
Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 1 of 50

Tencent Cloud EdgeOne

L4 Proxy

Product Documentation

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 2 of 50

Copyright Notice

©2013-2025 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by the Tencent corporate group, including
its parent, subsidiaries and affiliated companies, as the case may be. Trademarks of third parties referred to in this
document are owned by their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 3 of 50

Contents

L4 Proxy
Overview
Creating an L4 Proxy Instance
Modifying an L4 Proxy Instance
Disabling or Deleting an L4 Proxy Instance
Batch Configuring Forwarding Rules
Obtaining Real Client IPs

Passing Real TCP Client IPs via TOA
Obtaining Real Client IPs Through Protocol V1/V2

Overview
Method 1: Obtaining Real Client IPs Through Nginx
Method 2: Parsing Real Client IPs on Application Server
Format of Real Client IPs Obtained Through Proxy Protocol V1/V2

Passing Real Client IP Through SPP

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 4 of 50

L4 Proxy
Overview
Last updated：2024-12-25 16:23:59

How It Works

L4 proxy is the acceleration service of EdgeOne based on TCP/UDP. By leveraging widely distributed layer-4 proxy
nodes, unique DDoS module, and smart routing technology, EdgeOne implements nearby access for end users, edge
traffic cleansing, and port monitoring and forwarding. It thus offers high-availability and low-latency DDoS mitigation

and acceleration services for layer-4 applications.
Note:
The L4 proxy is only available with the Enterprise Edition package.

Use Cases

Game Acceleration

L4 proxy accelerates data transmission over TCP/UDP for mobile and PC games, such as real-time battle games and
MMORPGs that require global access to a unified server. L4 proxy connects players to the nearest high-speed

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 5 of 50

channels to reduce the packet loss rate and latency of the game due to varying network conditions across regions.

OA Application Acceleration

Generally, in cross-regional OA scenarios, the business data of a company is stored in the master data center at its
headquarters. This often results in a high packet loss rate with high latency during cross-regional communication due
to network issues, causing troubles in cross-regional business access and data synchronization. L4 proxy effectively
solves those network issues and improves the business access experience by connecting users to the nearest
EdgeOne nodes and optimizing the access links.

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 6 of 50

Real-time Audio/Video

L4 proxy supports forwarding acceleration over UDP. This ensures reliable audio and video transmission in real-time
interactive scenarios, such as video meetings and video communication between anchors and audience members. L4

proxy solves network issues such as audio/video lags, packet loss, and high latency during cross-ISP, long distance,
and cross-border communication.

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 7 of 50

Creating an L4 Proxy Instance
Last updated：2024-12-25 16:24:21

Use Cases

This document describes how to create and configure an L4 proxy instance.
Note:
The L4 proxy is only available with the Enterprise Edition package.

Directions

1. Log in to the EdgeOne console and click Site List in the left sidebar. In the site list, click the target site.
2. On the site details page, click L4 proxy.
3. On the page that appears, click Create L4 proxy instance.

4. Specify parameters on the Service Configurations page. By default, the service region is the accelerated region
of the current site. The table below lists the parameters:

https://console.intl.cloud.tencent.com/edgeone

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 8 of 50

Item Description

Instance name 1–50 characters ([a-z], [0-9] and [-]). It must start and end with a digit or letter.
Consecutive hyphens (-) are not allowed. After creation, modifications are not allowed.

Security
Configuration

Default protection: Enabled by default, for details, please refer to DDoS Protection
Overview.
Exclusive DDoS Protection: For details, please refer to the usage of Exclusive DDoS
Protection.

IPv6 access If you enable this feature, EdgeOne nodes can be accessed over the IPv6 protocol.

Chinese MLC-
border
acceleration

When enabled, it will optimize the access performance for Chinese mainland users. For
details, please refer to Cross-Regional Secure Acceleration (Overseas Sites).

Note:
The Chinese mainland availability zones and global availability zones do not support default protection, but only
support exclusive DDoS protection; the global availability zones (excluding the Chinese mainland) support both default

protection and exclusive DDoS protection.
5. View subscription fees, check and agree to the EdgeOne Service Level Agreement and Refund Policy below, and
click Subscribe. For billing description, please refer to the Billing overview.
6. Specify the forwarding rules. On the L4 proxy page, select the newly created L4 proxy instance, click Configuration,
enter the instance details page to configure forwarding rules. You can also import multiple forwarding rules at a time.

For more information, see Batch Configuring Forwarding Rules. The table below lists the fields of a forwarding rule:

https://intl.cloud.tencent.com/document/product/1145/56398
https://intl.cloud.tencent.com/document/product/1145/56404
https://intl.cloud.tencent.com/document/product/1145/56448
https://intl.cloud.tencent.com/document/product/1145/48119
https://intl.cloud.tencent.com/document/product/1145/48708
https://intl.cloud.tencent.com/document/product/1145/55640
https://intl.cloud.tencent.com/document/product/1145/54510

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 9 of 50

Note:
1. If you specify Origin group for Origin type, you can specify only self-owned origins. In this case, a COS

bucket is not supported as the origin.

2. You can specify at most 2,000 forwarding rules for each L4 proxy instance.

Item Description

Rule ID Auto-generated, not supported for modification, unique identifier of the rule.

Forwarding protocol Forwarding protocol of L4 proxy. Valid values: TCP and UDP.

Forwarding port

The supported port number ranges from 1 to 64999. You can enter multiple ports
separated with semicolons (;) or use a hyphen to enter a port range.
The following ports are reserved for internal use, please do not use them:
For TCP forwarding protocol: 3943, 3944, 6088, 36000, 56000.
For UDP forwarding protocol: 4789, 4790, 6080, 61708.

Origin type and
Origin address

Single origin: If you specify Single origin for Origin type, you can enter the IP
address or domain name of a single origin.
Origin group: If you specify Origin group for Origin type, you can select an
origin from an existing origin group, or create an origin group.

Origin port

You can enter a single port or a port range. If it is a port range, the forwarding port must
also be a port range, and the length of the origin port and forwarding port ranges must
be consistent.
For example: If the forwarding port range is 80-90 , the origin port range can be
 80-90 or 90-100 .

Session persistence As long as an origin server IP remains unchanged, traffic from the same client IP will
always be forwarded to the same origin server IP.

