
Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 1 of 34

Serverless Application Center

Advanced Guide

Product Documentation

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 2 of 34

Copyright Notice

©2013-2024 Tencent Cloud. All rights reserved.

Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute

in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent.

Trademark Notice

All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing)
Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by
their respective proprietors.

Service Statement

This document is intended to provide users with general information about Tencent Cloud's products and services
only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are
subject to change. Specific products and services and the standards applicable to them are exclusively provided for in
Tencent Cloud's applicable terms and conditions.

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 3 of 34

Contents

Advanced Guide
Application Management
Project Development
Grayscale Release
Layer Deployment
Custom Domain Name and HTTPS Access Configuration
Developing and Reusing Application Template

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 4 of 34

Advanced Guide
Application Management
Last updated：2024-12-02 10:48:10

Overview

Every time sls deploy is run, a serverless application will be deployed, which consists of one or multiple

component instances, and each component corresponds to an instance.
Each instance involves a serverless.yml file, which defines certain parameters of the component. Such

parameters are used to generate the instance information during deployment; for example, region defines the

resource region.
The differences between the project organizations of a single-instance application and a multi-instance application are
as shown below:

Single-Instance application

In the project of a single-instance application, only one component is imported, and only one component instance will
be generated during deployment.
Generally, you do not need to manually name a single-instance application. If you want to customize the name, you
can directly enter a name in serverless.yml of the component.

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 5 of 34

Multi-Instance application

In the project of a multi-instance application, multiple components are imported, and multiple component instances will
be generated during deployment.
You need to enter a custom name for the multi-instance application to ensure that all components are managed under

the same application. Generally, the application name is defined in serverless.yml in the project directory, so

that all components can use the same application name.

serverless.yml file

The serverless.yml file defines the application organization parameters and the component's inputs

parameters. During each deployment, resources will be created, updated, and orchestrated according to the
configuration information in the serverless.yml file.

The following is a simple serverless.yml file:

serverless.yml

Application information

app: expressDemoApp # Application name, which is the component instance name by def

stage: ${env:STAGE} # Parameter used to isolate the development environment, which

Component information

component: express # Name of the imported component, which is required. The `expres

name: expressDemo # Name of the instance created by the component, which is require

Component configuration

inputs:

 src:

 src: ./

 exclude:

 - .env

 region: ap-guangzhou

 runtime: Nodejs10.15

 functionName: ${name}-${stage}-${app} # Function name

 apigatewayConf:

 protocols:

 - http

 - https

 environment: release

Configuration information in the .yml file:

Application information

Parameter Description

org Organization information, which is the APPID of your Tencent Cloud account by default. It is

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 6 of 34

a reserved field and is not recommended to be used.

app
Application name, which is the same as the instance name in the component information by
default. A single-instance application and a multi-instance application have different definitions
of this parameter. For more information, please see Application Management.

stage
Environment information, which is dev by default. You can define different stage values
to provide independent runtime environments for development, testing, and release of the
serverless application, respectively. For more information, please see Project Development.

Component information

Parameter Description

component
Name of the imported component. You can run sls registry to query components
available for import.

name Name of the created instance. An instance will be created when each component is deployed.

Parameter information

The parameters under inputs are configuration parameters of the corresponding component. Different

components have different parameters. To guarantee environment isolation and resource uniqueness, the component
resource names are in the ${name}-${stage}-${app} format by default.

Application Deployment

Single-Instance application

Do not set the application name (app) in the serverless.yml file, and an application with the same name as

that of the instance (name) will be generated by default during deployment.

For example, if you create an SCF project, and the project directory is as shown below:

scfDemo

 |- index.js

 └── serverless.yml

Here, the serverless.yml file is configured as follows:

component: scf

name: myscf

inputs:

 src: ./

https://intl.cloud.tencent.com/document/product/1040/38288
https://intl.cloud.tencent.com/document/product/1040/38289

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 7 of 34

 runtime: CustomRuntime

 region: ap-guangzhou

 functionName: ${name}-${stage}-${app} # Function name

 events:

 - apigw:

 parameters:

 endpoints:

 - path: /

 method: GET

Run sls deploy in the scfDemo directory for deployment, and an application whose app is myscf will

be generated by default, and the application will contain an SCF instance named myscf .

