
TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 1
of 165

TencentCloud Managed Service for

Prometheus

Integration Guide

Product Documentation

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 2
of 165

Copyright Notice

©2013-2025 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify,
copy or distribute

in any way, in whole or in part, the contents of this document without Tencent
Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by the Tencent corporate group, including
its parent, subsidiaries and affiliated companies, as the case may be. Trademarks of third parties referred to in this
document are owned by their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products
and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's
products or services are
subject to change. Specific products and services and the standards
applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 3
of 165

Contents

Integration Guide
Scrape Configuration Description
Custom Monitoring
EMR Integration

EMR Metric Collection Component of Prometheus
Java Application Integration

Spring Boot Integration
JVM Integration

Go Application Integration
Exporter Integration

Elasticsearch Exporter Integration
Kafka Exporter Integration
MongoDB Exporter Integration
PostgreSQL Exporter Integration
Nginx Exporter Integration
Redis Exporter Integration
MySQL Exporter Integration
Consul Exporter Integration
Memcached Exporter Integration
Integration with Other Exporters
CVM Node Exporter
Apache Exporter Integration

Health Check
Instructions for Installing Components in the TKE Cluster
Cloud Monitoring
Read Cloud-Hosted Prometheus Instance Data via Remote Read
Agent Self-Service Access
Pushgateway Integration
Security Group Open Description

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 4
of 165

Integration Guide
Scrape Configuration Description
Last updated：2024-01-29 15:55:08

Overview

Prometheus mainly uses PULL to scrape the monitoring APIs exposed by the target service; therefore, you need to
configure the corresponding scrape task to request the monitoring data and write it into the storage provided by
Prometheus. Currently, Prometheus provides the configurations of the following tasks:

Native job configuration: the native scrape job configuration of Prometheus is provided.
PodMonitor: It collects the corresponding monitoring data in Pods based on Prometheus Operator in the K8s
ecosystem.
ServiceMonitor: It collects the monitoring data in the corresponding Endpoints of Services based on Prometheus
Operator in the K8s ecosystem.

Note:
 Configuration items in [] are optional.

Native job configuration

The relevant configuration items are as detailed below:

Scrape task name. `label(job=job_name)` will be added to the corresponding metric

job_name: <job_name>

Scrape task interval

[scrape_interval: <duration> | default = <global_config.scrape_interval>]

Scrape request timeout period

[scrape_timeout: <duration> | default = <global_config.scrape_timeout>]

Scrape task request URI path

[metrics_path: <path> | default = /metrics]

Solve the conflict between the scraped label and the label added to Prometheus on

true: Retain the scraped label and ignore the label conflicting with Prometheus o

false: Add `exported_<original-label>` before the scraped label to add the label

[honor_labels: <boolean> | default = false]

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 5
of 165

Whether to use the time generated on the scrape target

true: Use the time on the target

false: Directly ignore the time on the target

[honor_timestamps: <boolean> | default = true]

Scrape protocol: HTTP or HTTPS

[scheme: <scheme> | default = http]

URL parameter of the scrape request

params:

 [<string>: [<string>, ...]]

Use `basic_auth` to set `Authorization` in the scrape request header. `password`

basic_auth:

 [username: <string>]

 [password: <secret>]

 [password_file: <string>]

Use `bearer_token` to set `Authorization` in the scrape request header. `bearer_t

[bearer_token: <secret>]

Use `bearer_token` to set `Authorization` in the scrape request header. `bearer_t

[bearer_token_file: <filename>]

Specify whether the scrape connection passes through a TLS secure channel and con

tls_config:

 [<tls_config>]

Use a proxy service to scrape metrics on the target and enter the corresponding p

[proxy_url: <string>]

Use static configuration to specify the target. For more information, see the des

static_configs:

 [- <static_config> ...]

Set the CVM scrape configuration. For more information, see the description below

cvm_sd_configs:

 [- <cvm_sd_config> ...]

After scraping the data, change the label on the target through the relabeling me

For more information on `relabel_config`, see the description below

relabel_configs:

 [- <relabel_config> ...]

After the data is scraped and before it is written, use the relabeling mechanism

For more information on `relabel_config`, see the description below

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 6
of 165

metric_relabel_configs:

 [- <relabel_config> ...]

Limit of data points in one scrape. 0: no limit. Default value: 0

[sample_limit: <int> | default = 0]

Limit of targets in one scrape. 0: no limit. Default value: 0

[target_limit: <int> | default = 0]

 static_config configuration

The relevant configuration items are as detailed below:

Specify the corresponding target host value, such as `ip:port`

targets:

 [- '<host>']

Add the corresponding label to all targets, which is similar to a global label

labels:

 [<labelname>: <labelvalue> ...]

 cvm_sd_config configuration

CVM scrape configuration uses TencentCloud API to automatically get the CVM instance list, and the CVM instance's
private IP is used by default. Scrape configuration will generate the following meta labels, which can be used in

relabeling configuration.

Label Description

__meta_cvm_instance_id Instance ID

__meta_cvm_instance_name Instance name

__meta_cvm_instance_state Instance status

__meta_cvm_instance_type Instance model

__meta_cvm_OS Instance OS

__meta_cvm_private_ip Private IP

__meta_cvm_public_ip Public IP

__meta_cvm_vpc_id VPC ID

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 7
of 165

__meta_cvm_subnet_id Subnet ID

__meta_cvm_tag_<tagkey> Instance tag value

__meta_cvm_region Instance region

__meta_cvm_zone Instance AZ

CVM scrape configuration description:

Tencent Cloud region. For the region list, visit

https://cloud.tencent.com/document/api/213/15692#.E5.9C.B0.E5.9F.9F.E5.88.97.E8

.A1.A8.

region: <string>

Custom endpoint.

[endpoint: <string>]

Credential information for accessing TencentCloud API. If it is not set, the

values of the `TENCENT_CLOUD_SECRET_ID` and `TENCENT_CLOUD_SECRET_KEY`

environment variables will be used.

Leave it empty if you use a CVM scrape task in **Integration Center** for

configuration.

[secret_id: <string>]

[secret_key: <secret>]

CVM list refresh interval

[refresh_interval: <duration> | default = 60s]

Port for scraping metrics

ports:

 - [<int> | default = 80]

CVM list filtering rule. For more information on the supported filtering

rules, visit https://intl.cloud.tencent.com/document/product/213/33258.

filters:

 [- name: <string>

 values: <string>, [...]]

Note:
If a CVM scrape task in Integration Center is used to configure cvm_sd_configs , the integration automatically

uses the preset role authorization of the service for security considerations. You don't need to manually enter the
 secret_id , secret_key , and endpoint parameters.

Sample

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 8
of 165

Static configuration

job_name: prometheus

scrape_interval: 30s

static_configs:

- targets:

 - 127.0.0.1:9090

CVM scrape configuration

job_name: demo-monitor

cvm_sd_configs:

- region: ap-guangzhou

 ports:

 - 8080

 filters:

 - name: tag:service

 values:

 - demo

relabel_configs:

- source_labels: [__meta_cvm_instance_state]

 regex: RUNNING

 action: keep

- regex: __meta_cvm_tag_(.*)

 replacement: $1

 action: labelmap

- source_labels: [__meta_cvm_region]

 target_label: region

 action: replace

PodMonitor

The relevant configuration items are as detailed below:

Prometheus Operator CRD version

apiVersion: monitoring.coreos.com/v1

Corresponding K8s resource type, which is PodMonitor here

kind: PodMonitor

Corresponding K8s metadata. Here, only the `name` is concerned. If `jobLabel`

is not specified, the value of job in the corresponding metric label will be

`<namespace>/<name>`

metadata:

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 9
of 165

 name: redis-exporter # Enter a unique name

 namespace: cm-prometheus # The namespace is fixed. Do not change it

Describe the selection of the scrape target Pod and the configuration of the

scrape task

spec:

 # Enter the target Pod label. PodMonitor will use the corresponding value as

the job label value

 # If Pod YAML configuration is to be viewed, use the value in

`pod.metadata.labels`

 # If `Deployment/Daemonset/Statefulset` is to be viewed, use

`spec.template.metadata.labels`

 [jobLabel: string]

 # Add the label on the corresponding Pod to the target label

 [podTargetLabels: []string]

 # Limit of data points in one scrape. 0: no limit. Default value: 0

 [sampleLimit: uint64]

 # Limit of targets in one scrape. 0: no limit. Default value: 0

 [targetLimit: uint64]

 # Configure the Prometheus HTTP port to be exposed and scraped. You can

configure multiple Endpoints

 podMetricsEndpoints:

 [- <endpoint_config> ...] # For more information, see the endpoint

description below

 # Select the namespace where the Pod to be monitored resides. If it is not

specified, all namespaces will be selected

 [namespaceSelector:]

 # Whether to select all namespaces

 [any: bool]

 # List of namespace to be selected

 [matchNames: []string]

 # Enter the label of the Pod to be monitored to locate the target Pod. For

more information, see [LabelSelector v1 meta](https://v1-

17.docs.kubernetes.io/docs/reference/generated/kubernetes-

api/v1.17/#labelselector-v1-meta)

 selector:

 [matchExpressions: array]

 [example: - {key: tier, operator: In, values: [cache]}]

 [matchLabels: object]

 [example: k8s-app: redis-exporter]

Sample

 apiVersion: monitoring.coreos.com/v1

 kind: PodMonitor

 metadata:

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 10
of 165

 name: redis-exporter # Enter a unique name

 namespace: cm-prometheus # The namespace is fixed. Do not change it

 spec:

 podMetricsEndpoints:

 - interval: 30s

 port: metric-port # Enter the name of the corresponding port of the

Prometheus exporter in the Pod YAML configuration file

 path: /metrics # Enter the value of the corresponding path of the

Prometheus exporter. If it is not specified, it will be `/metrics` by default

 relabelings:

 - action: replace

 sourceLabels:

 - instance

 regex: (.*)

 targetLabel: instance

 replacement: 'crs-xxxxxx' # Change it to the corresponding Redis

instance ID

 - action: replace

 sourceLabels:

 - instance

 regex: (.*)

 targetLabel: ip

 replacement: '1.x.x.x' # Change it to the corresponding Redis instance

IP

 namespaceSelector: # Select the namespace where the Pod to be monitored

resides

 matchNames:

 - redis-test

 selector: # Enter the label value of the Pod to be monitored to locate

the target Pod

 matchLabels:

 k8s-app: redis-exporter

ServiceMonitor

The relevant configuration items are as detailed below:

Prometheus Operator CRD version

apiVersion: monitoring.coreos.com/v1

Corresponding K8s resource type, which is ServiceMonitor here

kind: ServiceMonitor

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 11
of 165

Corresponding K8s metadata. Here, only the `name` is concerned. If `jobLabel`

is not specified, the value of job in the corresponding metric label will be

the Service name

metadata:

 name: redis-exporter # Enter a unique name

 namespace: cm-prometheus # The namespace is fixed. Do not change it

Describe the selection of the scrape target Pod and the configuration of the

scrape task

spec:

 # Enter the target Pod label (metadata/labels). ServiceMonitor will use the

corresponding value as the job label value

 [jobLabel: string]

 # Add the label on the corresponding Service to the target label

 [targetLabels: []string]

 # Add the label on the corresponding Pod to the target label

 [podTargetLabels: []string]

 # Limit of data points in one scrape. 0: no limit. Default value: 0

 [sampleLimit: uint64]

 # Limit of targets in one scrape. 0: no limit. Default value: 0

 [targetLimit: uint64]

 # Configure the Prometheus HTTP port to be exposed and scraped. You can

configure multiple Endpoints

 endpoints:

 [- <endpoint_config> ...] # For more information, see the endpoint

description below

 # Select the namespace where the Pod to be monitored resides. If it is not

specified, all namespaces will be selected

 [namespaceSelector:]

 # Whether to select all namespaces

 [any: bool]

 # List of namespace to be selected

 [matchNames: []string]

 # Enter the label of the Pod to be monitored to locate the target Pod. For

more information, see [LabelSelector v1 meta](https://v1-

17.docs.kubernetes.io/docs/reference/generated/kubernetes-

api/v1.17/#labelselector-v1-meta)

 selector:

 [matchExpressions: array]

 [example: - {key: tier, operator: In, values: [cache]}]

 [matchLabels: object]

 [example: k8s-app: redis-exporter]

Sample

 apiVersion: monitoring.coreos.com/v1

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 12
of 165

 kind: ServiceMonitor

 metadata:

 name: go-demo # Enter a unique name

 namespace: cm-prometheus # The namespace is fixed. Do not change it

 spec:

 endpoints:

 - interval: 30s

 # Enter the name of the corresponding port of the Prometheus exporter in

the Service YAML configuration file

 port: 8080-8080-tcp

 # Enter the value of the corresponding path of the Prometheus exporter.

If it is not specified, it will be `/metrics` by default

 path: /metrics

 relabelings:

 # ** There must be a label named `application`. Here, suppose that K8s

has a label named `app`

 # Use the `replace` action of `relabel` to replace it with `application`

 - action: replace

 sourceLabels: [__meta_kubernetes_pod_label_app]

 targetLabel: application

 # Select the namespace where the Service to be monitored resides

 namespaceSelector:

 matchNames:

 - golang-demo

 # Enter the label value of the Service to be monitored to locate the target

Service

 selector:

 matchLabels:

 app: golang-app-demo

endpoint_config configuration

The relevant configuration items are as detailed below:

Corresponding port name. Note that it is not the port number here. Default

value: 80. Corresponding values are as follows:

ServiceMonitor: `Service>spec/ports/name`

PodMonitor description:

If Pod YAML configuration is to be viewed, use the value in

`pod.spec.containers.ports.name`

If `Deployment/Daemonset/Statefulset` is to be viewed, use

`spec.template.spec.containers.ports.name`

[port: string | default = 80]

Scrape task request URI path

[path: string | default = /metrics]

Scrape protocol: HTTP or HTTPS

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 13
of 165

[scheme: string | default = http]

URL parameter of the scrape request

[params: map[string][]string]

Scrape task interval

[interval: string | default = 30s]

Scrape task timeout period

[scrapeTimeout: string | default = 30s]

Specify whether the scrape connection passes through a TLS secure channel and

configure the corresponding TLS parameters

[tlsConfig: TLSConfig]

Read the value of the bearer token through the corresponding file and add it

to the header of the scrape task

[bearerTokenFile: string]

You can use the corresponding K8s secret key to read the bearer token. Note

that the secret namespace must be the same with that of the

PodMonitor/ServiceMonitor

[bearerTokenSecret: string]

Solve the conflict between the scraped label and the label added to

Prometheus on the backend

true: Retain the scraped label and ignore the label conflicting with

Prometheus on the backend

false: Add `exported_<original-label>` before the scraped label to add the

label on the Prometheus backend

[honorLabels: bool | default = false]

Whether to use the time generated on the scrape target

true: Use the time on the target

false: Directly ignore the time on the target

[honorTimestamps: bool | default = true]

`basic auth` authentication information. Enter the corresponding K8s secret

key value for `username/password`. Note that the secret namespace must be the

same as that of the PodMonitor/ServiceMonitor

[basicAuth: BasicAuth]

Use a proxy service to scrape metrics on the target and enter the

corresponding proxy service address

[proxyUrl: string]

After scraping the data, change the label on the target through the

relabeling mechanism and run multiple relabeling rules in sequence

For more information on `relabel_config`, see the description below

relabelings:

[- <relabel_config> ...]

After the data is scraped and before it is written, use the relabeling

mechanism to change the label value and run multiple relabeling rules in

sequence

For more information on `relabel_config`, see the description below

metricRelabelings:

[- <relabel_config> ...]

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 14
of 165

relabel_config configuration

The relevant configuration items are as detailed below:

Specify which labels are to be taken from the original labels for relabeling.

The taken values are concatenated and separated with the symbol defined in

`separator`

The corresponding configuration item for PodMonitor/ServiceMonitor is

`sourceLabels`

[source_labels: '[' <labelname> [, ...] ']']

Define the separator symbol for concatenating the labels to be relabeled.

Default value: `;`

[separator: <string> | default = ;]

If `action` is ` replace` or `hashmod`, you need to use the `target_label` to

specify the corresponding label name

The corresponding configuration item for PodMonitor/ServiceMonitor is

`targetLabel`

[target_label: <labelname>]

Regex for regular match of the values of source labels

[regex: <regex> | default = (.*)]

Calculate the modulus of the MD5 value of the source label. The modulo

operation is used if `action` is `hashmod`

[modulus: <int>]

If `action` is `replace`, use `replacement` to define the expression to be

replaced after regular match. You can replace it based on regex

[replacement: <string> | default = $1]

Perform an action based on the value matched by the regex. Valid values of

`action` are as follows (the default value is `replace`):

replace: Replace the matched value with that defined in `replacement` if the

regex has any match and use `target_label` to set the value and add the

corresponding label

keep: Drop the value if the regex has no matches

drop: Drop the value if the regex has any match

hashmod: Calculate the modulus of the MD5 value of the source label based on

the value specified by `modulus` and add a label with the name specified by

`target_label`

labelmap: Use `replacement` to replace the corresponding label name if the

regex has any match

labeldrop: Delete the corresponding label name if the regex has any match

labelkeep: Delete the corresponding label name if the regex has no matches

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 15
of 165

[action: <relabel_action> | default = replace]

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 16
of 165

Custom Monitoring
Last updated：2024-01-29 15:55:07

Overview

You can use TMP to customize the reported metric monitoring data so as to monitor internal status of applications or
services, such as the number of processed requests and the number of orders. You can also monitor the processing
duration of some core logic, such as requesting external services.

This document uses Go as an example to describe how to use TMP to customize reported metrics, visualization, and
alerting.

Supported Programming Languages

Official SDKs from the native Prometheus community:
Go
Java or Scala

Python
Ruby
Third-Party SDKs for other programming languages:
Bash
C
C++

Common Lisp
Dart
Elixir
Erlang
Haskell

Lua for NGINX
Lua for Tarantool
.NET/C#
Node.js
Perl

PHP
R
Rust

https://github.com/prometheus/client_golang
https://github.com/prometheus/client_java
https://github.com/prometheus/client_python
https://github.com/prometheus/client_ruby
https://github.com/aecolley/client_bash
https://github.com/digitalocean/prometheus-client-c
https://github.com/jupp0r/prometheus-cpp
https://github.com/deadtrickster/prometheus.cl
https://github.com/tentaclelabs/prometheus_client
https://github.com/deadtrickster/prometheus.ex
https://github.com/deadtrickster/prometheus.erl
https://github.com/fimad/prometheus-haskell
https://github.com/knyar/nginx-lua-prometheus
https://github.com/tarantool/metrics
https://github.com/prometheus-net/prometheus-net
https://github.com/siimon/prom-client
https://metacpan.org/pod/Net::Prometheus
https://github.com/promphp/prometheus_client_php
https://github.com/cfmack/pRometheus
https://github.com/tikv/rust-prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 17
of 165

For more information, please see CLIENT LIBRARIES.

Data Model

Prometheus has multidimensional analysis capabilities. A data model consists of the following parts:
 Metric Name + Labels + Timestamp + Value/Sample

Metric Name: monitoring object (for example, http_request_total indicates the current total number of HTTP

requests received by the system).
Labels: characteristics dimensions of the current sample, which are in K/V structure. Through such dimensions,
Prometheus can filter, aggregate, and perform other operations on the sample data.
Timestamp: a timestamp accurate down to the millisecond

Value: a float64 value, which indicates the current sample value.
 Metric Name/Labels can contain only ASCII characters, digits, underscores, and colons and must comply with

the regular expression [a-zA-Z_:][a-zA-Z0-9_:]*.
For more information on a data model, please see DATA MODEL.
For the best practice of metric and label naming, please see METRIC AND LABEL NAMING.

Metric Tracking Method

Prometheus provides four metric types for different monitoring scenarios: Counter , Gauge , Histogram ,

and Summary , as described below. For more information, please see METRIC TYPES.

The Prometheus community provides SDKs for multiple programing languages, all of which are basically similar in
usage but differ mostly in syntax. This document uses Go as an example to describe how to report custom monitoring
metrics.

