@ Tencent Cloud Tencent Infrastructure Automation for Terraform

Tencent Infrastructure Automation
for Terraform

Provider Contributor Guide

Product Documentation

Teent Cloud

©2013-2024 Tencent Cloud. All rights reserved. Page 1 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

Copyright Notice
©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

2y Tencent Cloud

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by

their respective proprietors.
Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in

Tencent Cloud's applicable terms and conditions.

©2013-2024 Tencent Cloud. All rights reserved. Page 2 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

Contents

Provider Contributor Guide
Welcome
Contribute
Writing Resource and Data Source
Bug Fix or Enhancement
Documentation Update
Tagging
Writing Test Case
Creating Pull Request
Submitting Changelog
Publishing Module
Developer Reference
How It Works
Development and Debugging

Requirements and Suggestions

©2013-2024 Tencent Cloud. All rights reserved. Page 3 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

Provider Contributor Guide
Welcome

Last updated : 2024-12-02 16:01:33

Terraform TencentCloud Provider is maintained by the Tencent Cloud l1aC team and welcomes contributions from
developers.
Note:

This document is intended for Terraform TencentCloud Provider code developers.

Contribution

Contribute your code in the following steps. You can have a look at How It Works and Requirements and Suggestions
to get a general picture of the provider.

1. Configuring the development environment

Before starting the development, you need to install Terraform and Go to pull the code repository, compile the
program, and set the test as instructed in Development and Debugging.

2. Writing the code

Write the code as instructed in the corresponding document based on the type of your code.

Contribution

Description
Type
Resource and Add a resource or data source to Terraform TencentCloud Provider so as to manage Tencent
Data Sources Cloud product features or query the remote data of Tencent Cloud.
Bug Fix or
. Most requests are for feature enhancement or bug fix.
Enhancement
Tagging . . .
Current resources require tag support and a unified tag service API.
Support
Documentation . .
Documentation updates and changes are included.
Changes

3. Writing the test

Cover all your contributed code in tests as instructed in Writing Test Case.

©2013-2024 Tencent Cloud. All rights reserved. Page 4 of 54

https://github.com/tencentcloudstack/terraform-provider-tencentcloud
https://intl.cloud.tencent.com/document/product/1172/52386
https://intl.cloud.tencent.com/document/product/1172/52388
https://intl.cloud.tencent.com/document/product/1172/52387
https://intl.cloud.tencent.com/document/product/1172/52377
https://intl.cloud.tencent.com/document/product/1172/52378
https://intl.cloud.tencent.com/document/product/1172/52380
https://intl.cloud.tencent.com/document/product/1172/52379
https://intl.cloud.tencent.com/document/product/1172/52381

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

4. Creating a pull request

When your contribution is ready, create a pull request in the repository of your provider.

5. Updating the changelog

An open-source project requires maintaining a user-friendly and readable CHANGELOG.md so that users can
quickly know whether they will be affected by the release and assess the upgrade risk if applicable. For more

information, see Submitting Changelog.

Modules

Besides the source code, you can also submit modules to the provider as instructed in Modules.

©2013-2024 Tencent Cloud. All rights reserved. Page 5 of 54

https://intl.cloud.tencent.com/document/product/1172/52382
https://intl.cloud.tencent.com/document/product/1172/52383
https://intl.cloud.tencent.com/document/product/1172/52310

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

Contribute
Writing Resource and Data Source

Last updated : 2024-12-02 16:01:33

Resources and data sources are basic extensible datasets in Terraform that allow you to manage resources.

Writing Resources

A resource describes a class of resource entities allowing for CRUD operations, typically CVM instances, disks,
databases, TKE clusters, and COS buckets.

This document takes the CVM instance with the following simple configuration as an example:
Name: my-cvm

AZ: Guangzhou Zone 4

Model: SA2.MEDUIM2

Image: TencentOS Server 3.2 (Final)

Network: vpc-xxxxxxxx

Subnet: subnet-xxxxyyyy

Billing mode: Pay-as-you-go

Whether a public IP is assigned: Yes

Public network bandwidth: 10 Mbps

You can use the high-level configuration syntax HCL for description. Below is the sample code:

resource "tencentcloud_instance" "cvml" {
instance_name = "my-cvm"
availability_zone = "ap-guangzhou-4"
instance_type = "SA2.MEDIUM2"
instance_charge_type = "POSTPAID_BY_HOUR"
image_id = "img-9grfylxt"
allocate_public_ip = true
internet max_bandwidth_out = 10

When yourunthe terraform apply command for the first time, the declared resource will initiate the creation
process. After the creation, if you modify the configuration in the code andrun terraform apply again, the

update process will be initiated. Running the terraform destroy command will initiate the termination process.

Writing resource code

©2013-2024 Tencent Cloud. All rights reserved. Page 6 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

To make the above HCL code effective, you need to register at TencentCloud Provider, find the
Provider/ResourceMap field in tencentcloud/provider.go, add the tencentcloud_instance resource

structure, and define the parameter schema based on HCL. Below is the sample code:
package tencentcloud

import (
"github.com/hashicorp/terraform-plugin-sdk/helper/schema"

"github.com/hashicorp/terraform-plugin-sdk/terraform"

func Provider () *schema.Provider {
return &schema.Provider{

ResourcesMap: map[string] *schema.Resource(

"tencentcloud_xxx": { /* Other declared resources */ },
"tencentcloud_yyy": { /* Other declared resources */ },
"tencentcloud_instance": {

Schema: map[string] *schema.Schema {
"instance_name": {
Optional: true, // Optional field
Type: schema.TypeString, // Field type
Description: "Instance Name.",

Hy

"availability_zone": {

Required: true, // Required field

Type: schema.TypeString,
ForceNew: true, // If this field is modified and the modification is su
Description: "Instance available zone.",

by

"instance_type": {

Optional: true,
Type: schema.TypeString,
Description: "Instance Type.",
by
"instance_charge_type": {

Optional: true,

Type: schema.TypeString,
Description: "Instance charge type.",
o
"image_id": {

Required: true,
Type: schema.TypeString,
Description: "Instance OS image Id.",

Yo
"allocate_public_ip": {

Optional: true,

©2013-2024 Tencent Cloud. All rights reserved. Page 7 of 54

https://github.com/tencentcloudstack/terraform-provider-tencentcloud/blob/master/tencentcloud/provider.go

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

Type: schema.TypeBool, // Boolean type
Description: "Specify whether to allocate public IP.",

b

"internet _max_bandwidth_out": {
Optional: true,
Type: schema.TypelInt, // Integer type
Description: "Specify maximum bandwith.",

by

b
by
b

After declaring the resource and parameter schema, you also need to define the CRUD logic triggered by apply |,
plan ,or destroy in Terraform. The SDK for Terraform (v1) defines four CRUD methods:
Create ,whichiscalledif terraform apply isrun for creation.
Read ,whichiscalledif terraform plan / import isrun for remote state sync.
Update ,whichiscalledif terraform apply isrun for update.
Delete ,whichiscalledif terraform destroy isrun.

Add the four methods to the schema.Resource structure. Below is the sample code:

package tencentcloud

import (
"github.com/hashicorp/terraform-plugin-sdk/helper/schema"

"github.com/hashicorp/terraform-plugin-sdk/terraform"

func Provider () *schema.Provider {
return &schema.Provider{

ResourcesMap: map[string] *schema.Resource(

"tencentcloud_xxx": { /* Other declared resources */ },
"tencentcloud_yyy": { /* Other declared resources */ },
"tencentcloud_instance": {

Create: resourceTencentCloudInstanceCreate,
Read: resourceTencentCloudInstanceRead,
Update: resourceTencentCloudInstanceUpdate,
Delete: resourceTencentCloudInstanceDelete,
Schema: map[string]*schema.Schema{

// The declaration written above (omitted)
b

by
b

©2013-2024 Tencent Cloud. All rights reserved. Page 8 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

func resourceTencentCloudInstanceCreate (d *schema.ResouceData, m interface{}) erro

instanceName := d.Get ("instance_name") . (string)
instanceType := d.Get ("instance_type") . (string)
//

// Run " terraform apply for resource creation
instanceld := createlnstance (¶m{
Name: &instanceName,

Type: &instanceType,
//

H)

// Set a unique ID for the created resource
d.SetId(instanceld)