Pass client IP TOA: Pass client IPs via TCP Option (type 200), which only supports TCP
protocols.For more information, see Obtaining Real TCP Client IPs via TOA.
Proxy Protocol V1 (recommended): Pass client IPs as plaintext by using the TCP
header, which only supports TCP protocols. For more information, see Obtaining Real
Client IPs Through Protocol V1/V2.
Proxy Protocol V2: Pass client IPs by using the header. V2 uses the binary format and
supports both TCP and UDP protocols. The first packet of each TCP connection carries
a PPv2 header, while only the first data packet carries the header for UDP.For more
information, see Passing Real Client IP Through SPP.

https://intl.cloud.tencent.com/document/product/1145/55027
https://intl.cloud.tencent.com/document/product/1145/55267
https://intl.cloud.tencent.com/document/product/1145/62589

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 10 of 50

Not passed: Real client IPs will not be transferred.

Rule Tag Optional, you can enter 1-50 any characters to identify the forwarding rule.

7. Click Save to complete the configuration of the L4 proxy rules.

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 11 of 50

Modifying an L4 Proxy Instance
Last updated：2024-12-25 16:24:38

Use Cases

This document describes how to modify the configuration of an L4 proxy instance.
Note:
The L4 proxy is only available with the Enterprise Edition package.

After an L4 proxy instance is created, you cannot modify its scheduling mode or proxy mode. To do so, you can delete
the instance and create a new one.
You can disable and then delete a forwarding rule.

Directions

1. Log in to the EdgeOne console and click Site List in the left sidebar. In the site list, click the target site.
2. On the site details page, click L4 proxy.

3. On the page that appears, find the target L4 proxy instance and click configure in the Operation column.
4. On the page that appears, you can enable or disable IPv6 access and modify Chinese MLC- border acceleration.
You can also add, edit, enable/disable, or delete a forwarding rules.

https://console.intl.cloud.tencent.com/edgeone

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 12 of 50

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 13 of 50

Disabling or Deleting an L4 Proxy Instance
Last updated：2024-12-25 16:24:55

Use Cases

This document describes how to disable or delete an L4 proxy instance.
Note:
The L4 proxy is only available with the Enterprise Edition package.

To delete an L4 proxy instance, you must disable it first, which usually takes a few minutes.

Directions

1. Log in to the EdgeOne console and click Site List in the left sidebar. In the site list, click the target site.
2. On the site details page, click L4 proxy.
3. On the page that appears, find the target L4 proxy instance and click Disable in the Operation column.

4. Click Delete as needed.

https://console.intl.cloud.tencent.com/edgeone

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 14 of 50

Batch Configuring Forwarding Rules
Last updated：2024-12-25 16:25:12

Use Cases

Tencent Cloud EdgeOne allows you to configure multiple forwarding rules for an L4 proxy instance. This document
describes how to import and export multiple forwarding rules at a time.
Note:

1. The L4 proxy is only available with the Enterprise Edition package.
2. You can import up to 2,000 forwarding rules at a time. Each L4 proxy instance supports up to 2,000 forwarding
rules.
3. The fields in batch imported forwarding rules are not case-sensitive.
4. The imported forwarding rules cannot use the forwarding ports of existing forwarding rules.

Directions

Importing multiple forwarding rules at a time

1. Log in to the EdgeOne console and click Site List in the left sidebar. In the site list, click the target site.
2. On the site details page, click L4 proxy.
3. On the page that appears, find the target L4 proxy instance and click View in the Operation column.
4. On the page that appears, click Batch import.

5. In the pop-up window, enter the forwarding rules to be imported. You must enter one rule per row and specify the
forwarding protocol, forwarding port, origin address, origin port, session persistence status, and IP passing mode.
Separate fields with spaces. Example: tcp:123 test.origin.com 456 on ppv1 .

https://console.intl.cloud.tencent.com/edgeone

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 15 of 50

The table below lists the fields of a forwarding rule:

Field Description

Forwarding
protocol:Forwarding
port

The supported forwarding protocols are TCP and UDP.
The supported port number ranges from 1 to 64999, You can enter multiple ports
separated with semicolons (;) or use a hyphen to enter a port range.
The following ports are reserved for internal use, please do not use them:
For TCP forwarding protocol: 3943, 3944, 6088, 36000, 56000.
For UDP forwarding protocol: 4789, 4790, 6080, 61708.

Origin address

If you specify Single origin for Origin type, you can enter the IP address or
domain name of a single origin.
If you specify Origin group for Origin type, you can enter the name of an existing
origin group in the format of og:{OriginGroupName} . Example:
 og:testorigin .

Origin port You can enter a single port or a port range. If it is a port range, the forwarding port must
also be a port range, and the length of the origin port and forwarding port ranges must be
consistent.

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 16 of 50

For example: If the forwarding port range is 80-90 , the origin port range can be 80-
90 or 90-100 .

Session persistence Valid values: on and off.

Pass client IP Valid values: toa, ppv1, ppv2, and off.

Rule Tag Optional, you can enter 1-50 any characters to identify the forwarding rule.

6. Click OK.

Exporting multiple forwarding rules at a time

1. Log in to the EdgeOne console and click Site List in the left sidebar. In the site list, click the target site.
2. On the site details page, click L4 proxy.
3. On the page that appears, find the target L4 proxy instance and click View in the Operation column.
4. On the page that appears, click Batch export.

5. In the pop-up window, click OK to export all forwarding rules to a .txt file. The format of the exported rules is the
same as that of the imported rules.

https://console.intl.cloud.tencent.com/edgeone

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 17 of 50

Obtaining Real Client IPs
Passing Real TCP Client IPs via TOA
Last updated：2025-03-10 17:40:14

You can use this document to learn how to get the TCP client IP via TOA when using L4 proxy.

Use Cases

Using L4 acceleration for data packets will have the source IP and port modified, so the origin does not get the original
information. To enable the origin to get the real client IP and port, you can pass the information using TOA when

creating an acceleration channel. In this way, the real client IP and port are passed into the TCP option field.
Meanwhile, you need to install TOA on the origin to get that information.
Note:
The L4 proxy is only available with the Enterprise Edition package.

Directions

Step 1: Pass the client IP via TOA

To get the TCP client IP via TOA, set Pass client IP to TOA in L4 proxy forwarding rules in the console. For details

on how to modify rules, see: Modifying an L4 Proxy Instance.