Counter

A metric in Counter type increases monotonically and will be reset after service restart. You can use counters to

monitor the numbers of requests, exceptions, user logins, orders, etc.
You can use a counter to monitor the number of orders as follows:

package order

import (

 "github.com/prometheus/client_golang/prometheus"

 "github.com/prometheus/client_golang/prometheus/promauto"

)

// Define the counter object to be monitored

https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/concepts/data_model/
https://prometheus.io/docs/practices/naming/
https://prometheus.io/docs/concepts/metric_types/

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 18
of 165

var (

 opsProcessed = promauto.NewCounterVec(prometheus.CounterOpts{

 Name: "order_service_processed_orders_total",

 Help: "The total number of processed orders",

 }, []string{"status"}) // Processing status

)

// Process the order

func makeOrder() {

 opsProcessed.WithLabelValues("success").Inc() // Success

 // opsProcessed.WithLabelValues("fail").Inc() // Failure

 // Order placement business logic

}

For example, you can use the rate() function to get the order increase rate:

rate(order_service_processed_orders_total[5m])

Gauge

A gauge is a current value, which can be increased or reduced during metric timestamping. You can use gauges to
monitor the current memory utilization, CPU utilization, current number of threads, queue size, etc.
You can use a gauge to monitor the size of an order queue as follows:

package order

import (

 "github.com/prometheus/client_golang/prometheus"

 "github.com/prometheus/client_golang/prometheus/promauto"

)

// Define the gauge object to be monitored

var (

 queueSize = promauto.NewGaugeVec(prometheus.GaugeOpts{

 Name: "order_service_order_queue_size",

 Help: "The size of order queue",

 }, []string{"type"})

)

type OrderQueue struct {

 queue chan string

}

func newOrderQueue() *OrderQueue {

 return &OrderQueue{

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 19
of 165

 queue: make(chan string,100),

 }

}

// Produce an order message

func (q *OrderQueue)produceOrder() {

 // Produce an order message

 // Increase the queue size by 1

 queueSize.WithLabelValues("make_order").Inc() // Order placement queue

 // queueSize.WithLabelValues("cancel_order").Inc() // Order cancellation queue

}

// Consume an order message

func (q *OrderQueue)consumeOrder() {

 // Consume an order message

 // Reduce the queue size by 1

 queueSize.WithLabelValues("make_order").Dec()

}

You can use the gauge metric to directly view the current size of each type of queue of an order:

order_service_order_queue_size

Histogram

Prometheus calculates the sample distribution based on the configured Bucket to generate a histogram, which

can be processed subsequently and is generally used for duration monitoring. For example, you can use a histogram
to calculate the latencies of P99, P95, and P50 and monitor the numbers of processed items. With histograms, you
don't need to use counters to count items. In addition, you can use histograms to monitor metrics such as API
response time and database access time.
A histogram can be used in a similar way to a summary, so you can directly refer to the summary usage.

Summary

A summary is similar to a histogram, as it also calculates the sample distribution, but their differences lie in that a
summary calculates the distribution (P99/P95/Sum/Count) on the client and therefore uses more client resources, and
the data cannot be calculated and processed in an aggregated manner subsequently. You can use summaries to
monitor metrics such as API response time and database access duration.
You can use a summary to monitor the order processing duration as follows:

package order

import (

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 20
of 165

 "net/http"

 "time"

 "github.com/prometheus/client_golang/prometheus"

 "github.com/prometheus/client_golang/prometheus/promauto"

 "github.com/prometheus/client_golang/prometheus/promhttp"

)

// Define the summary object to be monitored

var (

 opsProcessCost = promauto.NewSummaryVec(prometheus.SummaryOpts{

 Name: "order_service_process_order_duration",

 Help: "The order process duration",

 }, []string{"status"})

)

func makeOrder() {

 start := time.Now().UnixNano()

 // The order placement logic processing is completed, and the processing durati

 defer opsProcessCost.WithLabelValues("success").Observe((float64)(time.Now().Un

 // Order placement business logic

 time.Sleep(time.Second) // Simulate the processing duration

}

You can use a summary metric to directly view the average order placement processing duration:

order_service_processed_order_duration_sum /

order_service_processed_order_duration_count

Exposing Prometheus metrics

Use promhttp.Handler() to expose the metric tracking data to the HTTP service.

package main

import (

 "net/http"

 "github.com/prometheus/client_golang/prometheus/promhttp"

)

func main() {

 // Business code

 // Expose Prometheus metrics in the HTTP service

 http.Handle("/metrics", promhttp.Handler())

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 21
of 165

 // Business code

}

Collecting Data

After the tracking of custom metrics for your business is completed and the application is released, you can use
Prometheus to collect the monitoring metric data. For more information, please see Go Integration.

Viewing Monitoring Data and Alerts

Open the Grafana service that comes with TMP and use Explore to view the monitoring metric data as shown

below. You can also customize Grafana monitoring dashboards.

You can use Prometheus together with the alarming capabilities of Cloud Monitor to trigger alerts for custom
monitoring metrics in real time. For more information, please see Alert Overview and Usage.

https://grafana.com/docs/grafana/latest/dashboards/
https://intl.cloud.tencent.com/document/product/1116/43191#

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 22
of 165

EMR Integration
EMR Metric Collection Component of
Prometheus
Last updated：2024-10-29 11:44:46

Overview

During the use of Tencent Cloud Elastic MapReduce (EMR), you need to report EMR monitoring metrics to
TencentCloud Managed Service for Prometheus (TMP). This document will guide you on how to quickly collect EMR
monitoring metrics.

Prerequisites

You have used EMR and enabled the Prometheus Exporter feature.
Use the same region and Virtual Private Cloud (VPC) as EMR to purchase a Tencent Cloud Prometheus monitoring
instance. You can check the regions supported by TMP.

Directions

1. log in to TCOP .
2. In the left menu bar, click Managed Service for Prometheus.

3. In the Prometheus instance list, select the corresponding Prometheus instance.
4. Enter the instance details page, click Data Collection > Integration Center.
5. Search for EMR in the integration center, and click it to pop up an installation window. Then, confirm the information
and click Save.
Search for the required CAM policy as needed, and click to complete policy association.

https://console.intl.cloud.tencent.com/emr
https://intl.cloud.tencent.com/document/product/248/62769
https://intl.cloud.tencent.com/document/product/248/62998
https://console.intl.cloud.tencent.com/monitor/overview

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 23
of 165

6. Log in to the EMR Console, click Cluster ID/Name > Instance info, and obtain the region where the EMR cluster is
located and the EMR instance ID of the cluster.

Search for the required CAM policy as needed, and click to complete policy association.

7. Fill in the task configuration (in YAML format) in EMR. Then, fill in the task name, region where the EMR cluster is
located, and EMR instance ID in the red box of the following figure.

Note:
For the format of the region, see the region description in Service Region, for example, ap-guangzhou .

Multiple instance IDs are supported.
For the relabel_configs configuration, see Capture Configuration Instructions.
Search for the required CAM policy as needed, and click to complete policy association.

https://console.intl.cloud.tencent.com/emr
https://intl.cloud.tencent.com/document/product/248/62998
https://intl.cloud.tencent.com/document/product/248/62393

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 24
of 165

Supported Metrics

TMP supports all EMR metrics. For a detailed metric list, see EMR Cluster Monitoring Metrics.

https://intl.cloud.tencent.com/document/product/1026/36879

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 25
of 165

Java Application Integration
Spring Boot Integration
Last updated：2024-01-29 15:29:42

Overview

When using Spring Boot as the development framework, you need to monitor the status of applications such as JVM
and Spring MVC. TMP collects data such as JVM data based on the Spring Boot Actuator mechanism. With the
Grafana dashboard that comes with TMP, you can conveniently monitor the status of Spring Boot applications.

This document uses deploying a Spring Boot application in TKE as an example to describe how to use TMP to
monitor the application status.

Prerequisites

Create a TKE cluster.
Use a private image repository to manage application images.
The image is developed based on the Spring Boot framework.

Directions

Note:
Spring Boot provides the Actuator component to monitor applications, which reduces the development costs.
Therefore, Actuator is directly used in this document to track Spring Boot metrics. You should use Spring Boot v2.0 or
above in the following steps, as lower versions may have different configurations.

If you use Spring Boot v1.5 for integration, the integration process will differ from that for v2.0, and you
should note the following:

1. The address for accessing prometheus metrics is different from that for v2.0. On v1.5, the default address is

 /prometheus , i.e., http://localhost:8080/prometheus .

2. If error 401 is reported, it indicates no permissions (Whitelabel Error Page). On v1.5, security control is enabled for
the management API by default, so you need to set management.security.enabled=false .

3. If bootstrap.yml is used to configure parameters in the project, modifying management in it will not work,

which should be modified in application.yml due to the Spring Boot start and load sequence.

https://intl.cloud.tencent.com/document/product/457/30637
https://intl.cloud.tencent.com/document/product/457/9117

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 26
of 165

4. You cannot add metric common tag through YML; instead, you can add it only by adding a bean to the

code.

Modifying application dependencies and configuration

Step 1. Modify POM dependencies

If spring-boot-starter-web is already imported in this project, add the actuator/prometheus Maven

dependency to the pom.xml file.

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-actuator</artifactId>

</dependency>

<dependency>

 <groupId>io.micrometer</groupId>

 <artifactId>micrometer-registry-prometheus</artifactId>

</dependency>

Step 2. Modify the configuration

Edit the application.yml file in the resources directory and modify the actuator configuration to

expose the metric data in the Prometheus protocol.

management:

 endpoints:

 web:

 exposure:

 include: prometheus # Web access path for opening Prometheus

 metrics:

 # We recommend you enable the following options to monitor P99 and P95 latencie

 distribution:

 sla:

 http:

 server:

 requests: 1ms,5ms,10ms,50ms,100ms,200ms,500ms,1s,5s

 # Add special labels to Prometheus

 tags:

 # You must add the corresponding application name, as the corresponding monit

 application: spring-boot-mvc-demo

Step 3. Perform local verification

In the current directory of the project, run mvn spring-boot:run . If you can access the metric data of the

Prometheus protocol through http://localhost:8080/actuator/prometheus , the relevant dependency

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 27
of 165

configuration is correct.
Note:
The default configurations of the port and path are used in the same, which should be replaced with those in your

actual project.

Releasing application to TKE

Step 1. Configure a Docker image environment locally

If you have already configured a Docker image environment locally, proceed to the next step; otherwise, configure one
as instructed in Getting Started.

Step 2. Package and upload the image

1. Add Dockerfile in the root directory of the project. You can add it by referring to the following sample code

and modify Dockerfile based on your actual project:

FROM openjdk:8-jdk

WORKDIR /spring-boot-demo

ADD target/spring-boot-demo-*.jar /spring-boot-demo/spring-boot-demo.jar

CMD ["java","-jar","spring-boot-demo.jar"]

2. Package the image by running the following command in the project root directory. You need to replace
 namespace , ImageName , and image tag as needed in your actual project.

mvn clean package

docker build . -t ccr.ccs.tencentyun.com/[namespace]/[ImageName]:[image tag]

docker push ccr.ccs.tencentyun.com/[namespace]/[ImageName]:[image tag]

For example:

mvn clean package

docker build . -t ccr.ccs.tencentyun.com/prom_spring_demo/spring-boot-demo:latest

docker push ccr.ccs.tencentyun.com/prom_spring_demo/spring-boot-demo:latest

Step 3. Deploy the application

1. Log in to the TKE console and select the container cluster for deployment.
2. Click Workload > Deployment to enter the Deployment management page and select the corresponding
namespace to deploy the service. Here, a workload is created in the console, and Service access is also enabled. You

can also create one on the command line.

https://intl.cloud.tencent.com/document/product/457/9117
https://console.intl.cloud.tencent.com/tke2/cluster?rid=1

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 28
of 165

3. Add K8s labels to the corresponding Service. If the workload is created on the command line, you can directly add

labels. Here, the configuration is adjusted in the TKE console. Select the TKE cluster that needs to be adjusted.

Click Services and Routes > Service to enter the Service management page. Select the corresponding namespace
to adjust the Service YAML configuration as shown below:

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 29
of 165

apiVersion: v1

kind: Service

metadata:

 labels: # Add the corresponding labels based on the actual conditions

 k8sapp: spring-mvc-demo

 name: spring-mvc-demo

 namespace: spring-demo

spec:

 ports:

 - name: 8080-8080-tcp # Corresponding `port` value in the ServiceMonitor scrape

 port: 8080

 protocol: TCP

 targetPort: 8080

 selector:

 k8s-app: spring-mvc-demo

 qcloud-app: spring-mvc-demo

 sessionAffinity: None

 type: ClusterIP

Step 4. Add a scrape task

1. Log in to the TMP console and select the target TMP instance to enter the management page.
2. Click a cluster ID in the TKE cluster list to enter the Integrate with TKE page.
3. In Scrape Configuration, add a ServiceMonitor. Currently, TMP supports discovering the corresponding target
instance address through labels; therefore, you can add some specific K8s labels to some services, which will be
automatically identified by TMP after configuration, eliminating your need to add scrape tasks for all services one by
one. The configuration information for the above sample is as follows:

Note:
Here, note that the port value is the spec/ports/name value in the Service YAML configuration file.

 apiVersion: monitoring.coreos.com/v1

https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 30
of 165

 kind: ServiceMonitor

 metadata:

 name: spring-mvc-demo # Enter a unique name

 namespace: cm-prometheus # The namespace is fixed. Do not change it

 spec:

 endpoints:

 - interval: 30s

 port: 8080-8080-tcp # Enter the name of the corresponding port of the Prometh

 path: /actuator/prometheus # Enter the value of the corresponding path of th

 namespaceSelector: # Select the namespace where the Service to be monitored re

 matchNames:

 - spring-demo

 selector: # Enter the label value of the Service to be monitored to locate the

 matchLabels:

 k8sapp: spring-mvc-demo

Step 5. View the monitoring information

Access the Grafana address of your TMP instance to view the application monitoring dashboard in Dashboards >

Manage > Application.
Spring MVC application: monitoring data of MVC status, such as the request latency, number of requests, success
rate, and exception distribution.
Spring MVC API: API-level monitoring data, which supports multiple APIs to help you locate faulty APIs.
Tomcat: monitoring dashboard of internal Tomcat status, such as thread usage.

Application JVM: monitoring data of the status of all instances under an application. If you find a faulty instance, you
can view its monitoring information at any time.
Instance JVM: detailed monitoring data of a single instance JVM.

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 31
of 165

JVM Integration
Last updated：2024-01-29 15:55:08

Overview

When using the Java programming language, you need to monitor JVM performance. TMP collects the JVM
monitoring data exposed by applications and provides an out-of-the-box Grafana dashboard for it.
This document uses deploying a Java application in TKE as an example to describe how to use TMP to monitor the

application status.
Note:
If you have already used Spring Boot as the development framework, please see Spring Boot Integration.

Prerequisites

Create a TKE cluster.
Use a private image repository to manage application images.

Directions

Note:
 As a major programming language, Java has a comprehensive ecosystem, where Micrometer has been widely used
as a metric timestamping SDK. This document uses Micrometer as an example to describe how to monitor JVM.

Modifying application dependencies and configuration

Step 1. Modify POM dependencies

Add Maven dependencies to the pom.xml file and adjust the version as needed as follows:

<dependency>

 <groupId>io.prometheus</groupId>

 <artifactId>simpleclient</artifactId>

 <version>0.9.0</version>

</dependency>

<dependency>

 <groupId>io.micrometer</groupId>

 <artifactId>micrometer-registry-prometheus</artifactId>

 <version>1.1.7</version>

https://intl.cloud.tencent.com/document/product/457/30637
https://intl.cloud.tencent.com/document/product/457/9117
https://micrometer.io/

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 32
of 165

</dependency>

Step 2. Modify the code

When the project is started, add the corresponding monitoring configuration. In addition, Micrometer also provides the
collection of some common metrics, which are in the io.micrometer.core.instrument.binder package

and can be added as needed as follows:

public class Application {

 // It can be used in custom monitoring as a global variable

 public static final PrometheusMeterRegistry registry = new PrometheusMeterRegis

 static {

 // Add a global Prometheus label. We recommend you add the corresponding ap

 registry.config().commonTags("application", "java-demo");

 }

 public static void main(String[] args) throws Exception {

 // Add JVM monitoring

 new ClassLoaderMetrics().bindTo(registry);

 new JvmMemoryMetrics().bindTo(registry);

 new JvmGcMetrics().bindTo(registry);

 new ProcessorMetrics().bindTo(registry);

 new JvmThreadMetrics().bindTo(registry);

 new UptimeMetrics().bindTo(registry);

 new FileDescriptorMetrics().bindTo(registry);

 System.gc(); // Test GC

 try {

 // Expose the Prometheus HTTP service. If it already exists, you can us

 HttpServer server = HttpServer.create(new InetSocketAddress(8080), 0);

 server.createContext("/metrics", httpExchange -> {

 String response = registry.scrape();

 httpExchange.sendResponseHeaders(200, response.getBytes().length);

 try (OutputStream os = httpExchange.getResponseBody()) {

 os.write(response.getBytes());

 }

 });

 new Thread(server::start).start();

 } catch (IOException e) {

 throw new RuntimeException(e);

 }

 }

}

Note:

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 33
of 165

As monitoring of JVM GC pauses is implemented through the GarbageCollector Notification mechanism, the
monitoring data will be generated only after a GC occurs. The above sample actively calls System.gc() to make

the test more straightforward.

Step 3. Perform local verification

After the application is started locally, you can access the metric data of the Prometheus protocol through
 http://localhost:8080/metrics .

Releasing application to TKE

Step 1. Configure a Docker image environment locally

If you have already configured a Docker image environment locally, proceed to the next step; otherwise, configure one
as instructed in Getting Started.

Step 2. Package and upload the image

1. Add Dockerfile in the root directory of the project. Please modify it based on your actual project conditions as

follows:

 FROM openjdk:8-jdk

 WORKDIR /java-demo

 ADD target/java-demo-*.jar /java-demo/java-demo.jar

 CMD ["java","-jar","java-demo.jar"]

2. Package the image by running the following command in the project root directory. You need to replace
 namespace , ImageName , and image tag as needed.

 mvn clean package

 docker build . -t ccr.ccs.tencentyun.com/[namespace]/[ImageName]:[image tag]

 docker push ccr.ccs.tencentyun.com/[namespace]/[ImageName]:[image tag]

Below is a sample:

 mvn clean package

 docker build . -t ccr.ccs.tencentyun.com/prom_spring_demo/java-demo:latest

 docker push ccr.ccs.tencentyun.com/prom_spring_demo/-demo:latest

Step 3. Deploy the application

1. Log in to the TKE console and select the container cluster for deployment.

https://intl.cloud.tencent.com/zh/document/product/1051/38866
https://console.intl.cloud.tencent.com/tke2/cluster?rid=1

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 34
of 165

2. Select Workload* > Deployment to enter the Deployment management page and select the corresponding
 namespace to deploy the service. Use the following YAML configuration to create the corresponding Deployment:

Note:

If you want to create in the console, please see Spring Boot Integration.

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 k8s-app: java-demo

 name: java-demo

 namespace: spring-demo

spec:

 replicas: 1

 selector:

 matchLabels:

 k8s-app: java-demo

 template:

 metadata:

 labels:

 k8s-app: java-demo

 spec:

 containers:

 - image: ccr.ccs.tencentyun.com/prom_spring_demo/java-demo

 imagePullPolicy: Always

 name: java-demo

 ports:

 - containerPort: 8080

 name: metric-port

 terminationMessagePath: /dev/termination-log

 terminationMessagePolicy: File

 dnsPolicy: ClusterFirst

 imagePullSecrets:

 - name: qcloudregistrykey

 restartPolicy: Always

 schedulerName: default-scheduler

 terminationGracePeriodSeconds: 30

Step 4. Add a scrape task

1. Log in to the TMP console and select the target TMP instance to enter the management page.
2. Click a cluster ID in the TKE cluster list to enter the Integrate with TKE page.
3. In Scrape Configuration, add Pod Monitor to define a Prometheus scrape task. Below is a sample YAML

configuration:

https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 35
of 165

 apiVersion: monitoring.coreos.com/v1

 kind: PodMonitor

 metadata:

 name: java-demo

 namespace: cm-prometheus

 spec:

 namespaceSelector:

 matchNames:

 - java-demo

 podMetricsEndpoints:

 - interval: 30s

 path: /metrics

 port: metric-port

 selector:

 matchLabels:

 k8s-app: java-demo

Step 5. View the monitoring information

1. In Integration Center in the target TMP instance, find JVM monitoring, install the corresponding Grafana

dashboard, and then you can enable the JVM monitoring dashboard.
2. Access the Grafana address of your TMP instance to view the application monitoring dashboard in Dashboards >
Manage > Application.
Application JVM: monitoring data of the status of all instances under an application. If you find a faulty instance, you
can view its monitoring information at any time.
Instance JVM: detailed monitoring data of a single instance JVM.

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 36
of 165

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 37
of 165

Go Application Integration
Last updated：2025-03-17 10:55:18

Prometheus provides an official Go library to collect and expose the monitoring data. This document describes how to
use it to expose the Go runtime data and use TMP to collect metrics and display data with some basic samples.
Note:

For Go client API documentation, please see Prometheus Go client library.