// Sync the remote state again after resource creation for consistency check

return resourceTencentCloudInstanceRead (d, m)

func resourceTencentCloudInstanceRead (d *schema.ResouceData, m interface{}) error

// Run "terraform plan’ after resource creation/update

instanceId := d.Id() // The ID set in " Create’

instanceInfo := getInstance (instanceld)

d.Set ("instance_name", instanceInfo.Name)

d.Set ("instance_type", instancelInfo.Type)
return nil
func resourceTencentCloudInstanceUpdate (d *schema.ResouceData, m interface{}) erro
// Run “terraform apply’ to update existing resources
updateParam := ¶m{}
// Check whether fields are updated, and if not, update them in combinations
if d.HasChange ("instance_name") {

name := d.Get ("instance_name") . (string)

updateParam.Name = &name

if d.HasChange ("instance_type") A
insType := d.Get ("instance_type") . (string)
updateParam.Type = &insType

©2013-2024 Tencent Cloud. All rights reserved. Page 9 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

}
//

updateInstance (d.Id (), updateParam)

// Sync the remote state again after resource creation for consistency check

return resourceTencentCloudInstanceRead (d, m)

func resourceTencentCloudInstanceDelete (d *schema.ResouceData, m interface{}) erro
// Run ‘terraform destroy’
destroyInstance (d.Id())

return nil

As you can see, the values of the HCL fields can be obtained by referencing the d.Get parameter. d.sSet can
write back (sync) these values. In addition, after each resource is created, you needto call d.set1d tosetthe
unique resource index by which the specific resource instance can be located.

After the main logic structure is set up, the four functions can be called after Terraformruns plan apply
destroy . Then, you can initiate TencentCloud API calls to manipulate resources.

CVM has the following CRUD APIs:

Runlnstances: Purchases an instance.

Describelnstances: Queries the list of instances.

ModifylnstancesAttribute: Modifies an instance attribute.

Terminatelnstances: Returns an instance.

You can pass in the parameters obtained from HCL to the required parameters of the CVM API for call initiation.

Below is the sample code:

package main
import (

cvm "github.com/tencentcloud/tencentcloud-sdk—-go/tencentcloud/cvm/v20170312"

func resourceTencentCloudInstanceCreate (d *schema.ResourceData, meta interface{}) e
// Read the values of the fields from HCL

instanceName := d.Get ("instance_name") . (string)

instanceType := d.Get ("instance_type") . (string)

imageId := d.Get ("image_id") . (string)

instanceChargeType := d.Get ("instance_charge_type") . (string)

zone := d.Get ("availability_zone") . (string)
allocatePublicIp := d.Get ("allocate_public_ip") . (bool)
internetBandWith := int64 (d.Get ("internet_max_bandwidth_out") . (int))

©2013-2024 Tencent Cloud. All rights reserved. Page 10 of 54

https://intl.cloud.tencent.com/document/product/213/33237
https://intl.cloud.tencent.com/document/product/213/33258
https://intl.cloud.tencent.com/document/product/213/33246
https://intl.cloud.tencent.com/document/product/213/33234

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

client, _ := cvm.NewClient (credential, "ap—-guangzhou")
request := cvm.NewRunInstancesRequest ()

// Create the parameters required by CVM in combinations

request.InstanceName = &instanceName
request.InstanceType = &instanceType
request.Imageld = &imageld
request.InstanceChargeType = &instanceChargeType
request.Placement = &cvm.Placement {

Zone: &zone,

}

request.InternetAccessible = &cvm.InternetAccessible {
InternetMaxBandwidthOut: &internetBandWith,
PublicIpAssigned: &allocatePublicIp,

// Initiate the call
id, err := client.RunInstances (request)
if err !'= nil{

return err
// Set the ID returned by the creation as the resource ID
d.SetId(id)
// Write back the state
return resourceTencentCloudInstanceRead(d, meta)
After implementing Create ,implement Read , Update ,and Delete

package main
import (

cvm "github.com/tencentcloud/tencentcloud-sdk—-go/tencentcloud/cvm/v20170312"

func resourceTencentCloudInstanceRead (d *schema.ResourceData, meta interface{}) err
// The ID set in "Create’ or obtained during import

id := d.Id()

client, _ := cvm.NewClient (credential, "ap-guangzhou")
request, _ := cvm.NewDescribelInstancesRequest ()
request.Instancelds = []*string{&id}

response, err := client.DescribelInstances (request)

if err !'= nil{

return err

©2013-2024 Tencent Cloud. All rights reserved. Page 11 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

if len(response.Response.InstanceSet) == 0 {

return fmt.Errorf ("instance %s not exists.", id)

}

instance := response.Response.InstanceSet[0]
d.Set ("instance_name", instance.InstanceName)
d.Set ("instance_type", instance.InstanceType)

// ~d.Set’ writes back fields such as “~image_id , "~ instance_charge_type , and "av

return nil

func resourceTencentCloudInstanceUpdate (d *schema.ResourceData, meta interface{}) e

id := d.Id()

client, _ := cvm.NewClient (credential, "ap—-guangzhou")
request, _ := cvm.NewModifyInstancesAttributeRequest ()
request.Instancelds = []*string{&id}

// Check whether the fields are changed and add the parameters
if d.HasChange ("instance_name") {
name := d.Get ("instance_name") . (string)

request.InstanceName = &name

// Process other "HasChange' fields (omitted)

_, err := client.ModifyInstanceAttribute (request)
if err !'= nil{

return err

return resourceTencentCloudInstanceRead (d, meta)

func resourceTencentCloudInstanceDelete (d *schema.ResourceData, meta interface{}) e
id := d.Id{()

client, _ := cvm.NewClient (credential, "ap—-guangzhou")
request, _ := cvm.NewTerminateInstancesRequest ()
request.InstancelIds = []*string{&id}
_, err := client.TerminatelInstances (request)
if err != nil{

return err

}

return nil

©2013-2024 Tencent Cloud. All rights reserved. Page 12 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

At this point, you have implemented the resource containing the name, field declaration, and CRUD logic in

TencentCloud Provider.

Implementing the import logic

After implementing the resource CRUD successfully, you can implement the resource import logic. The command for

importing a single resource is in the format of terraform import <type>.<index> <id> ,such as:
terraform import tencentcloud_instance.cvml ins-abcdl234

As you can see, there is only the ins-abcd1234 input for resource import. As indicated in the implemented
Read method, when the ID is specified, you can use the ID to query the detailed configuration of a remote resource
and automatically sync the configuration locally. Therefore, you only need to declare Importer in

schema.Resource toindicate that the resource can be imported. Further sync will be taken over by Read :
package tencentcloud

import (
"github.com/hashicorp/terraform-plugin—-sdk/helper/schema"
"github.com/hashicorp/terraform-plugin-sdk/terraform"

func Provider () *schema.Provider {
return &schema.Provider{

ResourcesMap: map[string] *schema.Resource(

"tencentcloud_xxx": { /* Other declared resources */ },
"tencentcloud_yyy": { /* Other declared resources */ },
"tencentcloud_instance": {

Create: resourceTencentCloudInstanceCreate,
Read: resourceTencentCloudInstanceRead,
Update: resourceTencentCloudInstanceUpdate,
Delete: resourceTencentCloudInstanceDelete,
Schema: map[string] *schema.Schema {

// The declaration written above (omitted)
Hy
// In most cases, you only need to add "~ schema.ImportStatePassthrough’.
Importer: &schema.Resourcelmporter{

State: schema.ImportStatePassthrough,
b

by
b

©2013-2024 Tencent Cloud. All rights reserved. Page 13 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

Data Source

Data sources represent read-only entities for query only. No matter how many times they are called, existing resources
will not be affected, such as CVM instance list, image list, AZ list, database list, parameter template, and audit log.
Theoretically, any data that can be found via APIs are data sources. As indicated above, the CVM image is displayed
as TencentOS Server 3.2 (Final) ,butthe parameter passedintothe APlisitsID img-9qrfylxt .To

get the ID based on the image name, you can use the data source to query and reference the image ID:

data "tencentcloud_images" "fav_os" {
filters = {
image_name: "TencentOS Server 3.2",
image_type: "PUBLIC_IMAGE"

resource "tencentcloud_instance" "cvml" {

image_id = data.tencentcloud_images.fav_os.images.0.image_id

As shown above, write image_id into the reference of data.tencentcloud_images.fav_os . Then,
Terraform will read the data source information first and then calculate the value. Compared to a static method, a data

source can effectively organize resources with dependencies.