Step 2: Load TOA on backend server

You can load the TOA module using either of the following methods:
Method 1 (recommended): Based on the Linux version the origin uses, download the complied toa.ko file and load it
directly.
Method 2: If you cannot find the appropriate Linux version, download the TOA source code file and compile and load it
yourself. The source code only supports the x86_64 version. If you need support for the arm64 version, please contact

us.
Note：

https://intl.cloud.tencent.com/document/product/1145/54508
https://intl.cloud.tencent.com/contact-us

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 18 of 50

Due to the differences in installation environments, if you encounter issues during the loading process using Method 1,
please try Method 2 and install the compilation environment manually.
Method 1: Download and load the compiled TOA module

Method 2: Compile and load the TOA module
1. Download and decompress the TOA package corresponding to the version of Linux OS on Tencent Cloud.
centos
CentOS-7.2-x86_64.tar.gz
CentOS-7.3-x86_64.tar.gz

CentOS-7.4-x86_64.tar.gz
Centos-7.4-arm64.tar.gz
CentOS-7.5-x86_64.tar.gz
CentOS-7.6-x86_64.tar.gz
CentOS-7.7-x86_64.tar.gz
CentOS-7.8-x86_64.tar.gz

CentOS-7.9-x86_64.tar.gz
Centos7.9-arm64.tar.gz
CentOS-8.0-x86_64.tar.gz
CentOS-8.2-x86_64.tar.gz
Centos8.2-arm64.tar.gz

TencentOS
TencentOS Server 2.4 for ARM64.tar.gz
TencentOS Server 3.1 for ARM64.tar.gz
debian
Debian-12.5-x86_64.tar.gz

Debian-12.4-x86_64.tar.gz
Debian-12.0-x86_64.tar.gz
Debian-11.1-x86_64.tar.gz
Debian-10.2-x86_64.tar.gz
Debian-9.0-x86_64.tar.gz
suse linux

openSUSE-Leap-15.3-x86_64.tar.gz
ubuntu
Ubuntu-14.04.1-LTS-x86_64.tar.gz
Ubuntu-16.04.1-LTS-x86_64.tar.gz
Ubuntu-18.04.1-LTS-x86_64.tar.gz

Ubuntu18.04-arm64.tar.gz
Ubuntu-20.04.1-LTS-x86_64.tar.gz
Ubuntu20.04-arm64.tar.gz

https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/CentOS-7.2-x86_64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/CentOS-7.3-x86_64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/CentOS-7.4-x86_64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/Centos-7.4-arm64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/CentOS-7.5-x86_64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/CentOS-7.6-x86_64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/CentOS-7.7-x86_64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/CentOS-7.8-x86_64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/CentOS-7.9-x86_64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/Centos7.9-arm64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/CentOS-8.0-x86_64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/CentOS-8.2-x86_64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/Centos8.2-arm64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/TencentOS%20Server%202.4%20for%20ARM64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/TencentOS%20Server%203.1%20for%20ARM64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/Debian-12.5-x86_64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/Debian-12.4-x86_64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/Debian-12.0-x86_64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/Debian-11.1-x86_64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/Debian-10.2-x86_64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/Debian-9.0-x86_64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/openSUSE-Leap-15.3-x86_64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/Ubuntu-14.04.1-LTS-x86_64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/Ubuntu-16.04.1-LTS-x86_64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/Ubuntu-18.04.1-LTS-x86_64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/Ubuntu18.04-arm64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/Ubuntu-20.04.1-LTS-x86_64.tar.gz
https://edgeone-document-file-1258344699.cos.ap-guangzhou.myqcloud.com/TOA/Ubuntu20.04-arm64.tar.gz

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 19 of 50

2. After decompression is complete, run the cd command to access the decompressed folder. Then load the

module as follows:

Load TOA with a script
Manually load TOA

/bin/bash -c "$(curl -fsSL https://edgeone-document-file-1258344699.cos.ap-

guangzhou.myqcloud.com/TOA/install_toa.sh)"

When it is loaded successfully, you will see the following information:

Decompress the tar package.

tar -zxvf CentOS-7.2-x86_64.tar.gz

Enter the directory of the decompressed package.

cd CentOS-7.2-x86_64

Load the TOA module.

insmod toa.ko

Copy the TOA module to the kernel module directory.

cp toa.ko /lib/modules/`uname -r`/kernel/net/netfilter/ipvs/toa.ko

Configure the TOA module to load automatically at system startup.

echo "insmod /lib/modules/`uname -r`/kernel/net/netfilter/ipvs/toa.ko" >>

/etc/rc.local

Run the following command to check whether the loading is successful:

lsmod | grep toa

If you see "TOA" in the message, the module is loaded successfully:

1. Install the compilation environment.
1.1 Make sure kernel-devel and kernel-headers are installed and consistent with the kernel version.
1.2 Make sure the gcc and make dependencies are installed.
1.3 If these environmental dependencies are not installed, run the installation command:

CentOS

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 20 of 50

Ubuntu/Debian

yum install -y gcc

yum install -y make

yum install -y kernel-headers kernel-devel

apt-get install -y gcc

apt-get install -y make

apt-get install -y linux-headers-$(uname -r)

2. After the compilation environment is installed, download, compile and load the source code.
Compile and load TOA with a script

Manually compile and load TOA

/bin/bash -c "$(curl -fsSL https://edgeone-document-file-1258344699.cos.ap-

guangzhou.myqcloud.com/TOA/compile_install_toa.sh)"

Create a compilation directory and enter it.

mkdir toa_compile && cd toa_compile

Download the source code (tar.gz)

curl -o toa.tar.gz https://edgeone-document-file-1258344699.cos.ap-

guangzhou.myqcloud.com/TOA/toa.tar.gz

Decompress the tar package

tar -zxvf toa.tar.gz

Compile the toa.ko file. After the compilation is successful, the file will

be generated in the current directory.

make

Load the TOA module.

insmod toa.ko

Copy the TOA module to the kernel module directory.

cp toa.ko /lib/modules/`uname -r`/kernel/net/netfilter/ipvs/toa.ko

Configure the TOA module to load automatically at system startup

echo "insmod /lib/modules/`uname -r`/kernel/net/netfilter/ipvs/toa.ko" >>

/etc/rc.local

3. Run the following command to check whether the loading is successful:

lsmod | grep toa

If you see "TOA" in the message, the module is loaded successfully:

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 21 of 50

Step 3: Verify the configuration

You can verify the configuration by building a TCP server to receive client requests from another server. See the
sample:
1. On the current server, create an HTTP server in Python to act as a TCP server:

Use python2

python2 -m SimpleHTTPServer 10000

Use python3

python3 -m http.server 10000

2. Make another server work as a client to send requests:

Use curl to initiate an HTTP request, where the hostname and forwarding port

of the L4 proxy is used.

curl -i "http://a8b7f59fc8d7e6c9.example.com.edgeonedy1.com:10000/"

3. If TOA is loaded, the real client address can be seen on the server:

You can also get either the IPv4 or IPv6 address of the client by following the steps above.