Installation

You can run the following go get commands to install the relevant dependencies:

go get github.com/prometheus/client_golang/prometheus

go get github.com/prometheus/client_golang/prometheus/promauto

go get github.com/prometheus/client_golang/prometheus/promhttp

Start (Runtime Metrics)

1. Prepare an HTTP service with the commonly used path /metrics . You can directly use the Handler

function provided in prometheus/promhttp .

The following is a sample Go application, which exposes some default metrics (including runtime, process, and build
metrics) through http://localhost:2112/metrics .

package main

import (

 "net/http"

 "github.com/prometheus/client_golang/prometheus/promhttp"

)

func main() {

 http.Handle("/metrics", promhttp.Handler())

 http.ListenAndServe(":2112", nil)

}

2. Run the following command to start the application.

https://github.com/prometheus/client_golang
https://pkg.go.dev/github.com/prometheus/client_golang
https://pkg.go.dev/github.com/prometheus/client_golang@v1.8.0/prometheus/promhttp#Handler
https://pkg.go.dev/github.com/prometheus/client_golang@v1.8.0/prometheus/promhttp

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 38
of 165

go run main.go

3. Run the following command to access the basic built-in metric data.

curl http://localhost:2112/metrics

Application Layer Metrics

1. The above sample only exposes some basic built-in metrics. For metrics at the application layer, you need to add
them additionally (we will provide some SDKs in the future for easier integration). The following sample exposes a
Counter metric named myapp_processed_ops_total to count the currently completed operations. The

operation is performed once every 2 seconds, and the count increases by 1 each time.

package main

import (

 "net/http"

 "time"

 "github.com/prometheus/client_golang/prometheus"

 "github.com/prometheus/client_golang/prometheus/promauto"

 "github.com/prometheus/client_golang/prometheus/promhttp"

)

func recordMetrics() {

 go func() {

 for {

 opsProcessed.Inc()

 time.Sleep(2 * time.Second)

 }

 }()

}

var (

 opsProcessed = promauto.NewCounter(prometheus.CounterOpts{

 Name: "myapp_processed_ops_total",

 Help: "The total number of processed events",

 })

)

func main() {

 recordMetrics()

https://prometheus.io/docs/concepts/metric_types/#counter

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 39
of 165

 http.Handle("/metrics", promhttp.Handler())

 http.ListenAndServe(":2112", nil)

}

2. Run the following command to start the application.

go run main.go

3. Run the following command to access the exposed metrics.

curl http://localhost:2112/metrics

From the output result, you can see the information related to the myapp_processed_ops_total counter,

including the help documentation, type information, metric name, and current value, as shown below.

HELP myapp_processed_ops_total The total number of processed events

TYPE myapp_processed_ops_total counter

myapp_processed_ops_total 666

Using TMP

Two samples are used above to show how to use the Prometheus Go library to expose application metric data.

However, because the exposed data is in text format, you’ll need to set up and maintain an additional Prometheus
service to collect metrics, which may require additional Grafana dashboards for visual display.
In contrast, if you use TMP, you can directly skip the above steps and achieve the same purpose with just a few clicks.
For more information, please see Getting Started.

Packaging and deploying application

1. A Go application generally can use a Dockerfile in the following format (it should be modified as needed).

 FROM golang:alpine AS builder

 RUN apk add --no-cache ca-certificates \\

 make \\

 git

 COPY . /go-build

 RUN cd /go-build && \\

 export GO111MODULE=on && \\

 export GOPROXY=https://goproxy.io && \\

 go build -o 'golang-exe' path/to/main/

FROM alpine

RUN apk add --no-cache tzdata

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 40
of 165

COPY --from=builder /etc/ssl/certs/ca-certificates.crt /etc/ssl/certs

COPY --from=builder /go-build/golang-exe /usr/bin/golang-exe

ENV TZ Asia/Shanghai

CMD ["golang-exe"]

2. You can use an image from Tencent Cloud Image Registry or another public or self-built image registry.

3. You need to define a Kubernetes resource based on your application type. Here, a Deployment is used as shown
below.

 apiVersion: apps/v1

 kind: Deployment

 metadata:

 name: golang-app-demo

 labels:

 app: golang-app-demo

 spec:

 replicas: 3

 selector:

 matchLabels:

 app: golang-app-demo

 template:

 metadata:

 labels:

 app: golang-app-demo

 spec:

 containers:

 - name: golang-exe-demo:v1

 image: nginx:1.14.2

 ports:

 - containerPort: 80

4. You also need a Kubernetes Service for scrape configuration and load balancing.

 apiVersion: v1

 kind: Service

 metadata:

 name: golang-app-demo

 spec:

 selector:

 app: golang-app-demo

 ports:

 - protocol: TCP

 port: 80

 targetPort: 80

https://intl.cloud.tencent.com/document/product/1051/35484
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/services-networking/service/

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 41
of 165

Note:

You must add a label to identify the current application. The label name doesn't necessarily need to be app, but there
must be a label with the similar meaning. You can add other extended labels by relabeling when adding a data
collection task subsequently.
5. You can use the TKE console or directly use kubectl to submit the resource definitions to Kubernetes and wait for
successful creation.

Adding data collection task

After the service runs, you need to configure TMP to discover and collect the monitoring metrics in the following steps:

1. Log in to the TMP console and select the target TMP instance to enter the management page.
2. Click a cluster ID in the TKE cluster list to enter the Integrate with TKE page.
3. In Scrape Configuration, add a ServiceMonitor. Currently, TMP supports discovering the corresponding target
instance address through labels; therefore, you can add some specific K8s labels to some services, which will be
automatically identified by TMP after configuration, eliminating your need to add scrape tasks for all services one by

one. The configuration information for the above sample is as follows:
Note:
The port value is the spec/ports/name value in the Service YAML configuration file.

 apiVersion: monitoring.coreos.com/v1

 kind: ServiceMonitor

 metadata:

 name: go-demo # Enter a unique name

 namespace: cm-prometheus # The namespace is fixed. Do not change it

 spec:

 endpoints:

 - interval: 30s

 # Enter the name of the corresponding port of the Prometheus exporter in the

 port: 2112

 # Enter the value of the corresponding path of the Prometheus exporter. If it

 path: /metrics

 relabelings:

 # ** There must be a label named `application`. Here, suppose that K8s has a

 # Use the `replace` action of `relabel` to replace it with `application`

 - action: replace

 sourceLabels: [__meta_kubernetes_pod_label_app]

 targetLabel: application

 # Select the namespace where the Service to be monitored resides

 namespaceSelector:

 matchNames:

 - golang-demo

 # Enter the label value of the Service to be monitored to locate the target S

 selector:

 matchLabels:

https://console.intl.cloud.tencent.com/tke2/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 42
of 165

 app: golang-app-demo

Note:
You must configure the label named application in the sample; otherwise, you cannot use some other out-of-

the-box integration features of TMP. For more advanced usage, please see ServiceMonitor or PodMonitor.

Viewing monitoring information

1. In the TMP instance list, find the corresponding TMP instance, click

 on the right of the instance ID to open your Grafana page, and enter your account and password to access the

Grafana visual dashboard operation section.
2. Enter Grafana, click the

 icon to expand the monitoring dashboard, and click the name of the corresponding monitoring chart to view the
monitoring data.

https://github.com/prometheus-operator/prometheus-operator/blob/main/Documentation/api-reference/api.md#servicemonitor
https://github.com/prometheus-operator/prometheus-operator/blob/main/Documentation/api-reference/api.md#podmonitor
https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 43
of 165

Summary

This document uses two samples to describe how to expose Go metrics to TMP and how to use the built-in visual
charts to view monitoring data. This document only uses the Counter metrics. In other scenarios, you many need to

use Gauge, Histogram, and Summary metrics. For more information, please see Metric Types.
For other use cases, TMP will integrate more frameworks to provide more out-of-the-box monitoring metrics, visual
dashboards, and alerting templates.

https://prometheus.io/docs/concepts/metric_types/

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 44
of 165

Exporter Integration
Elasticsearch Exporter Integration
Last updated：2024-01-29 15:55:07

Overview

When using Elasticsearch, you need to monitor its running status, such as cluster and index status. TMP provides an
exporter to monitor Elasticsearch and offers an out-of-the-box Grafana monitoring dashboard for it. This document
describes how to deploy the Elasticsearch exporter and integrate it with the alert feature.

Note:
For easier export installation and management, we recommend you use TKE for unified management.

Prerequisites

You have created a TKE cluster in the region and VPC of your TMP instance and created a namespace for the cluster.
You have located and integrated the target TKE cluster in the Integrate with TKE section of the target TMP
instance in the TMP console. For more information, please see Agent Management.

Directions

Deploying exporter

1. Log in to the TKE console.
2. Click the ID/name of the cluster whose access credential you want to get to enter the cluster management page.
3. Perform the following steps to deploy an exporter: Using Secret to manage Elasticsearch connection string >
Deploying Elasticsearch exporter > Verifying.

Using Secret to manage Elasticsearch connection string

1. On the left sidebar, select Workload > Deployment to enter the Deployment page.
2. In the top-right corner of the page, click Create via YAML to create a YAML configuration as detailed below:

You can use Kubernetes Secrets to manage and encrypt passwords. When starting the Elasticsearch exporter, you
can directly use the Secret key but need to adjust the corresponding URI. Below is a sample YAML configuration:

Overview

https://intl.cloud.tencent.com/zh/document/product/457
https://intl.cloud.tencent.com/document/product/457/30637
https://intl.cloud.tencent.com/document/product/1051/35487
https://console.intl.cloud.tencent.com/monitor/prometheus
https://console.intl.cloud.tencent.com/tke2/cluster
https://intl.cloud.tencent.com/document/product/1116/43223#step1
https://intl.cloud.tencent.com/document/product/1116/43223#step1#step2
https://intl.cloud.tencent.com/document/product/1116/43223#step1#step2#step3

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 45
of 165

When using Elasticsearch, you need to monitor its running status, such as cluster and index status. TMP provides an
exporter to monitor Elasticsearch and offers an out-of-the-box Grafana monitoring dashboard for it. This document
describes how to deploy the Elasticsearch exporter and integrate it with the alert feature.

Note:
For easier export installation and management, we recommend you use TKE for unified management.

Prerequisites

You have created a TKE cluster in the region and VPC of your TMP instance and created a namespace for the cluster.
You have located and integrated the target TKE cluster in the Integrate with TKE section of the target TMP
instance in the TMP console. For more information, please see Agent Management.

Directions

Deploying exporter

1. Log in to the TKE console.
2. Click the ID/name of the cluster whose access credential you want to get to enter the cluster management page.
3. Perform the following steps to deploy an exporter: Using Secret to manage Elasticsearch connection string >
Deploying Elasticsearch exporter > Verifying.

Using Secret to manage Elasticsearch connection string

1. On the left sidebar, select Workload > Deployment to enter the Deployment page.
2. In the top-right corner of the page, click Create via YAML to create a YAML configuration as detailed below:

You can use Kubernetes Secrets to manage and encrypt passwords. When starting the Elasticsearch exporter, you
can directly use the Secret key but need to adjust the corresponding URI. Below is a sample YAML configuration:

apiVersion: v1

kind: Secret

metadata:

 name: es-secret-test

 namespace: es-demo

type: Opaque

stringData:

 esURI: you-guess # Corresponding Elasticsearch URI

Note:
The Elasticsearch connection string is in the format of <proto>://<user>:<password>@<host>:<port> ,

such as http://admin:pass@localhost:9200 .

https://intl.cloud.tencent.com/zh/document/product/457
https://intl.cloud.tencent.com/document/product/457/30637
https://intl.cloud.tencent.com/document/product/1051/35487
https://console.intl.cloud.tencent.com/monitor/prometheus
https://console.intl.cloud.tencent.com/tke2/cluster
https://intl.cloud.tencent.com/document/product/1116/43223#step1
https://intl.cloud.tencent.com/document/product/1116/43223#step1#step2
https://intl.cloud.tencent.com/document/product/1116/43223#step1#step2#step3

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 46
of 165

Deploying Elasticsearch exporter

On the Deployment management page, click Create and select the target namespace to deploy the service. You can
create in the console. Here, YAML is used to deploy the exporter. Below is a sample YAML configuration:

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 k8s-app: es-exporter

 name: es-exporter

 namespace: es-demo

spec:

 replicas: 1

 selector:

 matchLabels:

 k8s-app: es-exporter

 template:

 metadata:

 labels:

 k8s-app: es-exporter

 spec:

 containers:

 - env:

 - name: ES_URI

 valueFrom:

 secretKeyRef:

 name: es-secret-test

 key: esURI

 - name: ES_ALL

 value: "true"

 image: bitnami/elasticsearch-exporter:latest

 imagePullPolicy: IfNotPresent

 name: es-exporter

 ports:

 - containerPort: 9114

 name: metric-port

 securityContext:

 privileged: false

 terminationMessagePath: /dev/termination-log

 terminationMessagePolicy: File

 dnsPolicy: ClusterFirst

 imagePullSecrets:

 - name: qcloudregistrykey

 restartPolicy: Always

 schedulerName: default-scheduler

 securityContext: {}

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 47
of 165

 terminationGracePeriodSeconds: 30

Note:
The above sample uses ES_ALL to collect all monitoring metrics of Elasticsearch, which can be adjusted through

the corresponding parameters. For detailed exporter parameters, please see elasticsearch_exporter.

Verifying

1. Click the newly created Deployment on the Deployment page to enter the Deployment management page.
2. Click the Log tab, and you can see that the exporter is successfully started and its address is exposed as shown
below:

3. Click the Pod Management tab to enter the Pod page.
4. In the Operations column on the right, click Remote Login to log in to the Pod. Run the following curl

command with the address exposed by the exporter in the command line window, and you can get the corresponding
Elasticsearch metrics normally. If no corresponding data is returned, please check whether the connection string is
correct as shown below:

curl localhost:9114/metrics

The execution result is as shown below:

https://github.com/justwatchcom/elasticsearch_exporter

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 48
of 165

Adding scrape task

1. Log in to the TMP console and select the target TMP instance to enter the management page.
2. Click a cluster ID in the TKE cluster list to enter the Integrate with TKE page.

3. In Scrape Configuration, add Pod Monitor to define a Prometheus scrape task. Below is a sample YAML

configuration:

apiVersion: monitoring.coreos.com/v1

kind: PodMonitor

metadata:

 name: es-exporter

 namespace: cm-prometheus

spec:

 namespaceSelector:

 matchNames:

 - es-demo

 podMetricsEndpoints:

 - interval: 30s

 path: /metrics

 port: metric-port

 selector:

 matchLabels:

 k8s-app: es-exporter

https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 49
of 165

Viewing monitoring information

1. Log in to the TMP console and select the target TMP instance to enter the management page.
2. Click Integration Center to enter the Integration Center page. Find Elasticsearch monitoring, install the
corresponding Grafana dashboard, and then you can enable the Elasticsearch monitoring dashboard to view instance

monitoring data as shown below:

Integrating with alert feature

1. Log in to the TMP console and select the target TMP instance to enter the management page.
2. Click Alerting Rule and add the corresponding alerting rules. For more information, please see Creating Alerting
Rule.

https://console.intl.cloud.tencent.com/monitor/prometheus
https://console.intl.cloud.tencent.com/monitor/prometheus
https://intl.cloud.tencent.com/document/product/1116/43193#

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 50
of 165

Kafka Exporter Integration
Last updated：2024-01-29 15:55:07

Overview

When using Kafka, you need to monitor its running status, such as cluster status and message heap. TMP provides
an exporter to monitor Kafka and offers an out-of-the-box Grafana monitoring dashboard for it. This document
describes how to deploy the Kafka exporter and integrate it with the alert feature.

Note:
For easier export installation and management, we recommend you use TKE for unified management.

Prerequisites

You have created a TKE cluster in the region and VPC of your TMP instance and created a namespace for the cluster.
You have located and integrated the target TKE cluster in the Integrate with TKE section of the target TMP
instance in the TMP console. For more information, please see Agent Management.

Directions

Deploying exporter

1. Log in to the TKE console.
2. Click the ID/name of the cluster whose access credential you want to get to enter the cluster management page.
3. On the left sidebar, select Workload > Deployment to enter the Deployment page.
4. On the Deployment management page, click Create and select the target namespace to deploy the service. You
can create in the console. Here, YAML is used to deploy the exporter. Below is a sample YAML configuration:

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 k8s-app: kafka-exporter # Rename the exporter based on the business needs. We r

 name: kafak-exporter # Rename the exporter based on the business needs. We recomm

 namespace: kafka-demo

spec:

 replicas: 1

 selector:

 matchLabels:

https://intl.cloud.tencent.com/zh/document/product/457
https://intl.cloud.tencent.com/document/product/457/30637
https://intl.cloud.tencent.com/document/product/1051/35487
https://console.intl.cloud.tencent.com/monitor/prometheus
https://intl.cloud.tencent.com/document/product/1116/43161#
https://console.intl.cloud.tencent.com/tke2/cluster

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 51
of 165

 k8s-app: kafka-exporter # Rename the exporter based on the business needs. We

 template:

 metadata:

 labels:

 k8s-app: kafka-exporter # Rename the exporter based on the business needs.

 spec:

 containers:

 - args:

 - --kafka.server=x.x.x.x:9092 # Corresponding Kafka instance address inform

 image: danielqsj/kafka-exporter:latest

 imagePullPolicy: IfNotPresent

 name: kafka-exporter

 ports:

 - containerPort: 9121

 name: metric-port # This name is required during scrape task configurati

 securityContext:

 privileged: false

 terminationMessagePath: /dev/termination-log

 terminationMessagePolicy: File

 dnsPolicy: ClusterFirst

 imagePullSecrets:

 - name: qcloudregistrykey

 restartPolicy: Always

 schedulerName: default-scheduler

 securityContext: {}

 terminationGracePeriodSeconds: 30

Note:
For detailed exporter parameters, please see kafka_exporter.

Adding scrape task

1. Log in to the TMP console and select the target TMP instance to enter the management page.
2. Click a cluster ID in the TKE cluster list to enter the Integrate with TKE page.
3. In Scrape Configuration, add Pod Monitor to define a Prometheus scrape task. Below is a sample YAML

configuration:

 apiVersion: monitoring.coreos.com/v1

 kind: PodMonitor

 metadata:

 name: kafka-exporter # Enter a unique name

 namespace: cm-prometheus # The namespace is fixed. Do not change it

 spec:

 podMetricsEndpoints:

 - interval: 30s

 port: metric-port # Enter the name of the corresponding port of the Prometheu

https://github.com/danielqsj/kafka_exporter
https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 52
of 165

 path: /metrics # Enter the value of the corresponding path of the Prometheus

 relabelings:

 - action: replace

 sourceLabels:

 - instance

 regex: (.*)

 targetLabel: instance

 replacement: 'ckafka-xxxxxx' # Change it to the corresponding Kafka instanc

 - action: replace

 sourceLabels:

 - instance

 regex: (.*)

 targetLabel: ip

 replacement: '1.x.x.x' # Change it to the corresponding Kafka instance IP

 namespaceSelector:

 matchNames:

 - kafka-demo

 selector: # Enter the label value of the Pod to be monitored to locate the tar

 matchLabels:

 k8s-app: kafka-exporter

Note:
As the exporter and Kafka are deployed on different servers, we recommend you use the Prometheus relabeling
mechanism to add the Kafka instance information to the monitoring metrics so as to locate problems more easily.

Viewing monitoring information

1. Log in to the TMP console and select the target TMP instance to enter the management page.
2. Click Integration Center to enter the Integration Center page. Find Kafka monitoring, install the corresponding
Grafana dashboard, and then you can enable the Kafka monitoring dashboard to view instance monitoring data as
shown below:

https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 53
of 165

Integrating with alert feature

1. Log in to the TMP console and select the target TMP instance to enter the management page.
2. Click Alerting Rule and add the corresponding alerting rules. For more information, please see Creating Alerting

Rule.

https://console.intl.cloud.tencent.com/monitor/prometheus
https://intl.cloud.tencent.com/document/product/1116/43193#

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 54
of 165

MongoDB Exporter Integration
Last updated：2024-01-29 15:55:08

Overview

When using MongoDB, you need to monitor its running status to know whether it runs normally and troubleshoot its
faults. TMP provides an exporter to monitor MongoDB and offers an out-of-the-box Grafana monitoring dashboard for
it. This document describes how to deploy the MongoDB exporter and integrate it with the alert feature.

Note:
For easier export installation and management, we recommend you use TKE for unified management.