Writing a data source

A data source is implemented in a similar way to a resource. You need to register at TencentCloud Provider, find the
Provider/DataSourceMap field in the source code of tencentcloud/provider.go, add the
tencentcloud_images structure (the names of all data sources must end with s), and define the parameter

schema based on HCL.:

package tencentcloud

import (
"github.com/hashicorp/terraform-plugin-sdk/helper/schema"

"github.com/hashicorp/terraform-plugin-sdk/terraform"

func Provider () *schema.Provider {
return &schema.Provider{

DataSourceMap: map[string] *schema.Resource(
"tencentcloud_xxxs": { /* Other declared data sources */ },
"tencentcloud_yyys": { /* Other declared data sources */ },
"tencentcloud_images": {

Schema: map[string] *schema.Schema {

©2013-2024 Tencent Cloud. All rights reserved. Page 14 of 54

https://github.com/tencentcloudstack/terraform-provider-tencentcloud/blob/master/tencentcloud/provider.go

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

"filters": {
Optional: true,
Type: schema.TypeMap, // Specify the "Map type
Description: "Query filter",
b
// Saves the result in JSON locally
// TencentCloud Provider requires that every data source should have " res
"result_output_file": {
Optional: true,
Type: schema.TypeString,
Description: "Used for store as local file.",
b
"result": {
Computed: true, // ‘Computed’ indicates that the field will be updated
Type: schema.Typelist,
Description: "",
Elem: &schema.Resource{
Schema: map[string] *schema.Schema {
"id": {
Type: schema.TypeString,
Computed: true,
Description: "Image Id.",
Hy
"name": {
Type: schema.,
Computed: true,
Description: "Image name.",
o
by
Hy
}y
b
b
H

Compared to a resource, a data source requires implementing only the Read method:
package tencentcloud
import (
"encoding/json"

"github.com/hashicorp/terraform-plugin-sdk/helper/schema"

"github.com/hashicorp/terraform-plugin-sdk/terraform"

©2013-2024 Tencent Cloud. All rights reserved. Page 15 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

const ImgNameFilterKey = "image—-name"

func Provider () *schema.Provider {
return &schema.Provider/{

DataSourceMap: map[string] *schema.Resource(
"tencentcloud_xxxs": { /* Other declared data sources */ },
"tencentcloud_yyys": { /* Other declared data sources */ },
"tencentcloud_images": {

Schema: map[string] *schema.Schema{ /* Omitted */},

Read: func(d *schema.ResourceData, meta interface{}) {
// Declare the "Client’ and 'request’
client, _ := cvm.NewClient (credential, "ap—-guangzhou")

request := cvm.NewDescribelImagesRequest ()

// Get ‘Filters® of “Map type

filters := d.Get ("filters"). (mapl[string]linterface{})

// Check "filters["name"] and add parameters

if name, ok := filters["name"]. (string); ok {
request.Filters = append(request.Filters, &cvm.Filter({

Name: &ImgNameFilterKey,
Values: []*string{&name}

H)

// Initiate the call
response, err := client.Describelmages (request)
if err != nil{

return err

// Assemble and write the “result® field

imageSet := response.Response.ImageSet
result := make([]map[string]interface{}, 0, len(imageSet))
for i := range imageSet {

item := imageSet[i]

result = append(result, map[stringlinterface{}{

"id": *item.Id,
"name": *item.Name,

H)

d.Set ("result", result)
// If “result_output_file' has a definition, write the result into the sp

if v, ok := d.GetOk ("result_output_file"); ok {

writeToFile (v. (string), result)

©2013-2024 Tencent Cloud. All rights reserved. Page 16 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

}

return nil

Hy
b

At this point, you have writtenthe tencentcloud_images and can use the data source to query specified OS

images.

Writing an Acceptance Test

To ensure that your newly added resource or data source can work properly, you need to write an acceptance test as

instructed in Writing Test Case.

©2013-2024 Tencent Cloud. All rights reserved. Page 17 of 54

https://intl.cloud.tencent.com/document/product/1172/52381

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

Bug Fix or Enhancement

Last updated : 2024-12-02 16:01:33

The provider requires continuous improvements and iteration. You can contribute your code to the repository in line
with the minimal change principle, that is, implement only one enhancement or bug fix in each pull request to avoid

large-scale or cross-feature code changes that can increase the test and review costs per time.

Checking the Code

Your merge request will trigger GitHub actions related to merge check, such as formatting, documentation generation,
and acceptance test. When these checks are passed, we will review your code and give our feedback or directly
merge it. Before the branch is pushed to the remote, you can execute these steps locally.

Setting the commit hook

Run make hooks inthe directory of the local repository to install the dependencies of the formatting check and

add pre-commit.sh tothe commithook.

Formatting the code

Run make fmt toformatthe go code and importorder.

Syncing the documentation

Run make doc .Then,the ./gendoc scriptwill parse and sync any change youmadeto ./website .

Writing an Acceptance Test

To ensure that your changes can work properly, you need to write acceptance test cases or add parameter assertions
to existing cases to cover your changes. For detailed directions, see Writing Test Case. Testing paid resources will

initiate the actual billing process. Or you can write test cases and have them executed by us.

©2013-2024 Tencent Cloud. All rights reserved. Page 18 of 54

https://intl.cloud.tencent.com/document/product/1172/52381

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

Documentation Update

Last updated : 2024-12-02 16:01:33

The source files of the TencentCloud Provider documentation page are inthe website root directory of the project
and are extracted and generated automatically from the code comments and schema description. This document

describes the mechanism for generating the sidebar, sample code, and parameter description on the documentation

page.

Documentation Page Generation

The documentation page consists of the following sections.

Directory

Inthe tencentcloud/provider.go file, the top comment starts with Resources List inthe following

format:

/*

Resources List

Product name
Data Source
tencentcloud_foos
tencentcloud_bars
Resource

tencentcloud_baz
*/
package tencentcloud

The above text will be parsed into the Product name —-> DataSource / Resource —-> tencentcloud_*

tree structure displayed on the left sidebar of the documentation page.

Sample

The topic page of the documentation consists of the overview, sample use, and parameter description. All samples

are generated from the header comments inthe .go file of each module. Below is a template:

/*

Provides a resource/datasource to create/query something.

©2013-2024 Tencent Cloud. All rights reserved. Page 19 of 54

https://registry.terraform.io/providers/tencentcloudstack/tencentcloud/latest/docs

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

~> **NOTE:** This is an optional TIPS, add it if needed.
Example Usage

Basic usage

hcl
resource "tencentcloud_ _foo" "foo" {
name = "baz"

Another usage

hcl
resource "tencentcloud_ foo" "foo" {
name = "baz"

another = 12345

Import

This resource can be imported, e.g.

bash

$ terraform import tencentcloud_foo.foo foo_id

*/
package tencentcloud

//

First, the resource/data source use and instructions (if any) are presented, followed by the sample code block starting
with Example Usage . Then, the import command is written if the typeis Resource and the import method is

provided.

Parameter description

The parameter description of each resource is parsed from the value of Description and closely follows the

sample code:

map [string] *schema.Schema{
"name": {
Type: schema.TypeString,

Description: "This is what will generated.",

©2013-2024 Tencent Cloud. All rights reserved. Page 20 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

The script will read the Schema fromthe Provider tooutputthe Name - (Constraint, type)

introductory text item.

Documentation Update

Active update

The script generating the documentationisin . /gendoc . If the code in the above location changes, run cd to
enter ./gendoc andrun go run .../. togeneratethe documentation. Oryoucanrun make doc inthe

project directory.

Commit for check

If you have configured the commit hook in the project, even if you don't run gendoc , the commit hook will
automatically check for sync. If the documentation changes after the execution of the commit hook, you haven't
synced the changed documentation to the index, and the commit operation will stop. Even if the hook is not configured,

the merge check will do the job to ensure that your changes are accurately synced.