For origin IPv4 addresses, get the client IPv4 address.
For origin IPv6 addresses, get the client IPv6 address.
If you need to get both IPv4 and IPv6 addresses, modify the origin's business code while loading the TOA module as
instructed here.

Getting Both IPv4 and IPv6 Addresses

Note:
 This section provide guidance on how to get both IPv4 and IPv6 addresses by modifying the business code of the

origin.
The origin can listen on requests in either of the following methods:
1. Use the structure struct sockaddr_in to listen on IPv4 addresses.

2. Use the structure struct sockaddr_in6 to listen on IPv6 addresses.

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 22 of 50

Sample code

Listen on IPv4 addresses
Listen on IPv6 addresses
C

Java

#include <sys/socket.h>

#include <stdio.h>

#include <unistd.h>

#include <netinet/in.h>

#include <memory.h>

#include <arpa/inet.h>

int main(int argc, char** argv) {

 int l_sockfd;

 // The server address is an IPv4 address.

 struct sockaddr_in serveraddr;

 // In this case, the client address must adopt the IPv6 structure.

 struct sockaddr_in6 clientAddr;

 int server_port = 10000;

 memset(&serveraddr, 0, sizeof(serveraddr));

 // Create a socket.

 l_sockfd = socket(AF_INET, SOCK_STREAM, 0);

 if (l_sockfd == -1){

 printf("Failed to create socket.\\n");

 return -1;

 }

 // Initialize the server.

 memset(&serveraddr, 0, sizeof(struct sockaddr_in));

 serveraddr.sin_family = AF_INET;

 serveraddr.sin_port = htons(server_port);

 serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);

 int isReuse = 1;

 setsockopt(l_sockfd, SOL_SOCKET,SO_REUSEADDR,(const char*)&isReuse,sizeof(i

 // Associate the socket and server address.

 int nRet = bind(l_sockfd,(struct sockaddr*)&serveraddr, sizeof(serveraddr))

 if(-1 == nRet)

 {

 printf("bind error\\n");

 return -1;

 }

 // Listen on the socket.

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 23 of 50

 listen(l_sockfd, 5);

 int clientAddrLen = sizeof(clientAddr);

 memset(&clientAddr, 0, sizeof(clientAddr));

 // Accept connections from the client.

 int linkFd = accept(l_sockfd, (struct sockaddr*)&clientAddr, &clientAddrLen);

 if(-1 == linkFd)

 {

 printf("accept error\\n");

 return -1;

 }

 // Modifications to make: Decide whether the client is an IPv4 or IPv6 address

 // AF_INET indicates that the client adopts IPv4. In this case, convert the

 // AF_INET6 indicates that the client adopts IPv6. In this case, use struct

 if (clientAddr.sin6_family == AF_INET) {

 printf("AF_INET accept getpeername %s : %d successful\\n",

 inet_ntoa(((struct sockaddr_in*)&clientAddr)->sin_addr),

 ntohs(((struct sockaddr_in*)&clientAddr)->sin_port));

 }else if (clientAddr.sin6_family == AF_INET6){

 char addr_p[128] = {0};

 inet_ntop(AF_INET6, (void *)&((struct sockaddr_in6*)&clientAddr)->sin6_addr

 printf("AF_INET6 accept getpeername %s : %d successful\\n",

 addr_p,

 ntohs(((struct sockaddr_in6*)&clientAddr)->sin6_port));

 }else{

 printf("unknow sin_family:%d \\n", clientAddr.sin6_family);

 }

 close(l_sockfd);

 return 0;

}

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.net.InetAddress;

import java.net.InetSocketAddress;

import java.net.ServerSocket;

import java.net.Socket;

import java.net.SocketAddress;

public class ServerDemo {

 /** If using the IPv4 address structure to build the service, use IPV4_HOST */

 public static final String IPV4_HOST = "0.0.0.0";

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 24 of 50

 /** If using the IPv6 address structure to build the service, use IPV6_HOST */

 public static final String IPV6_HOST = "::";

 public static void main(String[] args) {

 int serverPort = 10000;

 try (ServerSocket serverSocket = new ServerSocket()) {

 // Setting address reuse

 serverSocket.setReuseAddress(true);

 // Bound server address and port, using IPv4 here

 serverSocket.bind(new InetSocketAddress(InetAddress.getByName(IPV4_HOST

 System.out.println("Server is listening on port " + serverPort);

 while (true) {

 // Accepting Client connections

 Socket clientSocket = serverSocket.accept();

 System.out.println("New client connected: " + clientSocket.getRemot

 // Processing Client requests

 handleClientRequest(clientSocket);

 }

 } catch (IOException e) {

 System.err.println("Failed to create server socket: " + e.getMessage())

 }

 }

 /**

 * Processing Function, site business implement, here is just an example

 * The purpose of this Function is to Return the Client's input verbatim to the

 */

 private static void handleClientRequest(Socket clientSocket) {

 try (InputStream inputStream = clientSocket.getInputStream();

 OutputStream outputStream = clientSocket.getOutputStream()) {

 // Reading the Data received from the Client

 byte[] buffer = new byte[1024];

 int bytesRead;

 while ((bytesRead = inputStream.read(buffer)) != -1) {

 // Reply the received Data to the Client as it is

 outputStream.write(buffer, 0, bytesRead);

 }

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 25 of 50

 } catch (IOException e) {

 // When the Client disconnects

 System.err.println("Failed to handle client request: " + e.getMessage()

 } finally {

 try {

 clientSocket.close();