Generally, you can use the default application name for a single-instance application project. If you want to customize

the name, you can directly enter a name in serverless.yml as follows:

app: scfApp # Set `app` to `scfApp`

component: scf

name: myscf

inputs:

 src: ./

 runtime: CustomRuntime

 region: ap-guangzhou

 events:

 - apigw:

 parameters:

 endpoints:

 - path: /

 method: GET

Run sls deploy in the scfDemo directory for deployment, and an application whose app is scfApp will

be generated, and the application will contain an SCF instance named myscf .

Multi-Instance application

As the project contains multiple components, you need to unify the application name for all components. Generally,
you should define a serverless.yml file in the root directory of the project to name the application.

For example, if you deploy a Vue.js + Express.js + PostgreSQL full-stack website, and the project directories are as
shown below:

fullstack

 |- api

 | |- sls.js

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 8 of 34

 | |- ...

 | └── serverless.yml

 |- db

 | └── serverless.yml

 |- frontend

 | |- ...

 | └── serverless.yml

 |- vpc

 | └── serverless.yml

 |- scripts

 └── serverless.yml

 app is set in the serverless.yml file in the fullstack directory of the project:

Project application information

app: fullstack

The component and parameter information is configured in the serverless.yml file in each component

directory, such as the api directory:

`api` configuration information

component: express

name: fullstack-api

inputs:

 src:

 src: ./

 exclude:

 - .env

 functionName: ${name}-${stage}-${app}

 region: ${env:REGION}

 runtime: Nodejs10.15

 functionConf:

 timeout: 30

 vpcConfig:

 vpcId: ${output:${stage}:${app}:fullstack-vpc.vpcId}

 subnetId: ${output:${stage}:${app}:fullstack-vpc.subnetId}

 environment:

 variables:

 PG_CONNECT_STRING: ${output:${stage}:${app}:fullstack-db.private.connection

 apigatewayConf:

 enableCORS: true

 protocols:

 - http

 - https

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 9 of 34

Note:

In the demo on the legacy version, the application name (app) is written into all components, which requires you to

ensure that all components under the project have the same application name. We recommend you not use this
method in the new version.

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 10 of 34

Project Development
Last updated：2024-12-02 10:48:10

Prerequisites

You have understood how to quickly deploy a project.
You have understood serverless applications.
You have understood account and permission configuration.

Development Process

The development and launch process of a project is as shown below:

1. Project initialization: initialize the project; for example, select some development frameworks and templates to
complete the basic construction.
2. Development: develop product features. This stage may involve collaboration among multiple developers, who will

pull different feature branches for separated development and testing and finally merge them into the dev branch

for joint testing.
3. Testing: test the product features by testing personnel.
4. Release and launch: publish and launch the tested product features. As a newly published version may be unstable,
grayscale release will be used generally, and some rules will be configured to monitor the stability of the new version.
After the new version becomes stable, all traffic will be switched to it.

Environment Isolation

During each stage of project development, an environment running independently is required to isolate the
development operations.
Define stage in the serverless.yml file and write stage into the component's resource names as a

parameter, so that resources named instance name-{stage}-application name will be generated during

the deployment. In this way, you can generate different resources in different stages by defining different stage

values so as to isolate the environments.

https://intl.cloud.tencent.com/document/product/1040/36249
https://intl.cloud.tencent.com/document/product/1040/38288
https://intl.cloud.tencent.com/document/product/1040/36793

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 11 of 34

Take serverless.yml of the SCF component as an example:

Application information

app: myApp

stage: dev # The environment is defined as `dev`

Component information

component: scf

name: scfdemo

Component parameters

inputs:

 name: ${name}-${stage}-${app} # Function name. The `${stage}` variable is used as

 src: ./

 handler: index.main_handler

 runtime: Nodejs10.15

 region: ap-guangzhou

 events:

 - apigw:

 parameters:

 endpoints:

 - path: /

 method: GET

Define the function name as ${name}-${stage}-${app} .

Define stage as dev for the development and testing stages. After the deployment, the function will be named

 scfdemo-dev-myApp .

Define stage as pro for the release stage. After the deployment, the function will be named scfdemo-pro-

myApp .

Manipulate different function resources in different stages so as to isolate the development from release.

Note:
You can directly define stage in the serverless.yml file or pass in the parameter through sls deploy -

-stage dev .