©2013-2024 Tencent Cloud. All rights reserved. Page 21 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

Tagging

Last updated : 2024-12-02 16:01:33

Tag is a cloud resource management tool that exists in the format of key:values . It can be associated with most
of your Tencent Cloud resources, greatly simplifying resource categorization, search, and aggregation.In Terraform, a
resource tag is defined through Map :

resource "tencentcloud_instance" "cvm" {
tags = {
keyl: "vall",
key2: "val2"

Tag code implementation

A resource tag can be added via TencentCloud API in two ways. One is using the CreateAPI parameter:
rsType := "instance"

request := cvm.NewRunInstanceRequest ()
request.TagSpecification = append (request.TagSpecification, &cvm.TagSpecification{
ResourceType: &rsType,
Tags: []*cvm.Tag{
{
Key: é&key,
Value: &value,
b
by
})

Currently, only certain resource creation APIs support passing in tags, with different data structures. To unify the
management of the tag code, the second way is used, that is, calling the tag API after creation for association. The

input parameter is the six-segment resource description in the following format:
gcs:<project_id, which is left empty here>:<Module>:<Region>:<Account/UIN>:<Resourc
For example, to modify the tag associated with a VPC instance, use the following input parameter:
gcs::vpc:ap-singapore:uin/:vpc/vVPC—XXXXXXXX

In the code, just call the encapsulated ModifyTags :

©2013-2024 Tencent Cloud. All rights reserved. Page 22 of 54

https://intl.cloud.tencent.com/document/product/598/10606

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

package main

func ResourceTencentCloudVPCUpdate (d *schema.ResourceData, meta interface{}) {

ctx := context.TODO ()

region := meta. (*TencentCloudClient) .apiV3Conn.Region

id = d.Id()

resourceName := fmt.Sprintf ("gcs::vpc:%s:uin/:vpc/%s", region, id)

replaceTags, deleteTags := diffTags(oldTags. (mapl[string]interface{}), newTags. (ma
if err := tagService.ModifyTags (ctx, resourceName, replaceTags, deleteTags); err

return err

©2013-2024 Tencent Cloud. All rights reserved. Page 23 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

Writing Test Case

Last updated : 2024-12-02 16:01:33

Complete test cases are necessary for a comprehensive program system. The SDK for Terraform integrates a test
suite to verify written Terraform resources and data sources. This document describes how to write a test case for

TencentCloud Provider.

Acceptance test

An acceptance test covers the entire lifecycle of a resource, including creation, query, update, import, and deletion.
You need to write at least one test case for a resource. Running the acceptance test will initiate an actual API call
and affect Tencent Cloud resources. Check your account costs before running the test, which can be written in the
following steps:

Set environment variables and toggle on acceptance test execution:
export TF_ACC=true
Set the environment variables of the credential and specify an account to run the test:

export TENCENTCLOUD_SECRET_ID=XXXx
export TENCENTCLOUD_SECRET_KEY=yyyy

Set the log output level and directory for easier debugging:

export TF_LOG=DEBUG
export TF_LOG_PATH=./terraform.log

For example, test the input parameters of a VPC resource to check whether the created and updated resource is as
expected.
Createthe resource_tc_vpc_test.go fileinthe tencentcloud directory, specify a VPC resource, and

write its initial configuration and updated configuration:

// filename: tencentcloud/resource_tc_vpc_test.go

const testAccVpcConfig = °

resource "tencentcloud_vpc" "foo" {
name = "test-vpc"
cidr_block = "172.16.0.0/16"

const testAccVpcConfigUpdate = °

resource "tencentcloud_vpc" "foo" {

©2013-2024 Tencent Cloud. All rights reserved. Page 24 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

name = "test-vpc__update"
cidr_block = "172.16.0.0/22"
is_multicast = true

Write the function of the case. A function name starting with TestAccTencentCloud indicates an acceptance
test. The function name formatis TestAccTencentCloud${Module name}${Resource
type}_S${Subname} ,andtheregexis TestAccTencentCloud[a—-zA-Z]+ (Resource|DataSource)_[a-

zA-2z]1+ . Call the function to import the two configuration items and add the assertions in resource.Test
package tencentcloud

import (

"testing"

"github.com/hashicorp/terraform-plugin-sdk/helper/resource"

"github.com/hashicorp/terraform-plugin-sdk/terraform"

func TestAccTencentCloudVpcResource_Basic (t *testing.T) {
resource.Test (t, resource.TestCase{
Providers: testAccProviders,
Steps: []resource.TestStep{
{
// The initial configuration declared above
Config: testAccVpcConfig,
Check: resource.ComposeTestCheckFunc (
testAccCheckVpcExists ("tencentcloud_vpc.foo"),
resource.TestCheckResourceAttr ("tencentcloud_vpc.foo", "cidr_block", "172
resource.TestCheckResourceAttr ("tencentcloud_vpc.foo", "name", "test-vpc"
),
o

{
// The updated configuration declared above

Config: testAccVpcConfig,

Check: resource.ComposeTestCheckFunc (
testAccCheckVpcExists ("tencentcloud_vpc.foo"),
resource.TestCheckResourceAttr ("tencentcloud_vpc.foo", "cidr_block", "172
resource.TestCheckResourceAttr ("tencentcloud_vpc.foo", "name", "test-vpc_
resource.TestCheckResourceAttr ("tencentcloud_vpc.foo", "is_multicast", "t

),

by
b
})

©2013-2024 Tencent Cloud. All rights reserved. Page 25 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

Then,run go test -v -run TestAccTencentCloudVpcResource ./tencentcloud inthe root directory

of the project to check the test result:

TestAccTencentCloudVpcResource_Basic

=== RUN TestAccTencentCloudVpcResource_Basic

=== PAUSE TestAccTencentCloudVpcResource_BRasic

=== CONT TestAccTencentCloudVpcResource_Basic

—-—— PASS: TestAccTencentCloudVpcResource_Basic (26.30s)
PASS

ok github.com/tencentcloudstack/terraform-provider-tencentcloud/tencentcloud

If log environment variables are set, the log details will be written into the tencentcloud/terraform.log .

Unit test

Compared to an acceptance test, a unit test is more refined and cheaper, which is suitable for checking whether
logically complex code can be correctly executed.

For example, to use the isExpectError (err) function to check the TencentCloud API error code in the project
in order to decide whether the program should retry (due to unstable client network connection, for example) or exit

abnormally, write the following test case starting with Test*
package tencentcloud

import (
"testing"
sdkErrors "github.com/tencentcloud/tencentcloud-sdk—go/tencentcloud/common/errors

"github.com/stretchr/testify/assert"

func TestIsExpectError (t *testing.T) {

err := sdkErrors.NewTencentCloudSDKError ("ClientError.NetworkError", "", "")

// Expected

expectedFull := []string{"ClientError.NetworkError"}
expectedShort := []string{"ClientError"}

assert.Equalf (t, isExpectError (err, expectedFull), true, "")

assert.Equalf (t, isExpectError (err, expectedShort), true, "")

// Unexpected

unExpectedMatchHead := []string{"ClientError.HttpStatusCodeError"}
unExpectedShort := []string{"SystemError"}

assert.Equalf (t, isExpectError (err, unExpectedMatchHead), false, "")

assert.Equalf (t, isExpectError (err, unExpectedShort), false, "")

©2013-2024 Tencent Cloud. All rights reserved. Page 26 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

Run go test -v -run TestIsExpectError ./tencentcloud in the root directory of the project to view

the result:

=== RUN TestIsExpectError
——— PASS: TestIsExpectError (0.00s)
PASS

ok github.com/tencentcloudstack/terraform-provider-tencentcloud/tencentcloud

Cleaning up test resources

Terraform provides a mechanism called sweepers to clean up test resources, specifically, those not repossessed due
to a test exception.Sweepers are a group of functions that can be filtered by parameter for selective execution. You
need to declare and write the specific deletion logic. For example, to clean up VPC resources, add the init
functionto tencentcloud/resource_tc_vpc_test.go and register a sweeper named

tencentcloud_vpc :

func init () {
resource.AddTestSweepers ("tencentcloud_vpc", &resource.Sweeper(
Name: "tencentcloud_vpc",
F: testSweepVpclInstance,

})

// Pseudocode logic for implementing the cleanup of VPC resources starting with “te

func testSweepVpcInstance (region string) {

vpcs := getAllVpc (region)
for _, vpc in range vpcs {
if vpc.name == "test" {

deleteVpc (vpc.id)

To clean up VPC instances in a specified region (such as Guangzhou), run go test —-v ./tencentcloud -
sweep=ap—guangzhou —-sweep-run=tencentcloud_vpc . Then,the SDK for Terraform will match the
tencentcloud_vpc sweeper, pass in the region specified by -sweep to the function, and execute the function

to clean up the resources in the region.

