
Tencent Cloud TCHouse-P

©2013-2024 Tencent Cloud. All rights reserved. Page 1 of 20

Tencent Cloud TCHouse-P

Data Ingestion

Product Documentation

Tencent Cloud TCHouse-P

©2013-2024 Tencent Cloud. All rights reserved. Page 2 of 20

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Tencent Cloud TCHouse-P

©2013-2024 Tencent Cloud. All rights reserved. Page 3 of 20

Contents

Data Ingestion
Importing TencentDB Data Offline with DataX
Syncing Incremental Data from MySQL with DataX
Importing and Exporting COS Data at High Speed with External Table
Syncing EMR Data with External Table
Implementing CDWPG UPSERT with Rule

Tencent Cloud TCHouse-P

©2013-2024 Tencent Cloud. All rights reserved. Page 4 of 20

Data Ingestion
Importing TencentDB Data Offline with DataX
Last updated：2024-11-27 15:36:05

DataX is an open-source CLI that supports importing full or incremental data from TencentDB to Tencent Cloud
TCHouse-P. The tool is developed in Java and uses JDBC to connect the source database to the target database. It
can run on Windows and Linux. Install the Java environment before use.

DataX installation:
1. Download the source code here and compile it.
2. Directly use datax-v1.0.4-hashdata.tar.gz, an already compiled version.
The following section introduces DataX modified by HashData, which is more efficient to import data to Tencent Cloud
TCHouse-P. Tests show that it can import more than 100,000 entries per second. The following is the configuration file

to import data from MySQL to Tencent Cloud TCHouse-P:

{

 "job": {

 "setting": {

 "speed": {

 "channel": 3,

 "byte": 1048576,

 "record": 1000

 },

 "errorLimit": {

 "record": 2,

 "percentage": 0.02

 }

 },

 "content": [

 {

 "reader": {

 "name": "mysqlreader",

 "parameter": {

 "username": "****",

 "password": "****",

 "column": [

 "*"

],

 "splitPk": "id",

 "connection": [

 {

 "table": [

 "test1"

https://github.com/HashDataInc/DataX
https://intl.cloud.tencent.com/document/product/1138/45015
https://github.com/HashDataInc/DataX

Tencent Cloud TCHouse-P

©2013-2024 Tencent Cloud. All rights reserved. Page 5 of 20

],

 "jdbcUrl": [

 "jdbc:mysql://***:***/db1?serverTimezone=Asia/S

]

 }

]

 }

 },

 "writer": {

 "name": "gpdbwriter",

 "parameter": {

 "username": "******",

 "password": "******",

 "column": [

 "*"

],

 "preSql": [

 "truncate table test1"

],

 "postSql": [

 "select count(*) from test2"

],

 "segment_reject_limit": 0,

 "copy_queue_size": 2000,

 "num_copy_processor": 1,

 "num_copy_writer": 1,

 "connection": [

 {

 "jdbcUrl": "jdbc:postgresql://****:**/db1",

 "table": [

 "test1"

]

 }

]

 }

 }

 }

]

 }

}

Parameter description:
1. The writer should be gpdbwriter . postgresqlwriter can also be used to write data to Tencent

Cloud TCHouse-P, with a poor insertion efficiency though.
2. For specific meanings and parameter tuning, see DataX.

https://github.com/HashDataInc/DataX

Tencent Cloud TCHouse-P

©2013-2024 Tencent Cloud. All rights reserved. Page 6 of 20

3. We recommend you add the serverTimezone=Asia/Shanghai parameter to the JDBC URL of

 mysqlreader to avoid data inconsistency caused by time zone issues.

Tencent Cloud TCHouse-P

©2013-2024 Tencent Cloud. All rights reserved. Page 7 of 20

Syncing Incremental Data from MySQL with
DataX
Last updated：2024-11-27 15:36:05

This document describes how to use DataX modified by HashData to incrementally sync data from MySQL to Tencent
Cloud TCHouse-P.
Follow the steps below to use DataX to incrementally sync data from MySQL to Tencent Cloud TCHouse-P:

1. Read the MaxTime since the last successful sync from the local file (for the initial sync, you can specify an initial

time value as required by your business).
2. Use MaxTime as the LastTime (lower limit of the incremental sync) and CurTime as the upper limit.

3. Modify the datax.json configuration to specify the time interval (WHERE clause in SQL) of the synced table

as [LastTime, CurTime) .