Prerequisites

You have created a TKE cluster in the region and VPC of your TMP instance.
You have located and integrated the target TKE cluster in the Integrate with TKE section of the target TMP
instance in the TMP console. For more information, please see Agent Management.

Directions

Deploying exporter

1. Log in to the TKE console.
2. Click the ID/name of the cluster whose access credential you want to get to enter the cluster management page.
3. Perform the following steps to deploy an exporter: Using Secret to manage MongoDB connection string > Deploying
MongoDB exporter > Verifying.

Using Secret to manage MongoDB connection string

1. On the left sidebar, select Workload > Deployment to enter the Deployment page.
2. In the top-right corner of the page, click Create via YAML to create a YAML configuration as detailed below:

You can use Kubernetes Secrets to manage and encrypt passwords. When starting the MongoDB exporter, you can
directly use the Secret key but need to adjust the corresponding URI. Below is a sample YAML configuration:

 apiVersion: v1

 kind: Secret

 metadata:

 name: mongodb-secret-test

 namespace: mongodb-test

https://intl.cloud.tencent.com/zh/document/product/457
https://intl.cloud.tencent.com/document/product/457/30637
https://console.intl.cloud.tencent.com/monitor/prometheus
https://console.intl.cloud.tencent.com/tke2/cluster

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 55
of 165

 type: Opaque

 stringData:

 datasource: "mongodb://{user}:{passwd}@{host1}:{port1},{host2}:{port2},{host3}:

Deploying MongoDB exporter

On the Deployment management page, click Create and select the target namespace to deploy the service. You can
create in the console. Here, YAML is used to deploy the exporter. Below is a sample YAML configuration:

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 k8s-app: mongodb-exporter # Rename the exporter based on the business needs. We

 name: mongodb-exporter # Rename the exporter based on the business needs. We reco

 namespace: mongodb-test

spec:

 replicas: 1

 selector:

 matchLabels:

 k8s-app: mongodb-exporter # Rename the exporter based on the business needs.

 template:

 metadata:

 labels:

 k8s-app: mongodb-exporter # Rename the exporter based on the business needs

 spec:

 containers:

 - args:

 - --collect.database # Enable the collection of `Database` metric

 - --collect.collection # Enable the collection of `Collection` metr

 - --collect.topmetrics # Enable the collection of `table top` metri

 - --collect.indexusage # Enable the collection of `per index usage

 - --collect.connpoolstats # Enable the collection of `MongoDB connpool

 env:

 - name: MONGODB_URI

 valueFrom:

 secretKeyRef:

 name: mongodb-secret-test

 key: datasource

 image: ssheehy/mongodb-exporter

 imagePullPolicy: IfNotPresent

 name: mongodb-exporter

 ports:

 - containerPort: 9216

 name: metric-port # This name is required during scrape task configu

 securityContext:

 privileged: false

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 56
of 165

 terminationMessagePath: /dev/termination-log

 terminationMessagePolicy: File

 dnsPolicy: ClusterFirst

 imagePullSecrets:

 - name: qcloudregistrykey

 restartPolicy: Always

 schedulerName: default-scheduler

 securityContext: { }

 terminationGracePeriodSeconds: 30

Note:
For detailed exporter parameters, please see mongodb_exporter.

Verifying

1. Click the newly created Deployment on the Deployment page to enter the Deployment management page.
2. Click the Log tab, and you can see that the exporter is successfully started and its address is exposed as shown
below:

3. Click the Pod Management tab to enter the Pod page.
4. In the Operations column on the right, click Remote Login to log in to the Pod. Run the following wget

command with the address exposed by the exporter on the command line, and you can get the corresponding
MongoDB metrics normally. If no corresponding data is returned, please check whether the connection URI is correct

as shown below:

wget 127.0.0.1:9216/metrics

cat metrics

The command execution result is as shown below:

https://github.com/percona/mongodb_exporter

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 57
of 165

Adding scrape task

1. Log in to the TMP console and select the target TMP instance to enter the management page.
2. Click a cluster ID in the TKE cluster list to enter the Integrate with TKE page.

3. In Scrape Configuration, add Pod Monitor to define a Prometheus scrape task. Below is a sample YAML

configuration:

 apiVersion: monitoring.coreos.com/v1

 kind: PodMonitor

 metadata:

 name: mongodb-exporter # Enter a unique name

 namespace: cm-prometheus # The namespace is fixed. Do not change it

 spec:

 podMetricsEndpoints:

 - interval: 30s

 port: metric-port # Enter the name of the corresponding port of the Prometh

 path: /metrics # Enter the value of the corresponding path of the Prometheus

 relabelings:

 - action: replace

 sourceLabels:

 - instance

 regex: (.*)

 targetLabel: instance

 replacement: 'cmgo-xxxxxxxx' # Change it to the corresponding MongoDB insta

 namespaceSelector: # Select the namespace where the Pod to be monitored reside

 matchNames:

 - mongodb-test

 selector: # Enter the label value of the Pod to be monitored to locate the targ

https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 58
of 165

 matchLabels:

 k8s-app: mongodb-exporter

Note:
As the exporter and MongoDB are deployed on different servers, we recommend you use the Prometheus relabeling
mechanism to add the MongoDB instance information to the monitoring metrics so as to locate problems more easily.

Viewing monitoring information

1. Log in to the TMP console and select the target TMP instance to enter the management page.
2. Click Integration Center to enter the Integration Center page. Find MongoDB monitoring, install the

corresponding Grafana dashboard, and then you can enable the MongoDB monitoring dashboard to view instance
monitoring data as shown below:
MongoDB Overview: you can view the status of each instance, such as number of documents, connection utilization,
and read/write time. You can click an instance to view its details.
MongoDB Details: you can view the detailed status of an instance, such as metadata overview, core metrics,
command operations, request traffic, and top reads/writes.

Note:
 You can click ! on the left of each chart to view the description.

Integrating with alert feature

1. Log in to the TMP console and select the target TMP instance to enter the management page.

https://console.intl.cloud.tencent.com/monitor/prometheus
https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 59
of 165

2. Click Alerting Rule and add the corresponding alerting rules. For more information, please see Creating Alerting
Rule.

FAQs

The client reported an error "client checkout connect timeout". What should I do?

This is probably because that the connection pool utilization has reached 100%, resulting in a connection creation

failure. You can check the Connection Utilization metric in MongoDB Details > Core Metrics on the Grafana
dashboard for troubleshooting.

Write keeps timing out. What should I do?

Check whether the cache utilization is excessive and whether the number of available transactions is 0. You can
check the Available WiredTiger Transactions, WiredTiger Cache Utilization, and GetLastError Write Time

metrics in MongoDB Details > Core Metrics on the Grafana dashboard for troubleshooting.

https://intl.cloud.tencent.com/document/product/1116/43193#

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 60
of 165

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 61
of 165

PostgreSQL Exporter Integration
Last updated：2024-01-29 15:55:07

Overview

When using PostgreSQL, you need to monitor its running status to know whether it runs normally and troubleshoot its
faults. TMP provides an exporter to monitor PostgreSQL and offers an out-of-the-box Grafana monitoring dashboard
for it. This document describes how to deploy the PostgreSQL exporter and integrate it with the alert feature.

Note:
For easier export installation and management, we recommend you use TKE for unified management.

Prerequisites

You have created a TKE cluster in the region and VPC of your TMP instance.
You have located and integrated the target TKE cluster in the Integrate with TKE section of the target TMP
instance in the TMP console. For more information, please see Agent Management.

Directions

Deploying exporter

1. Log in to the TKE console.
2. Click the ID/name of the cluster whose access credential you want to get to enter the cluster management page.
3. Perform the following steps to deploy an exporter: Using Secret to manage PostgreSQL password > Deploying
PostgreSQL exporter > Deploying PostgreSQL exporter.

Using Secret to manage PostgreSQL password

1. On the left sidebar, select Workload > Deployment to enter the Deployment page.
2. In the top-right corner of the page, click Create via YAML to create a YAML configuration as detailed below:

You can use Kubernetes Secrets to manage and encrypt passwords. When starting the PostgreSQL exporter, you
can directly use the Secret key but need to adjust the corresponding password . Below is a sample YAML

configuration:

 apiVersion: v1

 kind: Secret

 metadata:

https://intl.cloud.tencent.com/zh/document/product/457
https://intl.cloud.tencent.com/document/product/457/30637
https://console.intl.cloud.tencent.com/monitor/prometheus
https://intl.cloud.tencent.com/document/product/1116/43161#
https://console.intl.cloud.tencent.com/tke2/cluster
https://intl.cloud.tencent.com/document/product/1116/43226#step1
https://intl.cloud.tencent.com/document/product/1116/43226#step1#step2
https://intl.cloud.tencent.com/document/product/1116/43226#step1#step2#step3

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 62
of 165

 name: postgres-test

 type: Opaque

 stringData:

 username: postgres

 password: you-guess # Corresponding PostgreSQL password

Deploying PostgreSQL exporter

On the Deployment management page, click Create and select the target namespace to deploy the service. You can

create in the console. Here, YAML is used to deploy the exporter. Below is a sample YAML configuration (please
directly copy the following content and adjust the corresponding parameters based on your actual business needs):

apiVersion: apps/v1

kind: Deployment

metadata:

 name: postgres-test

 namespace: postgres-test

 labels:

 app: postgres

 app.kubernetes.io/name: postgresql

spec:

 replicas: 1

 selector:

 matchLabels:

 app: postgres

 app.kubernetes.io/name: postgresql

 template:

 metadata:

 labels:

 app: postgres

 app.kubernetes.io/name: postgresql

 spec:

 containers:

 - name: postgres-exporter

 image: wrouesnel/postgres_exporter:latest

 args:

 - "--web.listen-address=:9187"

 - "--log.level=debug"

 env:

 - name: DATA_SOURCE_USER

 valueFrom:

 secretKeyRef:

 name: postgres-test

 key: username

 - name: DATA_SOURCE_PASS

 valueFrom:

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 63
of 165

 secretKeyRef:

 name: postgres-test

 key: password

 - name: DATA_SOURCE_URI

 value: "x.x.x.x:5432/postgres?sslmode=disable"

 ports:

 - name: http-metrics

 containerPort: 9187

Note:

In the above sample, the username and password in Secret are passed in to the environment variables

 DATA_SOURCE_USER and DATA_SOURCE_PASS , so the username and password cannot be viewed in plaintext.

You can also use DATA_SOURCE_USER_FILE / DATA_SOURCE_PASS_FILE to read the username and

password from the file, or use DATA_SOURCE_NAME to put them in the connection string, such as

 postgresql://login:password@hostname:port/dbname .

Parameter description

The query part (after ?) in the DATA_SOURCE_URI / DATA_SOURCE_NAME connection string supports the

following parameters (the latest supported parameters listed in Connection String Parameters shall prevail):

Parameter Description

sslmode Whether to use SSL. Valid values:

- disable Do not use SSL

- require Always use (skip verification)

- verify-ca Always use (check whether the certificate provided by the server is issued by a
trusted CA)

- verify-full Always use (check whether the certificate provided by the server is issued by a
trusted CA and whether the hostname matches the certificate)

fallback_application_name Alternative application_name

connect_timeout Maximum connection wait time in seconds. `0` indicates to wait infinitely

sslcert Certificate file path. The file data must be in PEM format

sslkey Private key file path. The file data must be in PEM format

sslrootcert Root certificate file path. The file data must be in PEM format

https://pkg.go.dev/github.com/lib/pq#hdr-Connection_String_Parameters

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 64
of 165

Other supported exporter parameters are as detailed below (for more information, please see PostgreSQL Server
Exporter):

Parameter Description Environment Variable

--web.listen-
address

Listening address. Default value:
:9487

PG_EXPORTER_WEB_LISTEN_ADDRESS

--web.telemetry-
path

Path under which to expose
metrics. Default value: /metrics

PG_EXPORTER_WEB_TELEMETRY_PATH

--extend.query-
path

Path of a YAML file containing
custom queries to run. For more
information, please see
queries.yaml

PG_EXPORTER_EXTEND_QUERY_PATH

--disable-default-
metrics

Uses only metrics supplied from
queries.yaml

PG_EXPORTER_DISABLE_DEFAULT_METRICS

--disable-settings-
metrics

Skips scraping pg_settings
metrics

PG_EXPORTER_DISABLE_SETTINGS_METRICS

--auto-discover-
databases

Whether to discover the
databases in the PostgreSQL
instance dynamically

PG_EXPORTER_AUTO_DISCOVER_DATABASES

--dumpmaps

Prints the internal metric
information to help troubleshoot
custom queries (do not use it
unless for debugging)

-

--constantLabels
Custom label provided in the
format of key=value. Multiple
labels are separated with ,

PG_EXPORTER_CONSTANT_LABELS

--exclude-
databases

Database to be excluded. It
takes effect only if --auto-
discover-databases is enabled

PG_EXPORTER_EXCLUDE_DATABASES

--log.level Log level. Valid values: debug,
info, warn, error, fatal

PG_EXPORTER_LOG_LEVEL

Getting metric

You cannot get the PostgreSQL instance operation time through curl http://exporter:9187/metrics .

You can define a queries.yaml file to get this metric:

1. Create a ConfigMap containing queries.yaml .

https://github.com/wrouesnel/postgres_exporter
https://github.com/wrouesnel/postgres_exporter/blob/master/queries.yaml
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 65
of 165

2. Mount the ConfigMap to a directory in the exporter as a volume.
3. Use the ConfigMap through --extend.query-path to aggregate the information of the aforementioned

Secret and Deployment. The YAML file after aggregation is as shown below:

Note: the following document sample code creates a namespace named `postgres-test

apiVersion: v1

kind: Namespace

metadata:

 name: postgres-test

The following document sample code creates a Secret containing a username and pas

apiVersion: v1

kind: Secret

metadata:

 name: postgres-test-secret

 namespace: postgres-test

type: Opaque

stringData:

 username: postgres

 password: you-guess

The following document sample code creates a `queries.yaml` file containing custo

apiVersion: v1

kind: ConfigMap

metadata:

 name: postgres-test-configmap

 namespace: postgres-test

data:

 queries.yaml: |﻿

 pg_postmaster:

 query: "SELECT pg_postmaster_start_time as start_time_seconds from pg_postmas

 master: true

 metrics:

 - start_time_seconds:

 usage: "GAUGE"

 description: "Time at which postmaster started"

The following document sample code mounts the Secret and ConfigMap and defines ex

apiVersion: apps/v1

kind: Deployment

metadata:

 name: postgres-test

 namespace: postgres-test

https://intl.cloud.tencent.com/document/product/1116/43226#step1
https://intl.cloud.tencent.com/document/product/1116/43226#step1#step2

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 66
of 165

 labels:

 app: postgres

 app.kubernetes.io/name: postgresql

spec:

 replicas: 1

 selector:

 matchLabels:

 app: postgres

 app.kubernetes.io/name: postgresql

 template:

 metadata:

 labels:

 app: postgres

 app.kubernetes.io/name: postgresql

 spec:

 containers:

 - name: postgres-exporter

 image: wrouesnel/postgres_exporter:latest

 args:

 - "--web.listen-address=:9187"

 - "--extend.query-path=/etc/config/queries.yaml"

 - "--log.level=debug"

 env:

 - name: DATA_SOURCE_USER

 valueFrom:

 secretKeyRef:

 name: postgres-test-secret

 key: username

 - name: DATA_SOURCE_PASS

 valueFrom:

 secretKeyRef:

 name: postgres-test-secret

 key: password

 - name: DATA_SOURCE_URI

 value: "x.x.x.x:5432/postgres?sslmode=disable"

 ports:

 - name: http-metrics

 containerPort: 9187

 volumeMounts:

 - name: config-volume

 mountPath: /etc/config

 volumes:

 - name: config-volume

 configMap:

 name: postgres-test-configmap

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 67
of 165

4. Run curl http://exporter:9187/metrics , and you can use the custom queries.yaml to query the

PostgreSQL instance start time as follows:

HELP pg_postmaster_start_time_seconds Time at which postmaster started

TYPE pg_postmaster_start_time_seconds gauge

pg_postmaster_start_time_seconds{server="x.x.x.x:5432"} 1.605061592e+09

Adding scrape task

After the exporter runs, you need to configure TMP to discover and collect the monitoring metrics in the following
steps:

1. Log in to the TMP console and select the target TMP instance to enter the management page.
2. Click a cluster ID in the TKE cluster list to enter the Integrate with TKE page.
3. In Scrape Configuration, add Pod Monitor to define a Prometheus scrape task. Below is a sample YAML

configuration:

 apiVersion: monitoring.coreos.com/v1

 kind: PodMonitor

 metadata:

 name: postgres-exporter

 namespace: cm-prometheus

 spec:

 namespaceSelector:

 matchNames:

 - postgres-test

 podMetricsEndpoints:

 - interval: 30s

 path: /metrics

 port: http-metrics # Port name of the aforementioned exporter container

 relabelings:

 - action: labeldrop

 regex: __meta_kubernetes_pod_label_(pod_|statefulset_|deployment_|controlle

 - action: replace

 regex: (.*)

 replacement: postgres-xxxxxx

 sourceLabels:

 - instance

 targetLabel: instance

 selector:

 matchLabels:

 app: postgres

Note:
For more advanced usage, please see ServiceMonitor and PodMonitor.

https://console.intl.cloud.tencent.com/monitor/prometheus
https://github.com/prometheus-operator/prometheus-operator/blob/master/Documentation/api.md#servicemonitor
https://github.com/prometheus-operator/prometheus-operator/blob/master/Documentation/api.md#podmonitor

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 68
of 165

Visualizing Grafana dashboard

Note:
You need to use the configuration in Getting metric to get the PostgreSQL instance start time.
1. In the TMP instance list, find the corresponding TMP instance, click

 on the right of the instance ID to open your Grafana page, and enter your account and password to access the
Grafana visual dashboard operation section.
2. Enter Grafana, click the

 icon to expand the monitoring dashboard, and click the name of the corresponding monitoring chart to view the
monitoring data.

Integrating with alert feature

1. Log in to the TMP console and select the target TMP instance to enter the management page.
2. Click Alerting Rule and add the corresponding alerting rules. For more information, please see Creating Alerting
Rule.
Note:
TMP will provide more PostgreSQL alerting templates in the near future.

https://intl.cloud.tencent.com/document/product/1116/43226#step3
https://console.intl.cloud.tencent.com/monitor/prometheus
https://console.intl.cloud.tencent.com/monitor/prometheus
https://intl.cloud.tencent.com/document/product/1116/43193#

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 69
of 165

Nginx Exporter Integration
Last updated：2024-10-30 16:02:09

Overview

Nginx exposes some monitoring metrics through the stub_status page. Nginx Prometheus Exporter collects metrics
from a single Nginx instance, converts them into Prometheus-compatible monitoring data, and exposes such data to
the Prometheus service through the HTTP protocol for collection. Through Exporter, key monitoring metrics can be

reported for exception alarming and dashboard display.

Prerequisites

Enabling the NGINX stub_status Feature

Note:
1. The following example is for Nginx deployed in Tencent Kubernetes Engine (TKE). For other deployment methods,
adjust the login and configuration modification methods accordingly.
2. For TKE-related operations, see the TKE documentation.

Because Nginx Prometheus Exporter monitors Nginx through the stub_status module of Nginx, you need to ensure
that the stub_status module has been enabled for the Nginx service. The steps for enabling this module are as follows:
1. Log in to the TKE console.
2. Click Cluster in the left sidebar, find the cluster where the Nginx server is located, enter the cluster, and find the
Nginx server.
3. Log in to the Nginx server and execute the following command to check whether this module has been enabled for

Nginx:

nginx -V 2>&1 | grep -o with-http_stub_status_module

If with-http_stub_status_module is output in the terminal, the stub_status module has been enabled for

Nginx.
If no result is output, you can use the --with-http_stub_status_module parameter to configure and compile

Nginx again from the source code. The example is as follows:

./configure \\

… \\ ## Command required to compile nginx previously.

