream

onFirstAudioFrameNotification of First Audio Frame Playing

End Call

stopLocalAudio Stop Local Audio Capture

exitRoom Exit the Room

onExitRoom Local Room Exit Notification

onRemoteUserLeaveRoomRemote User Room Exit Notification

stopLocalAudioStop Local Audio Capture

exitRoomExit the Room

onExitRoomLocal Room Exit Notification

Note:

In voice call mode, the TRTC (Tencent Real-Time Communication) room scene should use
 TRTC_APP_SCENE_AUDIOCALL , and the joining role TRTCRoleType should not be specified.

Starting local audio capture startLocalAudio allows you to set audio quality parameters at the same time. For

voice calls, it's recommended to set TRTC_AUDIO_QUALITY_SPEECH .

Under the SDK's default automatic subscription mode, after a user enters a room, they will immediately receive the

audio stream from that room, which will be automatically decoded and played without manual pulling.

Video Call

https://intl.cloud.tencent.com/document/product/647/50768#45c6782b29cadc377b5763a5d8490340
https://intl.cloud.tencent.com/document/product/647/50768#ba5a0edf12dbdde569c7456699ba9e75
https://intl.cloud.tencent.com/document/product/647/50768#9ccda47c68c6d873c7938428e0f9fd5d

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 512 of 588

During the calling phase, both parties must set video encode parameters and start local video preview. After
connecting, both parties need to enter the same TRTC (Tencent Real-Time Communication) room, start local
audio capture and streaming, and mutually pull each other's audio and video streams to achieve a video call.

The calling sequence for initiating a call, starting a call, and ending a call's audio and video-related APIs is shown in
the figure below:

Calling_Party TRTCCloud Called_Party

Initiate Call

setVideoEncoderParam Setting Video Encode Parameters

startLocalPreview Enable Local Video Preview

setVideoEncoderParamSetting Video Encode Parameters

startLocalPreviewEnable Local Video Preview

Start Call

startLocalAudioStart Local Audio Capture

enterRoomEnter the Room

onEnterRoomNotification of Entering Room Result

startLocalAudio Start Local Audio Capture

enterRoom Enter the Room

onEnterRoom Notification of Entering Room Result

onRemoteUserEnterRoom Remote User Room Enter Notification

onUserAudioAvailable Notification of Remote User Publishing Audio Stream

onFirstAudioFrame Notification of First Audio Frame Playing

onUserVideoAvailable Notification of Remote User Publishing Video Stream

startRemoteView Subscribe to Remote Video Stream

onFirstVideoFrame Notification of First Video Frame Rendering

onRemoteUserEnterRoomRemote User Room Enter Notification

onUserAudioAvailableNotification of Remote User Publishing Audio Stream

onFirstAudioFrameNotification of First Audio Frame Playing

onUserVideoAvailableNotification of Remote User Publishing Video Stream

startRemoteViewSubscribe to Remote Video Stream

onFirstVideoFrameNotification of First Video Frame Rendering

End Call

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 513 of 588

Calling_Party TRTCCloud Called_Party

End Call

stopLocalAudio Stop Local Audio Capture

stopLocalPreview Disable Local Video Preview

exitRoom Exit the Room

onExitRoom Local Room Exit Notification

onRemoteUserLeaveRoomRemote User Room Exit Notification

stopLocalAudioStop Local Audio Capture

stopLocalPreviewDisable Local Video Preview

exitRoomExit the Room

onExitRoomLocal Room Exit Notification

Note:
In video call mode, the TRTC (Tencent Real-Time Communication) room scene should use
 TRTC_APP_SCENE_VIDEOCALL , and the joining role TRTCRoleType should not be specified.

Before entering the room, call startLocalPreview , and the SDK will only start the camera preview, waiting until

you call enterRoom to start streaming.

Start local audio capture with startLocalAudio , where you can also set the audio parameter. For video calls, it

is recommended to set to TRTC_AUDIO_QUALITY_SPEECH .

In the SDK's default automatic subscription mode, audio is automatically decoded and played back, while video
requires manual invocation of startRemoteView to pull and render the remote video stream.

Call Feature Control

During Audio/Video Call, various feature controls might be involved, such as: turning on/off the microphone, turning
on/off the speaker, turning on/off the camera, hands-free/earpiece switching, camera switching, window size
switching, network status prompt, call duration statistics. Most of these feature controls and status prompts are
facilitated through the TRTC (Tencent Real-Time Communication) SDK. Below, we will introduce their
implementations one by one.

Turn on/off Microphone

Android
iOS

// Turn the mic on

mTRTCCloud.muteLocalAudio(false);

// Turn the mic off

mTRTCCloud.muteLocalAudio(true);

https://intl.cloud.tencent.com/document/product/647/50768#45c6782b29cadc377b5763a5d8490340
https://intl.cloud.tencent.com/document/product/647/50768#ba5a0edf12dbdde569c7456699ba9e75
https://intl.cloud.tencent.com/document/product/647/50768#9ccda47c68c6d873c7938428e0f9fd5d
https://intl.cloud.tencent.com/document/product/1228/60251#7d4e3808-080d-4c3e-a5da-ddecf50353c5
https://intl.cloud.tencent.com/document/product/1228/60251#7d4e3808-080d-4c3e-a5da-ddecf50353c5#5128b9a7-216f-4776-8ff4-db8a11bdb6b3
https://intl.cloud.tencent.com/document/product/1228/60251#7d4e3808-080d-4c3e-a5da-ddecf50353c5#5128b9a7-216f-4776-8ff4-db8a11bdb6b3#90b6b369-ca9e-4069-831e-e97bd6e6287c
https://intl.cloud.tencent.com/document/product/1228/60251#7d4e3808-080d-4c3e-a5da-ddecf50353c5#5128b9a7-216f-4776-8ff4-db8a11bdb6b3#90b6b369-ca9e-4069-831e-e97bd6e6287c#ad6ddc84-9907-4bd2-b769-2e614f909998
https://intl.cloud.tencent.com/document/product/1228/60251#7d4e3808-080d-4c3e-a5da-ddecf50353c5#5128b9a7-216f-4776-8ff4-db8a11bdb6b3#90b6b369-ca9e-4069-831e-e97bd6e6287c#ad6ddc84-9907-4bd2-b769-2e614f909998#c0f68165-31dc-494f-ac94-7bb4f136a70b
https://intl.cloud.tencent.com/document/product/1228/60251#7d4e3808-080d-4c3e-a5da-ddecf50353c5#5128b9a7-216f-4776-8ff4-db8a11bdb6b3#90b6b369-ca9e-4069-831e-e97bd6e6287c#ad6ddc84-9907-4bd2-b769-2e614f909998#c0f68165-31dc-494f-ac94-7bb4f136a70b#bf6a3d22-083c-4db4-8ac6-56be580a6fac
https://intl.cloud.tencent.com/document/product/1228/60251#7d4e3808-080d-4c3e-a5da-ddecf50353c5#5128b9a7-216f-4776-8ff4-db8a11bdb6b3#90b6b369-ca9e-4069-831e-e97bd6e6287c#ad6ddc84-9907-4bd2-b769-2e614f909998#c0f68165-31dc-494f-ac94-7bb4f136a70b#bf6a3d22-083c-4db4-8ac6-56be580a6fac#efec4ba7-a8c3-4d6f-8adf-3bfa1458ba5a
https://intl.cloud.tencent.com/document/product/1228/60251#7d4e3808-080d-4c3e-a5da-ddecf50353c5#5128b9a7-216f-4776-8ff4-db8a11bdb6b3#90b6b369-ca9e-4069-831e-e97bd6e6287c#ad6ddc84-9907-4bd2-b769-2e614f909998#c0f68165-31dc-494f-ac94-7bb4f136a70b#bf6a3d22-083c-4db4-8ac6-56be580a6fac#efec4ba7-a8c3-4d6f-8adf-3bfa1458ba5a#5f0cf14c-8c97-4033-a93a-2f946cb18c83

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 514 of 588

// Turn the mic on

[self.trtcCloud muteLocalAudio:NO];

// Turn the mic off

[self.trtcCloud muteLocalAudio:YES];

Turn on/off speaker

Android
iOS

// Turn the speaker on

mTRTCCloud.muteAllRemoteAudio(false);

// Turn the speaker off

mTRTCCloud.muteAllRemoteAudio(true);

// Turn the speaker on

[self.trtcCloud muteAllRemoteAudio:NO];

// Turn the speaker off

[self.trtcCloud muteAllRemoteAudio:YES];

Turn on/off camera

Android
iOS

// Turn the camera on, specifying front or rear camera and the rendering widget

mTRTCCloud.startLocalPreview(isFrontCamera, videoView);

// Turn the camera off

mTRTCCloud.stopLocalPreview();

// Turn the camera on, specifying front or rear camera and the rendering widget

[self.trtcCloud startLocalPreview:self.isFrontCamera view:self.videoView];

// Turn the camera off

[self.trtcCloud stopLocalPreview];

Hands-free/Earpiece Switching

Android
iOS

// Switch to earpiece

mTRTCCloud.getDeviceManager().setAudioRoute(TXDeviceManager.TXAudioRoute.TXAudioRou

// Switch to speakerphone

mTRTCCloud.getDeviceManager().setAudioRoute(TXDeviceManager.TXAudioRoute.TXAudioRou

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 515 of 588

// Switch to earpiece

[[self.trtcCloud getDeviceManager] setAudioRoute:TXAudioRouteEarpiece];

// Switch to speakerphone

[[self.trtcCloud getDeviceManager] setAudioRoute:TXAudioRouteSpeakerphone];

Camera Switching

Android
iOS

// Determine if the current camera is front-facing

boolean isFrontCamera = mTRTCCloud.getDeviceManager().isFrontCamera();

// Switch between front and rear cameras, true: switch to front-facing; false: swit

mTRTCCloud.getDeviceManager().switchCamera(!isFrontCamera);

// Determine if the current camera is front-facing

BOOL isFrontCamera = [[self.trtcCloud getDeviceManager] isFrontCamera];

// Switch between front and rear cameras, true: switch to front-facing; false: swit

[[self.trtcCloud getDeviceManager] switchCamera:!isFrontCamera];

Window Size Switching

Android
iOS

// Update local preview screen rendering control

mTRTCCloud.updateLocalView(previewView);

// Update remote user video rendering control

mTRTCCloud.updateRemoteView(userId, TRTCCloudDef.TRTC_VIDEO_STREAM_TYPE_BIG, previe

// Update local preview screen rendering control

[self.trtcCloud updateLocalView:self.previewView];

// Update remote user video rendering control

[self.trtcCloud updateRemoteView:self.previewView streamType:TRTCVideoStreamTypeBig

Network Status Prompt

Android
iOS

@Override

public void onNetworkQuality(TRTCCloudDef.TRTCQuality localQuality, ArrayList<TRTCC

 if (remoteQuality.size() > 0) {

 switch (remoteQuality.get(0).quality) {

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 516 of 588

 case TRTCCloudDef.TRTC_QUALITY_Excellent:

 Log.i(TAG, "The other party's network is very good");

 break;

 case TRTCCloudDef.TRTC_QUALITY_Good:

 Log.i(TAG, "The other party's network is quite good");

 break;

 case TRTCCloudDef.TRTC_QUALITY_Poor:

 Log.i(TAG, "The other party's network is average");

 break;

 case TRTCCloudDef.TRTC_QUALITY_Bad:

 Log.i(TAG, "The other party's network is poor");

 break;

 case TRTCCloudDef.TRTC_QUALITY_Vbad:

 Log.i(TAG, "The other party's network is very poor");

 break;

 case TRTCCloudDef.TRTC_QUALITY_Down:

 Log.i(TAG, "The other party's network is extremely poor");

 break;

 default:

 Log.i(TAG, "Undefined");

 break;

 }

 }

}

#pragma mark - TRTCCloudDelegate

- (void)onNetworkQuality:(TRTCQualityInfo *)localQuality remoteQuality:(NSArray<TRT

 if (remoteQuality.count > 0) {

 switch(remoteQuality[0].quality) {

 case TRTCQuality_Unknown:

 NSLog(@"Undefined ");

 break;

 case TRTCQuality_Excellent:

 NSLog(@"The other party's network is very good");

 break;

 case TRTCQuality_Good:

 NSLog(@"The other party's network is quite good");

 break;

 case TRTCQuality_Poor:

 NSLog(@"The other party's network is average");

 break;

 case TRTCQuality_Bad:

 NSLog(@"The other party's network is relatively poor");

 break;

 case TRTCQuality_Vbad:

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 517 of 588

 NSLog(@"The other party's network is very poor");

 break;

 case TRTCQuality_Down:

 NSLog(@"The other party's network is extremely poor");

 break;

 default:

 break;

 }

 }

}

Note:
 localQuality 's userId field is empty, indicating the local user network quality assessment result.

 remoteQuality represents the assessment result of the remote user's network quality, which is influenced by

factors on both the remote and local sides.

Call duration statistics

It is recommended to use the time when a remote user joins the TRTC (Tencent Real-Time Communication) room as
the start time for calculating call duration, and the time when the local user exits the room as the end time for
calculating call duration.
Android
iOS

// Start call time

long callStartTime = 0;

// End Call Time

long callFinishTime = 0;

// Call Duration (seconds)

long callDuration = 0;

// Remote User Join Callback

@Override

public void onRemoteUserEnterRoom(String userId) {

 callStartTime = System.currentTimeMillis();

}

// Local User Leave Callback

@Override

public void onExitRoom(int reason) {

 callFinishTime = System.currentTimeMillis();

 callDuration = (callFinishTime - callStartTime) / 1000;

}

// Start call time

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 518 of 588

@property (nonatomic, assign) NSTimeInterval callStartTime;

// End Call Time

@property (nonatomic, assign) NSTimeInterval callFinishTime;

// Call Duration (seconds)

@property (nonatomic, assign) NSInteger callDuration;

// Remote User Join Callback

- (void)onRemoteUserEnterRoom:(NSString *)userId {

 self.callStartTime = [[NSDate date] timeIntervalSince1970];

}

// Local User Leave Callback

- (void)onExitRoom:(NSInteger)reason {

 self.callFinishTime = [[NSDate date] timeIntervalSince1970];

 self.callDuration = (NSInteger)(self.callFinishTime - self.callStartTime);

}

Note:
In cases of exceptions such as forced closure or network disconnection, the client may not be able to log the relevant
times. These can be monitored through Server-side Event Callback to track events of entering and exiting the room
and calculate the duration of the call.