4. Execute DataX sync. After successful sync, write CurTime to the local file for the next sync.

5. Repeat steps 1–4 for multiple incremental syncs.
A sample datax.json configuration file is as shown below:

{

 "job": {

 "setting": {

 "speed": {

 "channel": 3,

 "byte": 1048576,

 "record": 1000

 },

 "errorLimit": {

 "record": 2,

 "percentage": 0.02

 }

 },

 "content": [

 {

 "reader": {

 "name": "mysqlreader",

 "parameter": {

 "username": "******",

 "password": "******",

 "connection": [

 {

 "jdbcUrl": [

 "jdbc:mysql://***:***/test?serverTimezone=Asia/

],

https://github.com/HashDataInc/DataX

Tencent Cloud TCHouse-P

©2013-2024 Tencent Cloud. All rights reserved. Page 8 of 20

 "querySql": [

 "select * from cdw_test_table where updateTime

]

 }

]

 }

 },

 "writer": {

 "name": "gpdbwriter",

 "parameter": {

 "username": "******",

 "password": "******",

 "column": [

 "*"

],

 "segment_reject_limit": 0,

 "copy_queue_size": 2000,

 "num_copy_processor": 1,

 "num_copy_writer": 1,

 "connection": [

 {

 "jdbcUrl": "jdbc:postgresql://***:***/***",

 "table": [

 "ods_cdw_test_table"

]

 }

]

 }

 }

 }

]

 }

}

Tencent Cloud TCHouse-P

©2013-2024 Tencent Cloud. All rights reserved. Page 9 of 20

Importing and Exporting COS Data at High
Speed with External Table
Last updated：2024-11-27 15:36:05

Querying COS Data with COS_EXT

COS_EXT is an external data access extension for accessing COS files. By defining an external table through DDL,
you can run DML in the external table as a normal data table to manipulate COS data. The following are supported
currently:

Read COS data as an external table.
Export results to COS as an external table.
Perform simple analysis of COS data as an external table.

Notes

1. Only files in text formats such as CSV and GZIP compressed format files are supported.
2. Only COS data in the same region can be read. For example, a cluster in Guangzhou Zone 4 can only read COS

data in the Guangzhou region.
3. Only your own COS data can be read by your cluster.
4. Write-only external tables can only be used for the INSERT statement but not UPDATE , DELETE , and

 SELECT statements.

5. Deleting an external table will not delete the corresponding data in COS.

Directions

1. Define the COS_EXT extension.

Note:
The scope of the COS external table extension is the database.
The creation command is as follows:

CREATE EXTENSION IF NOT EXISTS cos_ext SCHEMA public;

The deletion command is as follows:

DROP EXTENSION IF EXISTS cos_ext;

2. Define the COS external table. For syntax, see Syntax description.
3. Manipulate data in the COS external table.

Tencent Cloud TCHouse-P

©2013-2024 Tencent Cloud. All rights reserved. Page 10 of 20

Syntax description

Definite the read-only input table

 CREATE [READABLE] EXTERNAL TABLE tablename

 (columnname datatype [, ...] | LIKE othertable)

 LOCATION (cos_ext_params)

 FORMAT 'TEXT'

 [([HEADER]

 [DELIMITER [AS] 'delimiter' | 'OFF']

 [NULL [AS] 'null string']

 [ESCAPE [AS] 'escape' | 'OFF']

 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']

 [FILL MISSING FIELDS])]

 | 'CSV'

 [([HEADER]

 [QUOTE [AS] 'quote']

 [DELIMITER [AS] 'delimiter']

 [NULL [AS] 'null string']

 [FORCE NOT NULL column [, ...]]

 [ESCAPE [AS] 'escape']

 [NEWLINE [AS] 'LF' | 'CR' | 'CRLF']

 [FILL MISSING FIELDS])]

 [ENCODING 'encoding']

 [[LOG ERRORS [INTO error_table]] SEGMENT REJECT LIMIT count

 [ROWS | PERCENT]]

Define the write-only output table

 CREATE WRITABLE EXTERNAL TABLE table_name

 (column_name data_type [, ...] | LIKE other_table)

 LOCATION (cos_ext_params)

 FORMAT 'TEXT'

 [([DELIMITER [AS] 'delimiter']

 [NULL [AS] 'null string']

 [ESCAPE [AS] 'escape' | 'OFF'])]

 | 'CSV'

 [([QUOTE [AS] 'quote']

 [DELIMITER [AS] 'delimiter']

 [NULL [AS] 'null string']

 [FORCE QUOTE column [, ...]]