 } catch (IOException e) {

 System.err.println("Failed to close client socket: " + e.getMessage

 }

 }

 }

}

C
Java

#include <sys/socket.h>

#include <stdio.h>

#include <unistd.h>

#include <netinet/in.h>

#include <memory.h>

#include <arpa/inet.h>

int main(int argc, char **argv)

{

 int l_sockfd;

 // The server address is an IPv6 address.

 struct sockaddr_in6 serveraddr;

 // The client address is an IPv6 address.

 struct sockaddr_in6 clientAddr;

 int server_port = 10000;

 memset(&serveraddr, 0, sizeof(serveraddr));

 // Create a socket.

 l_sockfd = socket(AF_INET6, SOCK_STREAM, 0);

 if (l_sockfd == -1){

 printf("Failed to create socket.\\n");

 return -1;

 }

 // Set the server address.

 memset(&serveraddr, 0, sizeof(struct sockaddr_in6));

 serveraddr.sin6_family = AF_INET6;

 serveraddr.sin6_port = htons(server_port);

 serveraddr.sin6_addr = in6addr_any;

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 26 of 50

 int isReuse = 1;

 setsockopt(l_sockfd, SOL_SOCKET,SO_REUSEADDR,(const char*)&isReuse,sizeof(i

 // Associate the socket and server address.

 int nRet = bind(l_sockfd,(struct sockaddr*)&serveraddr, sizeof(serveraddr))

 if(-1 == nRet)

 {

 printf("bind error\\n");

 return -1;

 }

 // Listen on the socket.

 listen(l_sockfd, 5);

 int clientAddrLen = sizeof(clientAddr);

 memset(&clientAddr, 0, sizeof(clientAddr));

 // Accept connection requests from the client.

 int linkFd = accept(l_sockfd, (struct sockaddr*)&clientAddr, &clientAddrLen);

 if(-1 == linkFd)

 {

 printf("accept error\\n");

 return -1;

 }

 // The client addresses received here are all stored in the IPv6 structure.

 // The IPv4 addresses are mapped to IPv6 addresses, for example, "::ffff:119.29

 char addr_p[128] = {0};

 inet_ntop(AF_INET6, (void *)&clientAddr.sin6_addr, addr_p, (socklen_t)sizeof(a

 printf("accept %s : %d successful\\n", addr_p, ntohs(clientAddr.sin6_port));

 // Modifications to make: Use the macro definition IN6_IS_ADDR_V4MAPPED to deci

 if(IN6_IS_ADDR_V4MAPPED(&clientAddr.sin6_addr)) {

 struct sockaddr_in real_v4_sin;

 memset (&real_v4_sin, 0, sizeof (struct sockaddr_in));

 real_v4_sin.sin_family = AF_INET;

 real_v4_sin.sin_port = clientAddr.sin6_port;

 // The last four bytes represent the IPv4 address of the client.

 memcpy (&real_v4_sin.sin_addr, ((char *)&clientAddr.sin6_addr) + 12, 4);

 printf("connect %s successful\\n", inet_ntoa(real_v4_sin.sin_addr));

 }

 close(l_sockfd);

 return 0;

}

import java.io.IOException;

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 27 of 50

import java.io.InputStream;

import java.io.OutputStream;

import java.net.InetAddress;

import java.net.InetSocketAddress;

import java.net.ServerSocket;

import java.net.Socket;

import java.net.SocketAddress;

public class ServerDemo {

 /** If using the IPv4 address structure to build the service, use IPV4_HOST */

 public static final String IPV4_HOST = "0.0.0.0";

 /** If using the IPv6 address structure to build the service, use IPV6_HOST */

 public static final String IPV6_HOST = "::";

 public static void main(String[] args) {

 int serverPort = 10000;

 try (ServerSocket serverSocket = new ServerSocket()) {

 // Setting address reuse

 serverSocket.setReuseAddress(true);

 // Bound server address and port, using IPv4 here

 serverSocket.bind(new InetSocketAddress(InetAddress.getByName(IPV6_HOST

 System.out.println("Server is listening on port " + serverPort);

 while (true) {

 // Accepting Client connections

 Socket clientSocket = serverSocket.accept();

 System.out.println("New client connected: " + clientSocket.getRemot

 // Processing Client requests

 handleClientRequest(clientSocket);

 }

 } catch (IOException e) {

 System.err.println("Failed to create server socket: " + e.getMessage())

 }

 }

 /**

 * Processing Function, site business implement, here is just an example

 * The purpose of this Function is to Return the Client's input verbatim to the

 */

 private static void handleClientRequest(Socket clientSocket) {

 try (InputStream inputStream = clientSocket.getInputStream();

 OutputStream outputStream = clientSocket.getOutputStream()) {

 // Reading the Data received from the Client

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 28 of 50

 byte[] buffer = new byte[1024];

 int bytesRead;

 while ((bytesRead = inputStream.read(buffer)) != -1) {

 // Reply the received Data to the Client as it is

 outputStream.write(buffer, 0, bytesRead);

 }

 } catch (IOException e) {

 // When the Client disconnects

 System.err.println("Failed to handle client request: " + e.getMessage()

 } finally {

 try {

 clientSocket.close();

 } catch (IOException e) {

 System.err.println("Failed to close client socket: " + e.getMessage

 }

 }

 }

}

console output result

Server is listening on port 10000

New client connected: /127.0.0.1:50680

New client connected: /0:0:0:0:0:0:0:1:51124

New client connected: /127.0.0.1:51136

References

Monitoring TOA Running Status

To ensure execution stability, this kernel module allows you to monitor status. After inserting the toa.ko kernel

module, you can monitor the TOA working status in either of the following ways.

cat /proc/net/toa_stats

This figure shows the TOA running status:

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 29 of 50

The monitoring metrics are described as follows:

Metric Description

syn_recv_sock_toa Receives connections with TOA information.

syn_recv_sock_no_toa Receives connections without TOA information.

getname_toa_ok
This count increases when you call getsockopt and obtain the source IP
address successfully or when you call accept to receive client requests.

getname_toa_mismatch
This count increases when you call getsockopt and obtain a source IP address
that does not match the required type. For example, if a client connection contains a
source IPv4 address whereas you obtain an IPv6 address, the count will increase.

getname_toa_empty
This count increases when the getsockopt function is called in a client file
descriptor that does not contain TOA.

ip6_address_alloc
audio/video proxy

Allocates space to store the information when TOA obtains the source IP address
and source port saved in the TCP data packet.

ip6_address_free
audio/video proxy

When the connection is released, TOA will release the memory previously used to
save the source IP and source port. If all connections are closed, the total count of
 ip6_address_alloc for each CPU should be equal to the count of this metric.