Permission Management

During project development, you need to assign permissions to different persons and manage their permissions; for
example, you want a developer to access only a certain environment in a project. To this end, you can grant sub-
accounts permissions to manipulate specified resources in Serverless Framework as instructed in Account and

Permission Configuration.
Taking the dev environment of the myApp project as an example, the configuration is as follows:

https://intl.cloud.tencent.com/document/product/1040/36793

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 12 of 34

{

 "version": "2.0",

 "statement": [

 {

 "action": [

 "sls:*"

],

 "resource": "qcs::sls:ap-guangzhou::appname/myApp/stagename/dev", # `ap

 "effect": "allow"

 }

]

}

Grayscale Release

Grayscale release (aka canary release) is a release method that can smoothly transition between black and white. To
guarantee the stability of your business in the production environment, we recommend you use grayscale release to
launch projects in the production environment.
Grayscale release for serverless applications is applicable only to the SCF component and relevant components
involving SCF.

You can configure the traffic rule of the SCF function whose alias is $default (default traffic) to configure the traffic

of two function versions, where one is the $latest version of the function, while the other is the last published

version. For more information, please see Grayscale Release.

Serverless Framework Commands

From project development to release, you need to use relevant Serverless Framework commands. For more
commands, please see List of Supported Commands.

Initialize the project

sls

Download the template project `scf-demo`. You can run `sls registry` to query the

sls init scf-demo

Download the template project `scf-demo` and initialize it as `myapp`

sls init scf-demo --name my-app

Deploy the application

sls deploy

https://intl.cloud.tencent.com/document/product/1040/37698
https://intl.cloud.tencent.com/document/product/1040/36861

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 13 of 34

Deploy the application and specify `stage` as `dev`

sls deploy --stage dev

Deploy the application and print the deployment information

sls deploy --debug

Deploy and publish the function version

sls deploy --inputs publish=trues

Deploy and switch 20% traffic to the `$latest` version

sls deploy --inputs traffic=0.2

Project Practice

For more information, please see Developing and Launching Serverless Application.

https://intl.cloud.tencent.com/document/product/1040/38253

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 14 of 34

Grayscale Release
Last updated：2024-12-17 16:03:20

Overview

Grayscale release (aka canary release) is a release method that can smoothly transition between black and white.
The grayscale release utilized for a serverless application is to configure traffic rules of the SCF function alias, i.e.,
configuring traffic rules for the two different versions of the function in the alias. Serverless Framework supports two

ways to configure alias: default alias and custom alias.

Default Alias

The default alias is to configure the $default (default traffic) alias for the function. This alias always contains two

function versions: one is the $latest version of the function, while the other is the last published version. During

the deployment, the traffic parameter specifies the traffic percentage on the $latest version, while the rest

traffic will be switched to the last published version of the current function by default.

Every time a feature is published, you can run sls deploy to deploy it onto the $latest version. You can

switch some traffic to the $latest version to check the performance and gradually switch the rest traffic to it.

When 100% traffic has been switched to it, it will be fixed, and all traffic will be switched to the fixed version.

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 15 of 34

Command description

Note:
The legacy command format sls deploy --inputs.key=value has been changed to sls deploy --

inputs key=value since Serverless CLI v3.2.3. Legacy commands cannot be used in new versions of Serverless

CLI. If you have upgraded Serverless CLI, please use the new commands.

Publishing function version

Publish all function versions under the project during deployment:

sls deploy --inputs publish=true

Setting function traffic

After deployment, switch 20% traffic to the $latest version.

sls deploy --inputs traffic=0.2

In Serverless Framework, the traffic rule of the SCF function whose alias is $default is modified to switch the

traffic.
The objects to be configured are always the $latest version and the last published function version.

The value of traffic is configured as the traffic percentage of the $latest version. The traffic percentage of

the last published SCF function version is 1 minus the traffic percentage of the $latest version (for example, if

traffic=0.2, the traffic rule of $default will be {$latest:0.2, last published function version:

0.8}).

If no fixed versions are published for the function and only the $latest version exists, no matter how traffic

is set, it will always be $latest:1.0 .

Directions

You can publish a tested feature through grayscale release in the following steps:

1. Configure the production environment information into the .env file (STAGE=prod indicates the production

environment):

TENCENT_SECRET_ID=xxxxxxxxxx

TENCENT_SECRET_KEY=xxxxxxxx

STAGE=prod

2. Deploy the function to the $latest production environment and switch 10% traffic to the $latest version

(90% traffic will be switched to the last published function version N):

sls deploy --inputs traffic=0.1

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 16 of 34

3. Monitor the $latest version and switch 100% traffic to this version after it becomes stable:

sls deploy --inputs traffic=1.0

4. After all traffic is successfully switched, the stable version needs to be marked, so that you can easily and quickly

roll back to this version if a problem occurs in the production environment when a new feature is published. Deploy
and publish the function version N+1 and switch 100% traffic to it:

sls deploy --inputs publish=true traffic=0

Custom Alias

A custom alias can be created through commands to configure the traffic ratio between two specified function

versions.
When using a custom alias for grayscale release, first publish the new feature to a new version, then modify the alias
configuration to switch part of the traffic to this version for observation, and finally switch all the traffic to this version
gradually.
The custom alias enables flexible version switching. Its configuration method is more complicated than that of the
default alias. It is suitable for business scenarios that require higher grayscale release capabilities. Currently,

custom alias is supported only for the SCF component.