--with-http_stub_status_module

make

sudo make install

https://intl.cloud.tencent.com/document/product/457
https://console.intl.cloud.tencent.com/tke2/cluster?rid=9

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 70
of 165

4. If the Nginx service-related ConfigMap is not added, you can log in to the Nginx server, copy the default.conf

configuration information in the configuration directory (/etc/nginx/conf.d for the official image), create a

ConfigMap, and add the configuration information to the ConfigMap. For the ConfigMap operation guide, see
ConfigMap Management.
5. After you confirm that the stub_status module is enabled, add the following configuration to default.conf of
ConfigMap. The example is as follows:

server {

 listen 8080; # Adjust the configuration based on the business situation.

 listen [::]:8080; # Adjust the configuration based on the business situation.

 server_name localhost; # Adjust the configuration based on the business

situation.

 location = /stub_status { # Adjust the specific path based on the business

situation.

 stub_status;

 }

}

The configuration example in ConfigMap is as follows:

Search for the required CAM policy as needed, and click to complete policy association.

https://intl.cloud.tencent.com/document/product/457/30675?has_map=1

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 71
of 165

6. After modifying the configuration, find the Nginx server and click More > Redeployment to reload the
configuration. For non-TKE environments, execute the following commands to reload the configuration:

nginx -t

nginx -s reload

7. After the preceding steps are completed, log in to the Nginx server and execute the following command to view the
statistical results of Nginx's working status since the last startup.

curl http://localhost:8080/stub_status ## Adjust the command based on the configur

Active connections: 45

server accepts handled requests

1056958 1156958 4491319

Reading: 0 Writing: 25 Waiting : 7

Connection Method

Method 1: One-Click Installation (Recommended)

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 72
of 165

Directions

1. Log in to TMP Console.
2. Select the corresponding Prometheus instance from the instance list.
3. Go to the instance details page, select Data Collection > Integration Center.

4. Search for Nginx in the integration center, and click it to pop up an installation window.
5. On the Installation tab of the pop-up window, fill in the metric name, address, path, and other information, and click
Save.
Search for the required CAM policy as needed, and click to complete policy association.

Configuration Instructions

https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 73
of 165

Parameters Description

name

Exporter name, which should meet the following requirements:
The name should be unique.
The name should conform to the following regular expression: '^[a-z0-9]([-a-z0-9]*[a-z0-9])?(\\.
[a-z0-9]([-a-z0-9]*[a-z0-9])?)*$'.

address Nginx service connection address.

path Nginx service status path, which is specified in the configuration.

user name Username for HTTP authentication of the Nginx service.

password Password for HTTP authentication of the Nginx service.

tag Custom labels for metrics.

Method 2: Custom Installation

Note:
TKE is recommended for convenient installation and management of the Exporter.

Prerequisites

A TKE cluster has been created in the region and VPC of the corresponding Prometheus instance, and a namespace
has been created for the cluster.
In the TMP Console > select the corresponding Prometheus instance > Data Collection > Integrate with

TKE to find the corresponding container cluster and complete the cluster association operation. See the guide
Associate Cluster for reference.

Directions

Step 1: Deploying the Exporter

1. Log in to the TKE console.
2. Click Cluster in the left sidebar.
3. Click the ID/name of the cluster whose access credential is required to go to the management page of the cluster.

4. Follow the steps below to deploy Nginx Exporter and verify the deployment status.

Step 2: Deploying the Nginx Exporter

1. Choose Workload > Deployment in the left sidebar to enter the Deployment page.
2. Click Create via YAML in the upper right corner of the page to create a YAML file, and select the corresponding
namespace for server deployment. The following part shows how to deploy the Exporter by using a YAML file. Sample
configurations are as follows:

https://intl.cloud.tencent.com/document/product/457
https://intl.cloud.tencent.com/document/product/457/30637
https://intl.cloud.tencent.com/document/product/1051/35487
https://console.intl.cloud.tencent.com/monitor/prometheus
https://intl.cloud.tencent.com/document/product/248/63034
https://console.intl.cloud.tencent.com/tke2/cluster?rid=9

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 74
of 165

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 k8s-app: nginx-exporter # Use the actual name based on business needs. It

is recommended to include the information on the corresponding Nginx instance.

 name: nginx-exporter # Use the actual name based on business needs. It is

recommended to include the information on the corresponding Nginx instance.

 namespace: nginx-demo # Use the actual namespace based on business needs.

spec:

 replicas: 1

 selector:

 matchLabels:

 k8s-app: nginx-exporter # Use the actual name based on business needs.

It is recommended to include the information on the corresponding Nginx

instance.

 template:

 metadata:

 labels:

 k8s-app: nginx-exporter # Use the actual name based on business needs.

It is recommended to include the information on the corresponding Nginx

instance.

 spec:

 containers:

 - args:

 - --web.listen-address=:8080

 - --nginx.scrape-uri=http://127.0.0.1:8080/stub_status # Use the

actual address corresponding to the Nginx instance based on business needs.

 image: ccr.ccs.tencentyun.com/rig-agent/common-image:nginx-exporter-

v1.1.0

 name: nginx-exporter

 ports:

 - containerPort: 9113

 name: metric-port

 terminationMessagePath: /dev/termination-log

 terminationMessagePolicy: File

 dnsPolicy: ClusterFirst

 imagePullSecrets:

 - name: qcloudregistrykey

 restartPolicy: Always

 schedulerName: default-scheduler

 securityContext: {}

 terminationGracePeriodSeconds: 30

Validation

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 75
of 165

1. Click the Deployment created in the previous step on the Deployment page to go to the Deployment management
page.
2. Click the Log tab. The Exporter is started, and the corresponding access address is exposed, as shown below:

Search for the required CAM policy as needed, and click to complete policy association.

3. Click the Pod tab to enter the Pod page.
4. Click Remote login to in the operation bar to log in to the Pod. Execute the following wget command on the

command line interface to access the exposed Exporter address. In this way, data of corresponding Nginx metrics can
be collected. If no data is collected, check whether the connection string is correct. The command is as follows:

wget -qO- http://localhost:8080/metrics

The successful outcome is shown in the following figure:
Search for the required CAM policy as needed, and click to complete policy association.

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 76
of 165

Step 4: Adding a Collection Task

1. Log in to the TMP console and select the corresponding Prometheus instance to go to the management page.
2. Choose Data Collection > Integrate with TKE, select the associated cluster, and choose Data Collection

Configuration > Customize Monitoring Configuration > Via YAML to add a collection task.
3. Add a PodMonitor via service discovery to define the collection task. The YAML example is as follows:

 apiVersion: monitoring.coreos.com/v1

 kind: PodMonitor

 metadata:

 name: nginx-exporter # Enter a unique name.

 namespace: cm-prometheus # Pay-as-you-go instance: Use the namespace of

the cluster. Monthly subscription instance (no longer available): The namespace

is fixed. Do not change it.

 spec:

 podMetricsEndpoints:

 - interval: 30s

 port: metric-port # Enter the port of the Prometheus Exporter in the Pod

YAML file.

 path: /metrics # Enter the path of the Prometheus Exporter. Default

value: /metrics.

 relabelings:

 - action: replace

 sourceLabels:

 - instance

 regex: (.*)

 targetLabel: instance

https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 77
of 165

 replacement: 'crs-xxxxxx' # Enter the information on the corresponding

Nginx instance.

 namespaceSelector: # Select the namespace where the Pod to be monitored is

located.

 matchNames:

 - nginx-demo

 selector: # Enter the labels of the Pod to be monitored to locate the

target Pod.

 matchLabels:

 k8s-app: nginx-exporter

Viewing Monitoring Information

Prerequisites

The Prometheus instance has been bound to a Grafana instance.

Directions

1. Log in to the TMP console and select the corresponding Prometheus instance to go to the management page.

2. On the Basic Info page of the instance, find the bound Grafana address, open it, and log in to Grafana. Then, find
the Nginx instance monitoring panel in the middleware folder to view relevant monitoring data of the instance, as
shown below:

https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 78
of 165

Configure Alarm

TMP supports configuring alerting rules based on the actual business situation. For details, see Creating Alerting
Rules.

Appendix: Data Collection Parameters of Nginx Exporter

Global Configuration Parameters

Name Description

web.telemetry-path Path for exposing metrics. Default value /metrics .

nginx.scrape-uri
URL for Nginx metric collection. Default value:
 http://127.0.0.1:8080/stub_status .

[no-]nginx.plus Whether to enable Nginx Plus. Default value: enabled.

[no-]nginx.ssl-verify Whether to verify the SSL certificate.

nginx.ssl-ca-cert SSL certificate path.

https://intl.cloud.tencent.com/document/product/248/63044

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 79
of 165

nginx.ssl-client-cert SSL certificate path.

nginx.ssl-client-key SSL certificate path.

nginx.timeout Nginx metric collection timeout interval.

prometheus.const-label Tag to be used for each metric, which is in the format of label=value. One
tag can be used multiple times.

[no-]web.systemd-socket Use a systemd socket listener instead of a port listener (Linux only).

web.listen-address Listening address. Default value: 9113.

web.config.file Configuration file path. TLS or authentication can be enabled. (This
parameter is used for testing.)

log.level Log level. Default value: info.

log.format Log message output format. Valid values: logfmt and json. Default value:
logfmt.

version Printed Apache version information.

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 80
of 165

Redis Exporter Integration
Last updated：2024-01-29 15:55:07

Overview

When using Redis, you need to monitor its running status to know whether it runs normally and troubleshoot its faults.
TMP provides an exporter to monitor Redis and offers an out-of-the-box Grafana monitoring dashboard for it. This
document describes how to use TMP to monitor Redis.

Note:
For easier export installation and management, we recommend you use TKE for unified management.

Prerequisites

You have created a TKE cluster in the region and VPC of your TMP instance and created a namespace for the cluster.
You have located and integrated the target TKE cluster in the Integrate with TKE section of the target TMP
instance in the TMP console. For more information, please see Agent Management.

Directions

Deploying exporter

1. Log in to the TKE console.
2. Click the ID/name of the cluster whose access credential you want to get to enter the cluster management page.
3. Perform the following steps to deploy an exporter: Using Secret to manage Redis password > Deploying Redis
exporter > Verifying.

Using Secret to manage Redis password

1. On the left sidebar, select Workload > Deployment to enter the Deployment page.
2. In the top-right corner of the page, click Create via YAML to create a YAML configuration as detailed below:

You can use Kubernetes Secrets to manage and encrypt passwords. When starting the Redis exporter, you can
directly use the Secret key but need to adjust the corresponding password . Below is a sample YAML

configuration:

apiVersion: v1

kind: Secret

metadata:

https://intl.cloud.tencent.com/zh/document/product/457
https://intl.cloud.tencent.com/document/product/457/30637
https://intl.cloud.tencent.com/document/product/1051/35487
https://console.intl.cloud.tencent.com/monitor/prometheus
https://console.intl.cloud.tencent.com/tke2/cluster
https://intl.cloud.tencent.com/document/product/1116/43228#step1
https://intl.cloud.tencent.com/document/product/1116/43228#step1#step2
https://intl.cloud.tencent.com/document/product/1116/43228#step1#step2#step3

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 81
of 165

 name: redis-secret-test

 namespace: redis-test

type: Opaque

stringData:

 password: you-guess # Corresponding Redis password

Deploying Redis exporter

On the Deployment management page, click Create and select the target namespace to deploy the service. You can

create in the console. Here, YAML is used to deploy the exporter. Below is a sample YAML configuration:
Note:
For more information on the detailed exporter parameters, please see redis_exporter.

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 k8s-app: redis-exporter # Rename the exporter based on the business needs. We r

 name: redis-exporter # Rename the exporter based on the business needs. We recomm

 namespace: redis-test

spec:

 replicas: 1

 selector:

 matchLabels:

 k8s-app: redis-exporter # Rename the exporter based on the business needs. We

 template:

 metadata:

 labels:

 k8s-app: redis-exporter # Rename the exporter based on the business needs.

 spec:

 containers:

 - env:

 - name: REDIS_ADDR

 value: ip:port # `ip:port` of the corresponding Redis instance

 - name: REDIS_PASSWORD

 valueFrom:

 secretKeyRef:

 name: redis-secret-test

 key: password

 image: ccr.ccs.tencentyun.com/redis-operator/redis-exporter:1.12.0

 imagePullPolicy: IfNotPresent

 name: redis-exporter

 ports:

 - containerPort: 9121

 name: metric-port # This name is required during scrape task configurati

 securityContext:

https://github.com/oliver006/redis_exporter

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 82
of 165

 privileged: false

 terminationMessagePath: /dev/termination-log

 terminationMessagePolicy: File

 dnsPolicy: ClusterFirst

 imagePullSecrets:

 - name: qcloudregistrykey

 restartPolicy: Always

 schedulerName: default-scheduler

 securityContext: {}

 terminationGracePeriodSeconds: 30

Verifying

1. Click the newly created Deployment on the Deployment page to enter the Deployment management page.
2. Click the Log tab, and you can see that the exporter is successfully started and its address is exposed as shown
below:

3. Click the Pod Management tab to enter the Pod page.
4. In the Operations column on the right, click Remote Login to log in to the Pod. Run the following curl

command with the address exposed by the exporter in the command line window, and you can get the corresponding
Redis metrics normally. If no corresponding data is returned, please check whether REDIS_ADDR and

 REDIS_PASSWORD are correct as shown below:

curl localhost:9121/metrics

 The command execution result is as shown below:

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 83
of 165

Adding scrape task

1. Log in to the TMP console and select the target TMP instance to enter the management page.
2. Click a cluster ID in the TKE cluster list to enter the Integrate with TKE page.

3. In Scrape Configuration, add Pod Monitor to define a Prometheus scrape task. Below is a sample YAML

configuration:

 apiVersion: monitoring.coreos.com/v1

 kind: PodMonitor

 metadata:

 name: redis-exporter # Enter a unique name

 namespace: cm-prometheus # The namespace is fixed. Do not change it

 spec:

 podMetricsEndpoints:

 - interval: 30s

 port: metric-port # Enter the name of the corresponding port of the Promethe

 path: /metrics # Enter the value of the corresponding path of the Prometheus

 relabelings:

 - action: replace

 sourceLabels:

 - instance

https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 84
of 165

 regex: (.*)

 targetLabel: instance

 replacement: 'crs-xxxxxx' # Change it to the corresponding Redis instance I

 - action: replace

 sourceLabels:

 - instance

 regex: (.*)

 targetLabel: ip

 replacement: '1.x.x.x' # Change it to the corresponding Redis instance IP

 namespaceSelector: # Select the namespace where the Pod to be monitored resid

 matchNames:

 - redis-test

 selector: # Enter the label value of the Pod to be monitored to locate the t

 matchLabels:

 k8s-app: redis-exporter

Note:
As the exporter and Redis are deployed on different servers, we recommend you use the Prometheus relabeling
mechanism to add the Redis instance information to the monitoring metrics so as to locate problems more easily.

Viewing monitoring information

1. Log in to the TMP console and select the target TMP instance to enter the management page.

2. Click Integration Center to enter the Integration Center page. Find Redis monitoring, install the corresponding
Grafana dashboard, and then you can enable the Redis monitoring dashboard to view instance monitoring data as
shown below:

https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 85
of 165

Integrating with alert feature

1. Log in to the TMP console and select the target TMP instance to enter the management page.
2. Click Alerting Rule and add the corresponding alerting rules. For more information, please see Creating Alerting

Rule.

https://console.intl.cloud.tencent.com/monitor/prometheus
https://intl.cloud.tencent.com/document/product/1116/43193#

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 86
of 165

MySQL Exporter Integration
Last updated：2024-01-29 15:55:08

Overview

The MySQL exporter is specially designed and developed by the Prometheus community to collect MySQL/MariaDB
database monitoring metrics. The exporter reports core database metrics, which can be used for exception alerting
and displayed on the monitoring dashboard. TMP supports integration with the MySQL exporter and provides an out-

of-the-box Grafana monitoring dashboard.
Currently, the exporter supports MySQL 5.6 or above and MariaDB 10.1 or above. If MySQL or MariaDB is below 5.6
or 10.1 respectively, some monitoring metrics may fail to be collected.
Note:
For easier export installation and management, we recommend you use TKE for unified management.

Prerequisites

You have created a TKE cluster in the region and VPC of your TMP instance and created a namespace for the cluster.
You have located and integrated the target TKE cluster in the Integrate with TKE section of the target TMP
instance in the TMP console. For more information, please see Agent Management.

Directions

Authorizing in database

As the MySQL exporter monitors a database by querying its status data, you need to grant the exporter access to the
corresponding database instance. The account and password should be set based on the actual conditions. The
authorization steps are as follows:

1. Log in to the TencentDB for MySQL console.
2. On the instance list page, click the name of the database for which to authorize the exporter to enter the database
details page.
3. Select Database Management > Account Management to enter the account management page and create an
account for monitoring based on the actual business needs.

4. Click Modify Permissions in the Operation column on the right of the account to modify the corresponding
permissions as shown below:

https://intl.cloud.tencent.com/zh/document/product/457
https://intl.cloud.tencent.com/document/product/457/30637
https://intl.cloud.tencent.com/document/product/1051/35487
https://console.intl.cloud.tencent.com/monitor/prometheus
https://intl.cloud.tencent.com/document/product/1116/43178#
https://console.intl.cloud.tencent.com/cdb

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 87
of 165

You can run the following command for authorization:

CREATE USER 'exporter'@'ip' IDENTIFIED BY 'XXXXXXXX' WITH MAX_USER_CONNECTIONS

3;

GRANT PROCESS, REPLICATION CLIENT, SELECT ON *.* TO 'exporter'@'ip';

Note:
We recommend you set the allowed maximum number of connections for the account to avoid any impact on the

database due to monitoring data collection. However, not all database versions support this configuration, for
example, MariaDB 10.1. For more information, please see Resource Limit Options.

Deploying exporter

1. Log in to the TKE console.
2. Click the ID/name of the cluster whose access credential you want to get to enter the cluster management page.
3. Perform the following steps to deploy an exporter: Using Secret to manage MySQL connection string > Deploying

MySQL exporter > Verifying.

Using Secret to manage MySQL connection string

1. On the left sidebar, select Workload > Deployment to enter the Deployment page.

https://mariadb.com/kb/en/create-user/#resource-limit-options
https://console.intl.cloud.tencent.com/tke2/cluster
https://intl.cloud.tencent.com/document/product/1116/43229#step1
https://intl.cloud.tencent.com/document/product/1116/43229#step1#step2
https://intl.cloud.tencent.com/document/product/1116/43229#step1#step2#step3

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 88
of 165

2. In the top-right corner of the page, click Create via YAML to create a YAML configuration as detailed below:

You can use Kubernetes Secrets to manage and encrypt connection strings. When starting the MySQL exporter, you
can directly use the Secret key but need to adjust the corresponding connection string. Below is a sample YAML

configuration:

apiVersion: v1

kind: Secret

metadata:

 name: mysql-secret-test

 namespace: mysql-demo

type: Opaque

stringData:

 datasource: "user:password@tcp(ip:port)/" # Corresponding MySQL connection strin

Deploying MySQL exporter

On the Deployment management page, select the target namespace to deploy the service. You can create in the
console. Here, YAML is used to deploy the exporter. Below is a sample configuration:

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 k8s-app: mysql-exporter # Rename the exporter based on the business needs. We

 name: mysql-exporter # Rename the exporter based on the business needs. We recom

 namespace: mysql-demo

spec:

 replicas: 1

 selector:

 matchLabels:

 k8s-app: mysql-exporter # Rename the exporter based on the business needs. W

 template:

 metadata:

 labels:

 k8s-app: mysql-exporter # Rename the exporter based on the business needs.

 spec:

 containers:

 - env:

 - name: DATA_SOURCE_NAME

 valueFrom:

 secretKeyRef:

 name: mysql-secret-test

 key: datasource

 image: ccr.ccs.tencentyun.com/k8s-comm/mysqld-exporter:0.12.1

 imagePullPolicy: IfNotPresent

 name: mysql-exporter

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 89
of 165

 ports:

 - containerPort: 9104

 name: metric-port

 terminationMessagePath: /dev/termination-log

 terminationMessagePolicy: File

 dnsPolicy: ClusterFirst

 imagePullSecrets:

 - name: qcloudregistrykey

 restartPolicy: Always

 schedulerName: default-scheduler

 securityContext: {}

 terminationGracePeriodSeconds: 30

Verifying

1. Click the newly created Deployment on the Deployment page to enter the Deployment management page.
2. Click the Log tab, and you can see that the exporter is successfully started and its address is exposed as shown
below:

3. Click the Pod Management tab to enter the Pod page.

4. In the Operations column on the right, click Remote Login to log in to the Pod. Run the following curl

command with the address exposed by the exporter in the command line window, and you can get the corresponding
MySQL metrics normally. If no corresponding data is returned, please check whether the connection string is
correct as shown below:

curl localhost:9104/metrics

The execution result is as shown below:

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 90
of 165

Adding scrape task

1. Log in to the TMP console and select the target TMP instance to enter the management page.
2. Click a cluster ID in the TKE cluster list to enter the Integrate with TKE page.