 [ESCAPE [AS] 'escape'])]

 [ENCODING 'encoding']

 [DISTRIBUTED BY (column, [...]) | DISTRIBUTED RANDOMLY]

1. cos_ext_params description

cos://cos_endpoint/bucket/prefix secretId=id secretKey=key compressType=[none|gzip]

Tencent Cloud TCHouse-P

©2013-2024 Tencent Cloud. All rights reserved. Page 11 of 20

Parameter description

Parameter Format Required Description

URL

COS V4: cos://cos.
{REGION}.myqcloud.com/{BUCKET}/{PREFIX}

COS V5: cos:// {BUCKET}-{APPID}.cos.
{REGION}.myqcloud.com/{PREFIX}

Yes
See URL
parameter
description

secretId None Yes

Secret ID used
for API access.
See API Key
Management

secretKey None Yes

Secret key
used for API
access. See
API Key
Management

HTTPS true Ι false No

Whether to use
HTTPS to
access COS.
Default value:
true

compressType gzip No

Whether to
compress COS
files. Default
value: empty
(not to
compress)

URL parameter description

REGION: Region supported by COS, which needs to be the same region as the instance. For valid values, see
Regions and Access Endpoints.
BUCKET: COS bucket name, which can be seen in COS Bucket List. The name here does not contain the
 APPID . If you see the bucket name test-123123123 in the list, just enter "test".

PREFIX: COS object name prefix, which can be empty and include multiple "/".
In a read-only table scenario, prefix specifies the name prefix of the object to be read.

If prefix is empty, all files in the bucket will be read; if it ends with "/", all files in the folder and subfolders will be

matched; otherwise, all files in the folder and subfolders matched by prefix will be read. For example, COS

https://console.intl.cloud.tencent.com/cam/capi
https://console.intl.cloud.tencent.com/cam/capi
https://intl.cloud.tencent.com/document/product/436/6224
https://console.intl.cloud.tencent.com/cos5/bucket

Tencent Cloud TCHouse-P

©2013-2024 Tencent Cloud. All rights reserved. Page 12 of 20

objects include read-bucket/simple/a.csv , read-bucket/simple/b.csv , read-

bucket/simple/dir/c.csv , and read-bucket/simple_prefix/d.csv .

If prefix is specified as simple , all files will be read, including simple_prefix with the matching

directory name prefix. The following is the list of objects:
 read-bucket/simple/a.csv
 read-bucket/simple/b.csv
 read-bucket/simple/dir/c.csv
 read-bucket/simple_prefix/d.csv

If prefix is specified as simple/ , all files including simple/ will be read, including:

 read-bucket/simple/a.csv
 read-bucket/simple/b.csv
 read-bucket/simple/dir/c.csv
In a write-only table scenario, prefix specifies the output file prefix.

If no prefix is specified, files will be written to the bucket. If prefix ends with "/", files will be written to the

directory specified by prefix ; otherwise, files will be prefixed with the given prefix . For example, if the files

that need to be created include a.csv , b.csv , and c.csv , then:

If prefix is specified as simple/ , the following objects will be generated:

 read-bucket/simple/a.csv
 read-bucket/simple/b.csv

 read-bucket/simple/b.csv
If prefix is specified as simple_ , the following objects will be generated:

 read-bucket/simple_a.csv
 read-bucket/simple_b.csv
 read-bucket/simple_b.csv

Use Cases

Importing COS data

1. Define the COS extension.

CREATE EXTENSION IF NOT EXISTS cos_ext SCHEMA public;

2. Define a COS read-only external table and a local table.
Local table:

CREATE TABLE cos_local_tbl (c1 int, c2 text, c3 int)

DISTRIBUTED BY (c1);

Tencent Cloud TCHouse-P

©2013-2024 Tencent Cloud. All rights reserved. Page 13 of 20

COS external table: Specifies to read all files in simple-bucket in Guangzhou.

CREATE READABLE EXTERNAL TABLE cos_tbl (c1 int, c2 text, c3 int)

LOCATION('cos://cos.ap-guangzhou.myqcloud.com/simple-bucket/from_cos/ secretKey=xxx

FORMAT 'csv';

3. Prepare local table data.
Upload the file to the from_cos directory in simple-bucket with the following content:

1,simple line 1,1

2,simple line 1,1

3,simple line 1,1

4,simple line 1,1

5,simple line 1,1

6,simple line 2,1

7,simple line 2,1

8,simple line 2,1

9,simple line 2,1

Note:
The imported data does not contain field rows of the table header.