Advanced Features

On-Cloud Recording

In many scenes of 1V1 Audio and Video Call, it is necessary to record and store the content of the call for filing and
post-event analysis. TRTC (Tencent Real-Time Communication)'s latest upgrade to on-cloud recording, which doesn't
rely on CSS (Cloud Streaming Services) capabilities and doesn't require rerouting to CSS, uses TRTC (Tencent Real-
Time Communication)'s internal real-time recording cluster for audio and video recording, offering a more complete
and unified recording experience.
Single Stream Recording:Through TRTC (Tencent Real-Time Communication)'s on-cloud recording feature, you

can record the audio and video streams of both parties in the room into separate files.

https://intl.cloud.tencent.com/document/product/647/39558

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 519 of 588

Mixed Stream Recording: Record all the audio and video media streams in the same room into one file.

Note:
For a detailed introduction and activation guide to TRTC On-Cloud Recording, see On-Cloud Recording.

Video Beauty Effects

In video call scenes, beauty effects are a frequently used feature. Not only can beauty effects enhance the user's

appearance, but they also add interest to the call interaction through various sticker effects. TRTC (Tencent Real-
Time Communication) supports the integration of Tencent Beauty Special Effects and also supports the connect to
mainstream third-party beauty products in the market, such as Volcano Beauty, Xiangxin Beauty, etc.

Beauty Enhancement Connect Process

https://intl.cloud.tencent.com/document/product/647/45169
https://intl.cloud.tencent.com/products/x-magic

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 520 of 588

API Call Sequence

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 521 of 588

App

App

TRTCCloud

TRTCCloud

Beauty

Beauty

sharedInstance Create TRTC Instance

addListener Add TRTC Event Callback

setLocalVideoProcessListener Set Video Data Callback for Third-Party Beauty

startLocalPreview Start Local Camera Preview

onGLContextCreated Notification that SDK's Internal OpenGL Environment has been Created

Third-Party Beauty Initialization

loop
onProcessVideoFrame Video Processing Callback for Third-party Beauty Component Connecting

Third-Party Beauty Processing

Writeback of Beauty Video Data

stopLocalPreview Stop Camera Preview

onGLContextDestory Notification that SDK's Internal OpenGL Environment has been Destroyed

Third-party Beauty Resource Destruction

Comparison of Beauty Enhancement Products

Beauty
Type

Beauty
Effect

Integration
Cost Fees

Virtual AI
Digital
Human

Support Terminal

Tencent
Effect
SDK

The basic
effect is
good,
advanced
effect for big
eyes/slim
faces is
significant.

Moderately
Low

Moderate Supported Android/iOS/PC/Flutter/Web/Mini
Program

FaceUnity
Effect
SDK

The basic
effect is
good,
advanced
effects like
big eyes/slim
faces are
average.

Moderately
High

Moderate Supported Android/iOS/PC/Untiy

https://intl.cloud.tencent.com/products/x-magic
https://www.faceunity.com/effects.html

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 522 of 588

Volcano
Effect
SDK

The basic
effect is
good,
advanced
effects like
big eyes/slim
faces are
relatively
good.

Moderately
High

Relatively
High Supported Android/iOS/PC/Linux

Offline Message Push

In Audio/Video Call scenes, the offline message push feature is usually necessary, allowing the called user's App to
receive new incoming call messages even when it's not online.
Chat provides a complete Android Offline Push Integration Guide, iOS Offline Push Integration Guide, with the main
steps as follows:
Android Offline Push
iOS Offline Push

1. Register your application with vendor push platforms.
2. Configure the IM console.
3. Configure the redirected-to page for offline push.
4. Configure vendor push rules.
5. Integrate the vendor push SDK.

6. Sync frontend and backend status.
7. Send offline push messages.
8. Parse offline push messages.
1. Apply for an APNs/VoIP Push certificate.
2. Upload the certificate to the IM console.

3. The app requests a token from Apple's backend.
4. Log in to the IM SDK and then upload the token to Tencent Cloud.
5. Send offline push messages.
6. Parse offline push messages.

Supporting Products for the Solution

System
Level

Product Name Application Scenes

Access Tencent Real- Provides low-latency, high-quality real-time audio and video interaction

https://www.volcengine.com/product/intelligent-interactive-effects
https://intl.cloud.tencent.com/document/product/1047/39156
https://intl.cloud.tencent.com/document/product/1047/39157
https://intl.cloud.tencent.com/products/trtc

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 523 of 588

Layer Time
Communication
(TRTC)

solutions, which are the basic infrastructure capabilities for Audio/Video
Call scenes.

Access
Layer

Instant Messaging
(IM)

Provides reliable and stable signaling transmission, custom message
sending and receiving, to implement call signaling control in Audio/Video
Call scenes.

Access
Layer

Tencent Effect
SDK

Provides real-time effects processing capabilities such as beauty, filtering,
makeup, fun stickers, emojis, and virtual avatars.

Cloud
Services

Video on Demand
(VOD)

Aimed at audio, video, and images, it provides an all-in-one high-quality
media service including production upload, storage, transcoding, MPS
(Media Processing Service), media AI, accelerated distribution and
playback, and copyright protection.

Data
Storage

 Cloud Object
Storage (COS)

Provides storage services for audio and video recording files, as well as
audio and video slicing files.

https://intl.cloud.tencent.com/products/trtc
https://intl.cloud.tencent.com/products/im
https://intl.cloud.tencent.com/products/x-magic
https://intl.cloud.tencent.com/products/vod
https://intl.cloud.tencent.com/products/cos

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 524 of 588

Quick Integration Guide
Android
Last updated：2024-07-18 14:26:14

Business Process

This document summarizes some common business processes in one-to-one audio and video calls, helping you
better understand the implementation process of the entire scenario.
Audio Call Process

Video Call Process
The following diagram shows the sequence of one-to-one audio call, including processes such as calling, answering,
talking, and hanging up.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 525 of 588

The following diagram shows the sequence of one-to-one video call, including processes such as calling, answering,

talking, and hanging up.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 526 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 527 of 588

Integration Preparations

Step 1: activate the service

One-to-one audio and video call scenarios usually require dependencies on two paid PaaS services from the cloud
platform, Instant Messaging (IM) and Real-Time Communication (TRTC) for construction.
1. First, you need to log in to the TRTC Console to create an application. At this time, an IM trial application with the
same SDKAppID as the current TRTC application will be automatically created in the Instant Messaging (IM) Console.

The accounts and authentication systems for both can be reused. Subsequently, you can choose to upgrade the
TRTC or IM application version as needed. For example, the advanced versions can unlock more value-added
features and services.

https://intl.cloud.tencent.com/products/im
https://intl.cloud.tencent.com/products/trtc
https://console.trtc.io/
https://console.intl.cloud.tencent.com/im

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 528 of 588

Note:
It is recommended to create two separate applications for testing and production environments. Each account (UIN) is
provided with 10,000 minutes of free usage per month within one year.
The TRTC monthly package is divided into Trial Version (by default), Basic Version, and Professional Version, which
can unlock different value-added features and services. For details, see Version Features and Monthly Package

Description.
2. Once the application is created, you can find basic information about it under the Application Management -
Application Overview section. It is important to store the SDKAppID and SDKSecretKey for later use and to avoid

https://intl.cloud.tencent.com/document/product/647/52816#f10b65d1-6e8d-41e3-8686-84909b00a1a2

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 529 of 588

key leakage to prevent unauthorized traffic usage.

Step 2: import SDK

The TRTC SDK and IM SDK have been released to the mavenCentral repository. You can configure gradle to
download and update automatically.

1. Add the dependency for the appropriate version of the SDK in dependencies.

dependencies {

 // TRTC SDK lite version, includes two features: TRTC and live streaming

playback

 implementation 'com.tencent.liteav:LiteAVSDK_TRTC:latest.release'

 // Add IM SDK. It is recommended to use the latest version number

 implementation 'com.tencent.imsdk:imsdk-plus:Version number'

 // If you need to add Quic plugin, uncomment the next line (Note: Version

number of the plugin needs to be the same as that of the IM SDK)

 // implementation 'com.tencent.imsdk:timquic-plugin:Version number'

}

Note:

Besides the recommended automatic loading method, you can also choose to download the SDK and manually import
it. For details, see Manually Integrating the TRTC SDK and Manually Integrating the IM SDK.
Quic plugin offers axp-quic Multiplexing Transmission Protocol, providing better resistance to poor networks. Even
with a packet loss rate of 70%, it still can offer services. Available only for Flagship users. For non-Flagship users,
purchase the Flagship package before use, and see Pricing Instructions. To ensure proper functionality, update
Terminal SDK to version 7.7.5282 or above.

2. Specify the CPU architecture used by the app in defaultConfig.

defaultConfig {

https://intl.cloud.tencent.com/document/product/647/35093#.E6.96.B9.E6.A1.88.E4.BA.8C.EF.BC.9A.E4.B8.8B.E8.BD.BD-sdk-.E5.B9.B6.E6.89.8B.E5.8A.A8.E5.AF.BC.E5.85.A5
https://intl.cloud.tencent.com/document/product/1047/34306#36006ca4-f19c-4555-a4f9-7cdd5dc79c56
https://intl.cloud.tencent.com/document/product/1047/34577
https://intl.cloud.tencent.com/document/product/1047/34350

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 530 of 588

 ndk {

 abiFilters "armeabi-v7a", "arm64-v8a"

 }

}

Note:
The TRTC SDK supports architectures including armeabi, armeabi-v7a and arm64-v8a. Additionally, it supports

architectures for simulators including x86 and x86_64.
The IM SDK supports architectures including armeabi-v7a, arm64-v8a, x86, and x86_64. To reduce the size of the
installer package, you can choose to package SO files for only a subset of these architectures.

Step 3: project configuration

1. To configure app permissions in AndroidManifest.xml, for audio/video call scenarios, both the TRTC SDK and IM
SDK require the following permissions:

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />

<uses-permission android:name="android.permission.RECORD_AUDIO" />

<uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" />

<uses-permission android:name="android.permission.BLUETOOTH" />

<uses-permission android:name="android.permission.CAMERA" />

<uses-feature android:name="android.hardware.camera.autofocus" />

Note:
Do not set android:hardwareAccelerated="false" . Disabling hardware acceleration will result in failure to

render the other party's video stream.
The TRTC SDK does not have built-in permission request logic. You need to declare the corresponding permissions

yourself. Some permissions (such as storage, recording and camera), also require runtime dynamic requests.
If the Android project's targetSdkVersion is 31 or higher, or if the target device runs Android 12 or a newer

version, the official requirement is to dynamically request android.

permission.BLUETOOTH_CONNECT permission in the code to use the Bluetooth feature properly. For more

information, see Bluetooth Permissions.

2. Since we use Java's reflection features inside the SDK, you need to add relevant SDK classes to the non-
obfuscation list in the proguard-rules.pro file:

-keep class com.tencent.** { *; }

Step 4: authentication credential

UserSig is a security signature designed by the cloud platform to prevent attackers from accessing your cloud
account. Cloud services such as Real-Time Communication (TRTC) and Instant Messaging (IM) adopt this security

https://developer.android.google.cn/develop/connectivity/bluetooth/bt-permissions

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 531 of 588

protection mechanism. Authentication is required for TRTC upon entering a room, and for IM during login.
Debugging and testing stage: UserSig can be generated through Client Example Code and Console Access, which
are only used for debugging and testing.

Production stage: It is recommended to use the server computing UserSig solution, which has a higher security level
and helps prevent the client from being decompiled and reversed, to avoid the risk of key leakage.
The specific implementation process is as follows:
1. Before calling the initialization API of the SDK, your app must first request UserSig from your server.
2. Your server generates the UserSig based on the SDKAppID and UserID.

3. The server returns the generated UserSig to your app.
4. Your app sends the obtained UserSig to the SDK through a specific API.
5. The SDK submits the SDKAppID + UserID + UserSig to the cloud server for verification.
6. The cloud platform verifies the validity of the UserSig.
7. Once the verification is passed, it will provide instant communication services to the IM SDK and real-time audio
and video services to the TRTC SDK.

Note:

https://intl.cloud.tencent.com/document/product/647/35166#.E5.AE.A2.E6.88.B7.E7.AB.AF.E7.A4.BA.E4.BE.8B.E4.BB.A3.E7.A0.81.E8.AE.A1.E7.AE.97-usersig
https://intl.cloud.tencent.com/document/product/647/35166#.E6.8E.A7.E5.88.B6.E5.8F.B0.E8.8E.B7.E5.8F.96-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 532 of 588

The method of generating UserSig locally during the debugging and testing stage is not recommended for the online
environment because it may be easily decompiled and reversed, causing key leakage.
We provide server computation source code for UserSig in multiple programming languages

(Java/GO/PHP/Nodejs/Python/C#/C++). For details, see Server Computation of UserSig.