3. In Scrape Configuration, add Pod Monitor to define a Prometheus scrape task. Below is a sample YAML

configuration:

 apiVersion: monitoring.coreos.com/v1

 kind: PodMonitor

 metadata:

 name: mysql-exporter # Enter a unique name

 namespace: cm-prometheus # The namespace is fixed. Do not change it

 spec:

 podMetricsEndpoints:

 - interval: 30s

 port: metric-port # Enter the name of the corresponding port of the Promet

 path: /metrics # Enter the value of the corresponding path of the Prometheus

 relabelings:

 - action: replace

 sourceLabels:

 - instance

 regex: (.*)

 targetLabel: instance

 replacement: 'crs-xxxxxx' # Change it to the corresponding MySQL instance I

 - action: replace

 sourceLabels:

 - instance

 regex: (.*)

 targetLabel: ip

 replacement: '1.x.x.x' # Change it to the corresponding MySQL instance IP

https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 91
of 165

 namespaceSelector: # Select the namespace where the Pod to be monitored resid

 matchNames:

 - mysql-demo

 selector: # Enter the label value of the Pod to be monitored to locate the tar

 matchLabels:

 k8s-app: mysql-exporter

Viewing monitoring information

1. Log in to the TMP console and select the target TMP instance to enter the management page.
2. Click Integration Center to enter the Integration Center page. Find MySQL monitoring, install the corresponding
Grafana dashboard, and then you can enable the MySQL monitoring dashboard to view instance monitoring data as

shown below:

Integrating with alert feature

TMP has some built-in MySQL alerting rule templates. You can adjust the corresponding thresholds to add alerting
rules based on your actual business conditions. For more information, please see Creating Alerting Rule.

https://console.intl.cloud.tencent.com/monitor/prometheus
https://intl.cloud.tencent.com/document/product/1116/43193#

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 92
of 165

MySQL Exporter Collection Parameter Description

The MySQL exporter uses various collectors to enable/disable data collection. The specific parameters are as

listed below:

Parameter MySQL
Version

Description

collect.auto_increment.columns 5.1 Collects auto_increment columns

collect.binlog_size 5.1 Collects the current size of all registered

collect.engine_innodb_status 5.1 Collects the status data from SHOW EN

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 93
of 165

collect.engine_tokudb_status 5.6 Collects the status data from SHOW EN

collect.global_status 5.1 Collects the status data from SHOW GL

collect.global_variables 5.1 Collects the status data from SHOW GL

collect.info_schema.clientstats 5.5
If userstat=1 is set, this parameter
collection.

collect.info_schema.innodb_metrics 5.6 Collects the monitoring data from info

collect.info_schema.innodb_tablespaces 5.7
Collects the monitoring data from
 information_schema.innodb_sy

collect.info_schema.innodb_cmp 5.5
Collects the monitoring data of compress
 information_schema.innodb_cm

collect.info_schema.innodb_cmpmem 5.5
Collects the monitoring data of InnoDB b
 information_schema.innodb_cm

collect.info_schema.processlist 5.1
Collects the monitoring data of the thread
 information_schema.processli

collect.info_schema.processlist.min_time 5.1 Minimum time a thread must be in each s

collect.info_schema.query_response_time 5.5
Collects query response time distribution
to ON .

collect.info_schema.replica_host 5.6 Collects the status data from informa

collect.info_schema.tables 5.1 Collects the status data from informa

collect.info_schema.tables.databases 5.1 Sets the list of databases to collect table

collect.info_schema.tablestats 5.1
If userstat=1 is set, this parameter
statistics.

collect.info_schema.schemastats 5.1
If userstat=1 is set, this parameter
statistics.

collect.info_schema.userstats 5.1
If userstat=1 is set, this parameter
statistics.

collect.perf_schema.eventsstatements 5.6
Collects the monitoring data from
 performance_schema.events_st

collect.perf_schema.eventsstatements.digest_text_limit 5.6 Sets the maximum length of the normaliz

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 94
of 165

collect.perf_schema.eventsstatements.limit 5.6 Limits the number of event statements. D

collect.perf_schema.eventsstatements.timelimit 5.6 Limits how old the 'last_seen' events stat
86400.

collect.perf_schema.eventsstatementssum 5.7
Collects the monitoring data from
 performance_schema.events_st

summed .

collect.perf_schema.eventswaits 5.5
Collects the monitoring data from
 performance_schema.events_wa

collect.perf_schema.file_events 5.6
Collects the monitoring data from
 performance_schema.file_summ

collect.perf_schema.file_instances 5.5
Collects the monitoring data from
 performance_schema.file_summ

collect.perf_schema.indexiowaits 5.6
Collects the monitoring data from
 performance_schema.table_io_

collect.perf_schema.tableiowaits 5.6
Collects the monitoring data from
 performance_schema.table_io_

collect.perf_schema.tablelocks 5.6
Collects the monitoring data from
 performance_schema.table_loc

collect.perf_schema.replication_group_members 5.7
Collects the monitoring data from
 performance_schema.replicati

collect.perf_schema.replication_group_member_stats 5.7
Collects the monitoring data from
 performance_schema.replicati

collect.perf_schema.replication_applier_status_by_worker 5.7
Collects the monitoring data from
 performance_schema.replicati

collect.slave_status 5.1 Collects the monitoring data from SHOW

collect.slave_hosts 5.1 Collects the monitoring data from SHOW

collect.heartbeat 5.1 Collects the monitoring data from heartbe

collect.heartbeat.database 5.1 Database from where to collect heartbea

collect.heartbeat.table 5.1 Table from where to collect heartbeat da

collect.heartbeat.utc 5.1 Uses UTC for timestamps of the current
utc). Default value: false.

https://intl.cloud.tencent.com/document/product/1116/43229#heartbeat-detection

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 95
of 165

Global configuration parameters

Item Description

config.my-cnf
Path of .my.cnf file to read MySQL credentials from. Default value:
 ~/.my.cnf .

log.level Log level. Default value: info.

exporter.lock_wait_timeout
Sets a lock_wait_timeout (in seconds) on the connection to avoid long
metadata locking. Default value: 2.

exporter.log_slow_filter
Adds a log_slow_filter to avoid slow query logging of scrapes. Note: not
supported by Oracle MySQL.

web.listen-address Web port listening address.

web.telemetry-path Metric API path.

version Prints the version information.

Heartbeat detection

If collect.heartbeat is enabled, mysqld_exporter will scrape replication delay measured by heartbeat

mechanisms.

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 96
of 165

Consul Exporter Integration
Last updated：2024-01-29 15:55:08

Overview

When using Consul, you need to monitor its running status to know whether it runs normally and troubleshoot its faults.
TMP provides an exporter to monitor Consul and offers an out-of-the-box Grafana monitoring dashboard for it. This
document describes how to use TMP to monitor Consul.

Directions

1. Log in to the TMP console.
2. In the instance list, select the corresponding TMP instance.
3. Enter the instance details page and click Integration Center.
4. Select Consul in the Integration Center and click Install for integration.

Configuration description

Item Description

Name Unique integration name

https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 97
of 165

Address Address and port of the Consul instance to be collected

Label Label with business meaning, which will be automatically added to Prometheus labels

Viewing monitoring information

You can clearly view the following monitoring metrics on the monitoring dashboard:
1. Status of Consul cluster nodes.
2. Status of services registered in Consul.

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 98
of 165

Memcached Exporter Integration
Last updated：2024-01-29 15:55:08

Overview

When using Memcached, you need to monitor its running status to know whether it runs normally and troubleshoot its
faults. TMP provides an exporter to monitor Memcached and offers an out-of-the-box Grafana monitoring dashboard
for it. This document describes how to use TMP to monitor Memcached.

Directions

1. Log in to the TMP console.
2. In the instance list, select the corresponding TMP instance.
3. Enter the instance details page and click Integration Center.
4. Select Memcached in the Integration Center and click Install for integration.

Configuration description

Item Description

Name Unique integration name

https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 99
of 165

Address Address and port of the Memcached instance to be collected

Label Label with business meaning, which will be automatically added to Prometheus labels

Viewing monitoring information

You can clearly view the following monitoring metrics on the monitoring dashboard:
1. Memory utilization. The used memory and total memory are also displayed.
2. Current hit rate of Get commands. The hit and miss rates of Get commands during the service operation are

also displayed.
3. Old data eviction rate and expired data reclaim rate of Memcached. The total numbers of evictions and reclaims

during the service operation are also displayed.
4. Total amount of data stored in Memcached.
5. Number of bytes read from and written by the network.
6. Current number of open connections.
7. Ratio of Get and Set commands during the service operation.

8. Current generation rate of each command.

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 100
of 165

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 101
of 165

Integration with Other Exporters
Last updated：2024-01-29 15:55:07

Overview

TMP currently provides integration methods for common basic components and corresponding out-of-the-box
monitoring dashboards. As TMP is compatible with the native Prometheus, you can also install other exporters
available in the community.

Directions

If there is no integration method available for the basic component you want to use, you can integrate it as follows and
customize a monitoring dashboard to meet your monitoring requirements:
1. Find your component in EXPORTERS AND INTEGRATIONS and integrate it as instructed.
2. Refer to the integration method for MySQL.

https://prometheus.io/docs/instrumenting/exporters/
https://intl.cloud.tencent.com/document/product/1116/43229#

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 102
of 165

CVM Node Exporter
Last updated：2024-01-29 15:55:08

This document describes how to install Node Exporter to expose CVM basic metrics to TMP.

Directions

Step 1. Download and install Node Exporter

Download and install Node Exporter (used to collect basic metric data) in the target CVM instance. Click here or run
the following command for download:

wget

https://github.com/prometheus/node_exporter/releases/download/v1.3.1/node_expor

ter-1.3.1.linux-amd64.tar.gz && tar -xvf node_exporter-1.3.1.linux-amd64.tar.gz

The file directory is as follows:

Step 2. Run Node Exporter to collect basic monitoring data

1. Go to the target folder and run Node Exporter.

cd node_exporter-1.3.1.linux-amd64

./node_exporter

If the following result is displayed, basic monitoring data has been collected successfully.

https://prometheus.io/download/#node_exporter

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 103
of 165

2. Run the following command to expose the basic monitoring data to port 9100:

curl 127.0.0.1:9100/metrics

You can see the following metric monitoring data that is exposed after the command is executed.

Step 3. Configure the collection

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 104
of 165

Log in to the TMP console, select Integration Center > CVM, and configure the information in Task Configuration
as prompted.

Below is a sample configuration of a scrape task:

job_name: example-job-name

metrics_path: /metrics

cvm_sd_configs:

- region: ap-guangzhou

 ports:

 - 9100

 filters:

 - name: tag: Sample tag key

 values:

 - Sample tag value

relabel_configs:

- source_labels: [__meta_cvm_instance_state]

 regex: RUNNING

 action: keep

- regex: __meta_cvm_tag_(.*)

 replacement: $1

 action: labelmap

- source_labels: [__meta_cvm_region]

 target_label: region

 action: replace

Step 4. Check whether data is reported successfully

Log in to the TMP console and click the Grafana icon to enter Grafana.

Search for {job="cvm_node_exporter"} in Explore to see whether there is data, and if so, data is reported

successfully.

https://console.intl.cloud.tencent.com/monitor/prometheus
https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 105
of 165

Step 5. Configure the dashboard

Every product has some existing JSON files that can be directly imported into the dashboard.
1. Download a dashboard file: Go to the Dashboard page, search for node_exporter , and select the latest

dashboard for download.

2. Import a JSON file into the dashboard: Log in to the TMP console, select Basic Info > Grafana Address to
enter Grafana. In the Grafana console, select Create > Import and upload the dashboard file in Upload JSON file.

https://grafana.com/grafana/dashboards/
https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 106
of 165

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 107
of 165

Apache Exporter Integration
Last updated：2024-10-24 19:11:24

Overview

Apache Exporter is a tool used for collecting data on Apache HTTP server metrics. The data of core metrics reported
by the Exporter can used to trigger alarms and is displayed on the monitoring dashboard. TMP on Tencent Cloud
Observability Platform (TCOP) provides the Apache Exporter connection feature and an out-of-the-box Grafana

monitoring dashboard.
Note:
To ensure the Exporter can collect data, make sure the Apache HTTP server is running. For details, see this
document.

Connection Method

Method 1: One-Click Installation (Recommended)

Directions

1. Log in to TMP Console.

2. Select the corresponding Prometheus instance from the instance list.
3. Go to the instance details page, select Data Collection > Integration Center.
4. Search for Apache in the integration center, and click it to pop up the installation window.
5. On the Installation tab of the pop-up window, fill in the metric name, address, path, and other information, and click
Save.
Search for the required CAM policy as needed, and click to complete policy association.

https://httpd.apache.org/docs/2.4/mod/mod_status.html
https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 108
of 165

Configuration Instructions

Parameters Note

name

Exporter name, which should meet the following requirements:
The name should be unique.
The name should conform to the following regular expression: '^[a-z0-9]([-a-z0-9]*[a-z0-9])?(\\.
[a-z0-9]([-a-z0-9]*[a-z0-9])?)*$'.

address Address of the connected Apache HTTP server.

path Path for viewing the Apache HTTP Server Status page. Default value: /server-status .

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 109
of 165

user name Username for accessing the Apache HTTP server.

password Password for accessing the Apache HTTP server.

tag Custom labels for metrics.

Method 2: Custom Installation

Note:
TKE is recommended for convenient installation and management of the Exporter.

Prerequisites

A TKE cluster has been created in the region and VPC of the corresponding Prometheus instance, and a namespace
has been created for the cluster.
In the TMP Console > select the corresponding Prometheus instance > Data Collection > Integrate with
TKE to find the corresponding container cluster and complete the cluster association operation. See the guide
Associate Cluster for reference.

Directions

Step 1: Enabling the mod_status Module of the Apache Server

Note:
For TKE-related operations, see the TKE documentation.
The Apache Exporter collects data via the mod_status module of the Apache server. Therefore, you need to ensure
that the mod_status module is enabled for the Apache server. The specific steps are as follows:
1. Log in to the TKE console.
2. Click Cluster in the left sidebar, find the cluster where the Apache server is located, enter the cluster, and find the

Apache server.
3. If no ConfigMap is configured in the Apache server, log in to the Apache server, copy the configuration files such as
httpd.conf, mime.types, and extra/httpd-info.conf in the configuration directory, create a ConfigMap, and add the
configuration files to the ConfigMap. For ConfigMap-related operations, see ConfigMap Management.
4. In httpd.conf, delete the comment for the line LoadModule status_module modules/mod_status.so (remove that part

starting with #). If extra-related configurations exist for the server, enable them in httpd.conf by deleting corresponding
comments. Example:
Search for the required CAM policy as needed, and click to complete policy association.

https://intl.cloud.tencent.com/document/product/457
https://intl.cloud.tencent.com/document/product/457/30637?has_map=1
https://intl.cloud.tencent.com/document/product/1051/35487?has_map=1
https://console.intl.cloud.tencent.com/monitor/prometheus
https://intl.cloud.tencent.com/document/product/248/63034?has_map=1
https://intl.cloud.tencent.com/document/product/457?has_map=2
https://console.intl.cloud.tencent.com/tke2/cluster?rid=9
https://intl.cloud.tencent.com/document/product/457/30675?has_map=1

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 110
of 165

5. Modify httpd-info.conf as required and enable ExtendedStatus. If no extra-related configuration exists, modify
httpd.conf directly. Example:

Search for the required CAM policy as needed, and click to complete policy association.

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 111
of 165

6. Verify whether the mod_status module is enabled by accessing the /server-status path of the server. If data is
returned normally, the module is enabled successfully. Example:

Search for the required CAM policy as needed, and click to complete policy association.

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 112
of 165

Step 2: Deploying the Exporter

1. Log in to the TKE console.
2. Click Cluster in the left sidebar.

3. Click the ID/name of the cluster whose access credential is required to go to the management page of the cluster.
4. Following the steps below to deploy the Apache Exporter and verify the deployment status.

Step 3: Deploying the Apache Exporter

1. Choose Workload > Deployment in the left sidebar to enter the Deployment page.
2. Click Create via YAML in the upper right corner of the page to create a YAML file, and select the corresponding
namespace for server deployment. The following part shows how to deploy the Exporter by using a YAML file. Sample

configurations are as follows:

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 k8s-app: apache-exporter # Use the actual name based on the business

needs. It is recommended to include the information on the corresponding

Prometheus instance.

 name: apache-exporter # Use the actual name based on the business needs. It

is recommended to include the information on the corresponding Prometheus

instance.

 namespace: apache-demo # Use the actual name based on the business needs.

https://console.intl.cloud.tencent.com/tke2/cluster?rid=9

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 113
of 165

spec:

 replicas: 1

 selector:

 matchLabels:

 k8s-app: apache-exporter # Use the actual name based on the business

needs. It is recommended to include the information on the corresponding

Prometheus instance.

 template:

 metadata:

 labels:

 k8s-app: apache-exporter # Use the actual name based on the business

needs. It is recommended to include the information on the corresponding

Prometheus instance.

 spec:

 containers:

 - args:

 - --web.listen-address=:9117

 - --scrape_uri=http://192.1.1.2:8080/server-status?auto # Use the

address of the corresponding Prometheus instance based on business needs.

 image: ccr.ccs.tencentyun.com/rig-agent/common-image:apache-exporter-

v1.0.7

 name: apache-exporter

 ports:

 - containerPort: 9117

 name: metric-port

 terminationMessagePath: /dev/termination-log

 terminationMessagePolicy: File

 dnsPolicy: ClusterFirst

 imagePullSecrets:

 - name: qcloudregistrykey

 restartPolicy: Always

 schedulerName: default-scheduler

 securityContext: {}

 terminationGracePeriodSeconds: 30

Validation

1. Click the Deployment created in the previous step on the Deployment page to go to the Deployment management

page.
2. Click the Log tab. The Exporter is started, and the corresponding access address is exposed, as shown below:
Search for the required CAM policy as needed, and click to complete policy association.

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 114
of 165

3. Click the Pod tab to enter the Pod page.
4. Click Remote Login in the operation bar to log in to the Pod. Execute the following curl command in the command

line window to access the exposed address. In this way, data of corresponding Apache server metrics can be
collected. If no data is collected, check if the connection string is correct. The command is as follows:

curl localhost:9117/metrics

The successful outcome is shown in the following figure:
Search for the required CAM policy as needed, and click to complete policy association.

Step 4: Adding a Collection Task

1. Log in to the TMP console and select the corresponding Prometheus instance to go to the management page.
2. Choose Data Collection > Integrate with TKE, select the associated cluster, and choose Data Collection
Configuration > Customize Monitoring Configuration > Via YAML to add a collection task.

https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 115
of 165

3. Add a PodMonitor via service discovery to define the collection task. The YAML example is as follows:

 apiVersion: monitoring.coreos.com/v1

 kind: PodMonitor

 metadata:

 name: apache-exporter # Enter a unique name.

 namespace: cm-prometheus # Pay-as-you-go instance: Use the namespace of

the cluster. Monthly subscription instance (no longer available): The namespace

is fixed. Do not change it.

 spec:

 podMetricsEndpoints:

 - interval: 30s

 port: metric-port # Enter the port of the Prometheus Exporter in the Pod

YAML file.

 path: /metrics # Enter the path of the Prometheus Exporter. Default

value: /metrics.

 relabelings:

 - action: replace

 sourceLabels:

 - instance

 regex: (.*)

 targetLabel: instance

 replacement: 'crs-xxxxxx' # Enter the information on the corresponding

Prometheus instance.

 namespaceSelector: # Select the namespace where the Pod to be monitored is

located.

 matchNames:

 - apache-demo

 selector: # Enter the labels of the Pod to be monitored to locate the

target Pod.

 matchLabels:

 k8s-app: apache-exporter

Viewing Monitoring Information

Prerequisites

The Prometheus instance has been bound to a Grafana instance.

Directions

1. Log in to the TMP console and select the corresponding Prometheus instance to go to the management page.

https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 116
of 165

2. Choose Data Collection > Integration Center, find the Apache Exporter, and install the corresponding Grafana
dashboard to display related monitoring data, as shown below:
Search for the required CAM policy as needed, and click to complete policy association.

Configure Alarm

TMP supports configuring alert rules based on the actual business situation. For details, see Creating Alerting Rules.

Appendix: Data Collection Parameters of Apache Exporter

https://intl.cloud.tencent.com/document/product/248/63044

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 117
of 165

Global Configuration Parameters

Name Description

telemetry.endpoint Path for exposing metrics. Default value /metrics .

scrape_uri
URL of the Apache Server Status page. Default value:
 http://localhost/server-status/?auto .

host_override String for overriding the HTTP Host request header. A null string
indicates that the header is not overridden.

[no-]insecure Ignore the server certificate if HTTPS is used.

custom_headers Add custom headers to the Exporter.

[no-]web.systemd-socket Use a systemd socket listener instead of a port listener (Linux only).

web.listen-address Listening address. Default value: 9117.

web.config.file Configuration file path. TLS or authentication can be enabled. (This
parameter is used for testing.)

log.level Log level. Default value: info.

log.format Log message output format. Valid values: logfmt and json. Default value:
logfmt.

version Printed version information.