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 17 of 34

Command description

Publishing function version

Directly publish the version of the my-function function without deployment:

sls publish-ver --inputs function=my-function

Creating alias

Create the routing-alias alias for the my-function function, with the routing rule of 50% traffic for version

1 and 50% traffic for version 2:

sls create-alias --inputs name=routing-alias function=my-function version=1

config='{"weights":{"2":0.5}}'

Updating alias

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 18 of 34

Update the flow rule of the routing-alias alias of the my-function function to 10% for version 1 and 90%

for version 2:

sls update-alias --inputs name=routing-alias function=my-function version=1 confi

Listing alias

 List the routing-alias alias of the my-function function:

sls list-alias --inputs function=my-function

Deleting alias

Delete the routing-alias alias of the my-function function:

sls delete-alias --inputs name=routing-alias function=my-function

Directions

You can publish a tested feature through grayscale release in the following steps:
1. Configure the production environment information into the .env file (STAGE=prod indicates the production

environment):

TENCENT_SECRET_ID=xxxxxxxxxx

TENCENT_SECRET_KEY=xxxxxxxx

STAGE=prod

2. Create the alias-prod alias and configure its traffic rule (suppose the current stable production version is N):

sls create-alias --inputs function=my-function name=alias-prod version=n config='{"

3. Configure the alias reference corresponding to the trigger in the serverless.yml of the my-function

function:

 events: # Trigger

 - timer: # Timer trigger

 name: # Trigger name, which is `timer-${name}-${stage}` by default

 parameters:

 qualifier: alias-prod # Configure the alias as `alias-prod`

 cronExpression: '*/5 * * * *' # Trigger once every 5 seconds

 enable: true

 argument: argument # Additional parameter

4. Deploy the function to the $latest production environment and publish the new version (suppose the function

name is my-function and the new version after release is N+1):

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 19 of 34

sls deploy

sls publish-ver --inputs function=my-function

5. Configure the traffic rule of the function alias to switch 10% traffic to the N+1 version (suppose the original
production version is N and the function alias is alias-prod):

sls update-alias --inputs function=my-function name=alais-prod version=n config='{"

6. Continue to observe the monitor and switch 100% traffic to version N+1 after it becomes stable:

sls update-alias --inputs function=my-function name=alais-prod version=n config='{"

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 20 of 34

Layer Deployment
Last updated：2024-12-02 10:48:10

Overview

Due to the limits of SCF, only code packages below 50 MB in size can be uploaded currently. If your project is too
large, you can put dependencies in layers instead of the deployment package to reduce the package size. For specific
usages of layers, please see Operations.

Directions

Creating layer

You can create a layer and upload dependencies in the following two ways:
Create in the SSR console
Use the Layer component of Serverless Framework (for more information, please see Layer Component)

Using layer

You can use layer deployment in project configuration in the following two ways: console configuration and local
configuration.

Configuring in console

For applications in the Node.js framework, Serverless Framework will automatically create a layer named
 ${appName}-layer and upload the application dependency node_modules to this layer.

When importing an existing project, you can also choose to create a layer or use an existing layer for deployment. If
you create a layer, Serverless Framework will automatically upload the application dependency node_modules to

this layer.
Note:

The layer creation operation is supported only for the Node.js framework. When using a layer in other frameworks,
please make sure that the layer has already been created and the relevant dependencies have been uploaded to the
layer.

Configuring through Layer component

1. The Next.js component is used as an example here. Adjust the local project directory, add a layer folder, and

create a serverless.yml file to configure the layer name and version. The .yml template is as follows:

app: appDemo

https://intl.cloud.tencent.com/document/product/583/34878
https://console.intl.cloud.tencent.com/ssr
https://intl.cloud.tencent.com/document/product/1040/37262

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 21 of 34

stage: dev

component: layer

name: layerDemo

inputs:

 name: test

 region: ap-guangzhou

 src: ../node_modules # Path of the file to be uploaded

 runtimes:

 - Nodejs10.14

For detailed configuration items, please see Layer Component Configuration.
The updated directory structure is as follows:

.