Step 5: initialize the SDK

1. Initialize IM SDK and Add Event Listeners

// Add event listener

V2TIMManager.getInstance().addIMSDKListener(imSdkListener);

// Initialize the IM SDK. After calling this API, you can immediately call the log-

V2TIMManager.getInstance().initSDK(context, sdkAppID, null);

// After the SDK is initialized, it will trigger various events, such as connection

private V2TIMSDKListener imSdkListener = new V2TIMSDKListener() {

 @Override

 public void onConnecting() {

 Log.d(TAG, "IM SDK is connecting to the Cloud Virtual Machine");

 }

 @Override

 public void onConnectSuccess() {

 Log.d(TAG, "IM SDK has successfully connected to the Cloud Virtual Machine"

 }

};

// Remove event listener

V2TIMManager.getInstance().removeIMSDKListener(imSdkListener);

// Deinitialize the IM SDK

V2TIMManager.getInstance().unInitSDK();

Note:

If the lifecycle of your application is consistent with the SDK lifecycle, you do not need to deinitialize before exiting the
application. However, if you only initialize the SDK when entering a specific interface and no longer use it after exiting
that interface, you can deinitialize the SDK.
2. Create TRTC SDK Instances and Set Event Listeners

// Create TRTC SDK instance (single instance pattern)

TRTCCloud mTRTCCloud = TRTCCloud.sharedInstance(context);

// Add TRTC event listener

mTRTCCloud.addListener(trtcSdkListener);

// Notifications from various SDK events (e.g., error codes, warning codes, audio a

private TRTCCloudListener trtcSdkListener = new TRTCCloudListener() {

 @Override

https://intl.cloud.tencent.com/document/product/1047/34385#.E6.9C.8D.E5.8A.A1.E7.AB.AF.E8.AE.A1.E7.AE.97-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 533 of 588

 public void onError(int errCode, String errMsg, Bundle extraInfo) {

 Log.d(TAG, errCode + errMsg);

 }

 @Override

 public void onWarning(int warningCode, String warningMsg, Bundle extraInfo) {

 Log.d(TAG, warningCode + warningMsg);

 }

};

// Remove TRTC event listener

mTRTCCloud.removeListener(trtcSdkListener);

// Destroy TRTC SDK instance (single instance pattern)

TRTCCloud.destroySharedInstance();

Note:
It is recommended to listen to SDK event notifications. Perform log printing and handling for some common errors. For

details, see Error Code Table.

Integration Process

Step 1: log in

After the IM SDK is initialized, you need to call the SDK log in API to authenticate your account identity and gain
permissions to use features. Before using any other features, ensure you are successfully logged in, or you
might encounter feature malfunctions or unavailability. If you only need to use TRTC's audio and video services, you
can skip this step.

Sequence Diagram

https://intl.cloud.tencent.com/document/product/647/35130

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 534 of 588

User

User

V2TIMManager

V2TIMManager

Business_Backend

Business_Backend

IM Login

Request UserSig

UserSig

login:userid:usersig

alt [Login Successful]

onSuccess

[Login Failed]
onError

IM Logout

logout

alt [Logout Successful]

onSuccess

[Logout Failed]
onError

Log in operation

// Log in: userID can be defined by the user and userSig can be generated as per st

V2TIMManager.getInstance().login(userID, userSig, new V2TIMCallback() {

 @Override

 public void onSuccess() {

 Log.i("imsdk", "success");

 }

 @Override

 public void onError(int code, String desc) {

 // The following error codes indicate an expired userSig, and you need to g

 // 1. ERR_USER_SIG_EXPIRED(6206).

 // 2. ERR_SVR_ACCOUNT_USERSIG_EXPIRED(70001).

 // Note: Do not call the log-in API in case of other error codes. Otherwise

 Log.i("imsdk", "failure, code:" + code + ", desc:" + desc);

 }

});

Log out operation

// Log out

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 535 of 588

V2TIMManager.getInstance().logout(new V2TIMCallback() {

 @Override

 public void onSuccess() {

 Log.i("imsdk", "success");

 }

 @Override

 public void onError(int code, String desc) {

 Log.i("imsdk", "failure, code:" + code + ", desc:" + desc);

 }

});

Note:
If the lifecycle of your application matches that of the IM SDK, you do not need to log out before exiting the application.

However, if you only use the IM SDK after entering specific interfaces and no longer use it after exiting those
interfaces, you can log out and deinitialize the IM SDK.

Step 2: call

Sequence Diagram

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 536 of 588

Calling_Party

Calling_Party

V2TIMManager

V2TIMManager

Called_Party

Called_Party

Initiate Call

invite:onSuccess Initiate Invitation

Start Ringing

onReceiveNewInvitationInvitation Notification

Start Ringing

Cancel Call

cancel:onSuccess Cancel Invitation

Stop Ringing

onInvitationCancelledCancel Notification

Stop Ringing

Call Timeout

onInvitationTimeout Timeout Notification

Stop Ringing

onInvitationTimeoutTimeout Notification

Stop Ringing

Initiate Call

1. Caller's local video preview (only for video calls; ignore this step for audio calls)

// Set video encoding parameters to determine the picture quality seen by remote us

TRTCCloudDef.TRTCVideoEncParam encParam = new TRTCCloudDef.TRTCVideoEncParam();

encParam.videoResolution = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_960_540;

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 537 of 588

encParam.videoFps = 15;

encParam.videoBitrate = 850;

encParam.videoResolutionMode = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_MODE_PORTRAIT;

mTRTCCloud.setVideoEncoderParam(encParam);

// Enable local camera preview (you can specify to use the front/rear camera for vi

mTRTCCloud.startLocalPreview(isFrontCamera, previewView);

Note:
You can set the video encoding parameters TRTCVideoEncParam according to business needs. For the best
combinations of resolutions and bitrates for each tier, see Resolution and Bitrate Reference Table.

Call the above APIs before enterRoom. The SDK will only enable the camera preview and will wait until you call
enterRoom to start local video streaming.
2. Caller sends call invitation signaling

// Construct custom data

JSONObject jsonObject = new JSONObject();

try {

 jsonObject.put("cmd", "av_call");

 JSONObject msgJsonObject = new JSONObject();

 msgJsonObject.put("callType", "videoCall"); // Specify the call type (video cal

 msgJsonObject.put("roomId", generateRoomId()); // Specify the TRTC room ID (ca

 jsonObject.put("msg", msgJsonObject);

} catch (JSONException e) {

 e.printStackTrace();

}

String data = jsonObject.toString();

// Send call invitation signaling

V2TIMManager.getSignalingManager().invite(receiver, data, false, v2TIMOfflinePushIn

 @Override

 public void onError(int code, String desc) {

 // Failed to send call invitation signaling

 // Prompt call failure, you can try to retry

 }

 @Override

 public void onSuccess() {

 // Successfully send call invitation signaling

 // Render call page, play call ringtone

 }

});

Note:

https://intl.cloud.tencent.com/document/product/647/35153#trtcvideoencparam
https://intl.cloud.tencent.com/document/product/647/35153#.E5.88.86.E8.BE.A8.E7.8E.87.E7.A0.81.E7.8E.87.E5.8F.82.E7.85.A7.E8.A1.A8
https://intl.cloud.tencent.com/document/product/647/50762#b379e54cd925946c111f4c5994480a3f
https://intl.cloud.tencent.com/document/product/647/50762#b379e54cd925946c111f4c5994480a3f

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 538 of 588

In audio and video call scenarios, it is usually necessary to configure offline push information
 v2TIMOfflinePushInfo in the invitation signaling. For details, see Offline Push Message.

It is recommended to set a reasonable timeout parameter timeout in the invitation signaling, in seconds. The SDK

will perform timeout detection to realize auto hang up after call timeout.
3. Callee receives the call invitation notification

// Callee receives the call request. The inviteID is the request ID, and inviter is

V2TIMManager.getSignalingManager().addSignalingListener(new V2TIMSignalingListener(

 @Override

 public void onReceiveNewInvitation(String inviteID, String inviter,

 String groupId, List<String> inviteeList, St

 if (!data.isEmpty()) {

 try {

 JSONObject jsonObject = new JSONObject(data);

 String command = jsonObject.getString("cmd");

 JSONObject messageJsonObject = jsonObject.getJSONObject("msg");

 if (command.equals("av_call")) {

 String callType = messageJsonObject.getString("callType");

 String roomId = messageJsonObject.getString("roomId");

 // Render call page, play call ringtone

 }

 } catch (JSONException e) {

 e.printStackTrace();

 }

 }

 }

});

Note:

Caller initiates a call request. When the callee receives the call request, the business side needs to implement the
rendering of the call page and the playing of the call ringtone on its own.
4. Callee's local video preview (only for video calls; ignore this step for audio calls)

if (callType.equals("videoCall")) {

 // Set video encoding parameters to determine the picture quality seen by remot

 TRTCCloudDef.TRTCVideoEncParam encParam = new TRTCCloudDef.TRTCVideoEncParam();

 encParam.videoResolution = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_960_540;

 encParam.videoFps = 15;

 encParam.videoBitrate = 850;

 encParam.videoResolutionMode = TRTCCloudDef.TRTC_VIDEO_RESOLUTION_MODE_PORTRAIT

 mTRTCCloud.setVideoEncoderParam(encParam);

 // Enable local camera preview (you can specify to use the front/rear camera fo

 mTRTCCloud.startLocalPreview(isFrontCamera, previewView);

https://intl.cloud.tencent.com/document/product/1228/60253#d221bbf6-0df2-4ffe-b52f-04400e2117ae

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 539 of 588

}

Cancel Call

1. Caller cancels the call request

V2TIMManager.getSignalingManager().cancel(inviteId, data, new V2TIMCallback() {

 // Prompt cancel failed, you can try to retry } @Override public v

 // Terminate the call page, and stop the call ringtone }});

2. Callee receives the cancellation notification

@Override

public void onInvitationCancelled(String inviteID, String inviter, String data) {

 // Terminate the call page, and stop the call ringtone}

Call Timeout

Both caller and callee will receive a timeout notification. They also terminate the call page, and stop the call ringtone.

@Override

public void onInvitationTimeout(String inviteID, List<String> inviteeList) {

 // Prompt call timeout. Terminate the call page, and stop the call ringtone

}

Step 3: answer

Answer signaling

1. Callee sends answer signaling

V2TIMManager.getSignalingManager().accept(inviteId, data, new V2TIMCallback() {

 if (callType.equals("videoCall")) {

 // Start video call

 startVideoCall();

 } else {

 // Start audio call

 startAudioCall();

 }

 }

});

2. Caller receives answer notification

@Override

public void onInviteeAccepted(String inviteID, String invitee, String data) {

 if (callType.equals("videoCall")) {

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 540 of 588

 // Start video call

 startVideoCall();

 } else {

 // Start audio call

 startAudioCall();

 }

}

Audio Call

1. Both caller and callee enter the same TRTC room to start an audio call.

private void startAudioCall() {

 TRTCCloudDef.TRTCParams params = new

TRTCCloudDef.TRTCParams();

params.sdkAppId = SDKAPPID;// TRTC application ID, obtained from the console

params.userSig = USERSIG;// TRTC authentication credential, generated on the server

 params.strRoomId = roomId; // Room ID, take the room ID string as an example

params.userId = userId;// Username, it is recommended to stay sync with IM

 mTRTCCloud.startLocalAudio(TRTCCloudDef.TRTC_AUDIO_QUALITY_SPEECH);

 mTRTCCloud.enterRoom(params, TRTCCloudDef.TRTC_APP_SCENE_AUDIOCALL);

}

Note:
In audio call mode, the TRTC room entry scenario should use TRTC_APP_SCENE_AUDIOCALL , and the room

entry role TRTCRoleType should not be specified.

Starting local audio capture startLocalAudio allows you to set audio quality parameters at the same time. For

audio calls, it is recommended to set TRTC_AUDIO_QUALITY_SPEECH .

Under the SDK's default auto subscription mode, after a user enters a room, they will immediately receive the audio

stream from that room, which will be automatically decoded and played without manual pulling.
2. Notification of room entry result, indicates call status.

// Mark whether the call is in progress

boolean isOnCalling = false;

// Event callback for the result of entering the room

@Override

public void onEnterRoom(long result) {

 if (result > 0) {

 // Room entry successful, indicates that the call is in progress

 isOnCalling = true;

 } else {

 // Failed to enter the room, prompt for call exception

 isOnCalling = false;

https://intl.cloud.tencent.com/document/product/647/50768#45c6782b29cadc377b5763a5d8490340
https://intl.cloud.tencent.com/document/product/647/50768#ba5a0edf12dbdde569c7456699ba9e75
https://intl.cloud.tencent.com/document/product/647/50768#9ccda47c68c6d873c7938428e0f9fd5d

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 541 of 588

 }

}

Video Call

1. Both caller and callee enter the same TRTC room to start a video call.

private void startVideoCall() {

 TRTCCloudDef.TRTCParams params = new TRTCCloudDef.TRTCParams();

 params.sdkAppId = SDKAPPID;// TRTC application ID, obtained from the console

 params.userSig = USERSIG; // TRTC authentication credential, generated on the

 params.strRoomId = roomId; // Room ID, take the room ID string as an example

 params.userId = userId;// Username, it is recommended to stay sync with IM

 mTRTCCloud.startLocalAudio(TRTCCloudDef.TRTC_AUDIO_QUALITY_SPEECH);

 mTRTCCloud.enterRoom(params, TRTCCloudDef.TRTC_APP_SCENE_VIDEOCALL);

}

Note:
In video call mode, the TRTC room entry scenario should use TRTC_APP_SCENE_VIDEOCALL , and the room entry

role TRTCRoleType should not be specified.

Starting local audio capture startLocalAudio allows you to set audio quality parameters at the same time. For

video calls, it is recommended to set TRTC_AUDIO_QUALITY_SPEECH .

In the SDK's default automatic subscription mode, audio is automatically decoded and played back, while video
requires manual invocation of startRemoteView to pull and render the remote video stream.