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 118
of 165

Health Check
Last updated：2024-01-29 15:55:08

Overview

Health check detects the service connectivity on a regular basis to monitor the service health, helping you stay up to
date with the service health in real time and promptly discover exceptions to improve the SLA.

Directions

1. Log in to the TMP console.

2. In the instance list, select the corresponding TMP instance.
3. Enter the instance details page and click Integration Center.
4. Select Health Check in Integration Center to configure the detection of the corresponding service.

Detection description

https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 119
of 165

Parameter Description

Name Unique detection task name, which corresponds to the detection group on the Grafana
monitoring dashboard

Detection
Method

Currently, the following detection methods are supported:
 http_get
http_post
tcp
ssh
ping

Detection Target Address of the service to be detected

Label Label with business meaning, which will be automatically added to Prometheus labels

Viewing monitoring information

You can clearly view the following status on the monitoring dashboard:
1. Service access latency and health status.

2. Latency in each processing phase of service access.
3. Expiration time of certificate in case of HTTPS
4. Status of various detection types.

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 120
of 165

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 121
of 165

Instructions for Installing Components in the
TKE Cluster
Last updated：2024-07-23 17:53:35

Overview

This document describes the features, use permissions, and resource consumption of various components installed in
the user's TKE cluster during the TKE Integration process of TMP.

proxy-agent

Component Overview

 The TKE cluster has independent network environment. Therefore, the proxy-agent is deployed within the cluster to

provide access proxies for collection components outside the cluster. On one hand, external collection components
discover resources within the cluster through the proxy-agent service; on the other hand, they scrape metrics through
the proxy-agent and write them to the time series storage of the Prometheus instance.

Resource Objects Deployed in the Cluster

Namespace Kubernetes Object
Name

Type Resource
Amount

Description

<Prometheus
instance ID>

proxy-agent Deployment 0.25C256Mi*2 Collection proxy

<Prometheus
instance ID>

<Prometheus
instance ID>

ServiceAccount - Permission carrier

- <Prometheus
instance ID>

ClusterRole - Collection
permissions related

- <Prometheus
instance ID>-crb

ClusterRoleBinding - Collection
permissions related

Component Permission Description

Permission Scenarios

Feature Involved Objects Involved

https://intl.cloud.tencent.com/document/product/1116/55073

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 122
of 165

Operati
Permiss

Collection
configuration
management

scrapeconfigs,servicemonitors,podmonitors,probes,configmaps,secrets,namespaces get/list/w

Service
discovery

services,endpoints,nodes,pods,ingresses get/list/w

Scraping
some system
component
metrics

nodes/metrics,nodes/proxy,pods/proxy get/list/w

Scraping
metrics with
RBAC
authentication

/metrics,/metrics/cadvisor get

Permission Definition

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: prom-instance

rules:

 - apiGroups:

 - monitoring.coreos.com

 resources:

 - scrapeconfigs

 - servicemonitors

 - podmonitors

 - probes

 - prometheuses

 - prometheusrules

 verbs:

 - get

 - list

 - watch

 - apiGroups:

 - ""

 resources:

 - namespaces

 - configmaps

 - secrets

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 123
of 165

 - nodes

 - services

 - endpoints

 - pods

 verbs:

 - get

 - list

 - watch

 - apiGroups:

 - networking.k8s.io

 resources:

 - ingresses

 verbs:

 - get

 - list

 - watch

 - apiGroups: [""]

 resources:

 - nodes/metrics

 - nodes/proxy

 - pods/proxy

 verbs:

 - get

 - list

 - watch

 - nonResourceURLs: ["/metrics", "/metrics/cadvisor"]

 verbs:

 - get

tke-kube-state-metrics

Component Overview

tke-kube-state-metrics uses the open-source component kube-state-metrics, listens to the cluster's API server, and

generates status metrics for various objects within the cluster.

Resource Objects Deployed in the Cluster

Namespace Kubernetes Object
Name

Type Resource
Amount

Description

kube-
system

tke-kube-state-
metrics

Statefulset 0.5C512Mi Collection program

kube- tke-kube-state- ServiceAccount - Permission carrier

https://github.com/kubernetes/kube-state-metrics

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 124
of 165

system metrics

- tke-kube-state-
metrics

ClusterRole - Collection permissions
related

- tke-kube-state-
metrics

ClusterRoleBinding - Collection permissions
related

kube-
system

tke-kube-state-
metrics Service -

Collection agent
corresponding service, for
service discovery use

kube-
system

tke-kube-state-
metrics

ServiceMonitor - Collection configuration

kube-
system

tke-kube-state-
metrics

Role - Shard collection permission
related

kube-
system

tke-kube-state-
metrics

RoleBinding - Shard collection permission
related

Component Permission Description

Permission Scenarios

Feature Involved Objects Involved Operation
Permissions

Listening to the status of various resources in
the cluster

Most Kubernetes resources list/watch

Get the shard number of the collection pod statefulsets, pods get

Permission Definition

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: tke-kube-state-metrics

rules:

 - apiGroups:

 - ""

 resources:

 - configmaps

 - secrets

 - nodes

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 125
of 165

 - pods

 - services

 - serviceaccounts

 - resourcequotas

 - replicationcontrollers

 - limitranges

 - persistentvolumeclaims

 - persistentvolumes

 - namespaces

 - endpoints

 verbs:

 - list

 - watch

 - apiGroups:

 - apps

 resources:

 - statefulsets

 - daemonsets

 - deployments

 - replicasets

 verbs:

 - list

 - watch

 - apiGroups:

 - batch

 resources:

 - cronjobs

 - jobs

 verbs:

 - list

 - watch

 - apiGroups:

 - autoscaling

 resources:

 - horizontalpodautoscalers

 verbs:

 - list

 - watch

 - apiGroups:

 - authentication.k8s.io

 resources:

 - tokenreviews

 verbs:

 - create

 - apiGroups:

 - authorization.k8s.io

 resources:

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 126
of 165

 - subjectaccessreviews

 verbs:

 - create

 - apiGroups:

 - policy

 resources:

 - poddisruptionbudgets

 verbs:

 - list

 - watch

 - apiGroups:

 - certificates.k8s.io

 resources:

 - certificatesigningrequests

 verbs:

 - list

 - watch

 - apiGroups:

 - storage.k8s.io

 resources:

 - storageclasses

 - volumeattachments

 verbs:

 - list

 - watch

 - apiGroups:

 - admissionregistration.k8s.io

 resources:

 - mutatingwebhookconfigurations

 - validatingwebhookconfigurations

 verbs:

 - list

 - watch

 - apiGroups:

 - networking.k8s.io

 resources:

 - networkpolicies

 - ingresses

 verbs:

 - list

 - watch

 - apiGroups:

 - coordination.k8s.io

 resources:

 - leases

 verbs:

 - list

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 127
of 165

 - watch

 - apiGroups:

 - rbac.authorization.k8s.io

 resources:

 - clusterrolebindings

 - clusterroles

 - rolebindings

 - roles

 verbs:

 - list

 - watch

kind: Role

metadata:

 name: tke-kube-state-metrics

 namespace: kube-system

rules:

 - apiGroups:

 - ""

 resources:

 - pods

 verbs:

 - get

 - apiGroups:

 - apps

 resourceNames:

 - tke-kube-state-metrics

 resources:

 - statefulsets

 verbs:

 - get

tke-node-exporter

Component Overview

tke-node-exporter uses the open-source project node_exporter, deployed on each node in the cluster to collect
hardware and Unix-like operating system metrics.

Resources Deployed in the Cluster

Namespace Kubernetes
Object Name

Type Resource Amount Description

https://github.com/prometheus/node_exporter

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 128
of 165

kube-
system

tke-node-
exporter

DaemonSet 0.1C180Mi*node
amount

Collection program

kube-
system

tke-node-
exporter Service -

Collection program
corresponding service, for
service discovery use

kube-
system

tke-node-
exporter

ServiceMonitor - Collection configuration

Component Permission Description

This component does not use any cluster permissions.

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 129
of 165

Cloud Monitoring
Last updated：2025-02-17 15:47:31

Overview

The Cloud Monitor module of TencentCloud Managed Service for Prometheus (TMP) integrates the basic monitoring
data of Tencent Cloud products, and implements unified collection, storage, and visualization through TMP.
Note:

Data collection interval: 1 minute. Currently, smaller collection intervals are not supported.
Monitoring data granularity: 1 minute. If a metric does not support the 1-minute granularity, you can select the 5-
minute granularity.
The integrated monitoring data includes tag data (not supported by some cloud products) of cloud products. The tag
key should conform to the regular expression [a-Za-Z_][a-Za-Z0-9_]* . Otherwise, it will be filtered out.

Multi-region is not supported. If cloud products are distributed in multiple regions, multiple integration modules need to
be installed.

Operation Steps

1. Log in to the TMP console.
2. Select and enter the corresponding Prometheus instance from the instance list.
3. On the instance details page, select Data Collection > Integration Center.
4. On the Integration Center page, click Cloud Monitor to enter the installation tab by default. Define the integration

name, configure Exporter, and select the corresponding cloud product.

https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 130
of 165

Configuration Instructions

Parameter Description

name Exporter name, which should meet the following requirements:
The name should be unique.

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 131
of 165

The name should conform to the following regular expression: '^[a-z0-9]([-a-z0-9]*[a-
z0-9])?(\\.[a-z0-9]([-a-z0-9]*[a-z0-9])?)*$'.

Region Required. Region where the cloud product is located. If the cloud product does not
distinguish regions, enter any region.

Data Collection
Latency

Unit: second. If it is set to 0, the timestamp of the original data will be ignored. If it is
set to a value greater than 0, the timestamp of the original data will be reported. Since
there is a certain delay in reporting cloud product monitoring data to basic monitoring,
this delay will be reflected in the latest data.
Data pulling range: (Current time - Data collection delay - Fixed interval, Current time -
Data collection delay).

Instance Refresh
Interval

Unit: minute. The minimum value is 10. At each instance refresh interval, the
integration module will re-pull cloud product instance information. If the instance name
or cloud tag is modified or an instance is added or deleted, the monitoring data will be
updated within one instance refresh interval.

Instance ID Filtering

Optional. If it is left blank, data will be collected from all instances under the root
account by default. Enter a value in the form of the key-value pair, where the key is the
unique ID of the cloud product defined by the integration module, and the value is a list
of comma-separated cloud product instance IDs. Only data of the instances of the
cloud products specified in the key-value pair form will be collected.

Cloud Tag Key
Filtering

Optional. Enter a value in the form of the key-value pair, where one tag key can
correspond to multiple tag values that are separated by |. Take the intersection of
different tag keys and take the union of multiple tag values under the same tag key.
For products that support cloud tag filtering, if instance ID filtering is also configured,
cloud tag filtering for that product will not take effect.

Cloud Tag Key
Replacement

Optional. Replace illegal cloud product tag keys with valid values. For example,
convert Chinese names into custom English names.

Cloud Tag Key
Operations

By default, the integration module converts uppercase letters in tag keys into
underscores followed by lowercase letters. It supports the conversion of tag keys of
cloud products.
ToUnderLineAndLower: default operation.
ToLower: full conversion to lowercase letters.
NoOperation: no conversion.

Dimension Whitelist Optional. Some cloud products have dimensions with the same indicator name and
features that need to be whitelisted. By default, collection is not performed, but it can
be enabled through this configuration.
lb_public:listener: Cloud Load Balancer (public network) - Listener dimension.
lb_public:target: Cloud Load Balancer (public network) - Real server dimension.
lb_public:domain: Cloud Load Balancer (public network) - Forwarding rule domain
name dimension.

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 132
of 165

lb_private:listener: Cloud Load Balancer (private network) - Listener dimension.
lb_private:domain: Cloud Load Balancer (private network) - Forwarding rule domain
name dimension.
apigw_cloudnative:node: Cloud Native Gateway - Node dimension.
vbc:qosid: Cloud Connect Network - Scheduling queue dimension.

Label Optional. You can add additional custom tags to the metrics collected by the
integration module.

Authentication

Authentication type: You can choose This account collection or Cross-account
collection.
Service role: Configure for collection within this account. Fixed as
CM_QCSLinkedRoleInTMP.
This account role: Configure for cross-account collection. Custom role used to obtain a
temporary key for this account.
Target account role: Configure for cross-account collection. Custom role used to
obtain a temporary key for the target account.
Target account uin: Configure for cross-account collection. Root account ID of the
target account.

Tencent Cloud
Products

Select the cloud product you want to collect.

Metric Relabel
Optional. Native metricRelabelings configuration for Prometheus Operator. The
configuration method is the same as metric_relabel_configs in Prometheus scraping
configuration, with only some field naming conventions being different.

Metric Relabel Configuration Examples

The common metricRelabelings examples are as follows:

metricRelabelings:

- action: labeldrop # Remove the label named labelA. regex indicates a regular exp

 regex: labelA

- regex: ins-(.*) # Add a label named id, whose value is derived from the value of

 replacement: $1

 sourceLabels:

 - instance_id

 targetLabel: id

- targetLabel: region # Add a label with region being ap-guangzhou.

 replacement: ap-guangzhou

- action: drop # Remove the metric named metricA or metricB.

 sourceLabels:

 - __name__

 regex: metricA|metricB

https://github.com/prometheus-operator/prometheus-operator/blob/main/Documentation/api-reference/api.md#monitoring.coreos.com/v1.RelabelConfig
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#relabel_config

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 133
of 165

Supported Cloud Products

Cloud
Product/Metric
Documentation

Whether to
Support
Collecting
Cloud Tags

Unique ID Additional Notes

CVM﻿ Yes cvm Only metrics at the instance dimension are
supported.

Cloud Block
Storage﻿

Yes cbs -

CLB (public
network)﻿

Yes lb_public

By default, metrics at the instance dimension
are collected. If metrics at the listener,
forwarding rule domain name, or backend
server dimension are required, submit a ticket.
The names of metrics at different dimensions
are the same name, which can be distinguished
by the monitor_view tag.
Instance dimension: instance.
Listener dimension: listener.
Backend server dimension: target.
Forwarding rule domain name dimension:
domain.

CLB (private
network)﻿ Yes lb_private

By default, metrics at the instance dimension
are collected. If metrics at the listener or
forwarding rule domain name dimension are
required, submit a ticket. The names of metrics
at different dimensions are the same name,
which can be distinguished by the monitor_view
tag.
Instance dimension: instance.
Listener dimension: listener.
Forwarding rule domain name dimension:
domain.

TencentDB for
MongoDB﻿

Yes cmongo -

TencentDB for
MySQL (CDB)﻿

Yes cdb -

TencentDB for
Redis (CKV

Yes redis -

https://intl.cloud.tencent.com/document/product/248/6843
https://intl.cloud.tencent.com/document/product/248/37085
https://intl.cloud.tencent.com/document/product/248/10997
https://console.intl.cloud.tencent.com/workorder/category
https://intl.cloud.tencent.com/document/product/248/39529
https://console.intl.cloud.tencent.com/workorder/category
https://intl.cloud.tencent.com/document/product/248/35671
https://intl.cloud.tencent.com/document/product/248/11006
https://intl.cloud.tencent.com/document/product/248/34640

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 134
of 165

edition)﻿

TencentDB for
Redis (memory
edition)﻿

Yes redis_mem
Metrics at the instance and node dimensions
are supported.

TencentDB for
MariaDB﻿

Yes mariadb Only metrics at the instance dimension are
supported.

TencentDB for
PostgreSQL﻿

Yes postgres -

TDSQL for
MySQL﻿

Yes tdmysql Only metrics at the instance dimension are
supported.

TDSQL-C for
MySQL﻿

Yes cynosdb_mysql Only metrics at the instance dimension are
supported.

TencentDB for
SQL Server﻿

Yes sqlserver Only metrics at the instance dimension are
supported.

NAT Gateway﻿ Yes nat_gateway -

TDMQ for
CKafka﻿

Yes ckafka Metrics at the broker_ip dimension are not
supported.

Elastic IP﻿ Yes lb -

VPN gateway﻿ Yes vpngw -

VPN tunnel﻿ Yes vpnx -

Network
probing﻿

Tags are not
supported.

vpc_net_detect -

CDN (domain
name for the
Chinese
mainland)﻿

Yes cdn It does not distinguish by region.

CDN (domain
name for
countries
outside China)﻿

Yes ov_cdn It does not distinguish by region.

COS﻿ Yes cos Storage-related metrics have a high delay
(about 2 hours), and the original timestamp of
the data is not retained. Storage-related metrics

https://intl.cloud.tencent.com/document/product/248/34640
https://intl.cloud.tencent.com/document/product/248/39507
https://intl.cloud.tencent.com/document/product/248/40015
https://intl.cloud.tencent.com/document/product/248/17945
https://intl.cloud.tencent.com/document/product/248/40012
https://intl.cloud.tencent.com/document/product/248/37383
https://intl.cloud.tencent.com/document/product/248/11008
https://intl.cloud.tencent.com/document/product/248/10991
https://intl.cloud.tencent.com/document/product/248/17296
https://intl.cloud.tencent.com/document/product/248/34646
https://intl.cloud.tencent.com/document/product/248/10988
https://intl.cloud.tencent.com/document/product/248/10989
https://intl.cloud.tencent.com/document/product/248/39557
https://intl.cloud.tencent.com/document/product/248/39554
https://intl.cloud.tencent.com/document/product/248/39555
https://intl.cloud.tencent.com/document/product/248/37269

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 135
of 165

do not support the 1-minute granularity. By
default, 5-minute data is pulled.

DC - connection﻿ Yes dc It does not distinguish by region.

DC - dedicated
tunnel﻿

Yes dcx It does not distinguish by region.

DC - DC
gateway﻿

Yes dcg They are the same as the VPC, network
connection, and DC gateway.

﻿Lighthouse Yes Lighthouse -

Cloud-native
API gateway

Yes apigw_cloudnative

By default, metrics at the instance and public
network CLB dimensions are collected. If
metrics at the node dimension are required,
submit a ticket. The names of metrics at the
instance and node dimensions are the same
name, which can be distinguished by the
monitor_view tag.
Instance dimension: gateway.
Public network CLB dimension: loadbalancer.
Node dimension: node.

Elasticsearch﻿ Yes ces Only metrics at the instance dimension are
supported.

Tencent Cloud
TCHouse-D

Yes cdwdrs -

Data
Transmission
Service

Yes dts
Kafka-related dimension metrics are not
supported.

CCN﻿ Yes vbc -

GAAP﻿ Yes gaap -

EdgeOne (layer-
7)﻿

Yes edgeone_l7 -

WAF﻿ Yes waf -

CFS﻿ Yes cfs Currently, no metadata-related metrics are
collected.

BWP﻿ Yes bwp -

https://intl.cloud.tencent.com/document/product/248/10994
https://intl.cloud.tencent.com/document/product/248/10995
https://intl.cloud.tencent.com/document/product/248/10990
https://console.intl.cloud.tencent.com/workorder/category
https://intl.cloud.tencent.com/document/product/248/34642
https://intl.cloud.tencent.com/zh/document/product/248/10987
https://intl.cloud.tencent.com/zh/document/product/248/13527
https://intl.cloud.tencent.com/zh/document/product/248/58578
https://intl.cloud.tencent.com/document/product/248/38245
https://intl.cloud.tencent.com/zh/document/product/248/34644
https://intl.cloud.tencent.com/zh/document/product/248/34645

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 136
of 165

SCF﻿ Yes scf_v2 By default, metrics at the alias dimension are
collected. If metrics at the version dimension are
required, submit a ticket. The names of metrics
at the alias and version dimensions are the
same name, which can be distinguished by the
monitor_view tag.
Alias dimension: alias.
Version dimension: version.

CLS - log topic﻿ Yes cls -

API Gateway﻿ Yes apigateway Only metrics at the API dimension are
supported.

Metric Description

To distinguish metrics of different cloud products, Cloud Monitor integrates and converts the metric names (metric
English names in the metric documentation) of cloud products. The metric page provides information on metrics
supported by Cloud Monitor integration, making it convenient for users to directly view and use.

https://intl.cloud.tencent.com/document/product/248/34638
https://console.intl.cloud.tencent.com/workorder/category
https://intl.cloud.tencent.com/document/product/248/46870
https://intl.cloud.tencent.com/document/product/248/19130

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 137
of 165

Cross-Account Collection

Note:
Cross-site collection is not supported (Chinese mainland site accounts and international site accounts cannot collect
data from each other).