├── node_modules

├── src

│ ├── serverless.yml # Function configuration file

│ └── index.js # Entry function

├── layer

│ └── serverless.yml # Layer configuration file

└── .env # Environment variable file

2. Open the project configuration file, add the layer configuration item, and import the output of the Layer component
as the input of the project configuration file. The template is as follows:

app: appDemo

stage: dev

component: nextjs

name: nextjsDemo

inputs:

src:

 src: ./

 exclude:

 - .env

region: ap-guangzhou

runtime: Nodejs10.15

apigatewayConf:

 protocols:

 - http

 - https

 environment: release

layers:

https://github.com/serverless-components/tencent-layer/blob/master/docs/configure.md

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 22 of 34

 - name: ${output:${stage}:${app}:layerDemo.name} # Layer name

 version: ${output:${stage}:${app}:layerDemo.version} # Version

For the import format, please see Variable Import Description.
3. In the project root directory, run sls deploy to complete layer creation and use the output of the Layer

component as the input of the Next.js component to configure the layer.

https://github.com/AprilJC/Serverless-Framework-Docs/blob/main/docs/%E5%87%BD%E6%95%B0%E5%BA%94%E7%94%A8%E5%BC%80%E5%8F%91/%E6%9E%84%E5%BB%BA%E5%BA%94%E7%94%A8.md#%E5%8F%98%E9%87%8F%E5%BC%95%E7%94%A8%E8%AF%B4%E6%98%8E

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 23 of 34

Custom Domain Name and HTTPS Access
Configuration
Last updated：2024-12-02 10:48:10

Operation Scenarios

After quickly constructing a Serverless website service through Serverless Component, if you want to configure a
custom domain name and support HTTPS access, you can do so in the following two ways:

Prerequisites

A website service has been deployed, and the website hosting address at COS/API Gateway has been obtained. For

the specific deployment method, please see Deploying Hexo Blog.
You already have a custom domain name (such as www.example.com). If the domain name is used for Mainland
China services, ICP filing is required.
If you need HTTPS access, you can apply for a certificate and get the certificate ID (such as certificateId of

 axE1bo3) .

Method 1: Configuring Support for HTTPS Access to Custom
Domain Name Through CDN

Before configuration, you need to make sure that you have completed identity verification for your account and
activated the CDN service.

Adding configuration

In serverless.yml , add CDN custom domain name configuration:

serverless.yml

component: website

name: myWebsite

app: websiteApp

stage: dev

inputs:

https://intl.cloud.tencent.com/document/product/1040/36749
https://console.intl.cloud.tencent.com/ssl
https://console.intl.cloud.tencent.com/cdn

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 24 of 34

 src:

 src: ./public

 index: index.html

 error: index.html

 region: ap-guangzhou

 bucketName: my-hexo-bucket

 protocol: https

 # New CDN custom domain name configuration

 hosts:

 - host: www.example.com # Custom domain name to be configured

 https:

 switch: on

 http2: off

 certInfo:

 certId: 'abc'

 # certificate: 'xxx'

 # privateKey: 'xxx'

View full configuration item description >>

Deploying service

Deploy by running the sls command, and you can add the --debug parameter to view the information during

the deployment process:
Note:
 sls is short for the serverless command.

$ sls --debug

 DEBUG ─ Resolving the template's static variables.

 DEBUG ─ Collecting components from the template.

 DEBUG ─ Downloading any NPM components found in the template.

 DEBUG ─ Analyzing the template's components dependencies.

 DEBUG ─ Creating the template's components graph.

 DEBUG ─ Syncing template state.

 DEBUG ─ Executing the template's components graph.

 DEBUG ─ Preparing website Tencent COS bucket my-hexo-bucket-1250000000.

 DEBUG ─ Bucket "my-hexo-bucket-1250000000" in the "ap-guangzhou" region already e

 DEBUG ─ Setting ACL for "my-hexo-bucket-1250000000" bucket in the "ap-guangzhou"

 DEBUG ─ Ensuring no CORS are set for "my-hexo-bucket-1250000000" bucket in the "a

 DEBUG ─ Ensuring no Tags are set for "my-hexo-bucket-1250000000" bucket in the "a

 DEBUG ─ Configuring bucket my-hexo-bucket-1250000000 for website hosting.