2. Notification of room entry result, indicates call status. Pull remote video stream.

// Mark whether the call is in progress

boolean isOnCalling = false;

// Event callback for the result of entering the room

@Override

public void onEnterRoom(long result) {

 if (result > 0) {

 // Room entry successful, indicates that the call is in progress

 isOnCalling = true;

 } else {

 // Failed to enter the room, prompt for call exception

 isOnCalling = false;

 }

}

// Pull remote video stream

@Override

public void onUserVideoAvailable(String userId, boolean available) {

https://intl.cloud.tencent.com/document/product/647/50768#45c6782b29cadc377b5763a5d8490340
https://intl.cloud.tencent.com/document/product/647/50768#ba5a0edf12dbdde569c7456699ba9e75
https://intl.cloud.tencent.com/document/product/647/50768#9ccda47c68c6d873c7938428e0f9fd5d

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 542 of 588

 // The remote user publishes/unpublishes the primary video

 if (available) {

 // Subscribe to the remote user's video stream and bind the video rendering

 mTRTCCloud.startRemoteView(userId, TRTCCloudDef.TRTC_VIDEO_STREAM_TYPE_BIG,

 } else {

 // Unsubscribe to the remote user's video stream and release the rendering

 mTRTCCloud.stopRemoteView(userId, TRTCCloudDef.TRTC_VIDEO_STREAM_TYPE_BIG);

 }

}

Step 4: reject call

Sequence Diagram

Calling_Party

Calling_Party

V2TIMManager

V2TIMManager

Called_Party

Called_Party

Proactive Rejection

reject:onSuccessReject Invitation

Stop Ringing

onInviteeRejected Reject Notification

Stop Ringing

Busy Line Rejection

Call in Progress

reject:onSuccessReject Invitation

onInviteeRejected Reject Notification

Stop Ringing

Proactive Rejection

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 543 of 588

1. Callee sends rejection signal

private void rejectInvite(String inviteId, String data, final V2TIMCallback callbac

 V2TIMManager.getSignalingManager().reject(inviteId, data, new V2TIMCallback() {

 @Override

 public void onError(int code, String desc) {

 if (callback != null) {

 callback.onError(code, desc);

 }

 }

 @Override

 public void onSuccess() {

 if (callback != null) {

 callback.onSuccess();

 }

 }

 });

}

JSONObject jsonObject = new JSONObject();

try {

 jsonObject.put("cmd", "av_call");

 JSONObject msgJsonObject = new JSONObject();

 msgJsonObject.put("callType", "videoCall"); // Specify the call type (video cal

 msgJsonObject.put("reason", "active"); // Specify rejection type (Proactive Rej

 jsonObject.put("msg", msgJsonObject);

} catch (JSONException e) {

 e.printStackTrace();

}

rejectInvite(inviteId, jsonObject.toString(), new V2TIMCallback() { @Override

2. Caller receives rejection notification

@Override

public void onInviteeRejected(String inviteID, String invitee, String data) {

 if (!data.isEmpty()) {

 try {

 JSONObject jsonObject = new JSONObject(data);

 String command = jsonObject.getString("cmd");

 JSONObject messageJsonObject = jsonObject.getJSONObject("msg");

 if (command.equals("av_call")) {

 String reason = messageJsonObject.getString("reason");

 if (reason.equals("active")) {

 // Prompt that the other party rejects call

 } else if (reason.equals("busy")) {

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 544 of 588

 // Prompt that the other party is busy

 }

 // Terminate the call page, and stop the call ringtone

 }

 } catch (JSONException e) {

 e.printStackTrace();

 }

 }

}

Busy Line Rejection

Callee receives a new call invitation, if the local call status is in a call, the caller automatically rejects the call.

@Override

public void onReceiveNewInvitation(String inviteID, String inviter,

 String groupId, List<String> inviteeList, String

 if (!data.isEmpty()) {

 try {

 JSONObject jsonObject = new JSONObject(data);

 String command = jsonObject.getString("cmd");

 JSONObject messageJsonObject = jsonObject.getJSONObject("msg");

 if (command.equals("av_call") && isOnCalling) {

 JSONObject jsonObject = new JSONObject();

 try {

 jsonObject.put("cmd", "av_call");

 JSONObject msgJsonObject = new JSONObject();

 msgJsonObject.put("callType", "videoCall"); // Specify the call

 msgJsonObject.put("reason", "busy"); // Specify rejection typ

 jsonObject.put("msg", msgJsonObject);

 } catch (JSONException e) {

 e.printStackTrace();

 }

 // Local call is in progress, and sends busy line rejection signal

 rejectInvite(inviteId, jsonObject.toString(), new V2TIMCallback() {

 @Override

 public void onError(int code, String desc) {

 // Busy line rejection failed

 }

 @Override

 public void onSuccess() {

 // Busy line rejection successful

 }

 });

 }

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 545 of 588

 } catch (JSONException e) {

 e.printStackTrace();

 }

 }

}

Note:

Both proactive rejection and busy line rejection use the reject signaling for implementation, but it's important to

distinguish them through the reason field of the custom data in the signaling.

Step 5: hang up

Sequence Diagram

Calling_Party

Calling_Party

TRTCCloud

TRTCCloud

Called_Party

Called_Party

Hang Up Call

exitRoom Exit the Room

onExitRoom Local Room Exit Notification

onRemoteUserLeaveRoomRemote User Room Exit Notification

exitRoomExit the Room

onExitRoomLocal Room Exit Notification

End Call

Hang Up Call

1. Either party exits the room, and reset the local call status.

private void hangup() {

 mTRTCCloud.stopLocalAudio();

 mTRTCCloud.stopLocalPreview();

 mTRTCCloud.exitRoom();

}

@Override

public void onExitRoom(int reason) {

https://im.sdk.qcloud.com/doc/en/classcom_1_1tencent_1_1imsdk_1_1v2_1_1V2TIMSignalingManager.html#ad9510bf8a333189fd1a0c1eafbde2266

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 546 of 588

 // Successfully exited the room and hung up the call

 isOnCalling = false;

}

2. The other party receives a notification that the remote side has exited the room, locally executes to exit room and
resets the call status.

@Override

public void onRemoteUserLeaveRoom(String userId, int reason) {

 hangup();

}

@Override

public void onExitRoom(int reason) {

 // Successfully exited the room and hung up the call

 isOnCalling = false;

}

Step 6: feature control

Turn on/off microphone

// Turn the mic on

mTRTCCloud.muteLocalAudio(false);

// Turn the mic off

mTRTCCloud.muteLocalAudio(true);

Turn on/off speaker

// Turn the speaker on

mTRTCCloud.muteAllRemoteAudio(false);

// Turn the speaker off

mTRTCCloud.muteAllRemoteAudio(true);

Turn on/off camera

// Turn the camera on, specifying front or rear camera and the rendering control

mTRTCCloud.startLocalPreview(isFrontCamera, videoView);

// Turn the camera off

mTRTCCloud.stopLocalPreview();

Hands-free/Earpiece Switching

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 547 of 588

// Switch to earpiece

mTRTCCloud.getDeviceManager().setAudioRoute(TXDeviceManager.TXAudioRoute.TXAudioRou

// Switch to speakerphone

mTRTCCloud.getDeviceManager().setAudioRoute(TXDeviceManager.TXAudioRoute.TXAudioRou

Camera Switching

// Determine if the current camera is front-facing

boolean isFrontCamera = mTRTCCloud.getDeviceManager().isFrontCamera();

// Switch between front and rear cameras, true: switch to front-facing; false: swit

mTRTCCloud.getDeviceManager().switchCamera(!isFrontCamera);

Advanced Features

Network Status Prompt

During audio and video calls, it is often necessary to prompt when the other party's network status is poor, thereby

creating an expectation of call lag.

@Override

public void onNetworkQuality(TRTCCloudDef.TRTCQuality localQuality, ArrayList<TRTCC

 if (remoteQuality.size() > 0) {

 switch (remoteQuality.get(0).quality) {

 case TRTCCloudDef.TRTC_QUALITY_Excellent:

 Log.i(TAG, "The other party's network is very good");

 break;

 case TRTCCloudDef.TRTC_QUALITY_Good:

 Log.i(TAG, "The other party's network is quite good");

 break;

 case TRTCCloudDef.TRTC_QUALITY_Poor:

 Log.i(TAG, "The other party's network is average");

 break;

 case TRTCCloudDef.TRTC_QUALITY_Bad:

 Log.i(TAG, "The other party's network is poor");

 break;

 case TRTCCloudDef.TRTC_QUALITY_Vbad:

 Log.i(TAG, "The other party's network is very poor");

 break;

 case TRTCCloudDef.TRTC_QUALITY_Down:

 Log.i(TAG, "The other party's network is extremely poor");

 break;

 default:

 Log.i(TAG, "Undefined");

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 548 of 588

 break;

 }

 }

}

Note:
 localQuality represents the local user network quality assessment result, and its userId field is empty.

 remoteQuality represents the remote user network quality assessment result, which is influenced by factors on

both the remote and local sides.

Call Duration Statistics

It is recommended to use the time when a remote user joins the TRTC room as the start time for calculating call
duration, and the time when the local user exits the room as the end time for calculating call duration.

// Start call time

long callStartTime = 0;

// End call time

long callFinishTime = 0;

// Call duration (seconds)

long callDuration = 0;

// Callback for remote user entering room

@Override

public void onRemoteUserEnterRoom(String userId) {

 callStartTime = System.currentTimeMillis();

}

// Callback for local user exiting room

@Override

public void onExitRoom(int reason) {

 callFinishTime = System.currentTimeMillis();

 callDuration = (callFinishTime - callStartTime) / 1000;

}

Note:
In cases of exceptions such as forced closure or network disconnection, the client may not be able to log the relevant
times. These can be monitored through Server Event Callback to track events of entering and exiting the room and

calculate the duration of the call.

Video Beauty Effects

TRTC supports integrating third-party beauty effect products. Use the example of Special Effect to demonstrate the
process of integrating the third-party beauty features.

https://intl.cloud.tencent.com/document/product/647/39558

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 549 of 588

1. Integrate Special Effect SDK, and apply for an authorization license. For details, see Live Show Streaming -
Integration Preparation for steps.
2. Resource copying (if any). If your resource files are built into the assets directory, you need to copy them to the

App's private directory before use.

XmagicResParser.setResPath(new File(getFilesDir(), "xmagic").getAbsolutePath());

//loading

// Copy resource files to the private directory. Only need to do it once

XmagicResParser.copyRes(getApplicationContext());

If your resource file is dynamically downloaded from the internet, you need to set the resource file path after the
download is successful.

XmagicResParser.setResPath (local path of the downloaded resource file);

3. Set the video data callback for third-party beauty features. Pass the results of the beauty SDK processing each
frame of data into the TRTC SDK for rendering processing.

mTRTCCloud.setLocalVideoProcessListener(TRTCCloudDef.TRTC_VIDEO_PIXEL_FORMAT_Textur

 @Override

 public void onGLContextCreated() {

 // The OpenGL environment has already been set up internally within the SDK

 if (mXmagicApi == null) {

 XmagicApi mXmagicApi = new XmagicApi(context, XmagicResParser.getResPat

 } else {

 mXmagicApi.onResume();

 }

 }

 @Override

 public int onProcessVideoFrame(TRTCCloudDef.TRTCVideoFrame srcFrame, TRTCCloudD

 // Callback for integrating with third-party beauty components for video pr

 if (mXmagicApi != null) {

 dstFrame.texture.textureId = mXmagicApi.process(srcFrame.texture.textur

 }

 return 0;

 }

 @Override

 public void onGLContextDestory() {

 // The internal OpenGL environment within the SDK has been terminated. At t

 mXmagicApi.onDestroy();

 }

});

https://intl.cloud.tencent.com/document/product/1228/59954#8b6b50a0-939d-48a1-aac1-58c6009e4b78
https://intl.cloud.tencent.com/document/product/1143/47831

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 550 of 588

Note:
Steps 1 and 2 vary depending on the different third-party beauty products. Step 3 is a general and important step
for integrating third-party beauty features into TRTC.

For scenario-specific integration guidelines of beauty effects, see Integrating Special Effect into TRTC SDK. For
guidelines on integrating beauty effects independently, see Integrating Special Effect SDK.

Window Size Switching

In TRTC, there are many APIs that require you to control the video screen. All these APIs require you to specify a
video rendering control. On the Android platform, TXCloudVideoView is used as the video rendering control, and

both SurfaceView and TextureView rendering schemes are supported. Below are the methods for

specifying the type of rendering control and updating the video rendering control.
1. If you want mandatory use of a certain scheme, or to convert the local video rendering control to
 TXCloudVideoView , you can code as follows.

// Mandatory use of TextureView

TextureView textureView = findViewById(R.id.texture_view);

TXCloudVideoView cloudVideoView = new TXCloudVideoView(context);

cloudVideoView.addVideoView(textureView);

// Mandatory use of SurfaceView

SurfaceView surfaceView = findViewById(R.id.surface_view);

TXCloudVideoView cloudVideoView = new TXCloudVideoView(surfaceView);

2. If your business involves scenarios of switching display zones, you can use the TRTC SDK to update the local

preview screen and update the remote user's video rendering control feature.

// Update local preview screen rendering control

mTRTCCloud.updateLocalView(videoView);

// Update the remote user's video rendering control

mTRTCCloud.updateRemoteView(userId, streamType, videoView);

Note:
 videoView is a target video rendering control of type TXCloudVideoView . streamType only supports

 TRTC_VIDEO_STREAM_TYPE_BIG and TRTC_VIDEO_STREAM_TYPE_SUB .

Offline Push Message

In audio/video call scenarios, the offline push message feature is usually necessary, allowing the called user's App to
receive new incoming call messages even when it's not online. For detailed guidance on integrating offline push, see
Offline Message Push. Below, we will focus on explaining the implementation of step 7: Send Offline Push Message,
and step 8: Parse Offline Push Messages.

https://intl.cloud.tencent.com/document/product/1143/45391
https://intl.cloud.tencent.com/document/product/1143/45385
https://intl.cloud.tencent.com/document/product/1228/60251#f6a52db3-5bad-483e-9853-4c90895b8434
https://intl.cloud.tencent.com/document/product/1228/60253#c99572bf-3aed-4f30-8fed-3c4ed49ea15e
https://intl.cloud.tencent.com/document/product/1228/60253#c99572bf-3aed-4f30-8fed-3c4ed49ea15e#1b5f30c0-4324-414d-a18c-88c8142f65ee

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 551 of 588

Send Offline Push Message

When sending a call invitation using invite, you can set offline push parameters through V2TIMOfflinePushInfo. By
calling ext of V2TIMOfflinePushInfo to set custom ext data, when the user receives an offline push message to start the
App, they can obtain the ext field in the callback of clicking the notification, and then redirect to the specified UI

interface based on the content of the ext field.