Scenario: Account A collects monitoring data from Account B through cross-account collection.
Configuration entries:
Create a Cloud Monitor integration in the Prometheus monitoring service instance under account A.
Select Authentication type as Cross-account collection.

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 138
of 165

Select This account role as the custom role created by Account A.
Enter the custom role created by Account B in Target account role.
Enter the root account ID of Account B in Target account uin.

Brief Flowchart

Creating Custom Roles

Account A Users Creating Custom Roles

1. On the Policies page, create a Custom Policy using policy syntax, and add the sts:AssumeRole permission, which
is used to assume the role of account B. The policy syntax is as follows:

{

 "version": "2.0",

 "statement": [

 {

 "effect": "allow",

 "action": ["sts:AssumeRole"],

 "resource": ["*"]

 }

]

}

Note:

https://console.intl.cloud.tencent.com/cam/policy
https://intl.cloud.tencent.com/zh/document/product/598/58328?has_map=1

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 139
of 165

If you need to limit permissions, such as only assuming a custom role of Account B, you can modify resource to
"qcs::cam::uin/[Root account ID of Account B]:roleName/[Custom role of Account B]".
2. On the Roles page, click Create Role.

3. In the pop-up window for selecting the role entity, choose Tencent Cloud Product Service to enter the role
information page.
4. Check Cloud Virtual Machine (cvm) as the role entity, select Cloud Virtual Machine as the use case, and click
Next.
5. In the policy list, select the policy created in Step 1 as the role configuration policy, and click Next.

6. Tag the role with tag keys and tag values, which can be left blank, and click Next.
7. Enter your role name and click Complete to finish creating the custom role.

Account B Users Creating Custom Roles

1. On the role list page, click Create Role.
2. In the pop-up information window for selecting the role entity, choose Tencent Cloud Account as the role entity,
and enter the role information page.
3. On the role entity information page, select other root account for Tencent Cloud Account Type, enter the Account

A main account ID for Account ID, leave others blank, and click Next.
4. In the policy list, select the preset policy ReadOnlyAccess as the role configuration policy, and click Next.
5. Tag the role with tag keys and tag values, which can be left blank, and click Next.
6. Enter your role name and click Complete to finish creating the custom role.

FAQs

How to Configure "Data Pull Configuration"?

1. If the configuration is 0, Prometheus will use the current timestamp to overwrite the original timestamp of data.

Use case: Ensure the real-timeness of data timestamps to maximize the timely issuance of alarms by Prometheus.
2. If the configuration is a value x greater than 0:
As long as the value is greater than 0, Prometheus will retain the original timestamp of the data.
Use case: Keep the timestamps consistent with those on the console monitoring page.
Time window for delayed data pulls (latency equals x).

Background: To be compatible with the latency of monitoring data reporting links of cloud products, Prometheus pulls
data within the time range of (now-fixed latency, now) by default.

Use case: If the reporting link latency of certain products is too high, set x here to change the time range for pulling
data to (now-fixed latency-x, now-x) , to ensure that data can be retrieved to the greatest extent possible

within this delayed window.

Are There Issues with Targets Display?

https://console.intl.cloud.tencent.com/cam/role

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 140
of 165

No collection objects: A newly-created integration needs to wait for a few minutes before displaying the correct
targets.
(1/2)down: Because the integration uses rolling update, it will continue to collect from the old pod until the new pod

runs successfully. During that period, two targets will be displayed.

Certain Cloud Product Failed to Collect Metrics

On the Integrated tab, you can check the following information:
Instance information: Check whether it contains the cloud product. If not, it means the cloud product was not
selected.
Ensure that Targets are in up status.

Metric details: Check whether there are metrics for the cloud product. If there is, wait for a minute before querying
again.

Ensure that there are cloud product instances in the selected region.
Check whether Instance ID Filtering or Cloud Tag Key Filtering is configured, and confirm that the corresponding
configuration can help obtain the cloud product instance.
Check whether Metric Relabel is configured, and ensure that the corresponding configuration does not filter out the

cloud product metrics.

Viewing Monitoring Information

Prerequisites

The Prometheus instance has been bound to a Grafana instance.

Operation Steps

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 141
of 165

1. Log in to the TMP console and select the corresponding Prometheus instance to enter its management page.
2. Click Data Collection > Integration Center, on the Integration Center page, find and click Cloud Monitor, select
Dashboard > Dashboard operation > Install/Upgrade in the pop-up window to install the corresponding Grafana

Dashboard.
3. Select Integrated. In the integrated list, click the Grafana icon to automatically open the list of Cloud Monitor
integrated dashboards. Select the corresponding cloud product dashboard to view monitoring data related to the
instance, as shown below.

https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 142
of 165

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 143
of 165

Read Cloud-Hosted Prometheus Instance
Data via Remote Read
Last updated：2024-01-29 15:55:08

Overview

TMP provides the remote read API, which supports organizing a series of data sources of the Prometheus protocol
into a single data source for query. This document describes how to use self-built Prometheus to read data from a
cloud-managed TMP instance through the remote read API.

Remote Read Configuration

The recommended configuration for prometheus.yml is as follows:

remote_read:

 - url: 'http://prom_ip:prom_port/api/v1/read'

 read_recent: true

 basic_auth:

 username: app_id

 password: token

It is recommended to use the Basic Auth method to access the cloud-managed TMP instance. The username is the
account AppID and the password is the token obtained on Basic Info > Service Address in the Prometheus
console.

https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 144
of 165

Note

Configure global:external_labels carefully for TMP instances with remote read enabled:

As external_labels will be appended to the query condition of remote read, an inaccurate label may prevent

you from querying the necessary data.

The filter_external_labels: false configuration item can avoid adding external_labels to the

query condition (supported in v2.34 and later).
Avoid identical series:

For two identical series, TMP will randomly select a series value at each time point to form a new series as the query

result during query merging, which will lead to inaccurate query results.

Since there is no multi-copy redundant storage in the design concept of TMP, identical series will not be supported.

Remote Read Configuration Items

Note
The configuration items in [] are optional. This document shows Prometheus v2.40 configuration, and some

configuration items may be missing in lower versions. For more information, see Prometheus official documentation.

The API address of the target TMP instance for remote read

url: <string>

Identify a unique remote read configuration name

[name: <string>]

The PromQL must contain the following label filter conditions to perform remote r

required_matchers:

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#remote_read

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 145
of 165

 [<labelname>: <labelvalue> ...]

The timeout for remote read query

[remote_timeout: <duration> | default = 1m]

Customize the headers attached to the remote read request. You can’t overwrite th

headers:

 [<string>: <string> ...]

Whether to perform remote read query in the time range with complete local data s

[read_recent: <boolean> | default = false]

Add Authorization header to each remote read request, and choose password or pass

basic_auth:

 [username: <string>]

 [password: <secret>]

 [password_file: <string>]

Customize authorization header configuration

authorization:

 # Authentication type

 [type: <string> | default: Bearer]

 # Authentication key. You can choose credentials or credentials_file.

 [credentials: <secret>]

 # Get the key from the file

 [credentials_file: <filename>]

OAuth2.0 authentication, which cannot be used with basic_auth authorization at th

oauth2:

 [<oauth2>]

TLS configuration

tls_config:

 [<tls_config>]

Proxy URL

[proxy_url: <string>]

Query whether the request accepts 3XX redirection

[follow_redirects: <boolean> | default = true]

Whether to enable HTTP2

[enable_http2: <bool> | default: true]

Whether to append `external_labels` for remote read

[filter_external_labels: <boolean> | default = true]

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 146
of 165

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 147
of 165

Agent Self-Service Access
Last updated：2024-08-15 17:08:56

Application Scenario

To collect services on self-built IDC, deploy Agent and manage collection configurations, and report monitoring data to
the cloud TMP. For cloud services, we recommend using Integration Center, which will manage Agent, offering
automated integration for multiple middlewares and scraping tasks.

Obtaining Prometheus Instance Access Configuration

1. Go to Prometheus Monitoring Console, select the corresponding instance ID/Name, and on the Basic Info >
Service Address page, obtain the Remote Write address and Token.

2. Obtain APPID on the Account Information page.

https://intl.cloud.tencent.com/document/product/1116/43163
https://console.intl.cloud.tencent.com/monitor/prometheus
https://console.intl.cloud.tencent.com/developer

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 148
of 165

Confirming the Network Environment and Connectivity with Cloud
Instances

Based on the acquired RemoteWrite address, execute the following command. If the network is connected, the
returned information will include 401 Unauthorized .

curl -v -X POST ${RemoteWriteURL}

Installing and Starting vmagent

vmagent uses fewer resources and is widely used due to its compatibility with Prometheus collection configuration and
Remote Write protocol. This document only describes common startup options for vmagent, managed through
Systemd or Docker. For more detailed information, please see the official documentation.

Common Startup Options

-promscrape.noStaleMarkers: If the collection target disappears, a stale marker for all associated metrics is generated
and written to remote storage by default. Setting this option disables this behavior and can reduce memory usage.

-loggerTimezone: The time zone for the time in logs, for example, Asia/Shanghai, Europe/Berlin or

 Local (UTC by default).

-remoteWrite.tmpDataPath: The file path for temporary data storage to be written after collection.
 -remoteWrite.url: The URL where data is written to remote storage.
 -remoteWrite.basicAuth.username: Remote storage -remoteWrite.url corresponding basic auth username.

 -remoteWrite.basicAuth.password: Remote storage -remoteWrite.url corresponding basic auth password.
-promscrape.config: Path of the collection configuration, which can be a file path or HTTP URL. For more details,
please see Reference Documentation.
-promscrape.configCheckInterval: Interval for checking the -promscrape.config configuration changes. For
configuration updates, please see Reference Documentation.

Managing via Docker

1. On the vmagent Release Page, select the image version. It is recommended to use latest.

2. Replace the Prometheus instance information in the script and start vmagent.

mkdir /etc/prometheus

touch /etc/prometheus/scrape-config.yaml

docker run -d --name vmagent --restart always --net host -v

/etc/prometheus:/etc/prometheus victoriametrics/vmagent:latest \\

-promscrape.noStaleMarkers \\

-loggerTimezone=Local \\

https://github.com/VictoriaMetrics/VictoriaMetrics
https://docs.victoriametrics.com/vmagent.html
https://prometheus.io/docs/prometheus/latest/querying/basics/#staleness
https://docs.victoriametrics.com/#how-to-scrape-prometheus-exporters-such-as-node-exporter
https://docs.victoriametrics.com/vmagent.html#configuration-update
https://github.com/VictoriaMetrics/VictoriaMetrics/releases/latest

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 149
of 165

-remoteWrite.url="${RemoteWriteURL}" \\

-remoteWrite.basicAuth.username="${APPID}" \\

-remoteWrite.basicAuth.password='${Token}' \\

-remoteWrite.tmpDataPath=/var/lib/vmagent \\

-promscrape.config=/etc/prometheus/scrape-config.yaml \\

-promscrape.configCheckInterval=5s

3. View vmagent logs

docker ps

docker logs vmagent

If it starts normally, executing the following command will return OK .

curl localhost:8429/health

Managing via Systemd

1. On the vmagent Release page, download the corresponding vmutils-* compressed package according to your
operating system and CPU architecture, and decompress it.
2. Replace the access information of the Prometheus instance in the script and start vmagent.

mkdir /etc/prometheus

touch /etc/prometheus/scrape-config.yaml

cat >/usr/lib/systemd/system/vmagent.service <<EOF

[Unit]

Description=VictoriaMetrics Agent

After=network.target

[Service]

LimitNOFILE=10240

ExecStart=/usr/bin/vmagent \\

-promscrape.noStaleMarkers \\

-loggerTimezone=Local \\

-remoteWrite.url="${RemoteWriteURL}" \\

-remoteWrite.basicAuth.username="${APPID}" \\

-remoteWrite.basicAuth.password="${Token}" \\

-remoteWrite.tmpDataPath=/var/lib/vmagent \\

-promscrape.config=/etc/prometheus/scrape-config.yaml \\

-promscrape.configCheckInterval=5s

Restart=always

RestartSec=10s

[Install]

WantedBy=multi-user.target

EOF

https://github.com/VictoriaMetrics/VictoriaMetrics/releases/latest

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 150
of 165

systemctl daemon-reload

systemctl enable vmagent

systemctl start vmagent

sleep 3

systemctl status vmagent

3. View logs

journalctl -u vmagent

If it starts normally, executing the following command will return OK .

curl localhost:8429/health

Managing the Configuration

Modifying the Configuration File

Edit the collection configuration file /etc/prometheus/scrape-config.yaml to add/update/delete collection

tasks. For Prometheus collection task configuration, see Official Documentation.

global:

 scrape_interval: 30s

scrape_configs:

 - job_name: agent-monitor

 static_configs:

 - targets:

 - localhost:8429

After the configuration is modified, it will only take effect after the time set by the option -

promscrape.configCheckInterval .

Viewing Monitoring Target Information

Execute the following command to view the collection target and check whether the configuration is effective and
meets expectations.

curl localhost:8429/api/v1/targets

https://prometheus.io/docs/prometheus/latest/configuration/configuration/

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 151
of 165

Pushgateway Integration
Last updated：2024-10-29 11:48:09

Application Scenario

Pushgateway is a crucial member of the Prometheus ecosystem. It allows any client to push custom monitoring
metrics that comply with the standards, which are then collected and monitored by Prometheus. Prometheus
Pushgateway is used to receive metric data from short-term tasks, which cannot be directly monitored through the

service discovery monitoring system. Pushgateway allows temporary jobs (such as batch processing jobs) to push
metrics to a central location, without directly exposing their metrics. Such data can be pulled and persistently stored by
the Prometheus server.

One-Click Installation

1. Log in to TCOP.
2. In the left sidebar, click Managed Service for Prometheus.

3. Select the corresponding Prometheus instance from the instance list.
4. On the instance details page, click Data Collection > Integration Center.
5. Search for Pushgateway in the integration center, and click it to pop up the installation window.
6. On the Installation tab of the pop-up window, fill in the relevant information as prompted and click Save.

https://console.intl.cloud.tencent.com/monitor/overview

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 152
of 165

Configuration Note

Parameters Description

name

Exporter name, which should meet the following requirements:
The name should be unique.
The name should conform to the following regular expression: '^[a-z0-9]([-a-z0-9]*[a-z0-9])?(\\.
[a-z0-9]([-a-z0-9]*[a-z0-9])?)*$'.

scrape
timeout

Pushgateway collection timeout, which is in time format and cannot be greater than the
collection interval.

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 153
of 165

scrape
interval

Pushgateway collection interval, which is in time format.

CPU/core Number limit of Pushgateway CPU cores, which cannot be greater than 64.

Memory/Gi Pushgateway memory limit. During the configuration, the value should include the unit Gi and
cannot be greater than 512 Gi.

7. Obtain Pushgateway address information from the integrated list.

Search for the required CAM policy as needed, and click to complete policy association.

Data Push

After Pushgateway is installed successfully, you can obtain the address for interaction and use this address to perform
related operations on Pushgateway.

1. Obtain the component status:

curl -X GET http://10.*.*.*:8080/api/v1/status

2. Add a single data record to {job="some_job"}:

curl --location --request POST '10.*.*.*:8080/metrics/job/some_job' \\

--header 'Content-Type: text/plain' \\

--data 'some_metric 3.14

'

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 154
of 165

3. Add complex data to a specific instance:

curl --location --request PUT

'10.*.*.*:8080/metrics/job/some_job/instance/some_instance' \\

--header 'Content-Type: text/plain' \\

--data '# TYPE some_metric counter

some_metric{label="val1"} 42

TYPE another_metric gauge

HELP another_metric Just an example.

another_metric 2398.283

'

4. Delete all data under {job="some_job",instance="some_instance"}:

curl -X DELETE http://10.*.*.*:8080/metrics/job/some_job/instance/some_instance

5. Delete all data under {job="some_job"} (excluding data under {job="some_job",instance="some_instance"}):

curl -X DELETE http://10.*.*.*:8080/metrics/job/some_job

Viewing Monitoring Information

Prerequisites

The Prometheus instance has been bound to a Grafana instance.

Directions

1. Log in to the TMP Console and select the corresponding Prometheus instance to enter its management page.

2. On the Basic Info page of the instance, find the bound Grafana address, open it, and log in to Grafana. Then, you
can view the pushed metrics in Explore or create a panel to view metrics:
Search for the required CAM policy as needed, and click to complete policy association.

https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 155
of 165

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 156
of 165

Security Group Open Description
Last updated：2024-08-15 17:08:56

Overview

This document describes the port that needs to be opened for security groups of managed clusters and user clusters
during the process of integrating TKE for TMP. It also describes solutions for security group related issues that arise
when managed clusters and user clusters are bound.

Managed Cluster

Managed cluster Security Groups are created by TMP and generally do not need modifications.

Security Group

Rule Protocol Port Policy

Inbound rule TCP:9093, 9090, 10901, 10902, 9990, 3000, 8080,
and 8008

Allow

Inbound rule TCP:8100-8200 Allow

Outbound rule ALL Allow

Port Description

Port Function Remarks

TCP:8008 proxy-server listens for the proxy-
agent connection port

-

TCP:8080 Cluster internal API calls port -

TCP:3000 grafana proxy port -

TCP:9990 cm-notify synchronization port About to be decommissioned

TCP:10901,10902 thanos sidecar listening address -

TCP:9090 Configure reload port, and collect
data query API

-

https://intl.cloud.tencent.com/document/product/1116/55073

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 157
of 165

TCP:9093 Alarm port -

TCP:8100-8200
proxy-server listening collection
port

Since the collection port range is 100, the
maximum number of associated clusters cannot
exceed 100.

Viewing Method

log in to Prometheus Monitoring, select the instance's ID/Name > instance diagnostics, choose Integration
Center for diagnostics, in the data collection architecture diagram you can see the Managed Cluster Security
Group, click it to jump to the security group interface via hyperlink to view the Managed Cluster Security Group.

User Cluster

The user cluster security group is specified when the user creates a node. If not specified, the default security group
will be used.

Security Group

Rule Cluster
Type

Protocol Port Policy Description

Outbound
rule

- TCP:8008 Allow Ensure that the proxy-agent and proxy-
server can establish a connection

Inbound Standard - The standard cluster does not need

https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 158
of 165

rule cluster opening ports.

Inbound
rule

Independent
cluster

TCP: 9092, 8180, 443,
10249, 9100, 60002,
10252, 10257, 10259,
and 10251

Allow

The independent cluster needs to open
additional master node-related ports to
ensure proxy-agent can pull master node-
related monitoring data

Viewing Method

log in to Prometheus Monitoring, select the instance ID/Name > Data Collection, and click the cluster ID/Name to
jump to the cluster's TKE interface.

Native Nodes

Click Node Management > Worker Node > Node pool, and click Node Pool ID. In the Details page, you can see

the security group. In the Security group, search by security group ID to view specific rules.

Common Nodes

https://console.intl.cloud.tencent.com/monitor/prometheus

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 159
of 165

Click Node Management > Worker Node > Node Pool, and click Node Pool ID. In the Details page, hover over the
Node ID and click Details:

After navigating to the Instance Details page, click Security groups to view specific security group information:

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 160
of 165

Super Nodes

Click Node Management > Worker Node > Node Pool, and click Node Pool ID. In Node pool information, you
can view the security group:

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 161
of 165

Related Issues

Issue Description

Abnormal binding status, "Install tmp-agent CR" step shows "context deadline exceeded":

Troubleshooting

Is the VPC the Same or Interconnected?

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 162
of 165

1. Click the user cluster link, open the associated cluster, and view the cluster node network (i.e., vpcid):

2. On the Prometheus Instance's Basic Info page, click Network to view the cluster network:

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 163
of 165

3. Compare the vpcid. If they are different, check if the VPCs are interconnected via CCN. If not, you need to associate
the CCN to interconnect both VPCs or select Create Public Network CLB Instance when associating clusters. If

CCN is interconnected but still unsuccessful, check if the CCN bandwidth limit is reached. If so, increase the CCN
bandwidth limit.
Associate with CCN:

Select Create Public Network CLB Instance:

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 164
of 165

Does the Security Group Allow Access?

1. View the user cluster security group. For viewing methods, see User Cluster Security Group Viewing Method.
Check if the rules meet the requirements.

2. If the user cluster is an independent cluster, view the Master&Etcd security group information. Click Node
Management > Master&Etcd > Node Pool, click the Node Pool ID, hover over the Node ID, and then click Jump
to CVM Instance Details Page. On the CVM Security groups page, you can view specific security group
information:

https://intl.cloud.tencent.com/document/product/1116/63274#Viewing%20Method

TencentCloud Managed Service for Prometheus

©2013-2025 Tencent Cloud International Pte. Ltd. Page 165
of 165

Check if the security group rules meet the requirements.