 DEBUG ─ Uploading website files from /Users/tina/Documents/hexoblog/hexo/public t

 DEBUG ─ Starting upload to bucket my-hexo-bucket-1250000000 in region ap-guangzho

 DEBUG ─ Uploading directory /Users/tina/Documents/hexoblog/hexo/public to bucket

 DEBUG ─ The CDN domain www.example.com has existed.

 DEBUG ─ Updating...

https://github.com/serverless-components/tencent-website/blob/master/docs/configure.md

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 25 of 34

 DEBUG ─ Waiting for CDN deploy success..

 DEBUG ─ CDN deploy success to host: www.example.com

 DEBUG ─ Setup https for www.example.com...

 DEBUG ─ Website deployed successfully to URL: https://my-hexo-bucket-1250000000.c

 myWebsite:

 url: https://my-hexo-bucket-1250000000.cos-website.ap-guangzhou.myqcloud.com

 env:

 host:

 - https://www.example.com (CNAME: www.example.com.cdn.dnsv1.com)

 17s › myWebsite › done

Adding CNAME

After the deployment is completed, you can see a CNAME domain name suffixed with .cdn.dnsv1.com in the

output on the command line. Set the corresponding CNAME at your DNS service provider as instructed in CNAME
Configuration. After it takes effect, you can access the custom HTTPS domain name.

Method 2: Configuring Custom Domain Name Through API Gateway

Adding configuration

In serverless.yml , add API Gateway custom domain name configuration. This document uses the egg.js

framework as an example, and the configuration is as follows:

serverless.yml

restApi:

 component: "@serverless/tencent-apigateway"

 inputs:

 region: ap-shanghai

 protocols:

 - http

 - https

 serviceName: serverless

 environment: release

 endpoints:

 - path: /users

 method: POST

 function:

 functionName: myFunction # The function name to which the gateway connect

 # Add API Gateway custom domain name configuration

 customDomains:

 - domain: www.example.com

 certificateId: axE1bo3

 protocols:

https://intl.cloud.tencent.com/document/product/228/3121

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 26 of 34

 - https

View full configuration item description >>

Deploying service

Deploy by running the sls command, and you can add the --debug parameter to view the information during

the deployment process:
Note:
 sls is short for the serverless command.

$ sls --debug

 DEBUG ─ Resolving the template's static variables.

 DEBUG ─ Collecting components from the template.

 DEBUG ─ Downloading any NPM components found in the template.

 DEBUG ─ Analyzing the template's components dependencies.

 DEBUG ─ Creating the template's components graph.

 DEBUG ─ Syncing template state.

 DEBUG ─ Executing the template's components graph.

 DEBUG ─ Starting API-Gateway deployment with name restApi in the ap-shanghai regi

 DEBUG ─ Using last time deploy service id service-lqhc88sr

 DEBUG ─ Updating service with serviceId service-lqhc88sr.

 DEBUG ─ Endpoint POST /users already exists with id api-e902tx1q.

 DEBUG ─ Updating api with api id api-e902tx1q.

 DEBUG ─ Service with id api-e902tx1q updated.

 DEBUG ─ Deploying service with id service-lqhc88sr.

 DEBUG ─ Deployment successful for the api named restApi in the ap-shanghai region

 DEBUG ─ Start unbind all exist domain for service service-lqhc88sr

 DEBUG ─ Start bind custom domain for service service-lqhc88sr

 DEBUG ─ Custom domain for service service-lqhc88sr created successfullly.

 DEBUG ─ Please add CNAME record service-lqhc88sr-1250000000.sh.apigw.tencentcs.co

 restApi:

 protocols:

 - http

 - https

 subDomain: service-lqhc88sr-1250000000.sh.apigw.tencentcs.com

 environment: release

 region: ap-shanghai

 serviceId: service-lqhc88sr

 apis:

 -

 path: /users

 method: POST

 apiId: api-e902tx1q

 customDomains:

 - www.example.com (CNAME: service-lqhc88sr-1250000000.sh.apigw.tencentcs.com)

 8s › restApi › done

https://github.com/serverless-components/tencent-apigateway/blob/master/docs/configure.md

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 27 of 34

Adding CNAME record

After the deployment is completed, you can see a CNAME domain name suffixed with .apigw.tencentcs.com

in the output on the command line. Once the corresponding CNAME is set and takes effects at your DNS service
provider, you can access the custom HTTPS domain name.

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 28 of 34

Developing and Reusing Application Template
Last updated：2024-12-02 10:48:10

Overview

Serverless Cloud Framework provides multiple basic resource components, which you can mix and use to quickly
create and deploy resources in the cloud. This document describes how to use existing components to build your own
multi-component serverless application template.