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 30 of 50

Obtaining Real Client IPs Through Protocol
V1/V2
Overview
Last updated：2024-12-25 16:26:54

This document describes how to obtain real client IPs through Proxy Protocol V1/V2 when you enable the L4 proxy
acceleration.
Note:

The L4 proxy is only available with the Enterprise Edition package.

Scenarios

When the datagrams are accelerated through L4 acceleration connection, you can pass the real client IPs and Ports to
the origin server through Proxy Protocol V1/V2. For introduction on the protocol, see Proxy Protocol V1/V2.

The origin can parse and obtain real client IPs with two methods based on the scenarios and deployment modes.

Method 1: If the TCP protocol is used on the origin, it is recommended to add a Nginx server that supports Proxy
Protocol V1/V2 in front of the application server. For details, see Obtaining Real Client IPs Through Nginx.
Method 2: If the UDP protocol is used on the origin, or if you want to directly parse the real client IPs under the TCP
protocol on the application server, you can parse the Proxy Protocol field on the application server by referring to the
sample code in the Proxy Protocol. For details, see Parsing Real Client IPs on Application Server.

https://github.com/haproxy/haproxy/blob/master/doc/proxy-protocol.txt
https://intl.cloud.tencent.com/document/product/1145/55268
https://intl.cloud.tencent.com/document/product/1145/55269

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 31 of 50

Method 1: Obtaining Real Client IPs Through
Nginx
Last updated：2024-12-25 16:27:13

Overview

If the TCP protocol is used on the origin, it is recommended to add a Nginx server that supports Proxy Protocol V1/V2
in front of the application server to obtain real client IPs.
Note:

The L4 proxy is only available with the Enterprise Edition package.
If the TCP protocol is used on the origin, and you want to directly parse the real client IPs on the application server,
please see Parsing Real Client IPs on Application Server.

Deployment Mode

As shown in the above diagram, you need to deploy a Nginx server in front of the application server to remove the
Proxy Protocol field. You can collect the real client IPs by analyzing Nginx logs on the Nginx server. At this time, you
can point the origin address to the Nginx service when you configure the origin address in the EdgeOne L4 proxy
service.

Directions

Step 1. Deploy Nginx service

Please select a Nginx version corresponding to the Proxy Protocol version you want to use.

https://intl.cloud.tencent.com/document/product/1145/55269

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 32 of 50

For Proxy Protocol V1: Nginx Plus R11 and later versions, Nginx Open Source 1.11.4 and later versions.
For Proxy Protocol V2: Nginx Plus R16 and later versions, Nginx Open Source 1.13.11 and later versions.
For other Nginx versions, see Accepting the PROXY Protocol.

You need to install Nginx-1.18.0 and the stream module to enable L4 proxy service on Nginx. See installation
directions below.

Install the nginx build environment

yum -y install gcc gcc-c++ autoconf automake

yum -y install zlib zlib-devel openssl openssl-devel pcre-devel

Decompress the source package

tar -zxvf nginx-1.18.0.tar.gz

Enter the directory

cd nginx-1.18.0

Set nginx compilation and installation configuration (with `--with-stream`)

./configure --prefix=/opt/nginx --sbin-path=/opt/nginx/sbin/nginx --conf-

path=/opt/nginx/conf/nginx.conf --with-http_stub_status_module --with-

http_gzip_static_module --with-stream

Compilation

make

Installation

make install

Step 2: Configure the stream module in Nginx

If you select Nginx-1.18.0, you can run the following command to open the configuration file nginx.conf.

vi /opt/nginx/conf/nginx.conf

Configuration of the stream module is as follows:

stream {

 # Set the log format, where `proxy_protocol_addr` is the client address obtaine

 log_format basic '$proxy_protocol_addr -$remote_addr [$time_local] '

 '$protocol $bytes_sent $bytes_received '

 '$session_time';

 access_log logs/stream.access.log basic;

 # upstream configuration

 upstream RealServer {

 hash $remote_addr consistent;

 # 127.0.0.1:8888 is the IP address and port of the application server

 server 127.0.0.1:8888 max_fails=3 fail_timeout=30s;

 }

 # server configuration

 server {

https://docs.nginx.com/nginx/admin-guide/load-balancer/using-proxy-protocol/

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 33 of 50

 # L4 listening port, which corresponds to the origin port configured in L4

 listen 10000 proxy_protocol;

 proxy_connect_timeout 1s;

 proxy_timeout 3s;

 proxy_pass RealServer;

 }

}

Step 3: Configure L4 proxy forwarding rule

After configuring the Nginx service, you can modify the L4 proxy forwarding rule in the console. Change the origin
address to the IP of the current Nginx service, and change the origin port to the L4 listening port configured in step 2.
Select Proxy Protocol V1 or V2 for the Pass Client IP according to the forwarding protocol. For details, see Modifying

L4 Proxy Forwarding Rules.

Step 4: Simulate client requests and verify results

You can build the TCP service, and simulate client requests on another server to verify the results. A sample is as
below:

1. Create an HTTP service with Python on the current server to simulate the TCP service.

Based on python2

python2 -m SimpleHTTPServer 8888

Based on python3

python3 -m http.server 8888

2. Build a client request on another server, and simulate the TCP request with a curl request.

Initiate an HTTP request with curl, where the domain is the L4 proxy domain,

and `8888` is the L4 proxy forwarding port

curl -i "http://d42f15b7a9b47488.davidjli.xyz.acc.edgeonedy1.com:8888/"

https://intl.cloud.tencent.com/document/product/1145/54508

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 34 of 50

3. Check Nginx logs on the Nginx server:

You can capture packets on the Nginx server and analyze the packets with Wireshark. After the TCP handshake is
completed, the Proxy Protocol field is added in front of the first application data packet. Below is an example for Proxy
Protocol V1. ① refers to the L4 proxy egress IP, ② refers to the Nginx server IP, ③ refers to the protocol version, ④
refers to the real client IP.