JSONObject contentObj = new JSONObject();

try {

 contentObj.put("cmd", "av_call");

 JSONObject contentDetailObj = new JSONObject();

 contentDetailObj.put("callType", "videoCall");

 contentDetailObj.put("roomId", generateRoomId());

 contentObj.put("cmdInfo", contentDetailObj);

} catch (JSONException e) {

 e.printStackTrace();

}

String data = contentObj.toString();

// OfflineMessageContainerBean is the Javabean corresponding to the pass-through pa

OfflineMessageContainerBean containerBean = new OfflineMessageContainerBean();

OfflineMessageBean entity = new OfflineMessageBean();

entity.content = data;

entity.sender = TUILogin.getLoginUser();

entity.action = OfflineMessageBean.REDIRECT_ACTION_CALL;entity.sendTime = System.cu

v2TIMOfflinePushInfo.setAndroidHuaWeiCategory("IM");

v2TIMOfflinePushInfo.setAndroidVIVOCategory("IM");

v2TIMOfflinePushInfo.setTitle(mNickname);v2TIMOfflinePushInfo.setDesc("You have a n

v2TIMOfflinePushInfo.setAndroidSound("phone_ringing");

V2TIMManager.getSignalingManager().invite(receiver, data, false, v2TIMOfflinePushIn

 @Override

 public void onError(int code, String desc) {

 // Failed to send call invitation

 }

 @Override

 public void onSuccess() {

 // Successfully send call invitation

 }

});

Note:
To be compatible with the parsing format of offline push messages on different platforms, it is recommended to use the
wrapper class <1>OfflineMessageContainerBean to set the pass-through parameter ext.

https://im.sdk.qcloud.com/doc/en/classcom_1_1tencent_1_1imsdk_1_1v2_1_1V2TIMSignalingManager.html#a3c0592962ef89e1075f3136fc7117da0
https://im.sdk.qcloud.com/doc/en/classcom_1_1tencent_1_1imsdk_1_1v2_1_1V2TIMOfflinePushInfo.html
https://im.sdk.qcloud.com/doc/en/classcom_1_1tencent_1_1imsdk_1_1v2_1_1V2TIMOfflinePushInfo.html#a9346ecab2e35ff516b24c27b0584a9a2

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 552 of 588

Parse Offline Push Messages

When an offline push message in the notification column is received and clicked, it will automatically redirect to the
interface you configured earlier. You can retrieve the passed offline push parameters in the onResume() method of the
interface startup by calling getIntent().getExtras(), and then custom the redirection. For details, see the

handleOfflinePush() method in TUIKitDemo.

private void handleOfflinePush() {

 // Determine whether to log in to IM again based on the log-in status

 // 1. If the log-in status is V2TIMManager.V2TIM_STATUS_LOGOUT, you will redire

 if (V2TIMManager.getInstance().getLoginStatus() == V2TIMManager.V2TIM_STATUS_LO

 Intent intent = new Intent(MainActivity.this, SplashActivity.class);

 if (getIntent() != null) {

 intent.putExtras(getIntent());

 }

 startActivity(intent);

 finish();

 return;

 }

 // 2. Otherwise, it means the app is just in the background, directly parse the

 final OfflineMessageBean bean = OfflineMessageDispatcher.parseOfflineMessage(ge

 if (bean != null) {

 setIntent(null);

 NotificationManager manager = (NotificationManager) getSystemService(Co

 if (manager != null) {

 manager.cancelAll();

 }

 if (bean.action == OfflineMessageBean.REDIRECT_ACTION_CALL) {

 Intent startActivityIntent = new Intent(context, MyCustomActivity.c

 startActivityIntent.putExtras(getIntent());

 startActivityIntent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

 context.startActivity(startActivityIntent);

 }

 }

}

Note:
By clicking the message in the Notification colunm in FCM, you will by default redirect to the application's default
Launcher interface. You can retrieve the passed offline push parameters by calling getIntent().getExtras() in the
onResume() method of the interface startup, and then custom the redirection.

Exception Handling

https://github.com/TencentCloud/TIMSDK/blob/master/Android/Demo/app/src/main/java/com/tencent/qcloud/tim/demo/main/MainActivity.java

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 553 of 588

TRTC exception error handling

When the TRTC SDK encounters an unrecoverable error, the error is thrown in the onError callback. For details,

see Error Code Table.

UserSig related

UserSig verification failure leads to room-entering failure. You can use the UserSig tool for verification.

Enumeration Value Description

ERR_TRTC_INVALID_USER_SIG -3320
Room entry parameter userSig is incorrect. Check if
 TRTCParams.userSig is empty.

ERR_TRTC_USER_SIG_CHECK_FAILED -100018
UserSig verification failed. Check if the parameter
 TRTCParams.userSig is filled in correctly or
has expired.

Room entry and exit related

If room entry is failed, you should first verify the correctness of the room entry parameters. It is essential that the room
entry and exit APIs are called in a paired manner. This means that, even in the event of a failed room entry, the room
exit API must still be called.

Enumeration Value Description

ERR_TRTC_CONNECT_SERVER_TIMEOUT -3308
Room entry request timed out. Check if your
internet connection is lost or if a VPN is enabled.
You may also attempt to switch to 4G for testing.

ERR_TRTC_INVALID_SDK_APPID -3317
Room entry parameter sdkAppId is incorrect.
Check if TRTCParams.sdkAppId is empty

ERR_TRTC_INVALID_ROOM_ID -3318

Room entry parameter roomId is incorrect.Check if
 TRTCParams.roomId or
 TRTCParams.strRoomId is empty. Nnote
that roomId and strRoomId cannot be used
interchangeably.

ERR_TRTC_INVALID_USER_ID -3319
Room entry parameter userId is incorrect. Check if
 TRTCParams.userId is empty.

ERR_TRTC_ENTER_ROOM_REFUSED -3340
Room entry request was denied. Check if
 enterRoom is called consecutively to enter
rooms with the same ID.

Device related

https://intl.cloud.tencent.com/document/product/647/35130
https://console.trtc.io/usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 554 of 588

Errors for related monitoring devices. Prompt the user via UI in case of relevant errors.

Enumeration Value Description

ERR_CAMERA_START_FAIL -1301

Failed to enable the camera. For example, if there is an
exception for the camera's configuration program (driver) on
a Windows or Mac device, you should try disabling then re-
enabling the device, restarting the machine, or updating the
configuration program.

ERR_MIC_START_FAIL -1302

Failed to open the mic. For example, if there is an exception
for the camera's configuration program (driver) on a
Windows or Mac device, you should try disabling then re-
enabling the device, restarting the machine, or updating the
configuration program.

ERR_CAMERA_NOT_AUTHORIZED -1314
The device of camera is unauthorized. This typically occurs
on mobile devices and may be due to the user having
denied the permission.

ERR_MIC_NOT_AUTHORIZED -1317
The device of mic is unauthorized. This typically occurs on
mobile devices and may be due to the user having denied
the permission.

ERR_CAMERA_OCCUPY -1316 The camera is occupied. Try a different camera.

ERR_MIC_OCCUPY -1319 The mic is occupied. This occurs when, for example, the
user is currently having a call on the mobile device.

Troubleshooting for not receiving offline push

1. OPPO Phone
General reasons for not receiving push notifications on OPPO phones include:

As required by OPPO push official website, ChannelID must be configured on OPPO phones running Android 8.0 or
higher. Otherwise, the push message cannot be displayed. For the configuration method, see OPPO Push
Configuration.
In the message, if the </1> custom content for offline push pass-through custom content for offline push pass-through
<1> is not in JSON format, the OPPO mobile phone will not receive the push.

The notification column display feature is disabled by default for OPPO installation application. You need to check the
switch status.
2. Send a message as a custom message
The offline push for custom messages is different from that for normal messages. As we cannot parse the content of
custom messages, we cannot determine the push's content. Therefore, by default, there is no offline push. If you need

https://intl.cloud.tencent.com/document/product/1047/39156#oppo-.E6.8E.A8.E9.80.81

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 555 of 588

an offline push, you need to set the desc field in offlinePushInfo when using sendMessage, and the desc information
will by default be displayed during the push.
3. Device notification column settings impact

The direct manifestation of offline push is notification column alerts. Thus, like other notifications, it is subject to device
notification settings. Take Huawei as an example:
"Settings - Notifications - Lock Screen Notifications - Hide or Do Not Show Notifications" will affect the display of offline
push notifications when the screen is locked.
"Settings - Notifications - More Notification Settings - Show Notification Icons (Status Column)" will affect the display of

offline push notification icon in the status column.
"Settings - Notifications - Application Notifications Management - Allow Notifications" will directly affect the display of
offline push notifications.
"Settings - Notifications - Application Notifications Management - Notification Sound" and "Settings - Notifications -
Application Notifications Management - Notification Mute" will affect the offline push notification ringtone.
4. After the process is completed, the offline push cannot be received

First, verify whether normal push is possible using the Offline Testing Tool in the IM Console. In cases of push failure
with an abnormal device status, check if the parameters configured in the IM console are correct. Additionally, verify
the code initiation and registration logic, including whether the manufacturer push service registration and the IM
offline push configuration setup are correctly set. For push failures with a normal device status, check if the Channel ID
is correctly filled in or if the backend service operates normally.

The offline push feature relies on the vendor's capabilities. Some simple characters may be filtered by the vendor and
cannot be passed through and pushed.
If offline push messages are not pushed timely or cannot be received, you need to check the vendor's push
restrictions.

Failed to redirect to the page

Click the notification column of an offline push message to redirect to the specified interface. The backend delivers the

redirection modes and page parameters that you configure for various vendors in the console to vendor servers based
on vendor API rules. When you click the notification column for offline push messages, the system opens and redirects
to the corresponding page. The opening of the corresponding page also depends on the manifest file. Only when the
configuration in the manifest file is consistent with that in the console, the corresponding page can be opened and
redirected properly.
1. First, you need to check whether the configuration in the console and that in the manifest file are correct and

consistent with each other. For more information, see the TUIKitDemo configuration. Note that the API modes may
vary by vendors.
2. If the system redirects to the configuration page, you need to check whether the parsing of offline messages on the
configuration page and the page redirection are proper.

https://im.sdk.qcloud.com/doc/zh-cn/classcom_1_1tencent_1_1imsdk_1_1v2_1_1V2TIMOfflinePushInfo.html#a78c8e202aa4e0859468ce40bde6fd602
https://im.sdk.qcloud.com/doc/zh-cn/classcom_1_1tencent_1_1imsdk_1_1v2_1_1V2TIMOfflinePushInfo.html
https://im.sdk.qcloud.com/doc/zh-cn/classcom_1_1tencent_1_1imsdk_1_1v2_1_1V2TIMMessageManager.html#a318c40c8547cb9e8a0de7b0e871fdbfe
https://console.intl.cloud.tencent.com/im/tool-push-check

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 556 of 588

iOS
Last updated：2024-07-18 14:26:14

Business Process

This document summarizes some common business processes in one-to-one audio and video calls, helping you
better understand the implementation process of the entire scenario.
Audio Call Process

Video Call Process
The following diagram shows the sequence of one-to-one audio call, including processes such as calling, answering,
talking, and hanging up.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 557 of 588

The following diagram shows the sequence of one-to-one video call, including processes such as calling, answering,

talking, and hanging up.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 558 of 588

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 559 of 588

Integration Preparations

Step 1: activate the service

One-to-one audio and video call scenarios usually require dependencies on two paid PaaS services from the cloud
platform, Instant Messaging (IM) and Real-Time Communication (TRTC) for construction.
1. First, you need to log in to the TRTC Console to create an application. At this time, an IM trial application with the
same SDKAppID as the current TRTC application will be automatically created in the Instant Messaging (IM) Console.

The accounts and authentication systems for both can be reused. Subsequently, you can choose to upgrade the
TRTC or IM application version as needed. For example, the advanced versions can unlock more value-added
features and services.

https://intl.cloud.tencent.com/products/im
https://intl.cloud.tencent.com/products/trtc
https://console.trtc.io/
https://console.intl.cloud.tencent.com/im

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 560 of 588

Note:
It is recommended to create two separate applications for testing and production environments. Each account (UIN) is
provided with 10,000 minutes of free usage per month within one year.
The TRTC monthly package is divided into Trial Version (by default), Basic Version, and Professional Version, which
can unlock different value-added features and services. For details, see Version Features and Monthly Package

Description.
2. Once the application is created, you can find the basic information about it under the Application Management >
Application Overview section. It is important to store the SDKAppID and SDKSecretKey for later use and to avoid
key leakage to prevent unauthorized traffic usage.

https://intl.cloud.tencent.com/document/product/647/52816#f10b65d1-6e8d-41e3-8686-84909b00a1a2

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 561 of 588

Step 2: import SDK

TRTC SDK and IM SDK are now available on CocoaPods. It is recommended to integrate SDKs through
CocoaPods.
1. Install CocoaPods

Enter the following command in a terminal window (you need to install Ruby on your Mac first):

sudo gem install cocoapods

2. Create Podfile File
Go to the project directory, and enter the following command. A Podfile file will then be created in the project directory.

pod init

3. Edit Podfile File
Choose the appropriate version for your project and edit the Podfile.

platform :ios, '8.0'

target 'App' do

 # TRTC Lite Version

 # The installation package has the minimum incremental size. It only

supports two features of Real-Time Communication (TRTC) and TXLivePlayer for

live streaming playback.

 pod 'TXLiteAVSDK_TRTC', :podspec =>

'https://liteav.sdk.qcloud.com/pod/liteavsdkspec/TXLiteAVSDK_TRTC.podspec'

 # Add the IM SDK

 pod 'TXIMSDK_Plus_iOS'

 # pod 'TXIMSDK_Plus_iOS_XCFramework'

 # pod 'TXIMSDK_Plus_Swift_iOS_XCFramework'

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 562 of 588

 # If you need to add the Quic plugin, please uncomment the next line.

 # Note: This plugin must be used with the Objective-C edition or

XCFramework edition of the IM SDK, and the plugin version number must match the

IM SDK version number.