4. Import COS data.

INSERT INTO cos_local_tbl SELECT * FROM cos_tbl;

5. Check the result to see whether the data is consistent.

SELECT count(1) FROM cos_local_tbl;

SELECT count(1) FROM cos_tbl;

Exporting data to COS

1. Define the COS extension.

CREATE EXTENSION IF NOT EXISTS cos_ext SCHEMA public;

2. Define a COS write-only external table.
Local table:

CREATE TABLE cos_local_tbl (c1 int, c2 text, c3 int)

DISTRIBUTED BY (c1);

COS external table: Specifies to write all files in simple-bucket in Guangzhou.

CREATE WRITABLE EXTERNAL TABLE cos_tbl_wr (c1 int, c2 text, c3 int)

LOCATION('cos://cos.ap-guangzhou.myqcloud.com/simple-bucket/to-cos/ secretKey=xxx s

Tencent Cloud TCHouse-P

©2013-2024 Tencent Cloud. All rights reserved. Page 14 of 20

FORMAT 'csv';

3. Construct the test data.

insert into cos_local_tbl values

(1, 'simple line 1' , 1),

(2, 'simple line 2', 2),

(3, 'simple line 3', 3) ,

(4, 'simple line 4', 4) ,

(5, 'simple line 5', 5) ,

(6, 'simple line 6', 6) ,

(7, 'simple line 7', 7) ,

(8, 'simple line 8', 8) ,

(9, 'simple line 9', 9);

4. Export the data to COS.

INSERT INTO cos_tbl_wr SELECT * FROM cos_local_tbl;

5. Check the result.

Simple analysis of COS data

Note:

Tencent Cloud TCHouse-P

©2013-2024 Tencent Cloud. All rights reserved. Page 15 of 20

When using COS external tables for query analysis without query optimization, we recommend you first import the
data locally for complex queries.
1. Define the COS extension.

CREATE EXTENSION IF NOT EXISTS cos_ext SCHEMA public;

2. Prepare the data.
Upload the file to the for-dml directory in simple-bucket with the following content:

1,simple line 1,1

2,simple line 1,1

3,simple line 1,1

4,simple line 1,1

5,simple line 1,1

6,simple line 2,1

7,simple line 2,1

8,simple line 2,1

9,simple line 2,1

3. Define a COS read-only external table.

CREATE READABLE EXTERNAL TABLE cos_tbl_dml (c1 int, c2 text, c3 int)

LOCATION('cos://cos.ap-guangzhou.myqcloud.com/simple-bucket/for-dml/ secretKey=xxx

FORMAT 'csv';

4. Analyze the data in the COS external table.

SELECT c2, sum(c1) FROM cos_tbl GROUP BY c2;

Tencent Cloud TCHouse-P

©2013-2024 Tencent Cloud. All rights reserved. Page 16 of 20

Syncing EMR Data with External Table
Last updated：2024-11-27 15:36:05

Background

In data warehouse construction, Hive is usually used to process the raw data (at the petabyte level), perform time-
consuming ETL jobs, and hand over the results (at the terabyte level) to a quasi-real-time computing engine such as
Tencent Cloud TCHouse-P to connect BI tools and present reports in quasi real time.

This document describes how to import data from Hive on EMR to Tencent Cloud TCHouse-P via COS.

Directions

Note:
Tencent Cloud TCHouse-P supports only CSV and GZIP but not ORC and Parquet formats.
The efficiency of importing COS data to Tencent Cloud TCHouse-P depends on the number of files, which is
recommended to be N times the number of compute nodes in Tencent Cloud TCHouse-P.

1. Enable EMR's capability to read and write COS data.
 First, you need to ensure that EMR is able to read and write COS data. You can click Enable COS when creating an
EMR instance.
2. Create a Hive local table and write data into it.

create table hive_local_table(c1 int, c2 string, c3 int, c4 string);

insert into hive_local_table values(1001, 'c2', 99, 'c4'),(1002, 'c2', 100, 'c4'),(

3. Create a Hive COS external table.

create table hive_cos_table(c1 int, c2 string, c3 int, c4 string)

row format delimited fields terminated by ','

LINES TERMINATED BY '\\n'

stored as textfile location 'cosn://{bucket_name}/{dir_name}';

For more information, see Creating Databases Based on COS.
4. Import the local data into COS.

insert into hive_cos_table select * from hive_local_table;

After successful write, you can see the file in the corresponding COS directory.
5. Create a COS external table in Tencent Cloud TCHouse-P.