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 35 of 50

Method 2: Parsing Real Client IPs on
Application Server
Last updated：2024-12-25 16:27:34

Scenarios

Scenario 1: If the UDP protocol is used on the origin, only Proxy Protocol V2 can be selected to pass the real client
IPs. In this case, you need to parse the Proxy Protocol V2 on the application server to obtain the real client IPs.
Scenario 2: If the TCP protocol is used on the origin, and you want to implement application judgment via the real

client IPs on the application server, you need to parse the Proxy Protocol V1/V2 on the application server to obtain the
real client IPs.
Note:
The L4 proxy is only available with the Enterprise Edition package.

Deployment Diagram

As shown in the above diagram, you can configure L4 proxy via EdgeOne L4 proxy module to point to the application
server, and add the Proxy Protocol field to the application data by EdgeOne L4 proxy service. Parsing is implemented
on the application server.

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 36 of 50

Directions

Step 1: Configure L4 proxy forwarding rule

Modify the L4 proxy forwarding rule in the console. You need to enter the origin address and origin port. If the
forwarding protocol is UDP, select Proxy Protocol V2 for Pass client IP. If the forwarding protocol is TCP, you can
select Proxy Protocol V1 or V2. For details, see Modifying L4 Proxy Forwarding Rules.

Step 2: Obtain real client IPs on the application server

You need to parse the Proxy Protocol filed with reference to the sample code in the Proxy Protocol. For the format of
the client IPs, see Format of Real Client IPs Obtained Through Proxy Protocol V1/V2.

When the UDP protocol and Proxy Protocol V2 are selected, the Proxy Protocol field is added to the first UDP
datagram. In the figure below, ① refers to the L4 proxy egress IP, ② refers to the origin address, ③ refers to the
protocol version, ④ refers to the Proxy Protocol field, ⑤ refers to the real client IP address, and ⑥ refers to the
application data.

https://intl.cloud.tencent.com/document/product/1145/54508
https://github.com/haproxy/haproxy/blob/master/doc/proxy-protocol.txt#L933
https://github.com/haproxy/haproxy/blob/master/doc/proxy-protocol.txt
https://intl.cloud.tencent.com/document/product/1145/55270

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 37 of 50

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 38 of 50

Format of Real Client IPs Obtained Through
Proxy Protocol V1/V2
Last updated：2023-06-29 15:37:55

Proxy Protocol V1

Proxy Protocol V1 supports TCPv4 and TCPv6, and adopts string format. See details below:

PROXY TCP4 192.168.0.1 192.168.0.11 56324 443\\r\\n

You can check the following information with Wireshark.

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 39 of 50

Proxy Protocol V2

Proxy Protocol V2 supports TCPv4, TCPv6, UDPv4 and UDPv6, and adopts the binary format. See details below:

IPv4

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 40 of 50

IPv6

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 41 of 50

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 42 of 50

Passing Real Client IP Through SPP
Last updated：2024-12-25 16:26:37

Use Cases

The Simple Proxy Protocol (SPP for short below) is a custom protocol header format used for proxy servers to pass
the real client IP and other related information to backend servers. It is applied in logging, access control, load
balancing, troubleshooting, and other scenarios. The SPP header has a fixed length of 38 bytes, making it simpler

compared to the Proxy Protocol V2.
If your current backend service is a UDP service and already supports the SPP or you prefer a simpler parsing
method, you can use the SPP to pass the real client IP. EdgeOne L4 proxy supports passing the real client IP to the
business server based on the SPP standard. You can parse this protocol on the server side to obtain the real client IP
and port.

Note:
The L4 proxy is only available with the Enterprise Edition package.

EdgeOne Handling Process for SPP

Requesting Access

As shown in the above figure, when you use the SPP to pass the client IP and port, the EdgeOne L4 proxy will
automatically add the real client IP and port with a fixed length of 38 bytes before each payload according to the SPP
header format. You can obtain the real client IP and port by parsing the SPP header field on the origin server.

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 43 of 50

Origin Server Response

As shown in the above figure, when the origin server responds, the response packet must carry the SPP header and
be returned to the EdgeOne L4 proxy, which will automatically uninstall the SPP header.
Note:

If the origin server does not return the SPP header, it will cause the EdgeOne L4 proxy to truncate the business data in
the payload.

Directions

Step 1: Configuring L4 Proxy Forwarding Rules

1. Log in into the EdgeOne console, click Site List in the left sidebar, and then click the site you want to configure in
the site list.
2. On the site details page, click L4 Proxy.

3. On the L4 proxy page, select the L4 proxy instance you want to modify and click Configure.
4. Select the Layer 4 proxy rule that requires passing the real client IP and click Edit.
5. Enter the corresponding business origin server address and port, select UDP for the forwarding protocol, select
Simple Proxy Protocol for passing the client IP, and then click Save.

https://console.intl.cloud.tencent.com/edgeone

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 44 of 50

Step 2: Parsing the SPP Field on the Origin Server to Obtain the Real Client IP

You can refer to SPP Header Format and Sample Code for parsing the SPP field on the origin server. When the SPP
is used to pass the real client IP, the format of the service packet data obtained by the server is as follows:

You can refer to the following sample code for parsing the business data to obtain the real client IP.

Go
C

package main

import (

 "encoding/binary"

 "fmt"

 "net"

)

type NetworkConnection struct {

 Magic uint16

 ClientAddr net.IP

https://intl.cloud.tencent.com/document/product/1145/62589#2ced167b-fb0f-4a5d-bf81-1875fcc27a97
https://intl.cloud.tencent.com/document/product/1145/62589#ip

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 45 of 50

 ProxyAddr net.IP

 ClientPort uint16

 ProxyPort uint16

}

func handleConn(conn *net.UDPConn) {

 buf := make([]byte, 1024) // Create a buffer.

 n, addr, err := conn.ReadFromUDP(buf) // Read the data packet from the conn

 if err != nil {

 fmt.Println("Error reading from UDP connection:", err)

 return

 }

 // Convert the received bytes to a NetworkConnection struct.

 nc := NetworkConnection{

 Magic: binary.BigEndian.Uint16(buf[0:2]),

 ClientAddr: make(net.IP, net.IPv6len),

 ProxyAddr: make(net.IP, net.IPv6len),

 }

 if nc.Magic == 0x56EC {

 copy(nc.ClientAddr, buf[2:18])

 copy(nc.ProxyAddr, buf[18:34])

 nc.ClientPort = binary.BigEndian.Uint16(buf[34:36])

 nc.ProxyPort = binary.BigEndian.Uint16(buf[36:38])