 # pod 'TXIMSDK_Plus_QuicPlugin'

end

4. Update and install the SDK
Enter the following command in the terminal window to update the local repository files and install the SDK.

pod install

Or use the following command to update the local repository.

pod update

Upon the completion of pod command execution, a project file suffixed with .xcworkspace and integrated with the SDK
will be generated. Double-click to open it.

Note:
If the pod search fails, it is recommended to try updating the local repo cache of pod. The update command is as
follows.

pod setup

pod repo update

rm ~/Library/Caches/CocoaPods/search_index.json

Besides CocoaPods integration, you can also choose to download the SDK and manually import it. For details, see
Manually Integrating the TRTC SDK and Manually Integrating the IM SDK.

Step 3: project configuration

1. In one-to-one audio and video call scenarios, the TRTC SDK and IM SDK need to be authorized for microphone

and camera permissions. Add the following content to your app's Info.plist. It corresponds to the system's prompt
message in the dialog box when microphone and camera permissions are requested:

Privacy - Microphone Usage Description, and also enter a prompt specifying the purp

Privacy - Camera Usage Description, and enter a prompt specifying the purpose of ca

https://intl.cloud.tencent.com/document/product/647/35092#.E6.96.B9.E6.A1.88.E4.BA.8C.EF.BC.9A.E4.B8.8B.E8.BD.BD-sdk-.E5.B9.B6.E6.89.8B.E5.8A.A8.E5.AF.BC.E5.85.A5
https://intl.cloud.tencent.com/document/product/1047/34307#.E6.89.8B.E5.8A.A8.E9.9B.86.E6.88.90

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 563 of 588

2. If you need your App to continue running certain features in the background, go to XCode, select your current
project, and under Capabilities, set the setting for Background Modes to ON, and check Audio, AirPlay, and Picture in
Picture, as shown below:

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 564 of 588

Step 4: authentication credential

UserSig is a security signature designed by the cloud platform to prevent attackers from accessing your cloud
account. Cloud services such as Real-Time Communication (TRTC) and Instant Messaging (IM) adopt this security

protection mechanism. Authentication is required for TRTC upon entering a room, and for IM during login.
Debugging and testing stage: UserSig can be generated through Client Example Code and Console Access, which
are only used for debugging and testing.
Production stage: It is recommended to use the server computing UserSig solution, which has a higher security level
and helps prevent the client from being decompiled and reversed, to avoid the risk of key leakage.

The specific implementation process is as follows:
1. Before calling the initialization API of the SDK, your app must first request UserSig from your server.
2. Your server generates the UserSig based on the SDKAppID and UserID.
3. The server returns the generated UserSig to your app.

https://intl.cloud.tencent.com/document/product/647/35166#.E5.AE.A2.E6.88.B7.E7.AB.AF.E7.A4.BA.E4.BE.8B.E4.BB.A3.E7.A0.81.E8.AE.A1.E7.AE.97-usersig
https://intl.cloud.tencent.com/document/product/647/35166#.E6.8E.A7.E5.88.B6.E5.8F.B0.E8.8E.B7.E5.8F.96-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 565 of 588

4. Your app sends the obtained UserSig to the SDK through a specific API.
5. The SDK submits the SDKAppID + UserID + UserSig to the cloud server for verification.
6. The cloud platform verifies the validity of the UserSig.

7. Once the verification is passed, it will provide instant communication services to the IM SDK and real-time audio
and video services to the TRTC SDK.

Note:
The method of generating UserSig locally during the debugging and testing stage is not recommended for the online
environment because it may be easily decompiled and reversed, causing key leakage.
We provide server computation source code for UserSig in multiple programming languages
(Java/GO/PHP/Nodejs/Python/C#/C++). For details, see Server Computation of UserSig.

Step 5: initialize the SDK

1. Initialize IM SDK and Add Event Listeners

// Obtain the SDKAppID from the Instant Messaging (IM) console.

// Add a V2TIMSDKListener event listener. The self is the implementation class of i

[[V2TIMManager sharedInstance] addIMSDKListener:self];

https://intl.cloud.tencent.com/document/product/1047/34385#.E6.9C.8D.E5.8A.A1.E7.AB.AF.E8.AE.A1.E7.AE.97-usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 566 of 588

// Initialize the IM SDK. After calling this API, you can immediately call the log-

[[V2TIMManager sharedInstance] initSDK:sdkAppID config:config];

// After the SDK is initialized, it will trigger various events, such as connection

- (void)onConnecting {

 NSLog(@"The IM SDK is connecting to the Cloud Virtual Machine");

}

- (void)onConnectSuccess {

 NSLog(@"The IM SDK has successfully connected to the Cloud Virtual Machine");

}

// Remove event listener

// The self is the implementation class of id<V2TIMSDKListener>

[[V2TIMManager sharedInstance] removeIMSDKListener:self];

// Deinitialize the SDK

[[V2TIMManager sharedInstance] unInitSDK];

Note:
If the lifecycle of your application is consistent with the SDK lifecycle, you do not need to deinitialize before exiting the
application. However, if you only initialize the SDK when entering a specific interface and no longer use it after exiting

that interface, you can deinitialize the SDK.
2. Create TRTC SDK Instances and Set Event Listeners

// Create TRTC SDK instance (single instance pattern)

self.trtcCloud = [TRTCCloud sharedInstance];

// Set event listeners

self.trtcCloud.delegate = self;

// Notifications from various SDK events (e.g., error codes, warning codes, audio a

- (void)onError:(TXLiteAVError)errCode errMsg:(nullable NSString *)errMsg extInfo:(

 NSLog(@"%d: %@", errCode, errMsg);

}

- (void)onWarning:(TXLiteAVWarning)warningCode warningMsg:(nullable NSString *)warn

 NSLog(@"%d: %@", warningCode, warningMsg);

}

// Remove event listener

self.trtcCloud.delegate = nil;

// Destroy TRTC SDK instance (single instance pattern)

[TRTCCloud destroySharedIntance];

Note:

It is recommended to listen to SDK event notifications. Perform log printing and handling for some common errors. For
details, see Error Code Table.

https://intl.cloud.tencent.com/document/product/647/35135

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 567 of 588

Integration Process

Step 1: log in

After the IM SDK is initialized, you need to call the SDK log in API to authenticate your account identity and gain
permissions to use features. Before using any other features, ensure you are successfully logged in, or you
might encounter feature malfunctions or unavailability. If you only need to use TRTC's audio and video services, you

can skip this step.

Sequence Diagram

User

User

V2TIMManager

V2TIMManager

Business_Backend

Business_Backend

IM Login

Request UserSig

UserSig

login:userid:usersig

alt [Login Successful]

onSuccess

[Login Failed]
onError

IM Logout

logout

alt [Logout Successful]

onSuccess

[Logout Failed]
onError

Log in operation

// Log in: userID can be defined by the user and userSig can be generated as per st

[[V2TIMManager sharedInstance] login:userID userSig:userSig succ:^{

 NSLog(@"success");

} fail:^(int code, NSString *desc) {

 // The following error codes indicate an expired userSig, and you need to gener

 // 1. ERR_USER_SIG_EXPIRED(6206).

 // 2. ERR_SVR_ACCOUNT_USERSIG_EXPIRED(70001).

 // Note: Do not call the log-in API in case of other error codes. Otherwise, th

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 568 of 588

 NSLog(@"failure, code:%d, desc:%@", code, desc);

}];

Log out operation

// Log out

[[V2TIMManager sharedInstance] logout:^{

 NSLog(@"success");

} fail:^(int code, NSString *desc) {

 NSLog(@"failure, code:%d, desc:%@", code, desc);

}];

Note:

If the lifecycle of your application matches that of the IM SDK, you do not need to log out before exiting the application.
However, if you only use the IM SDK after entering specific interfaces and no longer use it after exiting those
interfaces, you can log out and deinitialize the IM SDK.

Step 2: call

Sequence Diagram

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 569 of 588

Calling_Party

Calling_Party

V2TIMManager

V2TIMManager

Called_Party

Called_Party

Initiate Call

invite:onSuccess Initiate Invitation

Start Ringing

onReceiveNewInvitationInvitation Notification

Start Ringing

Cancel Call

cancel:onSuccess Cancel Invitation

Stop Ringing

onInvitationCancelledCancel Notification

Stop Ringing

Call Timeout

onInvitationTimeout Timeout Notification

Stop Ringing

onInvitationTimeoutTimeout Notification

Stop Ringing

Initiate Call

1. Caller's local video preview (only for video calls; ignore this step for audio calls)

- (void)setupTRTC {

 // Set video encoding parameters to determine the picture quality seen by remot

 TRTCVideoEncParam *encParam = [[TRTCVideoEncParam alloc] init];

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 570 of 588

 encParam.videoResolution = TRTCVideoResolution_960_540;

 encParam.videoFps = 15;

 encParam.videoBitrate = 850;

 encParam.resMode = TRTCVideoResolutionModePortrait;

 [self.trtcCloud setVideoEncoderParam:encParam];

 // Enable local camera preview (you can specify to use the front/rear camera fo

 [self.trtcCloud startLocalPreview:self.isFrontCamera view:self.previewView];

}

Note:
You can set the video encoding parameters TRTCVideoEncParam according to business needs. For the best
combinations of resolutions and bitrates for each tier, see Resolution and Bitrate Reference Table.
Call the above APIs before enterRoom. The SDK will only enable the camera preview and will wait until you call
enterRoom to start local video streaming.

2. Caller sends call invitation signaling

// Construct custom data

NSDictionary *dic = @{

 @"cmd": @"av_call",

 @"msg": @{

 // Specify the call type (video call, audio call)

 @"callType": @"videoCall",

 // Specify the TRTC room ID (caller can generate it randomly)

 @"roomId": @"xxxRoomId",

 },

};

NSData *jsonData = [NSJSONSerialization dataWithJSONObject:dic

 options:NSJSONWritingPrettyPrint

 error:nil];

if (jsonData) {

 NSString *jsonString = [[NSString alloc] initWithData:jsonData encoding:NSUTF8S

 // Send call invitation signaling

 [[V2TIMManager sharedInstance] invite:self.receiverId data:jsonString onlineUse

 // Successfully send call invitation signaling

 // Render call page, play call ringtone

 } fail:^(int code, NSString *desc) {

 // Failed to send call invitation signaling

 // Prompt call failure, you can try to retry

 }];

}

Note:
In audio and video call scenarios, it is usually necessary to configure offline push information offlinePushInfo

in the invitation signaling. For more details, see Offline Push Message.

https://intl.cloud.tencent.com/document/product/647/35153#trtcvideoencparam
https://intl.cloud.tencent.com/document/product/647/35153#.E5.88.86.E8.BE.A8.E7.8E.87.E7.A0.81.E7.8E.87.E5.8F.82.E7.85.A7.E8.A1.A8
https://intl.cloud.tencent.com/document/product/647/50754#011dce4d6afaa3bcd684bebb77829689
https://intl.cloud.tencent.com/document/product/647/50754#011dce4d6afaa3bcd684bebb77829689
https://intl.cloud.tencent.com/document/product/1228/60254#d221bbf6-0df2-4ffe-b52f-04400e2117ae

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 571 of 588

It is recommended to set a reasonable timeout parameter timeout in the invitation signaling, in seconds. The SDK

will perform timeout detection to realize auto hang up after call timeout.
3. Callee receives the call invitation notification

[[V2TIMManager sharedInstance] addSignalingListener:self];

#pragma mark - V2TIMSignalingListener

// Callee receives the call request. The inviteID is the request ID, and inviter is

- (void)onReceiveNewInvitation:(NSString *)inviteID inviter:(NSString *)inviter gro

 if (data && ![data isEqualToString:@""]) {

 NSData *jsonData = [data dataUsingEncoding:NSUTF8StringEncoding];

 NSDictionary *dictionary = [NSJSONSerialization JSONObjectWithData:jsonData

 options:NSJSONRe

 error:nil];

 if (dictionary) {

 NSString *command = dictionary[@"cmd"];

 NSDictionary *msg = dictionary[@"msg"];

 if ([command isEqualToString:@"av_call"]) {

 NSString *callType = msg[@"callType"];

 NSString *roomId = msg[@"roomId"];

 // Render call page, play call ringtone

 }

 }

 }

}

Note:

Caller initiates a call request. When the callee receives the call request, the business side needs to implement the
rendering of the call page and the playing of the call ringtone on its own.
4. Callee's local video preview (only for video calls; ignore this step for audio calls)

if ([callType isEqualToString:@"videoCall"]) {

 // Set video encoding parameters to determine the picture quality seen by remot

 TRTCVideoEncParam *encParam = [[TRTCVideoEncParam alloc] init];

 encParam.videoResolution = TRTCVideoResolution_960_540;

 encParam.videoFps = 15;

 encParam.videoBitrate = 850;

 encParam.resMode = TRTCVideoResolutionModePortrait;

 [self.trtcCloud setVideoEncoderParam:encParam];

 // Enable local camera preview (you can specify to use the front/rear camera fo

 [self.trtcCloud startLocalPreview:self.isFrontCamera view:self.previewView];

}

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 572 of 588

Cancel Call

1. Caller cancels the call request

[[V2TIMManager sharedInstance] cancel:inviteId data:data succ:^{

 // Successfully cancel the call request

 // Terminate the call page, and stop the call ringtone

} fail:^(int code, NSString *desc) {

 // Failed to cancel call request

 // Prompt cancel failure, and you can retry

}];

2. Callee receives the cancellation notification

#pragma mark - V2TIMSignalingListener

- (void)onInvitationCancelled:(NSString *)inviteID inviter:(NSString *)inviter data

 // Terminate the call page, and stop the call ringtone

}

Call Timeout

Both caller and callee will receive a timeout notification. They also terminate the call page, and stop the call ringtone.