©2013-2024 Tencent Cloud. All rights reserved. Page 27 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

Creating Pull Request

Last updated : 2024-12-02 16:01:33

Any individual or team can contribute code to TencentCloud Provider and send a pull request to it in the following

process:

Official repository

Visit the official repository.
Forking code

You need to fork the main repository and make changes to the code in the newly created repository.

B tencentcloudstack / terraform-provider-tencentcloud ' pubiic 4z EditPins ~ @Watch 15 ~ Y Fork 93 - Yr Star 130 -

<> Code (°) Issues 62 i Pullrequests 8 () Actions [Projects () Security |~ Insights

¥ master ~ ¥ 18 branches > 271 tags Go to file Add file = <» Code ~ About
Terraform TencentCloud Provider
Q hellertang redis support change sg (#1336) . + 00a8928 22 hours ago %) 3,510 commits
& www.terraform.io/docs/providersftenc...
I .changelog redis support change sg (#1336) 22 hours ago O o terraform-provider
W update workflow 7 days ago gcloud tencentcloud
I .githooks fix: sync-mod (#848) 9 months ago 0 Readme
W .github strict actionlint version 6 days ago & MPL-2.0 license
. @& Code of conduct
I examples fix: tcaplusdb support tdr (#1263) 2 months ago
¥ 130 stars
I gendoc doc add type (#1150) 4 months ago & 15 watching
I scripts Update delta-test.sh 2 months ago % 93 forks
I tencentcloud redis support change sg (#1336) 22 hours ago
I vendor Feat/tcm support (#1328) yesterday Releases 202
I website redis support change sg (#1336) 22 hours ago O v1786 (Latesl)
10 hours ago
B .gitignare fix: sqlserver failed testcases (#964) 6 months ago
+ 201 releases
[.go-version update mr check 7 days ago
3 .golangciyml upgrade dependices 3 years ago
Packages
[} .goreleaseryml upgrade terraform 0.13 2 years ago
No packages published
[.travisyml ci: fix website-test 2 years ago Publish your first package

Branch naming convention

©2013-2024 Tencent Cloud. All rights reserved. Page 28 of 54

https://github.com/tencentcloudstack/terraform-provider-tencentcloud

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

Generally, a branch needs to be named in the format of type/scope-content so that others can quickly locate

the changed scope and content. Common prefixes are:
fix/* :lIssue fix.
feat/* :Feature addition.
doc/* :Document change.
style/* :Format, spelling, or other code changes that do not affect the logic.
chore/* :Chore submission that is irrelevant to the code logic.

Summarize the changed module and content in the suffix, such as:
fix/tke—auth-retry : The authentication retrial issue is fixed for the TKE module.
feat/new-free-ssl-resource :An SSL resource is added.
doc/cvm-field-misspell : The spelling of a word is corrected in the CVM document.

Avoid names such as:
john-test : The name of a developer.
fix/20221027 : The changed scope and content are not indicated.

fix/bug :lmproper content is contained.

Acceptance test

To ensure that your changes work properly, you need to write and execute an acceptance test for logic changes as

instructed in Writing Test Case.

Sending a pull request

After the change, create a merge request to the main repository. Select the main repository in the red box and your
repository in the green box as shown below:

©2013-2024 Tencent Cloud. All rights reserved. Page 29 of 54

https://intl.cloud.tencent.com/document/product/1172/52381
https://github.com/tencentcloudstack/terraform-provider-tencentcloud

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

Comparing changes

Choose two branches to see what's changed or to start a new pull request. If you need to, you can also compare across forks.

[T} base repository: tencentcloudstack/terraform... v base: master~ |4 | head repository: Kagashinofterraform-provide... = compare: fixfcbs-example-cvm-type ~

+ Able to merge. These branches can be automatically merged.

@ [fix: example - change default cvm instance type|] Reviewers e
No reviews—at least 1 approving review is required.
Write Preview HB I = & Z=Z121=2@EF
Assignees [9“)
Leave a comment No one—assign yourself
Labels [?A,!
None yet
Projects [?,!
None yet
A~
Attach files by dragging & dropping, selecting or pasting them. 4]
Milestone @
. L Create pull request - No milestone
Allow edits and access to secrets by maintainers (3)
@ Remember, contributions to this repository should follow its code of conduct. Development @

Use Closing keywords in the description to
automatically close issues

Submitting the changelog inventory

After sending the pull request, you need to submita .changelog/<Pull request number>.txt file

describing the request type, module, and change as follows:
resource/<module>: something has done

For more information, see Submitting Changelog.

Pull request check

After the pull request is sent, basic merge checks will be performed by the action.

©2013-2024 Tencent Cloud. All rights reserved. Page 30 of 54

https://intl.cloud.tencent.com/document/product/1172/52383

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

° Review required Add your review

At least 1 approving review is required by reviewers with write access. Learn more.

° All checks have passed Hide all checks

7 successful checks

v changelog-lint / changelog-lint (pull_request) Successful in 25s Details
+ (@) docs [docs (pull_request) Successful in 1m Details
v e2e-tests [e2e-tests (pull_request_target) Successful in 2m Details
v O gofmt / fmt (pull_request) Successful in 10s Details
v O golangci-lint / golangci-lint (pull_request) Successfulin1m Details
v O tfprovider-lint / tfprovider-lint (pull_request) Successful in 2m Details

° Merging is blocked

Merging can be performed automatically with 1 approving review.

(J Merge without waiting for requirements to be met (bypass branch protections)

v You can also open this in GitHub Desktop or view command line instructions.

If your code requires an acceptance test, the code repository personnel will mark it with run—check to trigger

execution of the test cases that can cover your changes.

Code merge

After the merge checks are passed and the repository personnel confirm that the branch can be merged, the branch
will be merged into the main branch. Version release will be based on the merge. As this point, you have contributed

your code.

©2013-2024 Tencent Cloud. All rights reserved. Page 31 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

Submitting Changelog

Last updated : 2024-12-02 16:01:33

An open-source project requires maintaining a user-friendly and readable CHANGELOG.md so that users can
quickly know whether they will be affected by the version and assess the upgrade risk if applicable.

You need to submita .txt changefiletothe .changelog directory to describe the change when sending a
pull request. The file will then be parsed via the go-changelog tool to generate a CHANGELOG.md file subject to the

following update rules:

Changelog Format

Naming

The changelog involved in the current pull request should be submitted to the .changelog directory and named in
the format of {PR-NUMBER} .txt .Forexample, if the pull request numberis 1326 ,the changelog should be

named .changelog/1326.txt .

Feat/change teo zone tag|#1326

i (VTG hellertang merged 4 commits into master from feat/change_teo_zone_tag LD 5 hours ago

G Conversation © o Commits 4 El Checks 7 Files changed 3

] Changes from all commits = File filter ~ Conversations = i§3 -

Q Filter changed files v 3 mmE .changelog/1326. txt (L)
~ [.changelog @@ -0,0 +1,3 @a
[1326.4xt 1 + “""release-note:bug o
2 + resource/tencentcloud_teo_zone: change tag description from zoneNam
~ [tencentcloud Gl +

Format

The changelog.txt has the following format, where {HEADER} is the changelogtype, and {ENTRY} isthe

changelog details.

"“release—note: {HEADER}
{ENTRY }

©2013-2024 Tencent Cloud. All rights reserved. Page 32 of 54

https://github.com/hashicorp/go-changelog

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

If a pull request contains multiple changelog entries, you can add multiple blocks to the same changelog file as follows:

" “release-note:bug
resource/tencentcloud_teo_zone: change tag description from zoneName to zoneld.

" “release—-note:enhancement

resource/tencentcloud_redis_instance: support update " security_groups’ .

Changelog Rule Categorization

A changelog presents only changes to the code repository of a specific version affecting the operator. The following

are general principles and samples of a change to be recorded in a changelog.
New resource
The changelog of a new resource should contain only the resource name and be named release-note:new-

resource .