Prerequisites

You have installed Serverless Cloud Framework on at least the 1.0.2 versions:

$ scf –v

Component Configuration Documentation

Basic Component List
Framework Component List

Directions

This document uses deploying a framework project based on Layer and Egg as an example to describe how to

import multiple components into your project and quickly complete the deployment. The steps are as follows:

Step 1. Create a project

Create a project app-demo and enter this directory:

$ mkdir app-demo && cd app-demo

Step 2. Build an Egg project

1. In the app-demo directory, create a src folder and create an Egg project in it:

$ mkdir src && cd src

https://intl.cloud.tencent.com/document/product/1040/37034
https://intl.cloud.tencent.com/document/product/1040/39135
https://intl.cloud.tencent.com/document/product/1040/39375

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 29 of 34

$ npm init egg --type=simple

$ npm i

2. In the src directory, write the configuration file serverless.yml :

$ touch serverless.yml

 A sample .yml file for the Egg component is provided below. For more information on all configuration items,

please see Egg.js Component Configuration.

serverless.yml

app: app-demo # Application name. The `app`, `stage`, and `org` parameters must be

stage: dev

component: egg

name: app-demo-egg # Name of the created instance, which is required

inputs:

 src:

 src: ./ # Project path for upload

 exclude: # Exclude the `node_modules` and `.env` file

 - .env

 - node_modules

 region: ap-guangzhou

 functionName: eggDemo # Function configuration

 runtime: Nodejs10.15

 apigatewayConf:

 protocols: # API Gateway trigger configuration. A gateway will be cre

 - http

 - https

 environment: release

Note:

The app , stage , and org parameters must be the same for the resources created by each component

under the same project.
The Egg component essentially creates an API Gateway trigger + SCF resource. Here, you can select different
components according to your actual development needs, and the configuration methods are similar. For more
information, please see Component Configuration Documentation.

Step 3. Create a layer

Go back to the root directory of app-demo , create a layer folder, and create a layer configuration file

 serverless.yml in it:

$ cd ..

$ mkdir layer && cd layer

$ touch serverless.yml

https://github.com/serverless-components/tencent-egg/blob/master/docs/configure.md

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 30 of 34

 serverless.yml can be configured according to the following template (for more information on the

configuration, please see Layer Component Configuration):

serverless.yml

app: app-demo # Application name. The `app`, `stage`, and `org` parameters must be

stage: dev

component: layer

name: app-demo-layer # Name of the created instance, which is required

inputs:

 region: ap-guangzhou

 src:

 src: ../src/node_modules # Path of the project you want to upload to the layer.

 targetDir: /node_modules # File compression directory after upload

 runtimes:

 - Nodejs10.15

Note:
The app , stage , and org parameters must be the same for the resources created by each component

under the same project.

The Layer component also supports importing projects from COS buckets. For more information, please see Layer
Component Configuration. When entering the bucket parameter, be sure not to include -${appid} , as the

component will add it automatically.

Step 4. Organize the resource relationship

In the same application, you can organize the creation order of resources according to their dependency relationship.
Taking this project as an example, you need to create a layer first and then use the layer in the Egg.js project;

therefore, you should ensure that the resource creation order is * layer > Egg.js application*. The specific steps are as
follows:
Modify the .yml configuration file of the Egg.js project, configure the layer configuration according to the following

syntax, and import the deployment output of the Layer component as the deployment input of the Egg.js project to
ensure that the Layer component is created before the Egg.js project:

$ cd ../src

In serverless.yml , add layer configuration in the inputs section:

inputs:

 src:

 src: ./

 exclude:

 - .env

 - node_modules

https://github.com/serverless-components/tencent-layer/blob/master/docs/configure.md
https://github.com/serverless-components/tencent-layer/blob/master/docs/configure.md

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 31 of 34

 region: ap-guangzhou

 functionName: eggDemo

 runtime: Nodejs10.15

 layers: # Add the layer configuration

 - name: ${output:${stage}:${app}:app-demo-layer.name} # Layer name

 version: ${output:${stage}:${app}:app-demo-layer.version} # Version

 apigatewayConf:

 protocols:

 - http

 - https

 environment: release

For the variable import format, please see Variable Import Description.
At this point, the serverless application has been built, and the project directory structure is as follows:

 ./app-demo

 ├── layer

 │ └── serverless.yml # Layer configuration file

 ├── src

 │ ├── serverless.yml # Egg component configuration file

 │ ├── node_modules # Project dependency file

 │ ├── ...