#pragma mark - V2TIMSignalingListener

- (void)onInvitationTimeout:(NSString *)inviteID inviteeList:(NSArray<NSString *> *

 // Prompt call timeout. Terminate the call page, and stop the call ringtone

}

Step 3: answer

Answer signaling

1. Callee sends answer signaling

[[V2TIMManager sharedInstance] accept:inviteId data:data succ:^{

 // Answer successfully, render the call page, and stop the call ringtone

 if ([callType isEqualToString:@"videoCall"]) {

 // Start video call

 [self startVideoCall];

 } else {

 // Start audio call

 [self startAudioCall];

 }

} fail:^(int code, NSString *desc) {

 // Answer failed, prompt for exception or retry

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 573 of 588

}];

2. Caller receives answer notification

#pragma mark - V2TIMSignalingListener

- (void)onInviteeAccepted:(NSString *)inviteID invitee:(NSString *)invitee data:(NS

 if ([self.callType isEqualToString:@"videoCall"]) {

 // Start video call

 [self startVideoCall];

 } else {

 // Start audio call

 [self startAudioCall];

 }

}

Audio Call

1. Both caller and callee enter the same TRTC room to start an audio call.

- (void)startAudioCall {

 TRTCParams *params = [[TRTCParams alloc] init];

 // TRTC authentication credential, generated on the server

 params.sdkAppId = SDKAPPID;

 // TRTC application ID, obtained from the console

 params.userSig = USERSIG;

 // Take the room ID string as an example

 params.strRoomId = self.roomId;

 // Username, it is recommended to stay sync with IM

 params.userId = self.userId;

 [self.trtcCloud startLocalAudio:TRTCAudioQualitySpeech];

 [self.trtcCloud enterRoom:params appScene:TRTCAppSceneAudioCall];

}

Note:
In audio call mode, the TRTC room entry scenario should select TRTCAppSceneAudioCall , and there is no need

to specify a room entry role TRTCRoleType .

Starting local audio capture startLocalAudio allows you to set audio quality parameters at the same time. For

audio call modes, it is recommended to select TRTCAudioQualitySpeech .

Under the SDK's default auto subscription mode, after a user enters a room, they will immediately receive the audio
stream from that room, which will be automatically decoded and played without manual pulling.
2. Notification of room entry result, indicates call status.

// Mark whether the call is in progress

https://intl.cloud.tencent.com/document/product/647/50760#50498dba914e98bc767b83dc0c72a0a1
https://intl.cloud.tencent.com/document/product/647/50760#874dbd6062bbf1384648ca9f9054aa5b
https://intl.cloud.tencent.com/document/product/647/50760#f8aeb89d8ef78db15d893e55f68cdb42

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 574 of 588

@property (nonatomic, assign) BOOL isOnCalling;

#pragma mark - TRTCCloudDelegate

// Event callback for the result of entering the room

- (void)onEnterRoom:(NSInteger)result {

 if (result > 0) {

 // Room entry successful, indicates that the call is in progress

 self.isOnCalling = YES;

 } else {

 // Failed to enter the room, prompt for call exception

 self.isOnCalling = NO;

 }

}

Video Call

1. Both caller and callee enter the same TRTC room to start a video call.

- (void)startVideoCall {

 TRTCParams *params = [[TRTCParams alloc] init];

 // TRTC authentication credential, generated on the server

 params.sdkAppId = SDKAPPID;

 // TRTC application ID, obtained from the console

 params.userSig = USERSIG;

 // Take the room ID string as an example

 params.strRoomId = self.roomId;

 // Username, it is recommended to stay sync with IM

 params.userId = self.userId;

 [self.trtcCloud startLocalAudio:TRTCAudioQualitySpeech];

 [self.trtcCloud enterRoom:params appScene:TRTCAppSceneVideoCall];

}

Note:
In video call mode, the TRTC room entry scenario should use TRTCAppSceneVideoCall , and there's no need to

specify the room entry role TRTCRoleType .

Starting local audio capture startLocalAudio allows you to set audio quality parameters at the same time. For

video call modes, it is recommended to select TRTCAudioQualitySpeech .

In the SDK's default automatic subscription mode, audio is automatically decoded and played back, while video

requires manual invocation of startRemoteView to pull and render the remote video stream.

2. Notification of room entry result, indicates call status. Pull remote video stream.

// Mark whether the call is in progress

@property (nonatomic, assign) BOOL isOnCalling;

https://intl.cloud.tencent.com/document/product/647/50760#50498dba914e98bc767b83dc0c72a0a1
https://intl.cloud.tencent.com/document/product/647/50760#874dbd6062bbf1384648ca9f9054aa5b
https://intl.cloud.tencent.com/document/product/647/50760#f8aeb89d8ef78db15d893e55f68cdb42

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 575 of 588

#pragma mark - TRTCCloudDelegate

// Event callback for the result of entering the room

- (void)onEnterRoom:(NSInteger)result {

 if (result > 0) {

 // Room entry successful, indicates that the call is in progress

 self.isOnCalling = YES;

 } else {

 // Failed to enter the room, prompt for call exception

 self.isOnCalling = NO;

 }

}

// Pull remote video stream

- (void)onUserVideoAvailable:(NSString *)userId available:(BOOL)available {

 // The remote user publishes/unpublishes the primary video

 if (available) {

 // Subscribe to the remote user's video stream and bind the video rendering

 [self.trtcCloud startRemoteView:userId streamType:TRTCVideoStreamTypeBig vi

 } else {

 // Unsubscribe to the remote user's video stream and release the rendering

 [self.trtcCloud stopRemoteView:userId streamType:TRTCVideoStreamTypeBig];

 }

}

Step 4: reject call

Sequence Diagram

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 576 of 588

Proactive Rejection

1. Callee sends rejection signal

NSDictionary *dic = @{

 @"cmd": @"av_call",

 @"msg": @{

 // Specify the call type (video call, audio call)

 @"callType": @"videoCall",

 // Specify rejection type (Proactive Rejection, Busy Line Rejection)

 @"reason": @"active",

 },

};

NSData *jsonData = [NSJSONSerialization dataWithJSONObject:dic

 options:NSJSONWritingPrettyPrint

 error:nil];

if (jsonData) {

 NSString *jsonString = [[NSString alloc] initWithData:jsonData encoding:NSUTF8S

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 577 of 588

 [[V2TIMManager sharedInstance] reject:self.inviteId data:jsonString succ:^{

 // Rejection successful. Terminate the call page, and stop the call rington

 } fail:^(int code, NSString *desc) {

 // Rejection failed, prompt for exception or retry

 }];

}

2. Caller receives rejection notification

#pragma mark - V2TIMSignalingListener

- (void)onInviteeRejected:(NSString *)inviteID invitee:(NSString *)invitee data:(NS

 if (data && ![data isEqualToString:@""]) {

 NSData *jsonData = [data dataUsingEncoding:NSUTF8StringEncoding];

 NSDictionary *dictionary = [NSJSONSerialization JSONObjectWithData:jsonData

 options:NSJSONRe

 error:nil];

 if (dictionary) {

 NSString *command = dictionary[@"cmd"];

 NSDictionary *msg = dictionary[@"msg"];

 if ([command isEqualToString:@"av_call"]) {

 NSString *reason = msg[@"reason"];

 if ([reason isEqualToString:@"active"]) {

 // Prompt that the other party rejects call

 } else if ([reason isEqualToString:@"busy"]) {

 // Prompt that the other party is busy

 }

 // Terminate the call page, and stop the call ringtone

 }

 }

 }

}

Busy Line Rejection

Callee receives a new call invitation, if the local call status is in a call, the caller automatically rejects the call.

- (void)onReceiveNewInvitation:(NSString *)inviteID inviter:(NSString *)inviter gro

 if (data && ![data isEqualToString:@""]) {

 NSData *jsonData = [data dataUsingEncoding:NSUTF8StringEncoding];

 NSDictionary *dictionary = [NSJSONSerialization JSONObjectWithData:jsonData

 options:NSJSONRe

 error:nil];

 if (dictionary) {

 NSString *command = dictionary[@"cmd"];

 NSDictionary *msg = dictionary[@"msg"];

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 578 of 588

 if ([command isEqualToString:@"av_call"] && self.isOnCalling) {

 NSDictionary *dic = @{

 @"cmd": @"av_call",

 @"msg": @{

 // Specify the call type (video call, audio call)

 @"callType": @"videoCall",

 // Specify rejection type (Proactive Rejection, Busy Line R

 @"reason": @"busy",

 },

 };

 NSData *jsonData = [NSJSONSerialization dataWithJSONObject:dic

 options:NSJSONWr

 error:nil];

 if (jsonData) {

 NSString *jsonString = [[NSString alloc] initWithData:jsonData

 // Local call is in progress, and sends busy line rejection sig

 [[V2TIMManager sharedInstance] reject:inviteID data:jsonString

 // Busy line rejection successful

 } fail:^(int code, NSString *desc) {

 // Busy line rejection failed

 }];

 }

 }

 }

 }

}

Note:
Both proactive rejection and busy line rejection use the reject signaling for implementation, but it's important to

distinguish them through the reason field of the custom data in the signaling.

Step 5: hang up

Sequence Diagram

https://im.sdk.qcloud.com/doc/en/categoryV2TIMManager_07Signaling_08.html#a39e685924aaa4d22daa88f2ec96aa827

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 579 of 588

Hang Up Call

1. Either party exits the room, and reset the local call status.

- (void)hangup {

 [self.trtcCloud stopLocalAudio];

 [self.trtcCloud stopLocalPreview];

 [self.trtcCloud exitRoom];

}

#pragma mark - TRTCCloudDelegate

- (void)onExitRoom:(NSInteger)reason {

 // Successfully exited the room and hung up the call

 self.isOnCalling = NO;

}

2. The other party receives a notification that the remote side has exited the room, locally executes to exit room and
resets the call status.

#pragma mark - TRTCCloudDelegate

- (void)onRemoteUserLeaveRoom:(NSString *)userId reason:(NSInteger)reason {

 [self hangup];

}

- (void)onExitRoom:(NSInteger)reason {

 // Successfully exited the room and hung up the call

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 580 of 588

 self.isOnCalling = NO;

}

Step 6: feature control

Turn on/off microphone

// Turn the mic on

[self.trtcCloud muteLocalAudio:NO];

// Turn the mic off

[self.trtcCloud muteLocalAudio:YES];

Turn on/off speaker

// Turn the speaker on

[self.trtcCloud muteAllRemoteAudio:NO];

// Turn the speaker off

[self.trtcCloud muteAllRemoteAudio:YES];

Turn on/off camera

// Turn the camera on, specifying front or rear camera and the rendering control

[self.trtcCloud startLocalPreview:self.isFrontCamera view:self.previewView];

// Turn the camera off

[self.trtcCloud stopLocalPreview];

Hands-free/Earpiece Switching

// Switch to earpiece

[[self.trtcCloud getDeviceManager] setAudioRoute:TXAudioRouteEarpiece];

// Switch to speakerphone

[[self.trtcCloud getDeviceManager] setAudioRoute:TXAudioRouteSpeakerphone];

Camera Switching

// Determine if the current camera is front-facing

BOOL isFrontCamera = [[self.trtcCloud getDeviceManager] isFrontCamera];

// Switch between front and rear cameras, true: switch to front-facing; false: swit

[[self.trtcCloud getDeviceManager] switchCamera:!isFrontCamera];

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 581 of 588

Advanced Features

Network Status Prompt

During audio and video calls, it is often necessary to prompt when the other party's network status is poor, thereby
creating an expectation of call lag.

#pragma mark - TRTCCloudDelegate

- (void)onNetworkQuality:(TRTCQualityInfo *)localQuality remoteQuality:(NSArray<TRT

 if (remoteQuality.count > 0) {

 switch(remoteQuality[0].quality) {

 case TRTCQuality_Excellent:

 NSLog(@"The other party's network is very good");

 break;

 case TRTCQuality_Good:

 NSLog(@"The other party's network is quite good");

 break;

 case TRTCQuality_Poor:

 NSLog(@"The other party's network is average");

 break;

 case TRTCQuality_Bad:

 NSLog(@"The other party's network is relatively poor");

 break;

 case TRTCQuality_Vbad:

 NSLog(@"The other party's network is very poor");

 break;

 case TRTCQuality_Down:

 NSLog(@"The other party's network is extremely poor");

 break;

 default:

 NSLog(@"Undefined ");

 break;

 }

 }

}

Note:
 localQuality represents the local user network quality assessment result, and its userId field is empty.

 remoteQuality represents the remote user network quality assessment result, which is influenced by factors on

both the remote and local sides.

Call Duration Statistics

It is recommended to use the time when a remote user joins the TRTC room as the start time for calculating call
duration, and the time when the local user exits the room as the end time for calculating call duration.

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 582 of 588

// Start call time

@property (nonatomic, assign) NSTimeInterval callStartTime;

// End call time

@property (nonatomic, assign) NSTimeInterval callFinishTime;

// Call duration (seconds)

@property (nonatomic, assign) NSInteger callDuration;

// Callback for remote user entering room

- (void)onRemoteUserEnterRoom:(NSString *)userId {

 self.callStartTime = [[NSDate date] timeIntervalSince1970];

}

// Callback for local user exiting room

- (void)onExitRoom:(NSInteger)reason {

 self.callFinishTime = [[NSDate date] timeIntervalSince1970];

 self.callDuration = (NSInteger)(self.callFinishTime - self.callStartTime);

}

Note:
In cases of exceptions such as forced closure or network disconnection, the client may not be able to log the relevant

times. These can be monitored through Server Event Callback to track events of entering and exiting the room and
calculate the duration of the call.

Video Beauty Effects

TRTC supports integrating third-party beauty effect products. Use the example of Special Effect to demonstrate the
process of integrating the third-party beauty features.
1. Integrate Special Effect SDK, and apply for an authorization license. For details, see Live Show Streaming -
Integration Preparation for steps.