" “release—-note:new-resource

tencentcloud_postgresqgl_instance

New data source
The changelog of a new data source should contain only the data source name and be named release-

note:new—-data—-source

"“release—-note:new-data-source

tencentcloud_sglserver_zone_config

Bug fix

The changelog of a new bug fix should be named release-note:bug , with a prefix indicating the corresponding
resource or data source, a colon, and a summary.
Note .

Usethe provider prefix for a provider-level fix.

©2013-2024 Tencent Cloud. All rights reserved. Page 33 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

" “release-note:bug

resource/tencentcloud_cdn_domain: Fix “https_config' inconsistency after apply

Feature enhancement

The changelog of a new feature enhancement should be named release-note:enhancement , with a prefix
indicating the corresponding resource or data source, a colon, and a summary.
Note :

Usethe provider prefix for a provider-level feature enhancement.

" "release—-note:enhancement

resource/tencentcloud_cdn_domain: Support follow redirect and authentication

Feature disuse

The changelog of a feature disuse should be named release-note:deprecation , with a prefix indicating the
corresponding resource or data source, a colon, and a summary.
Note :

Usethe provider prefix for a provider-level feature disuse.

" “release-note:deprecation

resource/tencentcloud_kubernetes_cluster: The "as_enabled’ attribute is being depre

Situations Requiring No Changelog Submission

Resource and provider documentation updates
Test updates

Code refactoring

©2013-2024 Tencent Cloud. All rights reserved. Page 34 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

Publishing Module

Last updated : 2024-12-02 16:01:33

Overview

Modules are Terraform configurations that allow you to manage a group of resources and can provide better business
abstraction and lower costs in some multi-resource scenarios. In addition, you can publish modules on GitHub on the

Terraform registry. This document describes how to create and publish a Terraform TencentCloud module.

Directions

Creating a public module

Create a code repository on GitHub.
The name should be in the format of terraform—-<PROVIDER>-<NAME> , such as terraform-tencentcloud-vpc.

A basic module contains the following files:

— main.tf # Write module resources

— variables.tf # Declare module variables
I— outputs.tf # Declare module outputs

I LICENCE # Declare license

L— README.md # Readme

Note:

We recommend you add the example directory as instructed in terraform-tencentcloud-vpc/examples to store the
examples for importing and using the module.

Publishing the module

1. Log in to registry.terraform.io, select Publish in the top-right corner of the page, and click Module from the drop-

down list as shown below:

©2013-2024 Tencent Cloud. All rights reserved. Page 35 of 54

https://registry.terraform.io/
https://github.com/terraform-tencentcloud-modules/terraform-tencentcloud-vpc
https://github.com/terraform-tencentcloud-modules/terraform-tencentcloud-vpc/tree/master/examples
https://registry.terraform.io/

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

Ny Teraform | ey

Terraform Registry

Discover Terraform providers that power all of Terraform’s resour
or find modules for quickly deploying common infrastructu
configurations.

@ Browse Providers @ Browse Modules

1884 providers, 8398 modules 8 counting

2. Expand the Select Repository on GitHub drop-down list to view all the module repositories that you have

management permissions for and select the target module as shown below:

©2013-2024 Tencent Cloud. All rights reserved. Page 36 of 54

&2 Tencent Cloud

Note:

HashiCaep

W Terraform | registy

Select Repository on GitHub How it works

terraform-tencentcloud-modules/terraform-tencentcloud-vpc a

Type to filter...

modules
terraform-tencentcloud-modules/terraform-tencentcloud-
mysq|
terraform-tencentcloud-modules/terraform-tencentcloud-
security-group

terraform-tencentcloud-modules/terraform-tencentcloud-

vpcC -

Tencent Infrastructure Automation for Terraform

You can also publish a module through a personal GitHub repository. The modules whose repositories are named in

the format of terraform-tencentcloud-<NAME> will also be included in the tencentcloud modules.

3. Select | agree to the Terms of Use. and click PUBLISH MODULE.

4. The repository will be automatically synced to the Terraform registry in a few minutes as shown below:

©2013-2024 Tencent Cloud. All rights reserved.

Page 37 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

/) terraform-tencentcloud-modules / vpc

TencentCloud VPC Module for Terraform

X 1.2K tencent

>y terraform-tencentcloud-modules / security-group

TencentCloud Security Group Module for Terraform

& 1.1K tencent

&/ terraform-tencentcloud-modules / clb

X ~400 tencent

(Optional) Adding repository merge check
If your module involves multi-person collaboration, you can use GitHub Actions to preliminarily check the code with
merge requests.

Here, terraform-tencentcloud-vpc is used as an example. Create the .github/workflow directory in the root

directory of the repository and create the pull-request.yml file. Below is the sample code:

name: MR_CHECK

on:
pull_request:
branches: [master]

workflow_dispatch:

©2013-2024 Tencent Cloud. All rights reserved. Page 38 of 54

https://github.com/terraform-tencentcloud-modules/terraform-tencentcloud-vpc

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

jobs:
build:
runs—-on: ubuntu-latest
Steps:
- uses: actions/checkout@v?2
— uses: hashicorp/setup-terraform@vil
— name: Module Files Checking
run: |
files=(
LICENSE
main.tf
version.tf
variables.tf
outputs.tf
README . md

test -d examples || echo "[WARN] Missing ./examples in modules directory,

for 1 in S${files[@]} ; do
fileCount=$(find ./ -name $i | wc -1)
if [[$fileCount -gt 0]]; then
echo "[INFO] File: $i1i exist."
else
echo "[ERROR] Missing $i, a recommend module should include these fil
exit -1
fi
done
— name: Terraform Validate
run: |
terraform init

terraform validate

- name: Terraform Format Check
run: |

terraform fmt -diff -check -recursive

The description is as follows:
Module Files Checking :Check whether the directory contains the file needed above.
Terraform Validate :Check the module parameters.

Terraform Format Check : Verify the Terraform code format in the module.

©2013-2024 Tencent Cloud. All rights reserved. Page 39 of 54

&2 Tencent Cloud

Developer Reference
How It Works

Last updated : 2024-12-02 16:01:33

Tencent Infrastructure Automation for Terraform

This document describes the directory structure of Terraform TencentCloud Provider.

Directory structure

—terraform-provider-tencentcloud
Fmain.go

—AUTHORS

FCHANGELOG . md

LICENSE

F—debug.tf.example

—examples

| Ftencentcloud-eip
tencentcloud-instance
—tencentcloud-nat

F—tencentcloud—vpc
L

|
|
|
| ..
tencentcloud

| Fbasic_test.go
| —config.go

| Fdata_source_tc_availability_zones.go
| Fdata_source_tc_availability_zones_test.go
| F—data_source_tc_nats.go
| Fdata_source_tc_nats_test.go
| F*data_source_tc_vpc.go
| Fdata_source_tc_vpc_test.go
| ocs

| Fhelper.go

| Fprovider.go

| |Fprovider_test.go

| |resource_tc_eip.go

| F*resource_tc_eip_test.go

| F—resource_tc_instance.go

| |resource_tc_instance_test.go

| Fresource_tc_nat_gateway.go

| Fresource_tc_nat_gateway_test.go
| |Fresource_tc_vpc.go

|

F—resource_tc_vpc_test.go

©2013-2024 Tencent Cloud. All rights reserved.

Root directory

Program entry file

Author information

Changelog

License information

Example debugging configuratio
Directory of example configura
Example EIP TF files

Example CVM TF files

Example NAT Gateway TF files
Example VPC TF files

Directory of more examples
Core provider directory

Basic unit test

Public configuration file

Availability zone query

NAT Gateway list query

VPC query

More data sources

Some public functions

Core provider file

ETP resource manager

CVM instance resource manager

NAT Gateway resource manager

VPC Gateway resource manager

Page 40 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

| ... More resource managers
| Fservice_eip.go Encapsulated EIP-related servi
| —service_instance.go Encapsulated CVM-instance-rela
| F—service_vpc.go Encapsulated VPC-related servi
| ...
| Fvalidators.go Public argument validation fun
F—vendor Dependent third-party librarie
Fwebsite Web-Related files
Itencentcloud.erb Left sidebar file
—docs Source file directory of Markd
F—d Data-Related documents (data_s

| Favailability_zones.html.md
| Fnats.html.markdown
\ F—vpc.html.markdown

| ...

|

|

|

|

|

| —index.html.markdown
| Fr Resource-Related documents (re
| | f-instance.html.markdown

|

|

|

Fnat_gateway.html.markdown

l_--o

|
| Fvpc.html .markdown
|

The structure is divided into five main parts:

main.go :Pluginentry.

examples :Example directory, which contains examples that can be used directly.

tencentcloud : Plugin directory storing service code, where:

provider.go :Plugin root describing plugin attributes, such as the configured key, list of supported resources,
and callback configuration.

data_source_*.go :Defines some resources for read calls, mainly query APlIs.

resource_*.go :Defines some resources for write calls, including APIs for resource CRUD.

service_*.go :Contains some public methods under broad resource categories.

vendor : Contains dependent third-party libraries.

website :Contains documents as important as examples.