 │ └── app # Project routing file

 └── .env # Environment variable file

Step 5. Deploy the application

In the project root directory, run scf deploy to complete layer creation and use the output of the Layer

component as the input of the Egg.js component to cloudify the Egg.js framework.

 $ scf deploy

serverless-cloud-framework

app-demo-layer:

 region: ap-guangzhou

 name: layer_component_xxx

 bucket: scf-layer-ap-guangzhou-code

 object: layer_component_xxx.zip

 description: Layer created by serverless component

 runtimes:

 - Nodejs10.15

 version: 3

 vendorMessage: null

app-demo-egg:

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 32 of 34

 region: ap-guangzhou

 scf:

 functionName: eggDemo

 runtime: Nodejs10.15

 namespace: default

 lastVersion: $LATEST

 traffic: 1

 apigw:

 serviceId: service-xxxx

 subDomain: service-xxx.gz.apigw.tencentcs.com

 environment: release

 url: https://service-xxx.gz.apigw.tencentcs.com/release/

 vendorMessage: null

76s › app-demo › "deploy" ran for 2 apps successfully.

You can click the URL output by apigw to access the created application, run scf info to view the status of

the deployed instance, or run scf remove to quickly remove the application.

Step 6. Publish the application template

After the serverless project template is built, Serverless Cloud Framework allows you to publish it in the Serverless
Registry for use by your team and others.

1. Create a configuration file

In the root directory, create a serverless.template.yml file, and the project directory structure is as follows:

./app-demo

├── layer

│ └── serverless.yml # Layer configuration file

├── src

│ ├── serverless.yml # Egg component configuration file

│ ├── node_modules # Project dependency file

│ ├── ...

│ └── app # Project routing file

├── .env # Environment variable file

└── serverless.template.yml # Template project description file

2. Configure and publish the project template file

 # serverless.template.yml

name: app-demo # Project template name, which must be unique

displayName: Egg.js project template created based on layer # Name of the project t

author: Tencent Cloud, Inc. # Author name

org: Tencent Cloud, Inc. # Organization name, which is optional

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 33 of 34

type: template # Project type, which can be either `template` or `component`. It is

description: Deploy an egg application with layer. # Describe your project template

description-i18n:

 zh-cn: Egg.js project template created based on layer # Description

keywords: tencent, serverless, eggjs, layer # Keywords

repo: # Source code repo, which is usually your GitHub repo

readme: # Detailed description file, which is usually your GitHub repo README file

license: MIT # Copyright notice

src: # Describe the files in the project to be published as a template

 src: ./ # Specify a relative directory, the files under which will be published a

 exclude: # Describe the files in the specified directory to be excluded

 # The following files are usually excluded

 # 1. Files containing `secrets`

 # 2. Files managed by `.git` git source code

 # 3. Third-party dependencies such as `node_modules`

 - .env

 - '**/node_modules'

 - '**/package-lock.json'

After the serverless.template.yml file is configured, you can use the scf publish command to publish

the project to the Registry as a template.

$ scf publish

serverless ⚡registry
Publishing "app-demo@0.0.0"...

Serverless › Successfully published app-demo

3. Reuse the template

After your template is published, others can quickly download it and reuse the project by running the scf init

command.

$ scf init app-demo --name example

$ cd example

$ npm install

Variable Import Description

 serverless.yml supports multiple ways to import variables:

Import basic Serverless parameters
 In the inputs field, you can directly import basic Serverless parameter configuration information through the

Serverless Application Center

©2013-2024 Tencent Cloud. All rights reserved. Page 34 of 34

 ${org} and ${app} syntax.

Import environment variables In serverless.yml , you can directly import the environment variable

configuration (including the environment variable configuration in the .env file and variable parameters manually

configured in the environment) through the ${env} syntax.

 For example, you can import the environment variable REGION through ${env:REGION} .

Import the output results of other components
 If you want to import the output information of other component instances into the current component configuration
file, you can configure it by using the following syntax: ${output:[app]:[stage]:[instance name].

[output]}

Sample .yml file:

app: demo

component: scf

name: rest-api

stage: dev

inputs:

 name: ${stage}-${app}-${name} # The final name is "acme-prod-ecommerce-rest-api"

 region: ${env:REGION} # `REGION=` information specified in the environment variab

 vpcName: ${output:prod:my-app:vpc.name} # Get the output information of other com

 vpcName: ${output:${stage}:${app}:vpc.name} # The above methods can also be used