2. Set the SDK material resource path (if any).

NSString *beautyConfigPath = [NSSearchPathForDirectoriesInDomains(NSDocumentDirecto

beautyConfigPath = [beautyConfigPath stringByAppendingPathComponent:@"beauty_config

NSFileManager *localFileManager=[[NSFileManager alloc] init];

BOOL isDir = YES;

NSDictionary * beautyConfigJson = @{};

if ([localFileManager fileExistsAtPath:beautyConfigPath isDirectory:&isDir] && !isD

 NSString *beautyConfigJsonStr = [NSString stringWithContentsOfFile:beautyConfig

 NSError *jsonError;

 NSData *objectData = [beautyConfigJsonStr dataUsingEncoding:NSUTF8StringEncodin

 beautyConfigJson = [NSJSONSerialization JSONObjectWithData:objectData

 options:NSJSONReadingMutableContainers

 error:&jsonError];

}

NSDictionary *assetsDict = @{@"core_name":@"LightCore.bundle",

https://intl.cloud.tencent.com/document/product/647/39558
https://intl.cloud.tencent.com/document/product/1228/59955#8b6b50a0-939d-48a1-aac1-58c6009e4b78

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 583 of 588

 @"root_path":[[NSBundle mainBundle] bundlePath],

 @"tnn_"

 @"beauty_config":beautyConfigJson

};

// Initialize SDK: Width and height are the width and height of the texture respect

self.xMagicKit = [[XMagic alloc] initWithRenderSize:CGSizeMake(width,height) assets

3. Set the video data callback for third-party beauty features. Pass the results of the beauty SDK processing each
frame of data into the TRTC SDK for rendering processing.

// Set the video data callback for third-party beauty features in the TRTC SDK

[self.trtcCloud setLocalVideoProcessDelegete:self pixelFormat:TRTCVideoPixelFormat_

#pragma mark - TRTCVideoFrameDelegate

// Construct the YTProcessInput and pass it into the SDK for rendering processing

- (uint32_t)onProcessVideoFrame:(TRTCVideoFrame *_Nonnull)srcFrame dstFrame:(TRTCVi

 if (!self.xMagicKit) {

 [self buildBeautySDK:srcFrame.width and:srcFrame.height texture:srcFrame.te

 self.heightF = srcFrame.height;

 self.widthF = srcFrame.width;

 }

 if(self.xMagicKit!=nil && (self.heightF!=srcFrame.height || self.widthF!=srcFra

 self.heightF = srcFrame.height;

 self.widthF = srcFrame.width;

 [self.xMagicKit setRenderSize:CGSizeMake(srcFrame.width, srcFrame.height)];

 }

 YTProcessInput *input = [[YTProcessInput alloc] init];

 input.textureData = [[YTTextureData alloc] init];

 input.textureData.texture = srcFrame.textureId;

 input.textureData.textureWidth = srcFrame.width;

 input.textureData.textureHeight = srcFrame.height;

 input.dataType = kYTTextureData;

 YTProcessOutput *output = [self.xMagicKit process:input withOrigin:YtLightImage

 dstFrame.textureId = output.textureData.texture;

 return 0;

}

Note:
Steps 1 and 2 vary depending on the different third-party beauty products, while Step 3 is a general and important

step for integrating third-party beauty features into TRTC.
For scenario-specific integration guidelines of beauty effects, see Integrating Special Effect into TRTC SDK. For
guidelines on integrating beauty effects independently, see Integrating Special Effect SDK.

Window Size Switching

https://intl.cloud.tencent.com/document/product/1143/45390
https://intl.cloud.tencent.com/document/product/1143/45384

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 584 of 588

In TRTC, there are many APIs that require you to control the video screen. All these APIs require you to specify a
video rendering control.
1. If your business involves scenarios of switching display zones, you can use the TRTC SDK to update the local

preview screen and update the remote user's video rendering control feature.

// Update local preview screen rendering control

[self.trtcCloud updateLocalView:self.previewView];

// Update the remote user's video rendering control

[self.trtcCloud updateRemoteView:self.previewView streamType:TRTCVideoStreamTypeBig

Note:
 streamType only supports TRTCVideoStreamTypeBig and TRTCVideoStreamTypeSub .

Offline Push Message

In audio/video call scenarios, the offline push message feature is usually necessary, allowing the called user's App to
receive new incoming call messages even when it's not online. For detailed guidance on integrating offline push, see
Offline Message Push. Below, we will focus on explaining the implementation of step 5: Send Offline Push Message,
and step 6: Parse Offline Push Messages.

Send Offline Push Message

When sending a call invitation using invite, you can set offline push parameters through V2TIMOfflinePushInfo. By

calling ext of V2TIMOfflinePushInfo to set custom ext data, when the user receives an offline push message to start the
App, they can obtain the ext field in the system callback, and then redirect to the specified UI interface based on the
content of the ext field.

NSDictionary *dic = @{

 @"cmd": @"av_call",

 @"msg": @{

 // Specify the call type (video call, audio call)

 @"callType": @"videoCall",

 // Specify the TRTC room ID (caller can generate it randomly)

 @"roomId": @"xxxRoomId",

 },

};

NSData *jsonData = [NSJSONSerialization dataWithJSONObject:dic options:NSJSONWritin

NSString *jsonString = [[NSString alloc] initWithData:jsonData encoding:NSUTF8Strin

V2TIMOfflinePushInfo *pushInfo = [[V2TIMOfflinePushInfo alloc] init];

pushInfo.title = self.nickName;

pushInfo.desc = @"You have a new call invitation";

NSDictionary *ext = @{

 @"entity" : @{

https://intl.cloud.tencent.com/document/product/1228/60251#f6a52db3-5bad-483e-9853-4c90895b8434
https://intl.cloud.tencent.com/document/product/1228/60254#c99572bf-3aed-4f30-8fed-3c4ed49ea15e
https://intl.cloud.tencent.com/document/product/1228/60254#c99572bf-3aed-4f30-8fed-3c4ed49ea15e#1b5f30c0-4324-414d-a18c-88c8142f65ee
https://im.sdk.qcloud.com/doc/en/categoryV2TIMManager_07Signaling_08.html#a594071fa1a70373582ed6082c581b332
https://im.sdk.qcloud.com/doc/en/interfaceV2TIMOfflinePushInfo.html
https://im.sdk.qcloud.com/doc/en/interfaceV2TIMOfflinePushInfo.html#ab2b8698eb6c7b51453995c89f503ec35

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 585 of 588

 @"action" : @1,

 @"content" : jsonString,

 @"sender" : self.senderId,

 @"nickname" : self.nickName,

 @"faceUrl" : faceUrl,

 }

 };

NSData *data = [NSJSONSerialization dataWithJSONObject:ext options:NSJSONWritingPre

pushInfo.ext = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding];

pushInfo.iOSSound = @"phone_ringing.mp3";

// Below are fields compatible with Android, and need to be filled in

pushInfo.AndroidOPPOChannelID = @"tuikit";

pushInfo.AndroidSound = @"phone_ringing";

pushInfo.AndroidHuaWeiCategory = @"IM";

pushInfo.AndroidVIVOCategory = @"IM";

[[V2TIMManager sharedInstance] invite:@"receiverId" data:jsonString onlineUserOnly:

 // Successfully send call invitation signaling

} fail:^(int code, NSString *desc) {

 // Failed to send call invitation signaling

}];

Parse Offline Push Messages

When a user receives an offline push message to start the App, they can obtain the ext field in the

 AppDelegate -> didReceiveRemoteNotification system callback, and then redirect to the specified UI

interface based on the content of the ext field.

// After starting the APP, you will receive the following callbacks

- (void)application:(UIApplication *)application didReceiveRemoteNotification:(NSDi

fetchCompletionHandler:(void (^)(UIBackgroundFetchResult result))completionHandler

 // Parse push extension fields

 if ([userInfo[@"ext"]) {

 // Redirect to the specified UI interface

 }

}

Exception Handling

TRTC exception error handling

When the TRTC SDK encounters an unrecoverable error, the error is thrown in the onError callback. For details,

see Error Code Table.

https://intl.cloud.tencent.com/document/product/647/35135

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 586 of 588

UserSig related

UserSig verification failure leads to room-entering failure. You can use the UserSig tool for verification.

Enumeration Value Description

ERR_TRTC_INVALID_USER_SIG -3320
Room entry parameter userSig is incorrect. Check if
 TRTCParams.userSig is empty.

ERR_TRTC_USER_SIG_CHECK_FAILED -100018
UserSig verification failed. Check if the parameter
 TRTCParams.userSig is filled in correctly or
has expired.

Room entry and exit related

If room entry is failed, you should first verify the correctness of the room entry parameters. It is essential that the room
entry and exit APIs are called in a paired manner. This means that, even in the event of a failed room entry, the room

exit API must still be called.

Enumeration Value Description

ERR_TRTC_CONNECT_SERVER_TIMEOUT -3308
Room entry request timed out. Check if your
internet connection is lost or if a VPN is enabled.
You may also attempt to switch to 4G for testing.

ERR_TRTC_INVALID_SDK_APPID -3317
Room entry parameter sdkAppId is incorrect.
Check if TRTCParams.sdkAppId is empty

ERR_TRTC_INVALID_ROOM_ID -3318

Room entry parameter roomId is incorrect.Check if
 TRTCParams.roomId or
 TRTCParams.strRoomId is empty. Nnote
that roomId and strRoomId cannot be used
interchangeably.

ERR_TRTC_INVALID_USER_ID -3319
Room entry parameter userId is incorrect. Check if
 TRTCParams.userId is empty.

ERR_TRTC_ENTER_ROOM_REFUSED -3340
Room entry request was denied. Check if
 enterRoom is called consecutively to enter
rooms with the same ID.

Device related

Errors for related monitoring devices. Prompt the user via UI in case of relevant errors.

Enumeration Value Description

ERR_CAMERA_START_FAIL -1301 Failed to enable the camera. For example, if there is an

https://console.trtc.io/usersig

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 587 of 588

exception for the camera's configuration program (driver) on
a Windows or Mac device, you should try disabling then re-
enabling the device, restarting the machine, or updating the
configuration program.

ERR_MIC_START_FAIL -1302

Failed to open the mic. For example, if there is an exception
for the camera's configuration program (driver) on a
Windows or Mac device, you should try disabling then re-
enabling the device, restarting the machine, or updating the
configuration program.

ERR_CAMERA_NOT_AUTHORIZED -1314
The device of camera is unauthorized. This typically occurs
on mobile devices and may be due to the user having
denied the permission.

ERR_MIC_NOT_AUTHORIZED -1317
The device of mic is unauthorized. This typically occurs on
mobile devices and may be due to the user having denied
the permission.

ERR_CAMERA_OCCUPY -1316 The camera is occupied. Try a different camera.

ERR_MIC_OCCUPY -1319 The mic is occupied. This occurs when, for example, the
user is currently having a call on the mobile device.

Offline push cannot be received for normal messages

First, check whether the app runtime environment is the same as the certificate environment. Otherwise, offline push
messages will not be received.
Secondly, check if the app and certificate environment are set to production. If it is a development environment,

applying for a deviceToken from Apple may fail. This problem is not found in the production environment, you can

switch to the production environment for testing.

Offline push cannot be received for custom messages

The offline push for custom messages is different from that for normal messages. As we cannot parse the content of
custom messages, we cannot determine the push's content. Therefore, by default, there is no offline push. If you need
an offline push, you need to set the desc field in offlinePushInfo when using sendMessage, and the desc information
will by default be displayed during the push.

Disable the reception of offline push messages

To disable the reception of offline push messages, you can set the config parameter of setAPNS API to nil .

This feature is supported starting from version 5.6.1200.

Failed to receive push and a bad devicetoken error was reported in the background

https://im.sdk.qcloud.com/doc/en/interfaceV2TIMOfflinePushInfo.html
https://im.sdk.qcloud.com/doc/en/categoryV2TIMManager_07Message_08.html#a3694cd507a21c7cfdf7dfafdb0959e56
https://im.sdk.qcloud.com/doc/en/categoryV2TIMManager_07APNS_08.html#a6aecbdc0edaa311c3e4e0ed3e71495b1

Tencent Smart Advisor-Tencent RTC Copilot

©2013-2025 Tencent Cloud International Pte. Ltd. Page 588 of 588

The Apple deviceToken depends on the current compiling environment. If the certificate ID and token used to log in to
IMSDK and upload the deviceToken to the cloud platform are inconsistent, it will result in an error.
If you use the Release environment to compile, the -

application:didRegisterForRemoteNotificationsWithDeviceToken: callback will return a

production environment token. At this time, the businessID needs to be set to the Certificate ID of the production
environment.
If you use the Debug environment to compile, the -

application:didRegisterForRemoteNotificationsWithDeviceToken: callback will return a

development environment token. At this time, the businessID needs to be set to the Certificate ID of the development
environment.

V2TIMAPNSConfig *confg = [[V2TIMAPNSConfig alloc] init];

/* You need to register a developer certificate with Apple, download and generate t

// Push certificate ID

confg.businessID = sdkBusiId;

confg.token = self.deviceToken;

[[V2TIMManager sharedInstance] setAPNS:confg succ:^{

 NSLog(@"%s, succ, %@", __func__, supportTPNS ? @"TPNS": @"APNS");

} fail:^(int code, NSString *msg) {

 NSLog(@"%s, fail, %d, %@", __func__, code, msg);

}];

In the iOS development environment, deviceToken is occasionally not returned for
registration or APNs fails to request a token

This problem is caused by instability of APNs. You can resolve the problem in the following ways:
1. Insert a SIM card into the phone and use the 4G network to test.
2. Uninstall and reinstall the application, restart the application, or shut down and restart the phone.
3. Use a package for the production environment.

4. Use another phone with iOS system.

https://intl.cloud.tencent.com/document/product/1047/39157#.E6.AD.A5.E9.AA.A44.EF.BC.9A.E7.99.BB.E5.BD.95-im-sdk-.E5.90.8E.E4.B8.8A.E4.BC.A0-devicetoken-.E5.88.B0.E8.85.BE.E8.AE.AF.E4.BA.91
https://intl.cloud.tencent.com/document/product/1047/39157#.E6.AD.A5.E9.AA.A41.EF.BC.9A.E7.94.B3.E8.AF.B7-apns-.E8.AF.81.E4.B9.A6
https://intl.cloud.tencent.com/document/product/1047/39157#.E6.AD.A5.E9.AA.A41.EF.BC.9A.E7.94.B3.E8.AF.B7-apns-.E8.AF.81.E4.B9.A6