Provider lifecycle

The Terraform execution process is as shown below:

©2013-2024 Tencent Cloud. All rights reserved. Page 41 of 54

Tencent Infrastructure Automation for Terraform

&2 Tencent Cloud
tencentcloud-sdk-go
Tencentcloud Provider
resource_tc_***.go / datasource_tc_***.go prowder.go
resource_tc_nat_gateway.go
DataSourceMap:
= ResourceMap: | | |
4
2
¢ : |
main.go
5— Terraform CLI 1. Load Provider— [
plugin.Serve()
Note:

1 - 4 :Looks for the provider and loads the tencentcloud plugin.
5 : Reads your configuration file to get the resources you declared and their states.

6 : Calls different functions (Create/Update/Delete/Read) based on the resource state.

Create
Terraform determines adding a new resource configurationtoa .tf fileas Create

Update
Terraform determines modifying one or more parameters of a resource already createdina .tf fileas Update

Delete
Terraform determines deleting the resource configuration already createdina .tf file orrunningthe terraform

destroy commandas Delete
Read

Read is aresource query operation that checks whether a resource exists and updates the resource attributes
locally.

tencentcloud-sdk-go

©2013-2024 Tencent Cloud. All rights reserved. Page 42 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

tencentcloud-sdk-go isa TencentCloud APl SDK for Go and used to call TencentCloud APls for resource

management.

©2013-2024 Tencent Cloud. All rights reserved. Page 43 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

Development and Debugging

Last updated : 2024-12-02 16:01:33

This document describes how to perform basic Terraform development and debugging locally.

Step 1. Install Terraform

Install Terraform and configure global paths as instructed in Use Terraform in Local PC.

Step 2. Pull the provider

1. Go to terraform-provider-tencentcloud and fork the provider code to your personal repository.

2. Run the following commands in sequence to pull and set the upstream remote repository locally.

$ git clone https://github.com/{your username}/terraform-provider-tencentcloud # Th
$ cd terraform-provider-tencentcloud

$ git remote add upstream https://github.com/tencentcloudstack/terraform-provider—-t

After a successful pull, the following code structure can be viewed:

F— .githooks/

.github/

examples/ # Sample code. In principle, ensure that users can directly copy and
gendoc/ # Document generator

scripts/

tencentcloud/ # Product logic

vendor/ # Local dependency cache
website/ # Generated document directory
.gitignore

.go-version

.golangci.yml

.goreleaser.yml

.travis.yml

AUTHORS

CHANGELOG.md

GNUmakefile

LICENSE

TTTTTTTTITTTTITITTT

©2013-2024 Tencent Cloud. All rights reserved. Page 44 of 54

https://intl.cloud.tencent.com/document/product/1172/52304
https://github.com/tencentcloudstack/terraform-provider-tencentcloud/

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

README . md
go.mod
go.sum
main.go

staticcheck.conf

TTTTT

tools.go

Step 3. Debug locally

1. Run the following command in the project's root directory to build the terraform-provider-tencentcloud

binary file.
go build

2.Createthe dev.tfrc file with the following content and set tencentcloudstack/tencentcloud to point

to the location of the binary file.
provider_installation {
Use /home/developer/tmp/terraform-null as an overridden package directory
for the hashicorp/null provider. This disables the version and checksum
verifications for this provider and forces Terraform to look for the
null provider plugin in the given directory.

dev_overrides {

"tencentcloudstack/tencentcloud" = "path/to/your/provider/terraform-provider-t

3. Set the following environment variables.

Setthe TF_CLI_CONFIG_FILE environment variable to point to the location of dev.tfrc .
$ export TF_CLI_CONFIG_FILE=/Users/you/dev.tfrc
Setthe TF_LOG environment variable to enable logging.
S export TF_LOG=TRACE
Set your personal Tencent Cloud credentials, which can be obtained on the API Key Management page.

S export TENCENTCLOUD_SECRET_ID=xxx
$ export TENCENTCLOUD_SECRET_KEY=xxx

4. At this point, the provider has been replaced locally. You can write your own .tf file and run commands such as

terraform plan/apply/destroy for debugging.

©2013-2024 Tencent Cloud. All rights reserved. Page 45 of 54

https://console.intl.cloud.tencent.com/cam/capi

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

Step 4. Perform unit testing

Note :
We strongly recommend you write your own unit test cases. You can view many *_test.go testcases under
tencentcloud/

A Terraform certified provider must have unit test cases.

1. The code of NAT Gateway is as follows:

package tencentcloud

import (
"encoding/json"
n fmt "
" log"

"testing"

"github.com/hashicorp/terraform/helper/resource"
"github.com/hashicorp/terraform/terraform"
"github.com/zgfan/tencentcloud-sdk—-go/common"

vpc "github.com/zgfan/tencentcloud-sdk—-go/services/vpc/unversioned"

func TestAccTencentCloudNatGateway_basic(t *testing.T) {
resource.Test (t, resource.TestCase{
PreCheck: func () { testAccPreCheck (t) 1},
Providers: testAccProviders,
// Configure the function for checking resource termination results
CheckDestroy: testAccCheckNatGatewayDestroy,
// Configure test steps
Steps: []resource.TestStep(
{
// Configure the configuration content
Config: testAccNatGatewayConfig,
// Configure the validation function
Check: resource.ComposeTestCheckFunc (
// Verify resource IDs
testAccCheckTencentCloudDataSourcelID ("tencentcloud_nat_gateway.
// Verify resource attributes (a match indicates successful cre
resource.TestCheckResourceAttr ("tencentcloud_nat_gateway.my_nat

resource.TestCheckResourceAttr

(
(

resource.TestCheckResourceAttr ("tencentcloud_nat_gateway.my_nat
("tencentcloud_nat_gateway.my_nat
(

resource.TestCheckResourceAttr ("tencentcloud_nat_gateway.my_nat

©2013-2024 Tencent Cloud. All rights reserved. Page 46 of 54

&2 Tencent Cloud

// Configure the configuration content
Config: testAccNatGatewayConfigUpdate,

Check: resource.ComposeTestCheckFunc (

Tencent Infrastructure Automation for Terraform

testAccCheckTencentCloudDataSourcelD ("tencentcloud_nat_gateway.

// Verify the value of modified attributes

(a match indicates s

resource.TestCheckResourceAttr ("tencentcloud_nat_gateway.my_nat

resource.TestCheckResourceAttr

"tencentcloud_nat_gateway.my_nat

(
resource.TestCheckResourceAttr ("tencentcloud_nat_gateway.my_nat
(

resource.TestCheckResourceAttr

o
b

"tencentcloud_nat_gateway.my_nat

// ~testAccProviders creates test resources based on Config before testing and ter

// This function is to check whether resources are terminated.
func testAccCheckNatGatewayDestroy (s *terraform.State) error {

The code logic is ea

conn := testAccProvider.Meta() . (*TencentCloudClient) .vpcConn

// This uses the "s.RootModule () .Resources’ array

// The attributes of this array reflect the "terraform.tfstate’

for _, rs := range s.RootModule () .Resources {
if rs.Type != "tencentcloud_nat_gateway" {

continue

descReqg := vpc.NewDescribeNatGatewayRequest ()
descReg.NatId = common.StringPtr (rs.Primary.ID)

descResp, err := conn.DescribeNatGateway (descReq)

b, := json.Marshal (descResp)

log.Printf (" [DEBUG] conn.DescribeNatGateway response:

if _, ok := err. (*common.APIError); ok {
return fmt.Errorf ("conn.DescribeNatGateway error:
} else if *descResp.TotalCount != 0 {

return fmt.Errorf ("NAT Gateway still exists.")