 // Print the SPP header information, including magic, real client I

 fmt.Printf("Received packet:\\n")

 fmt.Printf("\\tmagic: %x\\n", nc.Magic)

 fmt.Printf("\\tclient address: %s\\n", nc.ClientAddr.String())

 fmt.Printf("\\tproxy address: %s\\n", nc.ProxyAddr.String())

 fmt.Printf("\\tclient port: %d\\n", nc.ClientPort)

 fmt.Printf("\\tproxy port: %d\\n", nc.ProxyPort)

 // Print the actual and effective payload.

 fmt.Printf("\\tdata: %v\\n\\tcount: %v\\n", string(buf[38:n]), n)

 } else {

 // Print the actual and effective payload.

 fmt.Printf("\\tdata: %v\\n\\tcount: %v\\n", string(buf[0:n]), n)

 }

 // Respond with a packet. Note: The 38-byte SPP header must be returned com

 response := make([]byte, n)

 copy(response, buf[0:n])

 _, err = conn.WriteToUDP(response, addr) // Send data.

 if err != nil {

 fmt.Println("Write to udp failed, err: ", err)

 }

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 46 of 50

}

func main() {

 localAddr, _ := net.ResolveUDPAddr("udp", ":6666") // Create a UDP address

 conn, err := net.ListenUDP("udp", localAddr) // Create a listener.

 if err != nil {

 panic("Failed to listen for UDP connections:" + err.Error())

 }

 defer conn.Close() // Close the connection at the end.

 for {

 handleConn(conn) // Handle the incoming connection.

 }

}

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <arpa/inet.h>

#include <netinet/in.h>

#include <sys/socket.h>

#define BUF_SIZE 1024

struct NetworkConnection {

 uint16_t magic;

 struct in6_addr clientAddr;

 struct in6_addr proxyAddr;

 uint16_t clientPort;

 uint16_t proxyPort;

};

void handleConn(int sockfd) {

 struct sockaddr_in clientAddr;

 socklen_t addrLen = sizeof(clientAddr);

 unsigned char buf[BUF_SIZE];

 ssize_t n = recvfrom(sockfd, buf, BUF_SIZE, 0, (struct sockaddr *)&clientAddr,

 if (n < 0) {

 perror("Error reading from UDP connection");

 return;

 }

 // Convert the received bytes to a NetworkConnection struct.

 struct NetworkConnection nc;

 nc.magic = ntohs(*(uint16_t *)buf);

 if (nc.magic == 0x56EC) { // Magic with the value 0x56EC indicates an SPP heade

 memcpy(&nc.clientAddr, buf + 2, 16);

 memcpy(&nc.proxyAddr, buf + 18, 16);

 nc.clientPort = ntohs(*(uint16_t *)(buf + 34));

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 47 of 50

 nc.proxyPort = ntohs(*(uint16_t *)(buf + 36));

 printf("Received packet:\\n");

 printf("\\tmagic: %x\\n", nc.magic);

 char clientIp[INET6_ADDRSTRLEN];

 char proxyIp[INET6_ADDRSTRLEN];

 inet_ntop(AF_INET6, &nc.clientAddr, clientIp, INET6_ADDRSTRLEN);

 inet_ntop(AF_INET6, &nc.proxyAddr, proxyIp, INET6_ADDRSTRLEN);

 // Print the SPP header information, including magic, real client IP and po

 printf("\\tclient address: %s\\n", clientIp);

 printf("\\tproxy address: %s\\n", proxyIp);

 printf("\\tclient port: %d\\n", nc.clientPort);

 printf("\\tproxy port: %d\\n", nc.proxyPort);

 // Print the actual and effective payload.

 printf("\\tdata: %.*s\\n\\tcount: %zd\\n", (int)(n - 38), buf + 38, n);

 } else {

 printf("\\tdata: %.*s\\n\\tcount: %zd\\n", (int)n, buf, n);

 }

 // Respond with a packet. Note: The 38-byte SPP header must be returned complet

 sendto(sockfd, buf, n, 0, (struct sockaddr *)&clientAddr, addrLen);

}

int main() {

 int sockfd = socket(AF_INET, SOCK_DGRAM, 0);

 if (sockfd < 0) {

 perror("Failed to create socket");

 exit(EXIT_FAILURE);

 }

 // Create a UDP address using the local address and port.

 struct sockaddr_in serverAddr;

 serverAddr.sin_family = AF_INET;

 serverAddr.sin_addr.s_addr = INADDR_ANY;

 serverAddr.sin_port = htons(6666);

 if (bind(sockfd, (struct sockaddr *)&serverAddr, sizeof(serverAddr)) < 0) {

 perror("Failed to bind");

 exit(EXIT_FAILURE);

 }

 while (1) {

 handleConn(sockfd);

 }

}

Step 3: Testing and Verification

You can use a server as the client, construct client requests, and use the nc command to simulate UDP requests. The
details of the command are as follows:

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 48 of 50

echo "Hello Server" | nc -w 1 -u <IP/DOMAIN> <PORT>

Here, IP/Domain indicates the access IP or domain name of your L4 proxy instance. You can view the corresponding
information of the L4 proxy instance in the EdgeOne console. Port indicates the forwarding port configured for the rule

in Step 1.

The server receives the request and parses the client IP address as follows:

Related References

SPP Header Format

https://intl.cloud.tencent.com/document/product/1145/62589#8d6d46ea-41ca-4e55-921d-b23c129837bc

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 49 of 50

Magic Number

In the SPP format, Magic Number is 16 bits long with a fixed value of 0x56EC. It is mainly used to identify the SPP and
also specify the fixed length of SPP header to be 38 bytes.

Client Address

IP address of the client initiating a request, which is 128 bits long. If the request is initiated by an IPV4 client, the value

indicates IPV4; if initiated by an IPV6 client, the value indicates IPV6.

Proxy Address

IP address of the proxy server, which is 128 bits long and can be parsed in the same way as the Client Address.

Client Port

Port for the client to send UDP packets, which is 16 bits long.

Proxy Port

Port for the proxy server to receive UDP packets, which is 16 bits long.

Payload

Tencent Cloud EdgeOne

©2013-2025 Tencent Cloud International Pte. Ltd. Page 50 of 50

Actual data following the header in a packet.