https://intl.cloud.tencent.com/document/product/1026/31151

Tencent Cloud TCHouse-P

©2013-2024 Tencent Cloud. All rights reserved. Page 17 of 20

CREATE READABLE EXTERNAL TABLE snova_cos_table (c1 int, c2 varchar(32), c3 int, c4

LOCATION('cos:// {BUCKET}-{APPID}.cos.{REGION}.myqcloud.com/{PREFIX} secretKey=****

FORMAT 'csv';

For more information, see Importing and Exporting COS Data at High Speed with External Table.
6. Create a local table in Tencent Cloud TCHouse-P and import data into it.

create table snova_local_table(c1 int, c2 text, c3 int, c4 text);

insert into snova_local_table select * from snova_cos_table;

https://intl.cloud.tencent.com/document/product/1138/45032

Tencent Cloud TCHouse-P

©2013-2024 Tencent Cloud. All rights reserved. Page 18 of 20

Implementing CDWPG UPSERT with Rule
Last updated：2024-11-27 15:36:05

Background

The underlying structure of Tencent Cloud TCHouse-P is built on Greenplum 6. The PostgreSQL kernel is v9.4, and
its INSERT .. ON CONFLICT feature cannot be well supported for now. This document describes how to use a

PostgreSQL rule to UPSERT , as it requires a different method.

Rule Overview

The PostgreSQL rule system allows one to define an alternative action to be performed on insertions, updates, or
deletions in database tables. Roughly speaking, a rule causes additional commands to be executed when a given
command on a given table is executed. Alternatively, an INSTEAD rule can replace a given command by another,

or cause a command not to be executed at all. Rules are used to implement table views as well. A rule is really a
command transformation mechanism, or command macro. The transformation happens before the execution of the

command starts.
For more information, see CREATE RULE.

 UPSERT Rule

To implement an UPSERT operation, you need a rule that determines whether a corresponding record already

exists during INSERT , allows for UPDATE if yes, and allows for INSERT if no.

The following database instance is used as an example:
Create a test database.

CREATE TABLE my_test(

 id integer,

 num1 integer,

 num2 decimal,

 str1 varchar(20),

 str2 text,

 PRIMARY KEY(id)

) distributed by (id);

Then, add a rule to the table.

https://www.postgresql.org/docs/9.4/sql-createrule.html

Tencent Cloud TCHouse-P

©2013-2024 Tencent Cloud. All rights reserved. Page 19 of 20

create rule r1 as on insert to my_test where exists (select 1 from e t1 where t1.id

This rule is for the INSERT operation. If the id in the new INSERT statement already exists, the original data

will be updated with the value inside the new INSERT , i.e., the NEW.XXX that can be seen after the operation. In

this case, no errors will be reported due to the primary key constraint, and the UPDATE operation will be performed.

\\d my_test

 Table "public.my_test"

 Column | Type | Collation | Nullable | Default

--------+-----------------------+-----------+----------+---------------------------

 id | integer | | not null | nextval('my_test_id_seq'::

 num1 | integer | | |

 num2 | numeric | | |

 str1 | character varying(20) | | |

 str2 | text | | |

Indexes:

 "my_test_pkey" PRIMARY KEY, btree (id)

Rules:

 r1 AS

 ON INSERT TO my_test

 WHERE (EXISTS (SELECT 1

 FROM my_test my_test_1

 WHERE my_test_1.id = new.id

 LIMIT 1)) DO INSTEAD UPDATE my_test SET num1 = new.num1, num2 = new.num2, str

Notes

The rule is subject to the following limits:
1. Bulk insert may not be proper. If the statement does not set a unique constraint or primary key constraint, duplicate

data may be generated during bulk insert. Therefore, you should avoid using bulk insert. When using it, avoid
determining whether the fields of UPSERT are not duplicated or add unique constraints to the fields that need to be

determined. As shown in the following example, if there is no primary key constraint on the id , there may be

duplicate data after execution.

insert into my_test (id,num1,num2,str1,str2)values(1,2,1.0,'111','555'),(1,3,2.0,'1

2. The rule does not support the COPY statement, which may also cause duplicate data just like bulk insert.

3. When you set the UPDATE rule, if the rule usage is configured, but the INSERT statement does not pass in the

 num1 and num2 fields, these two fields will be null after UPDATE , resulting in the loss of the original data.

update my_test set num1=NEW.num1,num2=NEW.num2,str1=NEW.str1,str2=NEW.str2

Tencent Cloud TCHouse-P

©2013-2024 Tencent Cloud. All rights reserved. Page 20 of 20