}

return nil

%s", Db)
$v", err)

resource state

// Basic usage configuration file, which is consistent with the debugged TF file

const testAccNatGatewayConfig =

©2013-2024 Tencent Cloud. All rights reserved.

Page 47 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

resource "tencentcloud_vpc" "main" {

name "terraform test"
cidr_block = "10.6.0.0/16"
s

resource "tencentcloud_eip" "eip_dev_dnat" {

name = "terraform test"

I3

resource "tencentcloud_eip" "eip_test_dnat" {
name = "terraform_ test"

resource "tencentcloud_nat_gateway" "my_nat" {

vpc_id = "${tencentcloud_vpc.main.id}"
name = "terraform_test"
max_concurrent = 3000000

bandwidth = 500

assigned_eip_set = |
"S{tencentcloud_eip.eip_dev_dnat.public_ip}",
"S{tencentcloud_eip.eip_test_dnat.public_ip}",

// Modify the usage configuration file to match the debugged TF file
const testAccNatGatewayConfigUpdate =

resource "tencentcloud_vpc" "main" {
name = "terraform test"
cidr_block = "10.6.0.0/16"

s

resource "tencentcloud_eip" "eip_dev_dnat" {
name = "terraform_test"

I

resource "tencentcloud_eip" "eip_test_dnat" {

name = "terraform_ test"

s

resource "tencentcloud_eip" "new_eip" {
name = "terraform_ test"

resource "tencentcloud_nat_gateway" "my_nat" {

vpc_id "S{tencentcloud_vpc.main.id}"

name "new_name"
max_concurrent 10000000
bandwidth = 1000

assigned_eip_set = [

"S{tencentcloud_eip.eip_dev_dnat.public_ip}",

"S{tencentcloud_eip.new_eip.public_ip}",

©2013-2024 Tencent Cloud. All rights reserved. Page 48 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

2.Runthe TestAccTencentCloudNatGateway_basic function to perform the unit test.

$ export TF_ACC=true
$ cd tencentcloud

$ go test —-i; go test —-test.run TestAccTencentCloudNatGateway_basic -v

This example shows that in addition to automatic compilation, the official testAccProviders hasa more
standardized testing process covering CRUD. You can write a more complex scenario for the same resource manager

and then add it to steps or divide it into multiple test cases to make the testing more comprehensive.

©2013-2024 Tencent Cloud. All rights reserved. Page 49 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

Requirements and Suggestions

Last updated : 2024-12-02 16:01:33

Resource Constraint

This is an open-source project for both individual and team developers, and we welcome code contribution. Please
observe the following rules for more efficient communication and development as well as a better user experience:
Output product details, field lists, and corresponding APIs.

Expose TencentCloud APIs for CRUD operations as required by products (at least the APIs for creation and deletion
must be supported).

Unique IDs or values such as names and SNs must be returned after resources are created.

Input arguments must be able to be queried to ensure that the configuration and actual resource state are consistent.
You must provide unit tests and ensure that they are passed.

Single-responsibility principle: Do only one thing per change and avoid relying on or affecting other changes.

Using ForceNew with Caution

Ifthe ForceNew field is set, the resource will be terminated and recreated if a change is found. If you need to
set it, make sure that the local input is consistent with the remote state; otherwise,a Diff will be generated,

leading to resource termination and recreation after creation.

Default Value of Import

Certain resources define default values:

map [string] *schema.Schema{
"create_strategy": {
Type: schema.TypeBool,
Optional: true,
Default: "foo",
Description: "Available "foo', “bar .",

Hy

If create_strategy isa write-only parameter which is passed in during creation and cannot be obtained after

creation, and its value is left empty during import, +diff will be generated after comparison with the default value

©2013-2024 Tencent Cloud. All rights reserved. Page 50 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

foo . Therefore, you need to set it to the default value during import:

&schema.Resourceq
Importer: &schema.Resourcelmporter/
// “helper.ImportWithDefaultValue® is encapsulated in the provider and can be u
State: helper.ImportWithDefaultValue (map[stringlinterface{}{
"create_strategy": "foo",

)y
Hy

Avoiding Constraining an Input Parameter

Taking a CVM instance as an example, the API documentation Creating Instance describes the input parameter for

data disks as follows:

Parameter Required Type Description

The configuration information of instance data disks. If this
parameter is not specified, no data disks are purchased by default.
Array of Up to 21 data disks can be purchased, including up to one
DataDisk "LOCAL_BASIC or LOCAL_SSD' data disk and up to 20
"CLOUD_BASIC’, "CLOUD_PREMIUM’, or ‘CLOUD_SSD' data
disks.

DataDisks.N No

The parameter indicates that up to 21 data disks are supported. The schema usually has the following constraint:

map [string] *schema.Schema/{
"data_disks": {
Type: schema.Typelist,
Optional: true,

Description: "Data disk configuration",

MaxItems: 21,
o

The constraint is not recommended, as the parameter limit will be irregularly updated based on the product situation. If
CVM supports more than 21 data disks after business expansion, Terraform needs to sync the update passively. Such
verification delays may adversely affect developers and users.Instead of setting limits for such parameters, you can
use Description .Abnormalinputs will be blocked by TencentCloud API, and Terraform does not require this

additional layer of verification.

©2013-2024 Tencent Cloud. All rights reserved. Page 51 of 54

https://intl.cloud.tencent.com/document/product/213/33237

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

Nested Structure Design

Typelist block and TypeMap

TypeList items support basic types such as numbers and characters:

resource "foo" "bar" {
StrS = ["a", "b", "Cll]
nums = [1, 2, 3]

The complex Object and nesting are also supported:

resource "foo" "bar" {
list_item {
name = "11" # foo.bar.list_item.0.name
}
list_item {
name = "12" # foo.bar.list_item.1.name
sub_item {

name = "1-2-1" # foo.bar.list_item.l.sub_item.O.name

Below is the sample code for declaration and acquisition:

var s = map[string]*schema.Schema {
"list_item": {
Type: schema.Typelist,
Elem: &schema.Resource{
Schema: map[string] *schema.Schema {
"sub_item": {
Type: schema.Typelist,
b
by
H
o

func create (d *schema.ResourceData) {

listItems := d.Get ("list_item"). ([]linterface{})
listIteml := listItems[1l]. (map[string]interface{})
listItemlSub := listIteml["sub_item"]. ([]linterface{}) [0]. (map[string]interface{})

©2013-2024 Tencent Cloud. All rights reserved. Page 52 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

TypeMap differs from TypeList inthatit does not support nesting in the code schema and requires connecting

parameters and braces ({}) with = as follows:
resource "foo" "bar" {
map_item = {

keyl: "1", # foo.bar.map_item.keyl
key2: "2" # foo.bar.map_item.key?2

var s = map[string] *schema.Schema{
"map_item": {
Type: schema.TypeMap,
Optional: true,
// “Elem: Map does not support defining “Elem . It is invalid in the SDK vl an

by

func create (d *schema.ResourceData) {

d.Get ("map_item") . (map([string]interface{})

mapltem

mapVvVall mapItem["keyl"]. (string)

TypeList isrecommended for implementing parameters of the nested type as it has more comprehensive

constraints than TypeMap , which is more suitable for flat key-value pairs such as tags.

TypeSet
TypeSet isaspecial TypeList .ltisusedinthe samewayas TypeList butis unique and orderless.

resource "foo" "bar" {

Set_liSt = ["a", "b", "c", "C"] # It is ["a", "b", "C"] actually'

resource "foo" "bar_update" {

set_list = ["c¢", "b", "a"] # It is equivalent to ["a", "b", "c"] and will not gen

The code schema can define the Get function that returns a unique index. The same index indicates the same

element as follows:

var s = map[string]*schema.Schema {
"set_list": {
Type: schema.Typelist,
Elem: &schema.Schema{Type: schema.TypeString},

Get: func (v interface) { return getValueHash(v. (string)) 1},

©2013-2024 Tencent Cloud. All rights reserved. Page 53 of 54

@ Tencent Cloud Tencent Infrastructure Automation for Terraform

by

func create (d *schema.ResourceData) {
setList := d.Get ("set_1list"). (*schema.Set) .List ()
setListItemHead := listItems[0]. (string)

©2013-2024 Tencent Cloud. All rights reserved. Page 54 of 54

